0% found this document useful (0 votes)
56 views20 pages

Spruis 6

Uploaded by

Partha Shee
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
56 views20 pages

Spruis 6

Uploaded by

Partha Shee
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

User's Guide

SPRUIS6 – September 2019

MMWCAS-DSP-EVM

The MMWCAS-DSP-EVM is an evaluation platform utilizing the TDA2x high performance, multimedia
application processor based on enhance OMAP architecture implemented with 28-nm technology. The
MMWCAS-RF-EVM is a 4-device, cascaded, array of AWR1243P mmWave devices. This user guide
references the MMWCAS-RF-EVM and Radar Board as the same items. Both boards together provide a
full Radar system evaluation.

Contents
1 Introduction ................................................................................................................... 2
2 Hardware Specifications .................................................................................................... 3
3 mmWave Studio and Matlab Post Processing ......................................................................... 19

List of Figures
1 Caution Hot Surface Warning located on EVM ......................................................................... 3
2 MMWCAS-DSP-EVM Functional Block Diagram ....................................................................... 4
3 MMWCAS-DSP-EVM - Front .............................................................................................. 5
4 MMWCAS-DSP-EVM – Back ............................................................................................. 6
5 MMWCAS-DSP-EVM (bottom) and MMWCAS-RF-EVM (top) Board Alignment ................................... 7
6 System Power Distribution Network ...................................................................................... 8
7 DSP Host to RF Board Connector #1 (J1) .............................................................................. 9
8 DSP Host to RF Board Connector #2 (J18) ........................................................................... 12
9 FPGA Flash Programming Header Pinout ............................................................................. 16

List of Tables
1 DSP Host to RF Board Connector Pin Table (J1) ...................................................................... 9
2 DSP Host to RF Board Connector Pin Table (J18) ................................................................... 12
3 USB Connector Pin Table (J16) ......................................................................................... 15
4 GPIO List and Description ................................................................................................ 17
5 User Configurable Supported Boot Modes ............................................................................. 18
6 Push Button Functionality Information .................................................................................. 18
7 User and Status LED Reference Designator and Description ....................................................... 18
Trademarks
MicroSD is a trademark of SD-3C, LLC.
All other trademarks are the property of their respective owners.

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 1


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Introduction www.ti.com

1 Introduction
The MMWCAS-DSP-EVM is an evaluation platform utilizing the TDA2x high performance, multimedia
application processor based on enhance OMAP architecture implemented with 28-nm technology.
The MMWCAS-DSP-EVM provides a processing foundation for a cascaded imaging radar system.
Cascade radar devices can support front, long-range(LRR) beam-forming applications as well as corner
and side-cascade radar and sensor fusion platforms. The EVM supports SSD storage for longer term
capture scenarios and 1 Gigabit Ethernet connectivity for control and offloading captured data. The
MMWCAS-DSP-EVM may also be referred to as DSP Board throughout this guide.
The EVM interfaces with a companion Cascade Radar EVM (MMWCAS-RF-EVM). The MMWCAS-RF-
EVM is a 4-device, cascaded, array of AWR1243P mmWave devices. This user guide references the
MMWCAS-RF-EVM and Radar Board as the same items. Both boards together provide a full Radar
system evaluation.

1.1 Key Features


The key features of the MMWCAS-DSP-EVM are:
• TDA2SX ADAS SoC (23 mm × 23 mm)
• Four Lattice Crosslink Automotive Grade FPGAs
• 2GByte of DDR3L device
• PCIe 2.0 m.2 connector(m-keyed)
• MicroSD™ Card interface
• JTAG interface through FTDI FT2232HL Chip
• USB interface to provide UART, and I2C interfaces through the onboard FTDI device. This is used for
mmWave Studio.
• User LEDs, 3 push-button switches, and 1×6DIP switches for user BOOT configurations
• 1Gb/s RGMII Ethernet interface with RJ45 jack
• Video- one HDMI Out
• Two HiRose 120-pin Automotive Rated Board-to-Board connectors
• 12-V DC input (Wall supply not included in kit)
• Optimized Power Management IC (PMIC) Solution
• Dimension (L × W): 160 mm × 136 mm
• Expansion connector to support AWR Cascade Radar EVM

2 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com Introduction

1.2 Kit Contents


The following items are included with the MMWCAS-DSP-EVM kit. Unbox the board and identify various
components and connectors as detailed in the user guide.
• MMWCAS-DSP-EVM Board
• 512GB NVMe PCIE m.2 2280 SSD(assembled on EVM)
• 16GB microSD Card
• Ethernet cable
• Power Cable assembly
• USBA to miniB Cable
• Mounting standoffs and screws

1.3 Thermal Compliance


There is elevated heat on the processor/heatsink; use caution at elevated ambient temperature. Although
the processor/heatsink is not a burn hazard, caution should be used when handling the EVM due to
increased heat in the area of the heatsink.

Figure 1. Caution Hot Surface Warning located on EVM

2 Hardware Specifications

2.1 Functional Block Diagram


The functional block diagram of the MMWCAS-DSP-EVM is shown in Figure 2.

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 3


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Hardware Specifications www.ti.com

TDA2x Host Processor (ABC) 2x Micron MT41K512M16


16Gbit, 2x(64 Meg
Micron x 16 x 8 banks)
MT41K512M16
x16 8Gbit
OS and Application Memory
DDR3-1066 2Gbyte Total
JTAG
32-Bit+ECC
60-Pin MIPI EMIF1 Micron MT41K512M8
Debug Header 4Gbit, 1x(64 Meg x 8 x 8 banks)
EMU EMU Port/VOUT ECC Memory
512Mbyte Total
2:1 MUX

VOUT 10GigE VOUT


Header 2x Micron MT41K512M16
DDR3-1066
16Gbit Micron
(64 MegMT41K512M16
x 16 x 8 banks) Hirose FX23-120S-
32-Bit
x16 8Gbit
OS and Application Memory 0.5SV10
EMIF2
2Gbyte Total
Micron MT25QL01GBBB8ESF
QSPI AWR1243 RF Board
QSPI Flash, 133MHz, 1Gbit Connectors
(128M x 8)
Lattice LIF MD6000 CrossFire CSI2.0
VIN1A
FPGA #1 AWR#1
MicroSD Card
MMC1
Connector CSI2.0 to VIN Bridge

Lattice LIF MD6000 CrossFire CSI2.0


VIN2A
FPGA #2 AWR#2
USB2.0
UART
Mini UART1
USB Bridge
Connector CSI2.0 to VIN Bridge

Lattice LIF MD6000 CrossFire CSI2.0


VIN3A
FPGA #3 AWR#3
USB3.0 USB3.0
Device Super-Speed
Connector (5Gbps) CSI2.0 to VIN Bridge

DP83867IRPAPR
RJ-45 Lattice LIF MD6000 CrossFire CSI2.0
RGMII VIN4A
Magnetics 1G Ethernet PHY FPGA #4 AWR#3

CSI2.0 to VIN Bridge

PCIe m.2 PCIe 2.0


Host Connector 5Gbps
UART AWR#1
UART AWR#2
UART3 1:4 MUX
HDMI UART AWR#3
Type-A HDMI1.4a
UART AWR#4
Connector

SPI1 SPI AWR#1/4

SPI3 SPI AWR#2/3

GPIO SOP

ERROR

GPIO AWR_RESETS

Figure 2. MMWCAS-DSP-EVM Functional Block Diagram

4 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com Hardware Specifications

2.2 Board Dimensions & Description


The MMWCAS-DSP-EVM dimensions are 160 mm × 136 mm. It is a 22-layer board fabricated with epoxy
fiberglass (UL94V-0 Certified). Figure 3 and Figure 4 show the top and bottom layers with key
components identified.

Figure 3. MMWCAS-DSP-EVM - Front

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 5


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Hardware Specifications www.ti.com

Cascade
Cascade RF
RF board
board connector
connector

PCIe m.2 SSD


connector and
screw hole

Cascade
Cascade RF
RF board
board connector
connector MicroSD
MicroSD
Recepticle
Recepticle

Figure 4. MMWCAS-DSP-EVM – Back

6 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com Hardware Specifications

2.3 Attaching MMWCAS-DSP-EVM to MMWCAS-RF-EVM


The MMWCAS-DSP-EVM is designed to have a companion RF board attached to capture radar data. The
EVM provides 5-V power and necessary control to the RF board upon connecting.
The boards align and attach through the board to board connectors (J1 and J18) on the EVM. The
connectors are keyed to prevent incorrect, 180 degree, opposite orientation. The four corner mounting
holes align the boards as well to outline the match. Depressing the RF board connectors into the EVM
connectors connects the boards together. Use the included standoffs to secure a single assembly of the
boards. Refer to Figure 5 for reference.

Figure 5. MMWCAS-DSP-EVM (bottom) and MMWCAS-RF-EVM (top) Board Alignment

2.4 Power
The MMWCAS-DSP-EVM is powered by 12-V power, either from a DC barrel connector (J10) or screw
terminal (J11). A wall DC power source or a bench power source can be used to power the EVM. The
power source should be rated at least 3 A. The typical power source is 12-V, 5-A Advantech Power supply
P/N: 96PSA-A60W12V1-1.
When power is provided, various LEDs around the edge of the board light up, indicating the proper
interfaces have the adequate power. Refer to the block diagram to see location of key status LEDs.
The companion power management IC (PMIC) for the SOC is TPS659039EP-Q1. A step-down 12-V to
3.3-V and 5-V converter is available in order to provide a 3.3-V and 5-V DC input to the PMIC as well as
3.3-V and 5-V power rails at the board level. Figure 6 shows the complete power supply tree.

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 7


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Hardware Specifications www.ti.com

TPS43351QDAPRQ1 Quad AWR1243 RF Board Connector


5.0V x 5V, 4A Load Expected
Switcher Controller

CUI PJ-002AH DC x System 5.0V Supply


Power Jack x System 3.3V Suppy
TPS74801-Q1 LDO
x 12V, 5A DC 12V
Supply Input x Ethernet PHY 1.1V
3.3V

TPS74801-Q1 LDO

x Ethernet PHY 2.5V

TPS659039-Q1
(O9039A387IZWSRQ1) PMIC

x TDA2 SoC LDO and SMPS


Supply
x Supplies all Core and Peripheral
Power for entire TDA2 SoC

TPS57112-Q1 2A, 2-MHz,


Synchronous Step-Down

x DDR3 SDRAM 1.35V Supply


x TDA2 DDR3 Controller 1.35
Supply

TPS51200QDRCRQ1
Push-Pull VTT Regulator

x DDR3 SDRAM VTT/VREF


Supply

LP5907QMFX-2.5Q1 LDO

x FPGA 2.5V

TPS62262TDRVRQ1 LDO

x FPGA 1.2V

Figure 6. System Power Distribution Network

2.5 Connectors

2.5.1 RF Board Connectors (J1, J18)


The primary board to board connectors on the EVM (J1 and J18) are used to connect the board to
MMWCAS-RF-EVM. These connectors are each implemented with a Hirose FX23-120S-0.5SV10
receptacle. J1 contains all the reset, boot, digital control, and CSI2.0 data paths for AWR1243P #1 and
AWR1243P #2. J18 contains the same but for AWR1243P #3 and AWR1243P #4. Both connectors share
common 5-V and GND return paths.

8 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com Hardware Specifications

Net Class i
AWR1_SPI_SCLK
AWR1_SPI_SCLK 58
ClassName: AWR1_SPI AWR1_SPI_CS0N
AWR1_SPI_CS0N 58
AWR1_SPI_MOSI
AWR1_SPI_MOSI 58
AWR1_SPI_MISO
AWR1_SPI_MISO 58
TDA_GPIO7_24_AWR1_SPI_INT
AWR1_SPI_INT 58

Net Class i
AWR2_SPI_SCLK
AWR2_SPI_SCLK 58
58
58
AWR_SOP0
AWR_SOP1
TDA_GPIO2_22_AWR_SOP0
TDA_GPIO2_25_AWR_SOP1 Mates to AWR RF Board P1 ClassName: AWR2_SPI AWR2_SPI_CS0N
AWR2_SPI_MOSI
AWR2_SPI_CS0N
AWR2_SPI_MOSI
58
58
TDA_GPIO2_13_AWR_SOP2 J1 AWR2_SPI_MISO
58 AWR_SOP2 AWR2_SPI_MISO 58
Hirose_FX23-120S-0_5SV10 TDA_AWR2_SPI_INT_GPIO5_10
AWR2_SPI_INT 58
TDA_GPIO2_12_AWR_WARM_RST AWR_CONN1_MON 1 61 TDA_AWR1_GPIO2_GPIO6_5
58 AWR_WARM_RST TDA_AWR1_GPIO2 58
AWR_CONN_TP1 2 62 TDA_AWR1_GPIO1_GPIO6_4
TP1 TDA_AWR1_GPIO1 58
TDA_GPIO2_2_AWR1_RESETN 3 63 TDA_AWR1_GPIO0_GPIO4_18
58 AWR1_RESETN TDA_AWR1_GPIO0 58
TDA_GPIO2_9_AWR2_RESETN 4 64 AWR_EXT_DIG_SYNC
58 AWR2_RESETN
5 65
6 66 AWR1_SPI_MISO AWR1_CSI
7 67 TDA_GPIO7_24_AWR1_SPI_INT FPGA1_DPHY0_CLK_P
FPGA1_DPHY0_CLK_P
8 68 AWR1_SPI_CS0N FPGA1_DPHY0_CLK_N
FPGA1_DPHY0_CLK_N
9 69 AWR1_SPI_MOSI FPGA1_DPHY0_D0_P
FPGA1_DPHY0_D0_P
10 70 AWR1_SPI_SCLK FPGA1_DPHY0_D0_N
FPGA1_DPHY0_D0_N
11 71 FPGA1_DPHY0_D1_P
FPGA1_DPHY0_D1_P AWR1_CSI 58
FPGA1_DPHY0_D3_P 12 72 TDA_I2C3_SCL FPGA1_DPHY0_D1_N
Design Note: TDA I2C3 interfaces FPGA1_DPHY0_D1_N
FPGA1_DPHY0_D3_N 13 73 TDA_I2C3_SDA FPGA1_DPHY0_D2_P
to primary AWR PMIC I2C port. FPGA1_DPHY0_D2_P
14 74 AWR_CONN_TP5 TP3 FPGA1_DPHY0_D2_N
FPGA1_DPHY0_D2_N
15 75 TDA_GPIO2_19_AWR_ERROR_OUTN FPGA1_DPHY0_D3_P
Design Note: TO AWR devices FPGA1_DPHY0_D3_P
FPGA1_DPHY0_D2_P 16 76 FPGA1_DPHY0_D3_N
FPGA1_DPHY0_D3_N
FPGA1_DPHY0_D2_N 17 77 TDA_UART3_AWR1_TXD
Design Note: FROM AWR devices
18 78 TDA_UART3_AWR1_RXD
FPGA1_DPHY0_CLK_P 19 79 AWR1_MSS_LOGGER TP191
FPGA1_DPHY0_CLK_N 20 80 AWR1_BSS_LOGGER TP192
21 81
AWR_CONN_TP2 22 82 AWR1_SOP2 R1 0 TDA_GPIO2_13_AWR_SOP2 AWR2_CSI
TP4
23 83 AWR1_SOP1 R2 0 TDA_GPIO2_25_AWR_SOP1 FPGA2_DPHY0_CLK_P
FPGA2_DPHY0_CLK_P
24 84 AWR1_SOP0 R3 0 TDA_GPIO2_22_AWR_SOP0 FPGA2_DPHY0_CLK_N
FPGA2_DPHY0_CLK_N
FPGA1_DPHY0_D1_P 25 85 TDA_GPIO2_2_AWR1_RESETN FPGA2_DPHY0_D0_P
FPGA2_DPHY0_D0_P
FPGA1_DPHY0_D1_N 26 86 AWR1_WARM_RST R4 0 TDA_GPIO2_12_AWR_WARM_RST FPGA2_DPHY0_D0_N
FPGA2_DPHY0_D0_N
27 87 FPGA2_DPHY0_D1_P
FPGA2_DPHY0_D1_P AWR2_CSI 58
FPGA1_DPHY0_D0_P 28 88 FPGA2_DPHY0_D1_N
FPGA2_DPHY0_D1_N
FPGA1_DPHY0_D0_N 29 89 FPGA2_DPHY0_D2_P
FPGA2_DPHY0_D2_P
30 90 FPGA2_DPHY0_D2_N
FPGA2_DPHY0_D2_N
31 91 FPGA2_DPHY0_D3_P
FPGA2_DPHY0_D3_P
32 92 FPGA2_DPHY0_D3_N
FPGA2_DPHY0_D3_N
33 93 AWR2_SPI_MISO
34 94 TDA_AWR2_SPI_INT_GPIO5_10
35 95
36 96 AWR2_SPI_CS0N
37 97 AWR2_SPI_MOSI
38 98 AWR2_SPI_SCLK
39 99
Design Note: TO AWR devices
40 100 TDA_UART3_AWR2_TXD
FPGA2_DPHY0_D3_P 41 101 TDA_UART3_AWR2_RXD UART_AWR1
FPGA2_DPHY0_D3_N 42 102 AWR2_MSS_LOGGER TDA_UART3_AWR1_TXD
TP193 Design Note: FROM AWR devices TDA_UART1_TXD
43 103 AWR2_BSS_LOGGER TDA_UART3_AWR1_RXD
TP194 TDA_UART1_RXD UART_AWR1 58
44 104
FPGA2_DPHY0_D2_P 45 105
FPGA2_DPHY0_D2_N 46 106 UART_AWR2
47 107 TDA_UART3_AWR2_TXD
TDA_UART2_TXD
48 108 TDA_UART3_AWR2_RXD
TDA_UART2_RXD UART_AWR2 58
FPGA2_DPHY0_CLK_P 49 109 TDA_GPIO2_9_AWR2_RESETN
FPGA2_DPHY0_CLK_N 50 110 AWR2_WARM_RST R5 0 TDA_GPIO2_12_AWR_WARM_RST
51 111
AWR_CONN_TP3 52 112 AWR2_SOP2 R6 0 TDA_GPIO2_13_AWR_SOP2
TP5
53 113 AWR2_SOP1 R7 0 TDA_GPIO2_25_AWR_SOP1
54 114 AWR2_SOP0 R8 0 TDA_GPIO2_22_AWR_SOP0
FPGA2_DPHY0_D1_P 55 115 I2C3
FPGA2_DPHY0_D1_N 56 116 TDA_I2C3_SCL
TDA_I2C3_SCL
57 117 TDA_I2C3_SDA
TDA_I2C3_SDA I2C3 58
FPGA2_DPHY0_D0_P 58 118
FPGA2_DPHY0_D0_N 59 119
60 120 AWR_CONN1_MON
TDA_GPIO2_19_AWR_ERROR_OUTN
AWR_ERROR_OUTN 58
P1 P3 AWR_EXT_DIG_SYNC
SYSTEM_5V0 AWR_EXT_DIG_SYNC 58
P2 P4

MH1 MH3 C1 C2
MH2 MH4 47uF 47uF
10V 10V

GND GND GND GND

Figure 7. DSP Host to RF Board Connector #1 (J1)

Table 1. DSP Host to RF Board Connector Pin Table (J1)


Host Board Connector 1 (J1) - Mated to RF Board P1
Pin Number Net Name Pin Type Function/Description
1 CONN_MON Passive Connector monitor
2 TP1 Passive Test Point
3 GND Power System ground return
4 NC None Unused
5 NC None Unused
6 GND Power System ground return
7 GND Power System ground return
8 NC None Unused
9 NC None Unused
10 GND Power System ground return
11 GND Power System ground return
12 AWR1_D3_P Input AWR #1 CSI2 TX3
13 AWR1_D3_N Input AWR #1 CSI2 TX3
14 GND Power System ground return
15 GND Power System ground return
16 AWR1_D2_P Input AWR #1 CSI2 TX2
17 AWR1_D2_N Input AWR #1 CSI2 TX2
18 GND Power System ground return
19 AWR1_CLK_P Input AWR #1 CSI2 Clock
20 AWR1_CLK_N Input AWR #1 CSI2 Clock
21 GND Power System ground return
22 TP4 Passive Test point
23 GND Power System ground return

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 9


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Hardware Specifications www.ti.com

Table 1. DSP Host to RF Board Connector Pin Table (J1) (continued)


Host Board Connector 1 (J1) - Mated to RF Board P1
Pin Number Net Name Pin Type Function/Description
24 GND Power System ground return
25 AWR1_D1_P Input AWR #1 CSI2 TX1
26 AWR1_D1_N Input AWR #1 CSI2 TX1
27 GND Power System ground return
28 AWR1_D0_P Input AWR #1 CSI2 TX0
29 AWR1_D0_N Input AWR #1 CSI2 TX0
30 GND Power System ground return
31 GND Power System ground return
32 GND Power System ground return
33 NC Passive Unused
34 NC Passive Unused
35 GND Power System ground return
36 GND Power System ground return
37 NC Passive Unused
38 NC Passive Unused
39 GND Power System ground return
40 GND Power System ground return
41 AWR2_D3_P Input AWR #2 CSI2 TX3
42 AWR2_D3_N Input AWR #2 CSI2 TX3
43 GND Power System ground return
44 GND Power System ground return
45 AWR2_D2_P Input AWR #2 CSI2 TX2
46 AWR2_D2_N Input AWR #2 CSI2 TX2
47 GND Power System ground return
48 GND Power System ground return
49 AWR2_CLK_P Input AWR #2 CSI2 Clock
50 AWR2_CLK_N Input AWR #2 CSI2 Clock
51 GND Power System ground return
52 TP5 Passive
53 GND Power System ground return
54 GND Power System ground return
55 AWR2_D1_P Input AWR #2 CSI2 TX1
56 AWR2_D1_N Input AWR #2 CSI2 TX1
57 GND Power System ground return
58 AWR2_D0_P Input AWR #2 CSI2 TX0
59 AWR2_D0_N Input AWR #2 CSI2 TX0
60 GND Power System ground return
61 AWR1_GPIO2 Bidirectional AWR #1 GPIO2
62 AWR1_GPIO1 Bidirectional AWR #1 GPIO1
63 AWR1_GPIO0 Bidirectional AWR #1 GPIO0
64 TP_FSync Input Connected to EXT_DIG_SYNC fanout buffer on RF card
65 GND Power System ground return
66 SPI1_MISO Input AWR#1 SPI Slave MISO
67 AWR1_SPI_INT Input AWR#1 SPI Slave Interrupt
68 AWR1_CS0n Output AWR#1 SPI Slave CS0N
69 SPI1_MOSI Output AWR#1 SPI Slave MOSI

10 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com Hardware Specifications

Table 1. DSP Host to RF Board Connector Pin Table (J1) (continued)


Host Board Connector 1 (J1) - Mated to RF Board P1
Pin Number Net Name Pin Type Function/Description
70 SPI1_SCLK Output AWR#1 SPI Slave SCLK
71 GND Power System ground return
72 I2C3_SCL Output E_PMIC_SCL - Primary LP87524-Q1 PMIC I2C
73 I2C3_SDA Bidirectional E_PMIC_SDA - Primary LP87524-Q1 PMIC I2C
74 TP3 Output EXT_40MHZ_CLK_1V8
75 ERROR_OUTn Input Open-Drain OR'd ERROR_OUT from AWR#1, 2, 3 and 4
76 GND Power System ground return
77 AWR1_UART_TxD Output AWR#1 UART RX - TDA2x TX to AWR RX
78 AWR1_UART_RxD Output AWR#1 UART TX - AWR TX to TDA2x RX
79 TP191 Passive
80 TP192 Passive
81 GND Power System ground return
82 AWR_SOP_PMICCLKOUT Output AWR#1 PMICCLKOUT/SOP2
83 AWR_SOP_SYNCOUT Output AWR#1 SYNCOUT/SOP1 signal
84 AWR_SOP_TDO Output AWR#1 TDO/SOP0 signal
85 AWR1_RESETn Output AWR#1 NRESET signal
86 AWR_WARM_RST Output AWR#1 WARM_RESET signal
87 GND Power System ground return
88 NC Passive
89 NC Passive
90 NC Passive
91 NC Passive
92 GND Power System ground return
93 SPI3_MISO Input AWR#2 SPI Slave MISO
94 AWR2_SPI_INT AWR#2 SPI Slave Interrupt
95 GND Power System ground return
96 AWR2_CS0n Output AWR#2 SPI Slave CS0N
97 SPI3_MOSI Output AWR#2 SPI Slave MOSI
98 SPI3_SCLK Output AWR#2 SPI Slave SCLK
99 GND Power System ground return
100 AWR2_UART_TxD Output AWR#2 UART RX - TDA2x TX to AWR RX
101 AWR2_UART_RxD Input AWR#2 UART TX - AWR TX to TDA2x RX
102 TP192 Passive
103 TP194 Passive
104 GND Power System ground return
105 NC Passive
106 NC Passive
107 NC Passive
108 GND Power System ground return
109 AWR2_RESETn Output AWR#2 NRESET signal
110 AWR_WARM_RST Output AWR#2 WARM_RESET signal
111 GND Power System ground return
112 AWR_SOP_PMICCLKOUT Output AWR#2 PMICCLKOUT/SOP2
113 AWR_SOP_SYNCOUT Output AWR#2 SYNCOUT/SOP1 signal
114 AWR_SOP_TDO Output AWR#2 TDO/SOP0 signal
115 GND Power System ground return

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 11


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Hardware Specifications www.ti.com

Table 1. DSP Host to RF Board Connector Pin Table (J1) (continued)


Host Board Connector 1 (J1) - Mated to RF Board P1
Pin Number Net Name Pin Type Function/Description
116 NC Passive
117 NC Passive
118 NC Passive
119 NC Passive
120 CONN_MON Passive Connector connection monitor - unused
121 GND Power System ground return
122 GND Power System ground return
123 EVM_5V0 Power
124 EVM_5V0 Power
125 GND Power System ground return
126 GND Power System ground return
127 GND Power System ground return
128 GND Power System ground return

Net Class i
AWR3_SPI_SCLK
AWR3_SPI_SCLK 58
ClassName: AWR3_SPI AWR3_SPI_CS0N
AWR3_SPI_CS0N 58
AWR3_SPI_MOSI
AWR3_SPI_MOSI 58
AWR3_SPI_MISO
AWR3_SPI_MISO 58
TDA_AWR3_SPI_INT_GPIO5_11
AWR3_SPI_INT 58

Net Class i
Mates to AWR RF Board P2 ClassName: AWR4_SPI
AWR4_SPI_SCLK
AWR4_SPI_CS0N
AWR4_SPI_SCLK
AWR4_SPI_CS0N
58
58
TDA_GPIO2_22_AWR_SOP0 AWR4_SPI_MOSI
58 AWR_SOP0 AWR4_SPI_MOSI 58
TDA_GPIO2_25_AWR_SOP1 J18 AWR4_SPI_MISO
58 AWR_SOP1 AWR4_SPI_MISO 58
TDA_GPIO2_13_AWR_SOP2 Hirose_FX23-120S-0_5SV10 TDA_GPIO7_25_AWR4_SPI_INT
58 AWR_SOP2 AWR4_SPI_INT 58
AWR_CONN2_MON 1 61
TDA_GPIO2_12_AWR_WARM_RST 2 62 FPGA4_DPHY0_D0_N
58 AWR_WARM_RST
3 63 FPGA4_DPHY0_D0_P
TDA_GPIO2_10_AWR3_RESETN 4 64
58 AWR3_RESETN
TDA_GPIO2_11_AWR4_RESETN 5 65 FPGA4_DPHY0_D1_N
58 AWR4_RESETN
6 66 FPGA4_DPHY0_D1_P
TDA_GPIO2_22_AWR_SOP0 R309 0 AWR4_SOP0 7 67
TDA_GPIO2_25_AWR_SOP1 R441 0 AWR4_SOP1 8 68
R442 0 9 69
TP183 AWR3_CSI
TDA_GPIO2_13_AWR_SOP2 AWR4_SOP2 AWR_CONN_TP7
10 70 FPGA3_DPHY0_CLK_P
FPGA3_DPHY0_CLK_P
TDA_GPIO2_12_AWR_WARM_RST R443 0 AWR4_WARM_RST 11 71 FPGA4_DPHY0_CLK_N FPGA3_DPHY0_CLK_N
Net Class i FPGA3_DPHY0_CLK_N
TDA_GPIO2_11_AWR4_RESETN 12 72 FPGA4_DPHY0_CLK_P FPGA3_DPHY0_D0_P
FPGA3_DPHY0_D0_P
13 73 ClassName: AWR3_CSI FPGA3_DPHY0_D0_N
FPGA3_DPHY0_D0_N
14 74 FPGA3_DPHY0_D1_P
FPGA3_DPHY0_D1_P AWR3_CSI 58
15 75 FPGA4_DPHY0_D2_N FPGA3_DPHY0_D1_N
FPGA3_DPHY0_D1_N
16 76 FPGA4_DPHY0_D2_P FPGA3_DPHY0_D2_P
FPGA3_DPHY0_D2_P
17 77 FPGA3_DPHY0_D2_N
TP195 FPGA3_DPHY0_D2_N
AWR4_BSS_LOGGER 18 78 FPGA3_DPHY0_D3_P
TP196 FPGA3_DPHY0_D3_P
AWR4_MSS_LOGGER 19 79 FPGA4_DPHY0_D3_N FPGA3_DPHY0_D3_N
FPGA3_DPHY0_D3_N
TDA_UART3_AWR4_RXD 20 80 FPGA4_DPHY0_D3_P
TDA_UART3_AWR4_TXD 21 81
22 82
AWR4_SPI_SCLK 23 83
AWR4_SPI_MOSI 24 84
AWR4_SPI_CS0N 25 85 AWR4_CSI
26 86 FPGA4_DPHY0_CLK_P
FPGA4_DPHY0_CLK_P
TDA_GPIO7_25_AWR4_SPI_INT 27 87 FPGA4_DPHY0_CLK_N
FPGA4_DPHY0_CLK_N
AWR4_SPI_MISO 28 88 FPGA4_DPHY0_D0_P
Net Class i FPGA4_DPHY0_D0_P
29 89 FPGA4_DPHY0_D0_N
FPGA4_DPHY0_D0_N
30 90 ClassName: AWR4_CSI FPGA4_DPHY0_D1_P
FPGA4_DPHY0_D1_P AWR4_CSI 58
31 91 FPGA4_DPHY0_D1_N
FPGA4_DPHY0_D1_N
32 92 FPGA3_DPHY0_D0_N FPGA4_DPHY0_D2_P
FPGA4_DPHY0_D2_P
33 93 FPGA3_DPHY0_D0_P FPGA4_DPHY0_D2_N
FPGA4_DPHY0_D2_N
34 94 FPGA4_DPHY0_D3_P
FPGA4_DPHY0_D3_P
TDA_GPIO2_12_AWR_WARM_RST R444 0 AWR3_WARM_RST 35 95 FPGA3_DPHY0_D1_N FPGA4_DPHY0_D3_N
FPGA4_DPHY0_D3_N
TDA_GPIO2_10_AWR3_RESETN 36 96 FPGA3_DPHY0_D1_P
TDA_GPIO2_22_AWR_SOP0 R445 0 AWR3_SOP0 37 97
TDA_GPIO2_25_AWR_SOP1 R446 0 AWR3_SOP1 38 98
R447 0 39 99
TP184
TDA_GPIO2_13_AWR_SOP2 AWR3_SOP2 AWR_CONN_TP8
TP197 40 100 UART_AWR3
AWR3_BSS_LOGGER 41 101 FPGA3_DPHY0_CLK_N TDA_UART3_AWR3_TXD
TDA_UART3_TXD
AWR3_MSS_LOGGER 42 102 FPGA3_DPHY0_CLK_P TDA_UART3_AWR3_RXD
TP198 TDA_UART3_RXD UART_AWR3 58
TDA_UART3_AWR3_RXD 43 103
Design Note: FROM AWR devices
TDA_UART3_AWR3_TXD 44 104 FPGA3_DPHY0_D2_N
45 105 FPGA3_DPHY0_D2_P UART_AWR4
Design Note: TO AWR devices
46 106 TDA_UART3_AWR4_TXD
TDA_UART4_TXD
47 107 TDA_UART3_AWR4_RXD
TDA_UART4_RXD UART_AWR4 58
TDA_I2C5_SDA 48 108 FPGA3_DPHY0_D3_N
TDA_I2C5_SCL 49 109 FPGA3_DPHY0_D3_P
50 110
AWR3_SPI_SCLK 51 111
AWR3_SPI_MOSI 52 112
Design Note: TDA I2C5 interfaces to secondary
AWR3_SPI_CS0N 53 113
AWR PMIC I2C port and RF board temperature
TDA_AWR3_SPI_INT_GPIO5_11 54 114 I2C5
sensors.
AWR3_SPI_MISO 55 115 TDA_I2C5_SCL
TDA_I2C5_SCL
56 116 TDA_I2C5_SDA
TP185 TDA_I2C5_SDA I2C5 58
AWR_CONN_TP6 57 117
58 118
Design Note: The AWR RF board provides the
59 119 AWR_POWER_GOOD_TDA_GPIO2_17
3.3V I/O PMIC 3.3V as a "power good" signal.
60 120 AWR_CONN2_MON AWR_POWER_GOOD_TDA_GPIO2_17
AWR_PMIC_3V3_VD 58
P1 P3
SYSTEM_5V0
P2 P4

C624 C625 MH1 MH3


47uF 47uF MH2 MH4
10V 10V

GND GND

GND GND

Figure 8. DSP Host to RF Board Connector #2 (J18)

Table 2. DSP Host to RF Board Connector Pin Table (J18)


Host Board Connector 1(J18) - Mated to RF Board P2
Pin Number Net Name Pin Type Function/Description
1 CONN2_MON Passive Connection Monitor
2 NC Passive
3 NC Passive
4 NC Passive
5 NC Passive
6 GND Power System ground return

12 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com Hardware Specifications

Table 2. DSP Host to RF Board Connector Pin Table (J18) (continued)


Host Board Connector 1(J18) - Mated to RF Board P2
Pin Number Net Name Pin Type Function/Description
7 AWR_SOP_TDO Output AWR#4 TDO/SOP0 signal
8 AWR_SOP_SYNCOUT Output AWR#4 SYNCOUT/SOP1 signal
9 AWR_SOP_PMICCLKOUT Output AWR#4 PMICCLKOUT/SOP2
10 GND Power System ground return
11 AWR_WARM_RST Output AWR#4 WARM_RESET signal
12 AWR4_RESETn Output AWR#4 NRESET signal
13 GND Power System ground return
14 NC Passive
15 NC Passive
16 NC Passive
17 GND Power System ground return
18 NC Passive Test Point 195
19 NC Passive Test Point 196
20 AWR4_UART_RxD Input AWR4_UART_TxD-AWR TX to TDA2x RX
21 AWR4_UART_TxD Output AWR4_UART_RxD-AWR TX to TDA2x RX
22 GND Power System ground return
23 SPI1_SCLK Output AWR#4 SPI Slave SCLK
24 SPI1_MOSI Output AWR#4 SPI Slave MOSI
25 AWR4_CS1n Output AWR#4 SPI Slave SCLK
26 GND Power System ground return
27 AWR4_SPI_INT Input AWR#4 SPI Slave Interrupt
28 SPI1_MISO Input AWR#4 SPI Slave MISO
29 GND Power System ground return
30 NC Passive
31 NC Passive
32 NC Passive
33 NC Passive
34 GND Power System ground return
35 AWR_WARM_RST Output AWR#3 WARM_RESET signal
36 AWR3_RESETn Output AWR#3 NRESET signal
37 AWR_SOP_TDO Output AWR#3 TDO/SOP0 signal
38 AWR_SOP_SYNCOUT Output AWR#3 SYNCOUT/SOP1 signal
39 AWR_SOP_PMICCLKOUT Output AWR#3 PMICCLKOUT/SOP2
40 GND Power System ground return
41 NC Passive Test Point 197
42 NC Passive Test Point 198
43 AWR3_UART_TxD Input AWR3_UART_RxD-AWR TX to TDA2x RX
44 AWR3_UART_RxD Output AWR3_UART_TxD-AWR TX to TDA2x RX
45 GND Power System ground return
46 NC Passive
47 NC Passive
48 I2C5_SDA Bidirectional E_PMIC_SDA - Primary LP87524-Q1 PMIC I2C
49 I2C5_SCL Output E_PMIC_SCL - Primary LP87524-Q1 PMIC I2C
50 GND Power System ground return
51 SPI3_SCLK Output AWR#3 SPI Slave SCLK
52 SPI3_MOSI Output AWR#3 SPI Slave MOSI

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 13


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Hardware Specifications www.ti.com

Table 2. DSP Host to RF Board Connector Pin Table (J18) (continued)


Host Board Connector 1(J18) - Mated to RF Board P2
Pin Number Net Name Pin Type Function/Description
53 AWR3_CS1n Output AWR#3 SPI Slave SCLK
54 AWR3_SPI_INT Input AWR#3 SPI Slave Interrupt
55 SPI3_MISO Input AWR#3 SPI Slave MISO
56 GND Power
57 TP_tmp_al Input Test Point 185
58 NC Passive
59 NC Passive
60 NC Passive
61 GND Power System ground return
62 AWR4_D0_N Input AWR #4 CSI2 TX0
63 AWR4_D0_P Input AWR #4 CSI2 TX0
64 GND Power System ground return
65 AWR4_D1_N Input AWR #4 CSI2 TX1
66 AWR4_D1_P Input AWR #4 CSI2 TX1
67 GND Power System ground return
68 GND Power System ground return
69 TP_SP1 Passive Test Point 183
70 GND Power System ground return
71 AWR4_CLK_N Input AWR #4 CSI2 Clock
72 AWR4_CLK_P Input AWR #4 CSI2 Clock
73 GND Power System ground return
74 GND Power System ground return
75 AWR4_D2_N Input AWR #4 CSI2 TX2
76 AWR4_D2_P Input AWR #4 CSI2 TX2
77 GND Power System ground return
78 GND Power System ground return
79 AWR4_D3_N Input AWR #4 CSI2 TX3
80 AWR4_D3_P Input AWR #4 CSI2 TX3
81 GND Power System ground return
82 GND Power System ground return
83 NC Passive
84 NC Passive
85 GND Power System ground return
86 GND Power System ground return
87 NC Passive
88 NC Passive
89 GND Power System ground return
90 GND Power System ground return
91 GND Power System ground return
92 AWR3_D0_N Input AWR #3 CSI2 TX0
93 AWR3_D0_P Input AWR #3 CSI2 TX0
94 GND Power System ground return
95 AWR3_D1_N Input AWR #3 CSI2 TX1
96 AWR3_D1_P Input AWR #3 CSI2 TX1
97 GND Power System ground return
98 GND Power System ground return

14 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com Hardware Specifications

Table 2. DSP Host to RF Board Connector Pin Table (J18) (continued)


Host Board Connector 1(J18) - Mated to RF Board P2
Pin Number Net Name Pin Type Function/Description
99 TP_SP2 Passive Test Point 184
100 GND Power System ground return
101 AWR3_CLK_N Input AWR #3 CSI2 Clock
102 AWR3_CLK_P Input AWR #3 CSI2 Clock
103 GND Power System ground return
104 AWR3_D2_N Input AWR #3 CSI2 TX2
105 AWR3_D2_P Input AWR #3 CSI2 TX2
106 GND Power System ground return
107 GND Power System ground return
108 AWR3_D3_N Input AWR #3 CSI2 TX3
109 AWR3_D3_P Input AWR #3 CSI2 TX3
110 GND Power System ground return
111 GND Power System ground return
112 NC Passive
113 NC Passive
114 GND Power System ground return
115 GND Power System ground return
116 NC Passive
117 NC Passive
118 GND Power
119 PWR_GOOD Input Power good from RF
120 CONN2_MON Passive Connector connection monitor - unused
121 EVM_5V0 Power
122 EVM_5V0 Power
123 GND Power System ground return
124 GND Power System ground return
125 GND Power System ground return
126 GND Power System ground return
127 GND Power System ground return
128 GND Power System ground return

2.5.2 USB Connector (J16)


The MMWCAS-DSP-EVM has one USB2.0 mini connector. Connector J16 allows access to the EVM
through UART, SPI, or I2C through the FTDI chip.
Table 3 provides the J16 connector pin information.

Table 3. USB Connector Pin Table (J16)


Pin No Signal Name Description
1 FTDI_USB_VBUS_5V0 5-V power from PC machine
2 FTDI_USB_D_CONN_N USB Data Signal Negative
3 FTDI_USB_D_CONN_P USB Data Signal Positive
4 No Connect No Connect
5 GND Ground

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 15


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Hardware Specifications www.ti.com

2.5.3 Ethernet Jack (J12)


The MMWCAS-DSP-EVM supports a Gigabit Ethernet port to provide the connection to the network. The
Ethernet port is interfaced to the TDA2 through the Ethernet PHY DP83867, and is used to stream the
captured data over the network to the host PC.
The DP83867 device is a robust, low power, fully featured physical layer transceiver with integrated PMD
sublayers to support 10BASE-Te, 100BASE-TX, and 1000BASE-T Ethernet protocols. Optimized for ESD
protection, the DP83867 exceeds 8-kV IEC 61000-4-2(direct contact)
The DP83867 provides precision clock synchronization, including a synchronous Ethernet clock output. It
has low latency and provides IEEE 1588 Start of Frame Detection.

2.5.4 PCIe m.2 socket(m-keyed) (J14)


The DSP EVM supports PCIe 2.0 through an m.2 connector. Out of the box, a 512 GB SSD is assembled
on the EVM. The connector is a JAE Electronics SM3ZS067U410AMR1000 PCI express m.2 connector.
The SSD drive provides 3.3 V through the connector, and the data lanes have been length and
impedance matched through the PCIE spec document. The EVM has a notch with a small standoff that
allows a size 2280 SSD card to be securely attached with the provided machine screw. The
recommended SSD is a single-sided card, but a double-sided card can be used if the SSD components do
not touch the board components, due to height.

2.5.5 Lattice FPGA Headers (J3,J5,J7,J9)


The EVM contains four programming headers for the on board FPGA and flash devices. Out of the box,
the FPGAs are flashed so they are ready to use. If the FPGAs must be flashed, refer to Figure 9 for
proper cable assembly. Lattice Diamond 3.10 (not included) and Lattice HW-USBN-2B Programmer (not
included) must be used. Along with each FPGA, there is a small NOR flash device used to hold the image
on power cycle.
Cascade Radar Host Board to
FPGA Programmer Hookup
For FPGA Flash Programming

VCC FPGA1_VCCIO
FPGA1_SPI_CSN (not used)
ispEN/PROG FPGA1_FLASH_SPI_CSN
TCK/SCLK FPGA1_SPI_SCLK
TDI/SI FPGA1_SPI_MOSI

Lattice HW-USBN-2B 9 7 5 3 1 Cascade Radar Host Board


Programming Cable Power FPGA Programming Header
Leads Supplies Top-Down View. Reference
10 8 6 4 2
layout/assembly drawing for pin
orientation/positions.

GND (not used)

DONE FPGA1_CDONE (not used)


TRST FPGA1_CRESETN
TDO/SO FPGA1_SPI_MISO
GND GND

Figure 9. FPGA Flash Programming Header Pinout

16 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com Hardware Specifications

2.5.6 JTAG and Emulator (J19)


The EVM has support of the following JTAG emulation headers:
• 60-pin MIPI Connector
• Standard 14-pin to 60-pin MIPI adapter
• 20-pin CTI to 60-pin MIPI adapter

2.5.7 Lattice ECP5 FPGA Prototyping Header (J20)


Included on the EVM is a Lattice Prototyping connector. The interface brings out the VOUT1 interface,
I2C5, and two I2C GPIO expander pins to allow for interfacing to a separate Lattice ECP5 FPGA card,
which performs VOUT to 10GBase-KR bridging.

2.6 GPIO, Switches, Push Buttons, and LEDs

2.6.1 GPIO List


The MMWCAS-DSP-EVM supports a number of GPIOs, some of which can be user controlled. Table 4
shows the GPIO list.

Table 4. GPIO List and Description


GPIO for EVM Function/Description
TDA_GPIO1_15_ALERT# PCIe SSD Alert notification to master. Active Low. Open-Drain with pullup on board. '0' -
Active '1' - Inactive(Default)
GPIO_EXP_P13(PERST#) PCIe Reset - functional reset to the card '0' - Hold in reset until stable(Default) '1' - Release
from reset
GPIO_EXP_P14(CLKREQ#) PCIe Reference Clock Request '0' - Request for clock '1' - Not Active(Default)
GPIO6_8 Selects between AWR and FPGA/Flash for SPI1 '0' - Selects AWR(Default) '1' - Selects
FPGA/Flash
GPIO6_6 When ganged. Controls FPGA1/2/3/4 CRESETN signals '0' - Holds FPGA in Reset(Default)
'1' - released FPGA from Reset
GPIO7_31 Controls FPGA1 CRESETN signals '0' - Holds FPGA1 in Reset(Default) '1' - released
FPGA1 from Reset
GPIO7_30 Controls FPGA2 CRESETN signals '0' - Holds FPGA2 in Reset(Default) '1' - released
FPGA2 from Reset
GPIO5_13 Controls FPGA3 CRESETN signals '0' - Holds FPGA3 in Reset(Default) '1' - released
FPGA3 from Reset
GPIO5_14 Controls FPGA4 CRESETN signals '0' - Holds FPGA4 in Reset(Default) '1' - released
FPGA4 from Reset
GPIO1_14 Control FPGA1/2/3/4 Flash RESETn Signals '0' - Hold in Reset '1' - Release from Reset
(Default)
GPIO7_27 AWR Extern SYNC
SMB_CLK SMBus Clock. I2C1 SCL for PCIe
SMB_DATA SMBus Data. I2C1 SDA for PCIe
I2C1 SCL EEPROM(U100) Serial Clock Address: 0x50
I2C1 SDA EEPROM(U100) Serial Data Address: 0x50

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 17


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Hardware Specifications www.ti.com

2.6.2 Switches
The MMWCAS-DSP-EVM has a 1×6 DIP(S4) switch for boot selection (as shown in Table 5). Out of the
box, the EVM has S4.5 and S4.6 "ON" so that it boots from the SD card.

Table 5. User Configurable Supported Boot Modes


Boot Mode S4 Configuration[5:0]
USB boot 010000
UART boot 010011
eMMC boot 111000
eMMC boot partition 111011
SD boot 110000 (Default)

2.6.3 Push Buttons


The MMWCAS-DSP-EVM supports three push buttons for POR reset, SoC Reset, and an ON/OFF button.
By default, the ON/OFF button is disabled. Refer to SCH for resistor options for ON/OFF functionality.

Table 6. Push Button Functionality Information


Reference Usage Description
S1 ON/OFF Turns the EVM on and off with each push. By default, the switch is disabled
so that the EVM powers up when power is applied. Refer to the SCH for
resistor options in order to toggle ON/OFF functionality.
S2 PORz Reset Generates a PORz reset upon pushing.
S3 SoC Reset Generates a reset on the SoC.

2.6.4 LEDs
The MMWCAS-DSP-EVM supports LEDs for user indications, as listed in Table 7.

Table 7. User and Status LED Reference Designator and Description


Reference Usage Description Color
D3 Status Ethernet Activity Green
D4 Status TPS74801 - Ethernet 1.0V Power Good Green
D5 Status FTDI Power Enable – 5V Green
D6 Status FTDI RX Green
D7 Status FTDI TX Green
D9 User GPIO User programmable Green
D10 Status Ethernet 2.5V Power Good Green
D11 Status TDA2 Reset out Green
D12 Status 12V Input Green
D13 User GPIO User programmable Green
D14 User GPIO User programmable Green
D15 User GPIO User programmable Green
D16 Status TDA2 PORz – Power On Reset Green
D17 Status FPGA1 LED Green
D18 User GPIO User programmable Green
D19 User GPIO User programmable Green
D20 Status TDA2 Reset – Reset based on status of VDD_MPU Green
D21 Status TDA2 PMIC Reset out Green
D22 Status FPGA2 LED Green
D23 Status TPS43351 - 3.3V and 5V Power Good Green

18 MMWCAS-DSP-EVM SPRUIS6 – September 2019


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
www.ti.com mmWave Studio and Matlab Post Processing

Table 7. User and Status LED Reference Designator and Description (continued)
Reference Usage Description Color
D24 Status TPS57112 DDR3 1.35V Power Good Green
D25 Status FPGA3 LED Green
D26 Status TPS51200 DDR3 VTT and VREF Power Good Green
D27 Status FPGA4 LED Green

3 mmWave Studio and Matlab Post Processing


TI provides the following evaluation software to get started with the Cascade DSP evaluation module:
• mmWave Studio GUI and Lua scriptable configuration environment
• TDA2x ADC IF data capture application running on the MMWCAS-DSP-EVM
• Matlab post processing sample codes for reading captured ADC IQ sample datasets and example
TDMA-MIMO and TX-Beamforming use modes
For details on getting started with these demos, see the mmWave Studio User Guide

SPRUIS6 – September 2019 MMWCAS-DSP-EVM 19


Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

You might also like