Series Formulas
1. Arithmetic and Geometric Series 2. Special Power Series
Definitions:                                         Powers of Natural Numbers
  First term: a1                                        n
                                                                  1
  Nth term: an                                         ∑ k = 2 n ( n + 1)
                                                       k =1
  Number of terms in the series: n
                                                        n
                                                                      1
  Sum of the first n terms: Sn
  Difference between successive terms: d
                                                       ∑k
                                                       k =1
                                                              2
                                                                  =
                                                                      6
                                                                        n ( n + 1)( 2n + 1)
  Common ratio: q                                       n
                                                                      1 2
                                                       ∑k
                                                                                   2
  Sum to infinity: S
                                                              3
                                                                  =     n ( n + 1)
                                                       k =1           4
Arithmetic Series Formulas:
                                                     Special Power Series
  an = a1 + ( n − 1) d
                                                        1
      a + ai +1
                                                            = 1 + x + x 2 + x3 + . . .        ( for : − 1 < x < 1)
  ai = i −1                                            1− x
            2                                           1
       a + an
                                                            = 1 − x + x2 − x3 + . . .         ( for : − 1 < x < 1)
  Sn = 1      ⋅n                                       1+ x
           2                                                              x 2 x3
                                                       ex = 1 + x +          + + ...
         2a1 + ( n − 1) d                                                 2! 3!
  Sn =                         ⋅n
                   2                                                         x 2 x 3 x 4 x5
                                                       ln (1+ x ) = x −         + − + ...           ( for : −1 < x < 1)
Geometric Series Formulas:                                                   2 3 4 5
  an = a1 ⋅ q n−1                                                        x3 x5 x 7 x9
                                                       sin x = x −         + − +      ...
                                                                         3! 5! 7! 9!
  ai = ai −1 ⋅ ai +1
                                                                         x 2 x 4 x6 x8
         an q − a1                                     cos x = 1 −          + − +      ...
  Sn =                                                                   2! 4! 6! 8!
           q −1                                                         x3 2x5 17x7                      π     π
                                                       tan x = x +        +   +     + ...         for : − < x < 
  Sn =
           (   n
         a1 q − 1      )                                                3 15 315                         2     2
            q −1                                                           x3 x5 x 7 x 9
                                                       sinh x = x +          + + +       ...
        a1                                                                 3! 5! 7! 9!
  S=                       for − 1 < q < 1
       1− q                                                               x 2 x 4 x6 x8
                                                       cosh x = 1 +          + + +      ...
                                                                          2! 4! 6! 8!
                                                                        x3 2x5 17x7                      π     π
                                                       tan x = x −        +   −     +...          for : − < x < 
                                                                        3 15 315                         2     2
3. Taylor and Maclaurin Series
Definition:
                                                                                      f(
                                                                                           n −1)                   n −1
                                                         f ′′(a )( x − a ) 2                       (a) ( x − a )
   f ( x) = f (a ) + f ′(a ) ( x − a ) +                                     + . . .+                                     + Rn
                                                                 2!                                ( n − 1)!
          f(
                 n)                   n
                      (ξ )( x − a )
  Rn =                                                               Lagrange ' s form                 a ≤ξ ≤ x
                         n!
          f(
                 n)                   n −1
                      (ξ )( x − ξ ) ( x − a )
  Rn =                                                               Cauch ' s form                    a ≤ξ ≤ x
                           ( n − 1)!
  This result holds if f(x) has continuous derivatives of order n at last. If                                  lim Rn = 0 , the infinite series obtained is called
                                                                                                               n →∞
  Taylor series for f(x) about x = a. If a = 0 the series is often called a Maclaurin series.
Binomial series
             n                                   n ( n − 1)                 n ( n − 1)( n − 2 )
  (a + x)            = a n + na n−1 x +                       a n−2 x 2 +                           a n− 3 x3 + ...
                                          2!                         3!
                         n            n              n
                 = a n +   a n −1 x +   a n− 2 x 2 +   a n −3 x3 + ...
                         1             2             3
  Special cases:
             −1
  (1 + x )           = 1 − x + x 2 − x3 + x 4 − ...                                      −1 < x < 1
             −2
  (1 + x )           = 1 − 2 x + 3 x 2 − 4 x3 + 5 x 4 − ...                              −1 < x < 1
             −3
  (1 + x )           = 1 − 3 x + 6 x 2 − 10 x3 + 15 x 4 − ...                            −1 < x < 1
                 1
             −               1    1⋅ 3 2 1 ⋅ 3 ⋅ 5 3
  (1 + x )       2    = 1−     x+     x −         x + ...                                −1 < x ≤ 1
                             2    2⋅4     2⋅4⋅6
             1
                            1     1 2     1⋅ 3 3
  (1 + x ) 2         = 1+     x−     x +       x + ...                                   −1 < x ≤ 1
                            2    2⋅4     2⋅4⋅6
Series for exponential and logarithmic functions
                        x 2 x3
  ex = 1 + x +             +   + ...
                        2! 3!
                                             2                 3
    x                         ( x ln a )             ( x ln a )
  a = 1 + x ln a +                               +                 + ...
                                  2!                     3!
                              x 2 x3 x 4
  ln (1 + x ) = x −              +   − ...                                               −1 < x ≤ 1
                              2    3  4
                                                         2                  3
                 x −1 1  x −1 1  x −1                                                        1
  ln (1 + x ) =      +        +        + ...                                       x≥
                 x  2 x  3 x                                                                 2
                                                   www.mathportal.org
Series for trigonometric functions
                   x3 x5 x7
  sin x = x −        +  −   + ...
                   3! 5! 7!
                   x2 x4 x6
  cos x = 1 −        +  −   + ...
                   2! 4! 6!
  tan x = x +
              x 3 2 x5 17 x 7
                 +    +       + ... +
                                               (            )
                                      2 2 n 22 n − 1 Bn x 2 n −1
                                                                               −
                                                                                   π
                                                                                        <x<
                                                                                              π
              3    15   315                    ( 2n ) !                            2          2
         1 x x3 2 x 5         2 2 n Bn x 2 n −1
  cot x = − −  −      − ... −                                                  0< x <π
         x 3 45 945                ( 2n )!
                x 2 5 x 4 61x 6        E x2n                                       π          π
  sec x = 1 +      +     +      + ... + n       + ...                          −        <x<
                2    24    720         ( 2n ) !                                    2          2
         1 x 7 x3
  csc x = + +     + ... +
                                      (    )
                          2 2 2 n − 1 En x 2 n
                                               + ...                           0< x <π
         x 6 360                 ( 2n )!
                    1 x 3 1 ⋅ 3 x5 1 ⋅ 3 ⋅ 5 x 7
  sin −1 x = x +     ⋅ +       ⋅ +               + ...                         −1 < x < 1
                    2 3 2⋅4 5 2⋅4⋅6 7
               π                  π   1 x3 1 ⋅ 3 x5     
  cos −1 x =       − sin −1 x =    −x+ ⋅ +      ⋅ + ...                      −1 < x < 1
               2                  2   2 3 2⋅4 5         
                  x3 x 2 x3
              x −   +     −     + ...                                    if − 1 < x < 1
                  3     5     7
               π 1        1       1
  tan − 1 x =      − +        −       + ...                                  if x ≥ 1
                             3
               2 x 3x           5 x5
                  π 1       1       1
               − − + 3 − 5 + ...                                             if x < 1
                  2   x   3x      5x
                     π     x3 x 2 x 3                
                      −x−        +       −      + ..  .                         if    −1 < x < 1
                        
                     2      3        5      7        
                                                       
     −1  π     −1
                     
                     
  cot x = − tan x =     1     1         1        1
         2                 −        +        −         + ...                           if x ≥ 1
                        x   3x  3
                                       5x  5
                                                7 x7
                            1       1        1         1
                       π+ −              +       −          + ...                     if x < 1
                           x 3x      3
                                             5x 5
                                                      7 x7
Series for hyperbolic functions
                    x3 x5 x 7
  sinh x = x +        +  +    + ...
                    3! 5! 7!
                    x2 x4 x6
  cosh x = 1 +        +  +   + ...
                    2! 4! 6!
  tanh x = x −
               x3 2 x5 17 x7
                 +    −      + ... +
                                     ( −1)         n −1 2 n
                                                        2       ( 22n − 1) Bn x2n−1 + ...         if −
                                                                                                         π
                                                                                                             <x<
                                                                                                                   π
               3   15   315                                     ( 2n )!                                  2         2
                                               n −1 2 n
          1 x x3 2 x 7         ( −1)               2      Bn x 2n−1
  coth x = + −  +      + ... +                                        + ...    if 0 < x < π
          x 3 45 945                               ( 2n ) !