0% found this document useful (0 votes)
24 views3 pages

Series Formulas 240616 181235

Uploaded by

ayushdhardiwan27
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
24 views3 pages

Series Formulas 240616 181235

Uploaded by

ayushdhardiwan27
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

www.mathportal.

org

Series Formulas
1. Arithmetic and Geometric Series 2. Special Power Series
Definitions: Powers of Natural Numbers
First term: a1 n
1
Nth term: an ∑ k = 2 n ( n + 1)
k =1
Number of terms in the series: n
n
1
Sum of the first n terms: Sn
Difference between successive terms: d
∑k
k =1
2
=
6
n ( n + 1)( 2n + 1)

Common ratio: q n
1 2
∑k
2
Sum to infinity: S
3
= n ( n + 1)
k =1 4
Arithmetic Series Formulas:
Special Power Series
an = a1 + ( n − 1) d
1
a + ai +1
= 1 + x + x 2 + x3 + . . . ( for : − 1 < x < 1)
ai = i −1 1− x
2 1
a + an
= 1 − x + x2 − x3 + . . . ( for : − 1 < x < 1)
Sn = 1 ⋅n 1+ x
2 x 2 x3
ex = 1 + x + + + ...
2a1 + ( n − 1) d 2! 3!
Sn = ⋅n
2 x2 x3 x 4 x5
ln (1+ x ) = x − + − + ... ( for : −1 < x < 1)
Geometric Series Formulas: 2 3 4 5
an = a1 ⋅ q n−1 x3 x5 x 7 x9
sin x = x − + − + ...
3! 5! 7! 9!
ai = ai −1 ⋅ ai +1
x 2 x 4 x6 x8
an q − a1 cos x = 1 − + − + ...
Sn = 2! 4! 6! 8!
q −1 x3 2x5 17x7  π π
tan x = x + + + + ...  for : − < x < 
Sn =
( n
a1 q − 1 ) 3 15 315  2 2
q −1 x3 x5 x 7 x 9
sinh x = x + + + + ...
a1 3! 5! 7! 9!
S= for − 1 < q < 1
1− q x 2 x 4 x6 x8
cosh x = 1 + + + + ...
2! 4! 6! 8!
x3 2x5 17x7  π π
tan x = x − + − +...  for : − < x < 
3 15 315  2 2
www.mathportal.org

3. Taylor and Maclaurin Series

Definition:
f(
n −1) n −1
f ′′(a )( x − a ) 2 (a) ( x − a )
f ( x) = f (a ) + f ′(a ) ( x − a ) + + . . .+ + Rn
2! ( n − 1)!
f(
n) n
(ξ )( x − a )
Rn = Lagrange ' s form a ≤ξ ≤ x
n!
f(
n) n −1
(ξ )( x − ξ ) ( x − a )
Rn = Cauch ' s form a ≤ξ ≤ x
( n − 1)!

This result holds if f(x) has continuous derivatives of order n at last. If lim Rn = 0 , the infinite series obtained is called
n →∞
Taylor series for f(x) about x = a. If a = 0 the series is often called a Maclaurin series.

Binomial series
n n ( n − 1) n ( n − 1)( n − 2 )
(a + x) = a n + na n−1 x + a n−2 x 2 + a n− 3 x3 + ...
2! 3!
n n n
= a n +   a n −1 x +   a n− 2 x 2 +   a n −3 x3 + ...
1  2 3
Special cases:
−1
(1 + x ) = 1 − x + x 2 − x3 + x 4 − ... −1 < x < 1
−2
(1 + x ) = 1 − 2 x + 3 x 2 − 4 x3 + 5 x 4 − ... −1 < x < 1
−3
(1 + x ) = 1 − 3 x + 6 x 2 − 10 x3 + 15 x 4 − ... −1 < x < 1
1
− 1 1⋅ 3 2 1 ⋅ 3 ⋅ 5 3
(1 + x ) 2 = 1− x+ x − x + ... −1 < x ≤ 1
2 2⋅4 2⋅4⋅6
1
1 1 2 1⋅ 3 3
(1 + x ) 2 = 1+ x− x + x + ... −1 < x ≤ 1
2 2⋅4 2⋅4⋅6

Series for exponential and logarithmic functions


x 2 x3
ex = 1 + x + + + ...
2! 3!
2 3
x ( x ln a ) ( x ln a )
a = 1 + x ln a + + + ...
2! 3!
x 2 x3 x 4
ln (1 + x ) = x − + − ... −1 < x ≤ 1
2 3 4
2 3
 x −1 1  x −1 1  x −1  1
ln (1 + x ) =  +   +   + ... x≥
 x  2 x  3 x  2
www.mathportal.org
Series for trigonometric functions
x3 x5 x7
sin x = x − + − + ...
3! 5! 7!
x2 x4 x6
cos x = 1 − + − + ...
2! 4! 6!

tan x = x +
x 3 2 x5 17 x 7
+ + + ... +
( )
2 2 n 22 n − 1 Bn x 2 n −1

π
<x<
π
3 15 315 ( 2n ) ! 2 2
1 x x3 2 x 5 2 2 n Bn x 2 n −1
cot x = − − − − ... − 0< x <π
x 3 45 945 ( 2n )!
x 2 5 x 4 61x 6 E x2n π π
sec x = 1 + + + + ... + n + ... − <x<
2 24 720 ( 2n ) ! 2 2

1 x 7 x3
csc x = + + + ... +
( )
2 2 2 n − 1 En x 2 n
+ ... 0< x <π
x 6 360 ( 2n )!
1 x 3 1 ⋅ 3 x5 1 ⋅ 3 ⋅ 5 x 7
sin −1 x = x + ⋅ + ⋅ + + ... −1 < x < 1
2 3 2⋅4 5 2⋅4⋅6 7
π π  1 x3 1 ⋅ 3 x5 
cos −1 x = − sin −1 x = −x+ ⋅ + ⋅ + ...  −1 < x < 1
2 2  2 3 2⋅4 5 
 x3 x 2 x3
x − + − + ... if − 1 < x < 1
 3 5 7
 π 1 1 1
tan − 1 x =  − + − + ... if x ≥ 1
3
 2 x 3x 5 x5
 π 1 1 1
 − − + 3 − 5 + ... if x < 1
 2 x 3x 5x
π  x3 x 2 x 3 
 −x− + − + ..  . if −1 < x < 1

2  3 5 7 

−1 π −1


cot x = − tan x =  1 1 1 1
2 − + − + ... if x ≥ 1
 x 3x 3
5x 5
7 x7
 1 1 1 1
 π+ − + − + ... if x < 1
 x 3x 3
5x 5
7 x7
Series for hyperbolic functions
x3 x5 x 7
sinh x = x + + + + ...
3! 5! 7!
x2 x4 x6
cosh x = 1 + + + + ...
2! 4! 6!

tanh x = x −
x3 2 x5 17 x7
+ − + ... +
( −1) n −1 2 n
2 ( 22n − 1) Bn x2n−1 + ... if −
π
<x<
π
3 15 315 ( 2n )! 2 2
n −1 2 n
1 x x3 2 x 7 ( −1) 2 Bn x 2n−1
coth x = + − + + ... + + ... if 0 < x < π
x 3 45 945 ( 2n ) !

You might also like