0% found this document useful (0 votes)
84 views97 pages

Ratio and Proportion

Uploaded by

SAYAK BAR
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
84 views97 pages

Ratio and Proportion

Uploaded by

SAYAK BAR
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 97

ICSE Selina Solutions for Class 10

Mathematics
Chapter 7 – Ratio and Proportion (Including Properties and
Uses)

Exercise – 7(A)
5a  b
−3
1. If a :b=5 :3 , find
5a  b
+3
Ans: Here, we have a : b = 5 : 3
a 5
Therefore, =
b 3
 5a   − 3b 
5a   − 3b  b 
Now,   
=
5a   + 3b  5a   + 3b 
 
 b 
 5a 
 − 3
b
= 
 5a 
   3+ 
 b 
 5 
 5 ×   −3 
3 
=
 5 
 5 ×    + 3 
 3 

 25 
 −3 
3
= 
 25 
   3+ 
 3 
 25 − 9 
 
 3 
=
 25 + 9 
 
 3 

Class X Mathematics www.vedantu.com 1


 16 
 
= 3 
34
 
 3 
16
=
34
8
=
17
5a   − 3b 8
Hence, Value of is .
5a   + 3b 17

2. If x :y=4 :7 , Find the value of ( 3x+2y ) :( 5x+y ) .

Ans: Here, we have x : y = 4 : 7

x 4
Therefore, =
y 7

 3 x +2 y 
 
3 x   + 2 y  y 
Now,   
=
5 x   + y  5 x    +y
 y 
 
 3x 
 y   2
+ 
= 
 5x 
 + 1
 y 
 4 
 3 ×   + 2 
7 
=
 4 
 5 × + 1
 7 
 12 
   2+ 
 7 
=
 20 
 + 1
 7 

Class X Mathematics www.vedantu.com 2


 12 +14 
 
 7 
=
 20  7
+ 
 
 7 

 26 
 
= 7 
27
 
 7 
26
=
27
3 x   + 2 y 26
Hence, Value of is .
5 x   +y 27

4a + 3b
3. If a :b=3 :8, find the value of .
6a- b
Ans: Here, we have a : b = 3 :8
a 3
Therefore, =
b 8
 4a   + 3b 
4a   + 3b  b 
Now,   
=
6a − b  6a    −b 
 
 b 
 4a 
   3+ 
b
= 
 6a 
 −1
 b 
 3 
 4 ×   +3 
8 
=
 3 
 6 × −1 
 8 

Class X Mathematics www.vedantu.com 3


 12 
   3+ 
 8 
=
 18 
 −1 
8 
 12  24
+ 
 
 8 
=
 18  8
− 
 
 8 

 36 
 
= 8 
10
 
 8 
36
=
10
18
=
5
4a   + 3b 18
Hence, Value of is .
6a − b 5

4. If ( a-b ) :( a+b ) =1 :11, find the ratio:

( 5a+4b+15 ) :( 5a-4b+3 ) .
Ans: Here, we have ( a − b ) : ( a + b ) =
1 :11


(a − b) = 1
( a + b ) 11
⇒ 11a − 11b =a+b
⇒ 11a − a = b + 11b
⇒ 10a = 12b
a 12
⇒ =
b 10

Class X Mathematics www.vedantu.com 4


a 6
⇒ =
b 5
Let a = 6 x and b = 5 x

Now,
( 5a + 4b + 15) = ( 5  6 + × 5 x +15 )
× x   4
( 5a − 4b + 3) ( 5  6 − × 5 x +3)
× x   4

  
=
( 30 x   20
+ x +15 )
( 30 x   20
− x +3)

=
( 50 x +15)
(10 x +3)
5 (10 x +3)
=
(10 x +3)
=5

Hence, Value of
( 5a + 4b + 15) is 5.
( 5a − 4b + 3)

7 8 4
5. Find the number which bears the same ratio to that does to .
33 21 9
Ans: Let the required number be x .
Therefore,
7 8 4
⇒ x: = :
33 21 9
8
x
⇒ = 21
7 4
33 9
x 8  9
×
⇒ =
7 21  4×
33

Class X Mathematics www.vedantu.com 5


7 8  9
×
x
⇒= ×
33 21  4
×
7 8  9
×
x
⇒= ×
33 21  4
×
2
⇒ x=
11
2
Hence, the required number is .
11

m+n 2 2n 2
6. If = , find .
m + 3n 3 3m 2 + mn
m   
+n 2
Ans: Here, we have =
  
m + 3n 3
⇒ 3 ( m + n )= 2 ( m + 3n )

⇒ 3m + 3n = 2m + 6n
⇒ 3m − 2m =6n − 3n
⇒ m = 3n
2n 2 2n 2
Now, =
3m 2 + mn 3 × ( 3n ) + 3n.n
2

2n 2
=
3 × 9n 2 + 3n 2
2n 2
=
27 n 2 + 3n 2
2n 2
=
30n 2
1
=
15
2n 2 1
Hence, Value of is .
3m + mn
2
15

Class X Mathematics www.vedantu.com 6


x
7. Find ; when x 2 +6y 2 =5xy .
y

Ans: Here, we have x 2 + 6 y 2 =


5 xy

Divide by y 2 in above equation

x 2 6 y 2 5 xy
⇒ 2+ 2 =
y y y2
2
x x
⇒   + 6 =5×
 y y

x
Let a =
y

⇒ a2 + 6 =5a
⇒ a 2 − 5a + 6 =0
⇒ a 2 − 2a − 3a + 6 =0
⇒ a ( a − 2 ) − 3( a − 2 ) =
0

⇒ ( a − 2 )( a − 3) =
0

or ( a − =
2 ) 0  
⇒ (a −= 3) 0

⇒ a 2  
= or a 3
=
x x
Thus, = 2 or = 3.
y y
x
Hence, Value of is 2 or 3.
y

8. If the ratio between 8 and 11 is the same as the ratio of 2 x − y to x + 2 y,


7x
find the value of   .
9y
Ans: here, the ratio between 8 and 11 is the same as the ratio of 2x − y to x + 2 y
.

Class X Mathematics www.vedantu.com 7


Therefore,
8 2x − y
⇒ =
11 x   2
+ y
⇒ 22 x − 11 y =8 x + 16 y

⇒ 22 x − 8 x = 16 y + 11 y

⇒ 14 x = 27 y

x 27
⇒ =
y 14
7
Multiply by   in the above equation, we get
9
7 x 7 27
⇒ = ×
9 y 9 14
7x 3
⇒ =
9y 2
7x 3
Hence, value of is .
9y 2

2
9. Divide Rs. 1290 into A, B and C such that A is of B and B:C = 4 :3 .
5
2 B 4
Ans: here, we have A = B and =
5 C 3
2
⇒ A= B and 4C = 3B
5
2 3
⇒ A= B and C = B
5 4
1290
Now, A + B + C =
2 3
⇒ 1290
B+B+ B=
5 4

Class X Mathematics www.vedantu.com 8


8 B + 20 B + 15 B
⇒ = 1290
20
43B
⇒ = 1290
20
⇒ 43
= B 1290 × 20
1290 × 20
⇒ B=
43
= 30 × 20
⇒ B
⇒ B = 600
2
Now, Amount of A = B
5
2
= × 600
5
= 2 × 120
= 240
3
And amount of C = B
4
3
= × 600
4
= 3 × 150
= 450
Hence, amount of A = Rs. 240
Amount of B = Rs. 600
Amount of C = Rs. 450

10. A school has 630 students. The ratio of the number of boys to the number
of girls is 3:2. This ratio changes to 7:5 after the admission of 90 new
students. Find the number of newly admitted boys.
Ans: Let the number of boys be 3x .

Class X Mathematics www.vedantu.com 9


And the number of girls be 2x .
Now, Total student = 630
⇒ 3x + 2 x =
630
⇒ 5 x = 630
⇒ x = 126
Thus, number of boys before new admission = 3x
= 3 × 126
= 378
And number of girls before new admission = 2x
= 2 × 126
= 252.
Now, Let the number of newly admitted boys be y.

And the number of newly girls admitted be ( 90 − y ) .

According to the question,


378  
+y 7
⇒ =
252  90
+ −y 5
378  
+y 7
⇒ =
342 − y 5
⇒ 1890 + 5 y= 2394 − 7 y .

⇒ 5 y + 7 y= 2394 − 1890

⇒ 12 y = 504

504
⇒ y=
12
⇒ y = 42

Hence, the number of newly admitted boys is 42.

Class X Mathematics www.vedantu.com 10


11. What quantity must be subtracted from each term of the ratio 9:17 to
make it equal to 1:3?
Ans: Let the required quantity be x .
w, according to question
9-x 1
⇒ =
17-x 3
⇒ 17-x=27-3x
⇒ -x+3x=27-17
⇒ 2 x = 10
10
⇒ x=
2
⇒ x=5
Hence, the required quantity is 5.

12. The monthly pocket money of Ravi and Sanjeev are in the ratio 5:7. Their
expenditures are in the ratio 3:5. If each saves Rs. 80 every month, find their
monthly pocket money.
Ans: Let the pocket money of Ravi be Rs. 5x .
And the pocket money of Sanjeev is Rs. 7x .
Expenditure of Ravi is 3 y.

Expenditure of Sanjeev is 5y .

Now, monthly saving of Ravi = Rs. 80


80 ……….. eq (i)
⇒ 5x − 3 y =

And monthly saving of Sanjeev = Rs. 80


80 ……….. eq (ii)
⇒ 7x − 5y =

Now, multiplying by 5 in eq(i) and 3 in eq (ii), we get


400 ……….. eq (iii)
⇒ 25 x − 15 y =

240 ……….. eq (iv)


⇒ 21x − 15 y =

Class X Mathematics www.vedantu.com 11


Now, subtracting eq (iv) from eq (iii)
⇒ 4 x = 160
160
⇒ x=
4
⇒ x = 40
Thus, pocket money of Ravi = Rs. 5x
= Rs. 5 × 40
= Rs. 200
And , pocket money of Sanjeev = Rs. 7x
= Rs. 7 × 40
= Rs. 280

13. The work done by ( x-2 ) men in ( 4x+1) days and the work done by
( 4x+1) men in ( 2x-3 ) days are in the ratio 3:8. Find the value of x.

Ans: here, we have, work done by ( x − 2 ) men in ( 4 x + 1) days and the work
done by ( 4 x + 1) men in ( 2 x − 3) days are in the ratio 3 :8

Thus, the amount of work done by ( x − 2 ) men in ( 4 x + 1) days is

(x-2)(4x+1).
And the amount of work done by ( 4 x + 1) men in ( 2 x − 3) days is

( 4 x + 1)( 2 x − 3) .
Now, according to question


( x − 2 )( 4 x + 1) = 3
( 4 x + 1)( 2 x − 3) 8


( x − 2) = 3
( 2 x − 3) 8
⇒ 8 x − 16 = 6 x − 9

Class X Mathematics www.vedantu.com 12


⇒ 8 x − 6 x =−9 + 16
⇒ 2x = 7
7
⇒ x=
2
7
Hence, Value of x is   .
2

14. The bus fare between two cities is increased in the ratio 7:9. Find the
increase in the fare, if:
The original fare is Rs. 245.
Ans: here, bus fare between two cities is increased in the ratio 7 : 9
And original fare is Rs. 245
Now, according to question
9
⇒ increased bus fare = × original fare
7
9
                                       
= ×245
7
                                        = 9 × 35
= Rs. 315
Thus, increase in fare = increased fare – original fare
= Rs. 315 – Rs. 245
= Rs. 70.
The increased fare is Rs. 207.
Ans: here, bus fare between two cities is increased in the ratio 7 : 9
And increased fare is Rs. 207
Now, according to question
9
⇒ increased bus fare of= × original fare
7

Class X Mathematics www.vedantu.com 13


9
⇒ 207     
=× original fare
7
7
⇒    207
original fare =×
9
⇒    23 ×7
original fare =
⇒     Rs.161
original fare =

Thus, increase in fare = increased fare – original fare


= Rs. 207 – Rs. 161
= Rs. 46.

15. By increasing the cost of entry ticket to a fair in the ratio 10:13, the
number of visitors to the fair has decreased in the ratio 6:5. In what ratio has
the total collection increased or decreased?
Ans: Let the initial entry ticket cost be Rs.10 x .
And initial number of visitors be 6 y .

Thus, initial collection = Rs.10 x ×6 y

= Rs. 60 xy

Now, let the increased entry ticket cost be Rs. 13x


And decreased visitors are 5y .

Thus, final collection = Rs.13 x ×5 y

= Rs. 65 xy

Here, we have a final collection that is greater than initial collection


60 xy
Thus, required increased ratio =
65 xy
60
= .
65

Class X Mathematics www.vedantu.com 14


16. In a basket, the ratio between the number of oranges and the number of
apples is 7:13. If 8 oranges and 11 apples are eaten, the ratio between the
number of oranges and the number of apples becomes 1: 2. Find the original
number of oranges and the original number of apples in the basket.
Ans: Let the original number of oranges is 7x .
And the original number of apples is 13 x.
Now, according to question
7x − 8 1
⇒ =
13 x − 11 2
⇒ 14 x − 16 = 13 x − 11
⇒ 14 x − 13 x =−11 + 16
⇒ x=5
Thus, the original number of oranges = 7x
= 7×5
  = 35
And the original number of apples = 13x
= 13 × 5
= 65 .

17. In a mixture of 126 kg of milk and water, milk and water are in the ratio
5:2. How much water must be added to the mixture to make this ratio 3:2?
Ans: Let the initial quantity of milk be 5x kg
And the initial quantity of water be 2x kg.
Now, total quantity of mixture = 126 kg
⇒ 5x + 2 x =
126
⇒ 7 x = 126
126
⇒ x=
7
⇒ x = 18

Class X Mathematics www.vedantu.com 15


Thus, the initial quantity of milk = 5x
= 5 × 18
= 90 kg
And the initial quantity of water = 2x
= 2 × 18
= 36 kg
Now, let y kg water be added to the mixture to get ratio 3 : 2.

90 3
⇒ =
36 + y    2
⇒ 108 + 3 y =
180

⇒ 3 y = 72

72
⇒y=
3
⇒ y = 24

Hence, 24 kg water must be added to the mixture to make ratio 3 : 2.

17. (a) If A:B=3:4 and B:C=6:7, find A : B : C


Ans: here, we have A : B = 3 : 4 and B : C = 6 : 7
Therefore,
A 3 B 6
⇒ = and =
B 4 C 7
A 3× 3 B 6× 2
⇒ = and =
B 4×3 C 7×2
A 9 B 12
⇒ = and =
B 12 C 14
On comparing above both equations, we get
⇒ A : B : C = 9 :12 :14
Hence, value of A : B : C   
is 9 :12 :14 .

Class X Mathematics www.vedantu.com 16


Here, we have A : B = 3 : 4 and B : C = 6 : 7 .
A A B
Now, we can write as × .
C C B
A A B
⇒ = ×
C C B
A A B
⇒ = ×
C B C
A 3 6
⇒ = ×
C 4 7
A 18
⇒ =
C 28
A 9
⇒ =
C 14
Thus, value of A : C is 9 :14 .
(b) If A: B = 2: 5 and A: C = 3: 4, find A  B  C
: : .
Ans: here, we have A : B = 2 : 5 and A : C = 3 : 4
Therefore,
A 2 A 3
⇒ = and =
B 5 C 4
A 2×3 A 3× 2
⇒ = and =
B 5×3 C 4× 2
A 6 A 6
⇒ = and =
B 15 C 8
On comparing above both equations, we get
⇒ A : B : C = 6 :15 :8
Hence, value of A : B : C   6
is :15 :8 .
(i) If 3=
A 4=
B 6C ; find A: B: C
Ans: here, we have 3= B 6C .
A 4=
Therefore,

Class X Mathematics www.vedantu.com 17


⇒ 3 A = 4 B and 4 B = 6C
A 4 B 6
⇒ = and =
B 3 C 4
A 4 B 3
⇒ = and =
B 3 C 2
On comparing above both equations, we get
⇒ A : B :C = 4 :3 :2
Hence, value of A : B : C   4
is : 3 : 2 .
(ii) If 2a = 3b and 4b = 5c, Find a: c.
Ans: here, we have 2a = 3b and 4b = 5c .
Therefore,
a 3 b 5
⇒ = and =
b 2 c 4
a a b
Now, we can write as × .
c c b
a a b
⇒ = ×
c c b
a a b
⇒ = ×
c b c
a 3 5
⇒ = ×
c 2 4
a 15
⇒ =
c 8
Thus, value of a : c is 15 :8 .

18. Find the compound ratio of:


(a) 2:   
3,9:14 and 14: 27.
ace
Ans: We know that the compound ratio of a : b,  :
c d and e : f is .
bdf

Class X Mathematics www.vedantu.com 18


2 × 9 × 14
Therefore, the compound ratio of 2 : 3, 9 :14 and 14 : 27 =
3 × 14 × 27
2
=
3× 3
2
=
9
Thus, the required compound ratio is 2 : 9 .
: 2 and x: n .
(b) 2a: 3b,   mn  x
ace
Ans: We know that the compound ratio of a : b,  :
c d and e : f is .
bdf
2a × mn × x
mn x 2 and x : n =
Therefore, the compound ratio of 2a : 3b,   :  
3b     
× x2 × n
2am
=
3bx
Thus, the required compound ratio is 2am : 3bx .

(c) :1, 3: 5 and


2       20 : 9.
ace
Ans: We know that the compound ratio of a : b,  :
c d and e : f is .
bdf

2 × 3 × 20
Therefore, the compound ratio of 2 :1,  3 : 5 and 20 : 9 =
1× 5 × 9

2×2
=
3

2 2
=
3

Thus, the required compound ratio is 2 2 : 3 .

19. Find duplicate ratio of:


(a) 3:4

Class X Mathematics www.vedantu.com 19


Ans: We know that duplicate ratio of a : b is a 2 : b 2
Therefore, duplicate ratio of 3 : 4 is 32 : 42
= 32 : 42
32
= 2
4
9
=
16
= 9 :16
Hence, duplicate ratio of 3 : 4 is 9 :16.

(b) 3 3 :2 5
Ans: We know that duplicate ratio of a : b is a 2 : b 2

( ) ( )
2 2
Therefore, duplicate ratio of 3 3 : 2 5 is 3 3 : 2 5

( ) ( )
2 2
= 3 3 : 2 5

( )
2
3 3
=
(2 5 )
2

9  3
×
=
4  5
×
27
=
20
= 27 : 20

Hence, duplicate ratio of 3 3 : 2 5 is 27 : 20.

20. Find triplicate ratio of:


(a) 1: 3
Ans: We know that triplicate ratio of a : b is a 3 : b3

Class X Mathematics www.vedantu.com 20


Therefore, triplicate ratio of 1 : 3 is 13 : ( 3b )
3

= 13 : 33
13
= 3
3
1
=
27
= 1 : 27
Hence, triplicate ratio of 1 : 3 is 1 : 27.
m n
(b) :
2 3
Ans: We know that triplicate ratio of a : b is a 3 : b3
3 3
m n m n
Therefore, triplicate ratio of : is   :  
2 3  2  3
3 3
m n
=   : 
 2  3
m3 n3
= :
8 27
m3
= 83
n
27
= 27 m3 :8n3
m n
Hence, triplicate ratio of : is 27 m3 :8n3 .
2 3

21. Find sub – duplicate ratio of:


(a) 9:16

Ans: We know that sub - duplicate ratio of a : b is a: b

Class X Mathematics www.vedantu.com 21


Therefore, sub - duplicate ratio of 9 :16 is 9 : 16

= 9 : 16

9
=
16
3
=
4
=3 :4
Hence, sub- duplicate ratio of 9 :16 is 3 : 4.

(b) ( x − y )   :( x + y )
4 6

Ans: We know that sub - duplicate ratio of a : b is a: b

( x − y ) :  
( x + y)
4 6
Therefore, sub - duplicate ratio of is

( x − y) ( x + y)
4 6
:

( x y) : ( x + y)
4 6
=−

( x − y)
4

=
( x + y)
6

( x − y)
2

=
( x + y)
3

( x − y ) :( x + y )
2 3
=

( x − y ) :  
( x + y ) is
4 6
Hence, sub- duplicate ratio of

( x − y ) :( x + y ) .
2 3

22. Find the sub – triplicate ratio of:


(a) 64:27

Ans: We know that sub - triplicate ratio of a : b is 3


a :3b

Class X Mathematics www.vedantu.com 22


Therefore, sub - triplicate ratio of 64 : 27 is 3
64 : 3 27

= 3 64 : 3 27
3
64
= 3
27
3
4  4  4
× ×
= 3
3  3  3
× ×
3
43
= 3
33
4
=
3
= 4 :3
Hence, sub - triplicate ratio of 64 : 27 is 4 : 3.
(b) x 3 :125 y 3

Ans: We know that sub - triplicate ratio of a : b is 3


a :3b

Therefore, sub - triplicate ratio of x 3 :125 y 3 is 3


x 3 : 3 125 y 3

= 3 x 3 : 3 125 y 3
3
x3
=
3
125 y 3
3
x3
=
(5 y )
3
3

x
=
5y
= x :5y

Hence, sub - triplicate ratio of x 3 :125 y 3 is x : 5 y.

23: Find the reciprocal ratio of:

Class X Mathematics www.vedantu.com 23


(a) 5 : 8
1 1
Ans: We know that reciprocal ratio of a : b is : .
a b
1 1
Therefore, reciprocal ratio of 5 : 8 is : .
5 8
1 1
= :
5 8
1
=5
1
8
8
=
5
= 8 :5
Hence, reciprocal ratio of 5 :8 is 8 : 5 .
x y
(b) :
  
3 7
1 1
Ans: We know that reciprocal ratio of a : b is : .
a b
x y 1 1
Therefore, reciprocal ratio of : is : .
3 7 x y
3 7
1 1
= :
x y
3 7
3 7
= :
x y
3
= x
7
y

Class X Mathematics www.vedantu.com 24


3y
=
7x
= 3y : 7x

x y
Hence, reciprocal ratio of : is 3 y : 7 x
3 7

23. If ( x+3 ) :( 4x+1) is the duplicate ratio of 3 :5. Find the value of x.

Ans: here, we have ( x + 3) : ( 4 x + 1) is the duplicate ratio of 3 : 5 .

Therefore,


( x + 3) = 3
2

( 4 x + 1) 52


( x + 3) = 9
( 4 x + 1) 25
⇒ 36 x + 9= 25 x + 75
⇒ 36 x − 25 x =75 − 9
⇒ 11x = 66
66
⇒ x=
11
⇒ x=6
Hence, value of x is 6.

24. If m :n is the duplicate ratio of ( m+x ) :( n+x ) , prove that x 2 =mn.

Ans: here, we have m : n is the duplicate ratio of ( m + x ) : ( n + x ) .

Therefore,

m ( m   
+ x)
2

⇒ =
n ( n   
+ x)
2

Class X Mathematics www.vedantu.com 25


m m 2 + 2mx + x 2
⇒ =
n n 2 + 2nx + x 2
⇒ m ( n 2 + 2nx + x 2 )  
= n ( m 2 + 2mx + x 2 )

⇒ mn 2 + 2mnx +   
mx 2 =nm 2 + 2mnx + nx 2
⇒ mn 2 + mx 2 = nm 2 + nx 2
⇒ mx 2 − nx 2 = nm 2 − mn 2
) mn ( m − n )
⇒ x 2 ( m − n=

mn ( m − n )
⇒ x2 =
(m − n)
⇒ x 2 = mn
Hence proved.

25. If ( 3x-9 ) :( 5x+4 ) is the triplicate ratio of 3 :4, Find the value of x.

Ans: Here, we have ( 3 x − 9 ) : ( 5 x + 4 ) is the triplicate ratio of 3 : 4 .

Therefore,


( 3x − 9 ) = 33

(5x + 4) 4 3


( 3x − 9 ) = 27
( 5 x + 4 ) 64


( 3x − 9 ) = 27
( 5 x + 4 ) 64
⇒ 192 x − 576 = 135 x + 108
⇒ 192 x − 135 x =108 + 576
⇒ 192 x − 135 x =108 + 576
⇒ 57 x = 684

Class X Mathematics www.vedantu.com 26


684
⇒x=
57
⇒ x = 12
Hence, Value of x is 12.

26. Find the ratio compounded of the reciprocal ratio of 15:28 the sub –
duplicate ratio of 36:49 and the triplicate ratio of 5:4.
15 28
Ans: here, the reciprocal ratio of    is .
28 15

36 36 6
And the sub-duplicate ratio of is =
49 49 7
5 53 125
The triplicate ratio of is 3 =
4 4 64
28  6
× ×125
Now, the required compound ratio =
15  7  64
× ×
4 × 6 × 25
=
3 × 64
25
=
8
25
Hence, required compound ratio is .
8

27. (a) If r 2 = pq, show that p: q is the duplicate ratio of ( p + r ) : ( q + r ) .

Ans: here, we have r 2 = pq

Therefore, duplicate ratio of ( p + r ) : ( q + r ) is ( p + r ) : ( q + r )


2 2

( p + r)
2

=
(q + r )
2

Class X Mathematics www.vedantu.com 27


p 2 + 2 pr + r 2
=
q 2 + 2qr + r 2

p 2 + 2 pr + pq
=
q 2 + 2qr + pq

p ( p + 2r + q )
=
q ( q + 2r + p )

p
=
q
Thus, p : q is the duplicate ratio of ( p + r ) : ( q + r ) .

Hence proved.
(b) If ( p − x ): ( q − x ) be the duplicate ratio of p: q then, show that
1 1 1
+ =.
p q x
Ans: here, we have ( p − x ) : ( q − x ) be the duplicate ratio of p : q .

Therefore,


( p − x) = p 2

(q − x) q 2

) p2 ( q − x )
⇒ q 2 ( p − x=

⇒ q 2 p − q 2 x = p 2q − p 2 x

⇒ p 2 x − q 2 x = p 2q − q 2 p

⇒ x ( p 2 − q 2 )= pq ( p − q )

⇒ x ( p − q )( p + q=
) pq ( p − q )
⇒ x( p + q) =
pq


( p + q) = 1
pq x

Class X Mathematics www.vedantu.com 28


1 1 1
⇒ + =
q p x
1 1 1
⇒ + =
p q x
Hence proved.

Exercise- 7(B)
1. Find the fourth proportional to:
1.5, 4.5 and 3.5
Ans: Let the fourth proportional be x.
Therefore, 1.5 : 4.5 = 3.5 : x
1.5 3.5
⇒ =
4.5 x
1 3.5
⇒ =
3 x
⇒ x = 10.5
Thus, fourth proportional of 1.5, 4.5 and 3.5 is 10.5 .

3a, 6a 2 and 2ab 2


Ans: Let the fourth proportional be x .
Therefore, 3a : 6a 2 = 2ab 2 : x
3a 2ab 2
⇒ =
6a 2 x
1 2ab 2
⇒ =
2a x
⇒ x = 4 a 2b 2
Thus, fourth proportional of 3a, 6a 2 and 2ab 2 is 4a 2b 2 .

Class X Mathematics www.vedantu.com 29


2. Find the third proportional to:
2
2 and 4
3
Ans: Let the required third proportional be x .
2
Thus, 2 , 4 and x are in continued proportion.
3
Therefore,
2
⇒2 :4 = 4 : x
3
8
⇒ :4 = 4 : x
3
8
4
⇒ 3=
4 x
8 4
⇒ =
12 x
⇒ 8 x = 48
48
⇒ x=
8
⇒ x=6
2
Hence, required third proportional to 2 and 4 is 6.
3

3. ( a − b ) and ( a 2 − b 2 )

Ans: Let the required third proportional be x .


Thus, ( a − b ) , ( a 2 − b 2 ) and x are in continued proportion.

Therefore,
⇒ ( a − b ) : ( a 2 − b2 ) = ( a 2 − b2 ) : x

Class X Mathematics www.vedantu.com 30



(a − b) =
(a 2
− b2 )
(a 2
− b2 ) x

⇒ x (a − b) = (a 2
− b 2 )( a 2 − b 2 )

⇒ x ( a − b ) = ( a − b )( a + b ) ( a 2 − b 2 )

( a b ) ( a 2 − b2 )
⇒ x =+

Hence, required third proportional is ( a + b ) ( a 2 − b 2 ) .

4. Find the mean proportional between:

(a) 6 + 3 3 and 8 − 4 3
Ans: Let the required mean proportional be x .

Thus, 6 + 3 3,  x and 8 − 4 3 are in continued proportion.


Therefore,

(
⇒ 6+3 3 :x = )
x : 8−4 3 ( )

( 6 + 3 3)
=
x
x (8 − 4 3 )
(
6+3 3 8−4 3
⇒ x2 = )( )
48 − 24 3 + 24 3 − 36
⇒ x2 =
⇒ x 2 = 12

⇒ x = 12

⇒ x = ±2 3
Since, the mean proportional to positive number is positive.

Thus, x = 2 3

Hence, required mean proportional is 2 3.

Class X Mathematics www.vedantu.com 31


(b) ( a − b ) and ( a 3 − a 2b ) .

Ans: Let the required mean proportional be x .


Thus, ( a − b ) ,  x and ( a 3 − a 2b ) are in continued proportion.

Therefore,
⇒ ( a − b ) : x = x : ( a 3 − a 2b )


(a − b) = x
x ( a − a 2b )
3

( a b ) ( a 3 − a 2b )
⇒ x 2 =−

( a − b ). a 2 ( a − b )
⇒ x2 =

x2 a2 ( a − b )
2
⇒=

a2 ( a − b)
2
⇒ x
=

⇒=x a (a − b)

Hence, required mean proportional is a ( a − b ) .

5. If x + 5 is the mean proportion between x + 2 and x + 9 ; find the value of


x.
Ans: Here, x + 5 is the mean proportion between x + 2 and x + 9
Thus, ( x + 2 ) ,  ( x + 5 ) and ( x + 9 ) in continued proportion.

Therefore,
⇒ ( x + 2 ) : ( x + 5) = ( x + 5) : ( x + 9 )


( x + 2 ) = ( x + 5)
( x + 5) ( x + 9 )
⇒ ( x + 5 ) =( x + 2 )( x + 9 )
2

⇒ x 2 + 10 x + 25 = x 2 + 9 x + 2 x + 18

Class X Mathematics www.vedantu.com 32


⇒ 10 x + 25 = 11x + 18
⇒ 10 x − 11x =18 − 25
⇒ − x =−7
⇒ x=7
Thus, Value of x is 7 .

6. If x 2 , 4 and 9 are in continued proportion, find x .

Ans: Here, x 2 ,  4  9   


and in continued proportion
Therefore,
⇒ x 2   : 4 = 4 : 9
x2 4
⇒ =
4 9
16
⇒ x2 =
9

16
⇒ x=
9
4
⇒ x= ±
3
4
Hence, Value of x is ± .
3

7. What least number must be added to each of the numbers 6, 15, 20 and 43
to make them proportional?
Ans: Let the least number is x to be added to the numbers 6, 15, 20 and 43 to
make them proportional
Therefore,
6 + x 20 + x
⇒ =
15 + x 43 + x

Class X Mathematics www.vedantu.com 33


⇒ ( 6 + x )( 43 + x ) = ( 20 + x )(15 + x )
⇒ 258 + 6 x + 43 x + x 2 = 300 + 20 x + 15 x + x 2
⇒ 258 + 49 x = 300 + 35 x
⇒ 49 x − 35 x = 300 − 258
⇒ 14 x = 42
42
⇒ x=
14
⇒ x=3
Thus, the required least number is 3 .

(i) If a , b, c are in continued proportion,

a 2 + b2 b(a + c )
Show that: = 2
b(a + c ) b + c2

Ans: Here, a, b, c are in continued proportion


Therefore,
a b
⇒ =
b c
⇒ b 2 = ac ……… (i)
Now,
⇒ ( a 2 + b 2 )( b 2 + c 2 ) = ( a 2 + ac )( ac + c 2 ) [from eq (i)]

⇒ ( a 2 + b 2 )( b 2 + c 2 ) = a ( a + c ) .c ( a + c )

⇒ ( a 2 + b 2 )( b 2 + c 2 ) = ac ( a + c )
2

⇒ ( a 2 + b 2 )( b 2 + c 2 ) = b 2 ( a + c )
2
[ b 2 = ac]

⇒ ( a 2 + b 2 )( b 2 + c 2 ) = b ( a + c ) . b ( a + c )

Class X Mathematics www.vedantu.com 34


a 2 + b2 b(a + c)
⇒ = 2
b(a + c) b + c2

Hence proved.
(ii) If a , b, c are in continued proportion and a ( b − c ) =
2b,

2(a + b)
Prove that: a − c = .
a
Ans: Here, a, b, c are in continued proportion and a ( b − c ) =
2b

a b
Therefore, =
b c
⇒ b 2 = ac and a ( b − c ) =
2b

⇒ b 2 = ac and ab − ac =
2b
2b
⇒ b 2 = ac and ab − b 2 =
⇒ b 2 = ac and b ( a − b ) =
2b

⇒ b 2 = ac and ( a − b ) =
2

Now, L.H.S = a − c
a(a − c)
  =
a
a 2 − ac
=
a
a 2 − b2
= [ b 2 = ac ]
a

=
( a + b )( a − b ) [ a 2 − b 2 = ( a + b )( a − b )]
a
2(a + b)
= [a −b =2]
a
= R.H .S
Therefore, L.H.S = R.H.S

Class X Mathematics www.vedantu.com 35


Hence proved.

a 3c + ac 3 ( a + c )
4
a c
(iii). If = , show that: 3 =
b d + bd 3 ( b + d )
4
b d

a c
Ans: Here, we have =
b d
a c
Let = = k , then we get
b d
⇒ a kb
= =   
and c kd
a 3c + ac 3
Now, L.H.S =
b3d + bd 3

( kb ) .kd + kb.( kd )
3 3

=
b3d + bd 3
k 3b3 .kd + kb.k 3d 3
=
b3d + bd 3
k 4b3d + k 4bd 3
=
b3d + bd 3
k 4 ( b3d + bd 3 )
=
( b d + bd )
3 3

= k4

(a + c)
4

⇒ R.H.S =
(b + d )
4

( kb + kd )
4

=
(b + d )
4

 k ( b + d ) 
4

=
(b + d )
4

k 4 (b + d )
4

=
(b + d )
4

Class X Mathematics www.vedantu.com 36


= k4
Therefore, L.H.S = R.H.S
Hence proved.

8. What least number must be subtracted from each of the numbers 7, 17


and 47 so that the remainders are in continued proportion?
Ans: Let the least number is x to be subtracted from each of the numbers 7, 17
and 47 to make them in continued proportional
Therefore,
7 − x 17 − x
⇒ =
17 − x 47 − x
⇒ ( 7 − x )( 47 − x ) = (17 − x )(17 − x )

⇒ 329 − 7 x − 47 x + x 2 = 289 − 17 x − 17 x + x 2
⇒ 329 − 54 x = 289 − 34 x
⇒ −54 x + 34 x = 289 − 329
⇒ −20 x =
−40
−40
⇒ x=
−20
⇒ x=2
Thus, the required least number is 2 .

9. If y is the mean proportional between x and z; show that xy + yz is the


mean proportional between x 2 + y 2 and y 2 + z 2 .

Ans: Here, y is the mean proportional between x and z

Therefore,
⇒ y 2 = xz ……… (i)

Now, the mean proportional between x 2 + y 2 and y 2 + z 2 will be,

Class X Mathematics www.vedantu.com 37


=( x 2 + y 2 )( y 2 + z 2 )

=( x 2 + xz ) ( xz + z 2 ) [ y 2 = xz ]

= x ( x + z ) .z ( x + z )

xz ( x + z )
2
=    

y2 ( x + z )
2
= [    y 2 = xz ]

= y( x + z)
= xy + yz

Hence, xy + yz is the mean proportional between x 2 + y 2 and y 2 + z 2 .

10. If q is the mean proportional between p and r , show that:

pqr ( p + q + r ) = ( pq + qr + pr ) .
3 3

Ans: Here, q is the mean proportional between x and z

Therefore,
⇒ q 2 = pr ……… (i)

Now, show that pqr ( p + q + r ) = ( p + q + r)


3 3

= pqr ( p + q + r )
3
L.H.S

= q. pr ( p + q + r )
3

= q.q 2 ( p + q + r )
3

= q3 ( p + q + r )
3

=  q ( p + q + r ) 
3

3
=  pq + q 2 + qr 

[ pq + pr + qr ]
3
= [   q 2 = pr ]

Class X Mathematics www.vedantu.com 38


= R.H .S

Therefore, pqr ( p + q + r ) = ( pq + qr + pr ) .
3 3

Hence proved.

11. If three quantities are in continued proportion; show that the ratio of the
first to the third is the duplicate ratio of the first to the second.
Ans: Let x, y and z are in continued proportion.

Therefore,
⇒ y 2 = xz

Now, multiply by x in the above equation, we get


⇒ xy 2 = x 2 z

x x2
⇒ =
z y2
Hence, the ratio of the first to the third is the duplicate ratio of the first to the
second.

12. If y is the mean proportional between x and z , Prove that:


x2 − y2 + z2
= y4.
x − y +z
−2 −2 −2

Ans: Here, y is the mean proportional between x and z

Therefore,
⇒ y 2 = xz ……… (i)

x2 − y 2 + z 2
Now, L.H.S = −2
x − y −2 + z −2
2 2 2
 y2   y2   y2 
 z  − y  + x 
=   −2  −2 −2 
x −y +z

Class X Mathematics www.vedantu.com 39


4
y4 y4 y
− +
z 2 y 2 x2
= −2
x − y −2 + z −2

y 4 z −2 − y 4 y −2 + y 4 x −2
=
x −2 − y −2 + z −2

y 4 ( z −2 − y −2 + x −2 )
=
x −2 − y −2 + z −2

y 4 ( x −2 − y −2 + z −2 )
=
(x −2
− y −2 + z −2 )

= y4
L.H.S = R.H .S
x2 − y 2 + z 2
Therefore, = y4
x −y +z
−2 −2 −2

Hence proved.

13. Given four quantities a , b, c and d are in the proportion. Show that:

( a − c ) b : ( b − d ) cd = ( a
2 2
− b 2 − ab ) : ( c 2 − d 2 − cd )

Ans: Here a, b, c and d are in the proportion


a c
Therefore, =
b d
a c
Let = = k , then we get
b d
⇒ a kb
= =   
and c kd

Now, L.H.S =
(a − c)b 2

( b − d ) cd

=
( kb − kd ) b 2

( b − d ) kd .d

Class X Mathematics www.vedantu.com 40


k ( b − d ) b2
=
k (b − d ) d 2

b2
= 2
d

⇒ R.H.S =
(a 2
− b 2 − ab )
  
(c 2
− d 2 − cd )

=
(k b 2 2
− b 2 − kb.b )
(k d 2 2
− d 2 − kd .d )

=
(k b 2 2
− b 2 − kb 2 )
(k d 2 2
− d 2 − kd 2 )

b2 ( k 2 − 1 − k )
=
d 2 (k 2 −1− k )

b2
= 2
d
Therefore, L.H.S = R.H.S
Hence proved.

14. Find two numbers such that the mean proportionality between them is
12 and the third proportional to them is 96.
Ans: Let the two numbers are x and y.

According to 1st condition,


The mean proportionality between x and y is 12.

⇒ xy = 12

On squaring both sides, we get


⇒ xy = 144

144
⇒ x= ……………. Eq(i)
y

Class X Mathematics www.vedantu.com 41


According to the 2nd condition,
x y
⇒ =
y 96

⇒ y 2 = 96 x

144
⇒ y=
2
96 ×
y

⇒ y=
3
96 × 144

⇒ y 3 = 12 × 8 × 12 × 12

⇒ y=
3
123 × 23

⇒ y 3 = ( 24 )
3

⇒ y = 24

Now, put the value of y in eq(i), we get

144
⇒ x=
24
⇒ x=6
Hence, two required numbers are 6 and 24.

x y
15. Find the third proportional to + and x2 + y2 .
y x
Ans: Let the required third proportional be z.
x y
Therefore, + , x 2 + y 2 and z are in continued proportion.
y x
x y
+
y x x2 + y 2
⇒ =
x +y
2 2
z

x y
( )
2
⇒ z + = x2 + y 2
y x

Class X Mathematics www.vedantu.com 42


 x2 + y 2 
⇒ z =  ( x2 + y 2 )
 xy 
xy ( x 2 + y 2 )
⇒ z=
( x2 + y 2 )
⇒ z = xy

Hence, the required third proportional is xy .

16. If p: q = r: s; then show that: ( mp + nq ) : q =( mr + ns ): s .


p r
Ans: Here, we have =
q s
p r
⇒ =
q s
Multiply by m in the above equation, we get
mp mr
⇒ =
q s
Now, adding n to both sides
mp mr
⇒ + n= +n
q s
mp + nq mr + ns
⇒ =
q s

⇒ ( mp + nq ) : q =
( mr + ns ) : s
Hence proved.

1 1 m
17. If p + r =mq and + = ; then prove that p: q = r: s .
q s r
1 1 m
Ans: Here, we have p + r =mq and + =
q s r

Class X Mathematics www.vedantu.com 43


⇒ mq= p + r

p+r
⇒ m=
q
1 1 m
Now, put the value of m in + = , we get
q s r
p+r
1 1 q
⇒ + =
q s r
s+q p+r
⇒ =
qs qr
s+q p+r
⇒ =
s r
⇒ r (s + q) = s( p + r )

⇒ rs + qr = sp + rs

⇒ qr = sp

r p
⇒ =
s q
p r
⇒ =
q s
Hence proved.

Exercise- 7(C)

1. If a: b = c: d , prove that:
( 5a + 7b ): ( 5a − 7b ) = ( 5c + 7d ): ( 5c − 7d )
Ans: Here, we have
   a : b = c : d
a c
Therefore, =
b d

Class X Mathematics www.vedantu.com 44


5
Now, multiplying by in the above equation, we get
7
5 a  5 c 
⇒  =  
7b  7 d 
5a 5c
⇒ =
7b 7 d
Applying componendo and dividendo rule
5a + 7b 5c + 7 d
⇒ =
5a − 7b 5c − 7 d
⇒ ( 5a + 7b ) : ( 5a − 7b ) = ( 5c + 7 d ) : ( 5c − 7 d )
     

Hence proved.

2. ( 9a + 13b )( 9c − 13d ) =( 9c + 13d )( 9a − 13b ) .

Ans: Here, we have


   a : b = c : d
a c
Therefore, =
b d
9
Now, multiplying by in the above equation, we get
13
9 a 9  c 
⇒  =  
13  b  13  d 
9a 9c
⇒ =
13b 13d
Applying componendo and dividendo rule
9a + 13b 9c + 13d
⇒ =
9a − 13b 9c − 13d
⇒ ( 9a + 13b )( 9c − 13d ) = ( 9c + 13d )( 9a − 13b )
     

Hence proved.

Class X Mathematics www.vedantu.com 45


3. ( xa + yb ) : ( xc + yd ) =
b: d

Ans: Here, we have


   a : b = c : d
a c
Therefore, =
b d
x
Now, multiplying by in the above equation, we get
y

xa x c 
⇒  =  
yb yd 
xa xc
⇒ =
yb yd
Adding 1 to both sides, we get
xa xc
⇒ + 1= +1
yb yd
xa + yb xc + yd
⇒ =
yb yd
xa + yb yb
⇒ =
xc + yd yd
xa + yb b
⇒ =
xc + yd d

⇒ ( xa + yb ) : ( xc + yd ) =
b :d

Hence proved.

4. If a: b = c: d , prove that:
( 6a + 7b )( 3c − 4d ) = ( 6c + 7d )( 3a − 4b ) .
Ans: Here, we have
   a : b = c : d
a c
Therefore, = ……… eq (i)
b d

Class X Mathematics www.vedantu.com 46


6
Now, multiplying by in the above equation, we get
7
6 a  6 c 
⇒  =  
7b  7 d 
6a 6c
⇒ =
7b 7 d
Adding 1 to both sides, we get
6a 6c
⇒ + 1= +1
7b 7d
6 a + 7 b 6c + 7 d
⇒ =
7b 7d
6 a + 7b 7b
⇒ =
6c + 7 d 7 d
6 a + 7b b
⇒ = ………… eq (ii)
6c + 7 d d
3
Now, multiplying by in eq (i), we get
4
3 a  3 c 
⇒  =  
4 b  4 d 
3a 3c
⇒ =
4b 4d
Subtracting 1 from both sides, we get
3a 3c
⇒ − 1= −1
4b 4d
3a − 4b 3c − 4d
⇒ =
4b 4d
3a − 4b 4b
⇒ =
3c − 4d 4d
3a − 4b b
⇒ = ………….. eq (iii)
3c − 4d d

Class X Mathematics www.vedantu.com 47


Now, from eq (ii) and (iii), we get
6a + 7b 3a − 4b
⇒ =
6c + 7 d 3c − 4d
⇒ ( 6a + 7b )( 3c − 4d ) =( 6c + 7 d )( 3a − 4b )

Hence proved.

a c
5. Given , prove that:
=   
b d
3a − 5b 3c − 5d
= .
3a + 5b 3c + 5d
a c
Ans: Here, we have = .
b d
3
Now, multiplying by in the above equation, we get
5
3 a  3 c 
⇒  =  
5 b  5 d 
3a 3c
⇒ =
5b 5d
Applying componendo and dividendo rule
3a + 5b 3c + 5d
⇒ =
3a − 5b 3c − 5d
3a − 5b 3c − 5d
⇒ =
3a + 5b 3c + 5d
Hence proved.

5x + 6 y 5x − 6 y
6. If = ; then prove that x: y = u: v.
5u + 6v 5u − 6v
5x + 6 y 5x − 6 y
Ans: Here, we have = .
5u + 6v 5u − 6v

Class X Mathematics www.vedantu.com 48


5 x + 6 y 5u + 6v
⇒ =
5 x − 6 y 5u − 6v
Applying componendo and dividendo rule
5x + 6 y + 5x − 6 y 5u + 6v + 5u − 6v
⇒ =
5 x + 6 y − ( 5 x − 6 y ) 5u + 6v − ( 5u − 6v )

10 x 10u
⇒ =
5 x + 6 y − 5 x + 6 y 5u + 6v − 5u + 6v
10 x 10u
⇒ =
12 y 12v
x u
⇒ =
y v
⇒ x : y = u :v

Hence proved.

7. If ( 7a + 8b )( 7c − 8d ) = ( 7a − 8b )( 7c + 8d ) ; prove that a: b = c: d .

Ans: Here, we have ( 7 a + 8b )( 7c − 8d ) = ( 7 a − 8b )( 7c + 8d ) .


( 7a + 8b ) = ( 7c + 8d )
( 7a − 8b ) ( 7c − 8d )
Applying componendo and dividendo rule


( 7a + 8b ) + ( 7a − 8b ) = ( 7c + 8d ) + ( 7c − 8d )
( 7a + 8b ) − ( 7a − 8b ) ( 7c + 8d ) − ( 7c − 8d )
7 a + 8b + 7 a − 8b 7c + 8d + 7c − 8d
⇒ =
7 a + 8b − 7 a + 8b 7c + 8d − 7c + 8d
14a 14c
⇒ =
16b 16d
a c
⇒ =
b d
⇒ a :b = c :d

Class X Mathematics www.vedantu.com 49


Hence proved.

6ab x + 3a x + 3b
8. (i) If x = , find the value of + .
a+b x − 3a x − 3b
6ab
Ans: Here, we have x = ……… eq (i)
a+b
Now, dividing by 3a in the above equation, we get
x 6ab
⇒ =
3a 3a ( a + b )

x 2b
⇒ =
3a ( a + b )

Applying componendo and dividendo rule


x + 3a 2b + a + b
⇒ =
x − 3a 2b − ( a + b )

x + 3a 3b + a
⇒ =
x − 3a 2b − a − b
x + 3a 3b + a
⇒ = ……….. eq (ii)
x − 3a b − a
Now, dividing by 3b in eq (i), we get
x 6ab
⇒ =
3b 3b ( a + b )

x 2a
⇒ =
3b ( a + b )

Applying componendo and dividendo rule


x + 3b 2a + a + b
⇒ =
x − 3b 2a − ( a + b )

x + 3b 3a + b
⇒ =
x − 3b 2a − a − b

Class X Mathematics www.vedantu.com 50


x + 3b 3a + b
⇒ = ……… eq (iii)
x − 3b a − b
Adding eq (ii) and (iii)
x + 3a x + 3b 3b + a 3a + b
⇒ + = +
x − 3a x − 3b b − a a −b
3b + a 3a + b
= −
b−a b−a
3b + a − 3a − b
=
b−a
2b − 2a
=
b−a
2(b − a )
=
(b − a )
=2
x + 3a x + 3b
Hence value of + is 2.
x − 3a x − 3b

4 6 a+2 2 a+2 3
(ii) If = , find the value of + .
2+ 3 a−2 2 a−2 3

4 6
Ans: Here, we have a = ……… eq (i)
2+ 3

Now, dividing by 2 2 in the above equation, we get

a 4 6
⇒ =
2 2 2 2 ( 2+ 3 )
a 2 3
⇒ =
2 2 ( 2+ 3 )
Applying componendo and dividendo rule

Class X Mathematics www.vedantu.com 51



a+2 2 2 3+ 2+ 3
=
( )
a−2 2 2 3−( 2 + 3 )

a+2 2 2 3+ 2+ 3
⇒ =
a−2 2 2 3− 2 − 3

a+2 2 3 3+ 2
⇒ = ……….. eq (ii)
a−2 2 3− 2

Now, dividing by 2 3 in eq (i), we get

a 4 6
⇒ =
2 3 2 3 ( 2+ 3 )
a 2 2
⇒ =
2 3 ( 2+ 3 )
Applying componendo and dividendo rule


a+2 3 2 2+ 2+ 3
=
( )
a−2 3 2 2 −( 2 + 3 )

a+2 3 2 2+ 2+ 3
⇒ =
a−2 3 2 2 − 2 − 3

a+2 3 3 2+ 3
⇒ = ……….. eq (iii)
a−2 3 2− 3
Adding eq (ii) and (iii)

a+2 2 a+2 3 3 3+ 2 3 2+ 3
⇒ + = +
a−2 2 a−2 3 3− 2 2− 3

3 3+ 2 3 2+ 3
= −
3− 2 3− 2

3 3 + 2 −3 2 − 3
=
3− 2

Class X Mathematics www.vedantu.com 52


2 3−2 2
=
3− 2

=
2 ( 3 − 2)
( 3 − 2)
=2
a+2 2 a+2 3
Hence value of + is 2.
a−2 2 a−2 3

9. If ( a + b + c + d )( a − b − c + d ) = ( a + b − c − d )( a − b + c − d ) ; Prove that
a: b = c: d .
Ans: Here, we have
( a + b + c + d )( a − b − c + d ) = ( a + b − c − d )( a − b + c − d )
Therefore,


(a + b + c + d ) = (a − b + c − d )
(a + b − c − d ) (a − b − c + d )
Applying componendo and dividendo rule


(a + b + c + d ) + (a + b − c − d ) = (a − b + c − d ) + (a − b − c + d )
(a + b + c + d ) − (a + b − c − d ) (a − b + c − d ) − (a − b − c + d )
a +b+c+d +a +b−c−d a −b+c−d +a−b−c+d
⇒ =
a +b+c+d −a −b+c+d a −b+c−d −a +b+c−d
2a + 2b 2a − 2b
⇒ =
2c + 2d 2c − 2d
2(a + b) 2(a − b)
⇒ =
2(c + d ) 2(c − d )


(a + b) = (a − b)
(c + d ) (c − d )

Class X Mathematics www.vedantu.com 53



(a + b) = (c + d )
(a − b) (c − d )
Applying componendo and dividendo rule


(a + b) + (a − b) = (c + d ) + (c − d )
(a + b) − (a − b) (c + d ) − (c − d )
a +b+a −b c+d +c−d
⇒ =
a+b−a+b c+d −c+d
2a 2c
⇒ =
2b 2d
a c
⇒ =
b d
⇒ a :b = c :d
Hence proved.

a − 2b − 3c + 4d a − 2b + 3c − 4d
10. If = , show that: 2ad = 3bc
a + 2b − 3c − 4d a + 2b + 3c + 4d
a − 2b − 3c + 4d a − 2b + 3c − 4d
Ans: Here, we have =
a + 2b − 3c − 4d a + 2b + 3c + 4d
a − 2b − 3c + 4d a − 2b + 3c − 4d
⇒ =
a + 2b − 3c − 4d a + 2b + 3c + 4d
Applying componendo and dividendo rule

( a − 2b − 3c + 4d ) + ( a + 2b − 3c − 4d ) = ( a − 2b + 3c − 4d ) + ( a + 2b + 3c + 4d )
( a − 2b − 3c + 4d ) − ( a + 2b − 3c − 4d ) ( a − 2b + 3c − 4d ) − ( a + 2b + 3c + 4d )
a − 2b − 3c + 4d + a + 2b − 3c − 4d a − 2b + 3c − 4d + a + 2b + 3c + 4d
⇒ =
a − 2b − 3c + 4d − a − 2b + 3c + 4d a − 2b + 3c − 4d − a − 2b − 3c − 4d
2 a − 6c 2a   + 6c
⇒ =
−4b + 8d −4b − 8d

Class X Mathematics www.vedantu.com 54


2 ( a − 3c ) 2 ( a   + 3c )
⇒ =
−4 ( b − 2d ) −4 ( b + 2d )


( a − 3c )  
=
( a + 3c )
( b − 2d ) ( b + 2d )


( a − 3c ) = ( b − 2d )
( a + 3c ) ( b + 2d )
Applying componendo and dividendo rule


( a − 3c ) + ( a + 3c ) = ( b − 2d ) + ( b + 2d )
( a − 3c ) − ( a + 3c ) ( b − 2d ) − ( b + 2d )
a − 3c   
+ a + 3c b − 2d + b + 2d
⇒ =
a − 3c −   a − 3c b − 2d − b − 2d
2a 2b
⇒ =
−6c −4d
a b
⇒ =
3c 2d
⇒ 2ad = 3bc
Hence proved.

a b
11. If ( a 2 + b 2 )( x 2 + y 2 ) = ( ax + by ) ; prove that
2
= .
x y

Ans: Here, we have ( a 2 + b 2 )( x 2 + y 2 ) = ( ax + by )


2

On simplifying, we get
⇒ a 2 x 2 + a 2 y 2 + b 2 x 2 + b 2 y 2 = a 2 x 2 + b 2 y 2 + 2abxy

2abxy
⇒ a 2 y 2 + b2 x2 =

⇒ a 2 y 2 + b 2 x 2 − 2abxy =
0

⇒ ( ay − bx ) =
2
0

Class X Mathematics www.vedantu.com 55


0
⇒ ay − bx =

⇒ ay = bx

a b
⇒ =
x y
Hence proved.

12. If a , b and c are in continued proportions, prove that:

a 2 + ab  b
+ 2 a
(a) 2 =
b   bc  c
+ + 2 c
Ans: Here, a, b and c are in continued proportions
a b
Therefore, =
b c
⇒ b 2 = ac ……… eq (i)
a 2 +    
ab + b 2
Now, L.H.S =
b 2     
+ bc + c 2
a 2 +    
ab + ac
= [From eq (i)]
ac     
+ bc + c 2
a ( a     
+ b + c)
=
c ( a     
+ b + c)

a
=
c
= R.H .S
Thus, L.H.S = R.H.S
Hence proved.

a 2   b
+ 2   c
+ 2 a −b  c+
(b) 2 =
( a +b  c
+ ) a  b  c
+ +

Ans: Here, a, b and c are in continued proportions

Class X Mathematics www.vedantu.com 56


a b
Therefore, =
b c
⇒ b 2 = ac ……… eq (i)
a 2     
+ b2 + c2
Now, L.H.S =
( a     
+b + c )
2

+ b 2 + c 2 + 2ab    + 2bc + 2ac − 2 ( ab + bc + ac )


a 2      
=
( a     
+b + c )
2

a + b + c ) − 2 ( ab + bc + b )
(       
2 2

=
( a     
+b + c )
2

(       
a + b + c ) − 2b ( a + c + b )
2

=
( a     
+b + c )
2

a + b + c ) [ a + b + c − b]
(             2
=
( a     
+b + c )
2

                       =
(       
a −b + c )
( a      
+b+c )

= R.H .S
Thus, L.H.S = R.H.S
Hence proved.

13. Using properties of proportion, solve for x:

+ 5 + x − 16 7
x    
(a) =
+ 5 − x − 16 3
x   

x   
+ 5   
+ x − 16 7
Ans: Here, we have =
+ − x − 16 3
x   5
Applying componendo and dividendo rule in above equation

Class X Mathematics www.vedantu.com 57



x   
+ 5    (
+ x − 16   
+ x + 5 − x − 16 ) = 7  3
+
x   
+ 5    − ( x+5 −
+ x − 16    x − 16 ) 7 − 3

x   
+ 5   
+ x − 16    
+ x + 5 − x − 16 10
⇒ =
x   
+ 5   
+ x − 16    + x − 16 4
− x + 5  

2   5
x+ 5
⇒ =
2 x − 16 2

x   5
+ 5
⇒ =
x − 16 2
Now, squaring both sides, we get
2
 x   5
+  5
2

⇒  = 
 x − 16  2
x   5
+ 25
⇒ =
x − 16 4
⇒ 25 ( x − 16 ) = 4 ( x + 5 )

⇒ 25 x − 400 =4 x + 20
⇒ 25 x − 4 x = 20 + 400
⇒ 21x = 420
420
⇒ x=
21
⇒ x = 20
Hence value of x is 20.

+1 + x − 1 4 x − 1
x    
(b) =
+1 − x − 1
x    2

x +1   
+ x − 1 4x − 1
Ans: Here, we have =
x +1  
− x −1 2
Applying componendo and dividendo rule in above equation

Class X Mathematics www.vedantu.com 58



x +1   
+ x − 1  (
+ x +1  
− x −1 ) = 4 x − 1  2
+
x +1   
+ x − 1   − x − 1 ) 4 x −1 − 2
− ( x +1  

x +1   
+ x − 1   
+ x +1  
− x − 1 4 x +1
⇒ =
x +1   
+ x − 1   + x − 1 4 x   − 3
− x +1   

2  
x +1   4 x +1
⇒ =
2 x − 1 4 x   − 3

x +1   4 x +1
⇒ =
x −1 4 x   − 3
Now, squaring both sides, we get
2
 x +1    4 x +1 2
⇒  = 
 x − 1   4 x   − 3 
x +1 16 x 2 +1   
+ 8x
⇒ =
x −1 16 x   9
2
+ − 24 x
Applying componendo and dividendo rule in above equation
x +1   
+ x −1 16 x 2 +1   
+ 8 x +16 x 2   
+ 9 − 24 x
⇒ =
+ 8 x − (16 x 2   
x + 1 − ( x −1) 16 x 2 +1    + 9 − 24 x )

2x 32 x 2 +10 − 16 x
⇒ =
x + 1 − x +1 16 x 2 +1   
+ 8 x − 16 x 2 − 9 + 24 x
2 x 32 x 2 +10 − 16 x
⇒ =
2 −8  32
+ x
32 x 2 +10 − 16 x
⇒ x=
−8  32
+ x
⇒ −8 x + 32 x 2= 32 x 2 +10 − 16 x
⇒ −8 x =10 − 16 x
⇒ −8 x + 16 x =
10
⇒ 8 x =10

Class X Mathematics www.vedantu.com 59


10
⇒x=
8
5
⇒x=
4
5
Hence value of x is .
4

3 x  
+ 9x2 − 5
(c) = 5.
3x − 9 x2 − 5

3 x   
+ 9x2 − 5 5
Ans: Here, we have =
3x − 9 x 2 − 5 1
Applying componendo and dividendo rule in above equation

3 x   + 9 x 2 − 5   + 3 x − 9 x 2 − 5 5 +1
⇒ =
(
3 x   + 9 x 2 − 5 − 3 x − 9 x 2 − 5 ) 5 −1

6x 6
⇒ =
3x   + 9 x 2 − 5 − 3x + 9 x 2 − 5 4
6x 6
⇒ =
2 9x2 − 5 4
x 1
⇒ =
9x2 − 5 2
Now, squaring both sides, we get
2 2
 x  1
⇒  = 
 9x − 5   2 
2

x2 1
⇒ 2 =
9x − 5 4
⇒ 9x2 − 5 =4x2
⇒ 9x2 − 4x2 =
5
⇒ 5x2 = 5

Class X Mathematics www.vedantu.com 60


⇒ x2 = 1

⇒x= 1
⇒ x = ±1
Hence value of x is ±1 .

+ 3b + a − 3b
a  
14. If x = , prove that 3bx 2 − 2ax + 3b =
0.
+ 3 − a − 3b
a  b

a   + 3b   
+ a − 3b
Ans: Here, we have x =
a   + 3b   
− a − 3b
Applying componendo and dividendo rule in above equation

x +1    a + 3b   + a − 3b     


+ a + 3b   
− a − 3b
⇒ =
x −1 a   + 3b    (
+ a − 3b − a   + 3b   
− a − 3b )
x +1 2 a   
+ 3b   
⇒ =
x −1 a   + 3b   
+ a − 3b − a   + 3b + a − 3b

x +1 2 a   
+ 3b   
⇒ =
x −1 2 a − 3b

x +1   a + 3b   
⇒ =
x −1 a − 3b
Now, squaring both sides, we get
2
  a + 3b   
2
 x +1   
⇒  = 
 x −1   a − 3b 

x 2 + 2 x +1   a + 3b
⇒ 2 =
x − 2 x +1    a − 3b

( x 2 − 2 x +1  )
⇒ ( a − 3b ) ( x 2 + 2 x +1) = ( a + 3b )   

⇒ ax 2 + 2ax + a − 3bx 2 − 6bx − 3b = ax 2 − 2ax + a + 3bx 2 − 6bx + 3b


⇒ 2ax − 3bx 2 − 3b =
−2ax + 3bx 2 + 3b

Class X Mathematics www.vedantu.com 61


⇒ 6bx 2 − 4ax + 6b   =
0
⇒ 2 ( 3bx 2 − 2ax + 3b )   =
0

⇒ 3bx 2 − 2ax + 3b   =


0
Hence proved.

+1 17
x 4   
15. Using the properties of proportion, solve for x, given = .
2 x2 8
x 4 +1 17
Ans: Here, we have =
2x2 8
Applying componendo and dividendo rule in above equation
x 4 +1   
+ 2 x 2 17  
+8
⇒ 4 =
x +1   − 2 x 17 − 8
2

(x +1)
2 2
25
⇒ =
(x −1)
2
2
9
2 2
 x 2 +1   5 
⇒ 2 = 
− 1   3 
 x   
x 2 +1 5
⇒ 2 =
x   
−1 3
⇒ 5 x 2 − 5= 3 x 2 + 3
⇒ 5 x 2 − 3 x 2 =+
3 5
⇒ 2x2 = 8
8
⇒ x2 =
2
⇒ x2 = 4

⇒ x= 4
⇒ x = ±2
Hence value of x is ± 2 .

Class X Mathematics www.vedantu.com 62


m  n
+   + m  n

16. If = , express n in terms of x and m .
m  n
+   − m  n

m        
+n + m−n
Ans: Here, we have x =
m        
+n − m−n
Applying componendo and dividendo rule in above equation

x +1               
m+n + m−n + m+n − m−n
⇒ =
x −1 m        
+ n + m − n − ( m         
+n − m−n )

x +1 2 m    
+n
⇒ =
x −1 m                
+n + m−n − m+n + m−n

x +1 2 m    
+n
⇒ =
x −1 2     
m−n

x +1    
m+n
⇒ =
x −1      
m−n
Now, squaring both sides, we get
2
  m+n 
2
 x +1    
⇒  = 
 x −1        
m−n 

x 2 + 2 x +1   m+n
⇒ 2 =
x − 2 x +1    m−n
Applying componendo and dividendo rule in above equation
x 2 + 2 x +1   
+ x 2 − 2 x +1      
m+n +m−n
⇒ 2 =
− ( x 2 − 2 x +1     
x + 2 x +1     ) m + n − (m − n)
2x2 + 2 2m
⇒ =
x 2 + 2 x +1    
− x 2 + 2 x −1     
m+n − m+n
2 x 2 + 2 x 2m
⇒ =
4x 2n
2( x 2 + 1) m
⇒ =
4x n

Class X Mathematics www.vedantu.com 63


( x 2 + 1) m
⇒ =
2x n
2mx
⇒n=
( x 2 + 1)
2mx
Hence value of n is .
( x 2 + 1)

+ 3 2 m 3   mn
x 3   xy +3 2
17. If = , show that nx = my .
3 x 2 y  y
+ 3 3m 2 n  n
+ 3

   x 3 + 3 xy   2
m3 + 3mn 2
Ans: Here, we have =
3 x 2 y   + y 3 3m 2 n   + n3
Applying componendo and dividendo rule in above equation
x  3 + 3 xy 2 + 3 x 2 y     
+ y3 m3 + 3mn 2 + 3m 2  
n + n3
⇒ 3 =
x    + 3 xy 2 − ( 3 x 2 y     
+ y 3 ) m3 + 3mn 2 − ( 3m 2 n   + n3 )

x 3    
+ y 3 + 3 x 2 y    + 3 xy 2       
m3 + n3 + 3m 2 n    + 3mn 2
⇒ 3 =
  
x + 3 xy 2 − 3 x 2 y −     y 3 m3 + 3mn 2 − 3m 2 n − n3

x 3    
+ y 3 + 3 x 2 y    + 3 xy 2       
m3 + n3 + 3m 2 n    + 3mn 2
⇒ =
x 3    − y 3 −3 x 2 y + 3 xy 2 m3 − n3 − 3m   2
n + 3mn 2

+ y 3 + 3 xy ( x         
x 3     ( m + n)
+ y ) m3 + n3 + 3mn     
⇒ 3 3 = 3 3
x    
− y −3 xy      ( m − n)
( x − y ) m − n − 3mn     
( x     
+ y ) (m  n)
3 3

⇒ =
( x     
− y ) (m − n)
3 3

3 3
 x     
+ y   m+n 
⇒ = 
− y   m − n 
 x     
x     
+ y m+n
⇒ =
x     
− y m−n
Applying componendo and dividendo rule in above equation

Class X Mathematics www.vedantu.com 64


x          
+ y+ x−y m+n+m − n
⇒ =
+ y − ( x − y ) m + n − (m − n)
x         

2x 2m
⇒ =
x           
+ y − x+ y m+n − m+n
2 x 2m
⇒ =
2 y 2n
x m
⇒ =
y n
⇒ nx = my

Hence proved.

Exercise- 7(D)

1. If : b = 3: 5 , find (10a + 3b ) : ( 5a + 2b ) .

Ans: Here, we have   :


a b = 3 :5
a 3
Therefore, = ……… (i)
b 5
10
Now, multiplying by in the above equation, we get
3
10  a  10  3 
⇒  =  
3 b  3 5
10a
⇒ =2
3b
Adding 1 to both sides, we get
10a
⇒ +1= 2 +1
3b
10a + 3b
⇒ =3
3b

Class X Mathematics www.vedantu.com 65


9b ……………… eq (ii)
⇒ 10a + 3b =
5
Now, multiplying by in the above equation, we get
2
5 a  53
⇒  =  
2 b  25
5a 3
⇒ =
2b 2
Adding 1 to both sides, we get
5a 3
⇒ +1 = +1
2b 2
5a + 2b 3  2
+
⇒ =
2b 2
5a + 2b
⇒ =5
b
5b ……………. eq (iii)
⇒ 5a + 2b =
Now, divide eq (i) by (ii), we get
10a   3
+ b 9b
⇒ =
5a   + 2b 5b
10a   3
+ b 9
⇒ =
5a   + 2b 5
Hence value of (10a + 3b ) : ( 5a + 2b ) is 9 : 5 .

2. If ( 5 x + 6 y ) : ( 8 x + 5 y ) =
8: 9 , find x: y .

Ans: Here, we have ( 5 x + 6 y ) : ( 8 x + 5 y ) =


8 :9

Therefore,
(5x + 6 y ) = 8
(8x + 5 y ) 9
⇒ 8 (8x + 5 y ) = 9 ( 5x + 6 y )

⇒ 64 x + 40 y =45 x + 54 y

Class X Mathematics www.vedantu.com 66


⇒ 64 x − 45 x = 54 y − 40 y

⇒ 19 x = 14 y

x 14
⇒ =
y 19
⇒ x : y = 14 :19

Hence, value of x : y is 14 :19 .

3. If ( 3 x − 4 y ) : ( 2 x − 3 y ) = ( 5 x − 6 y ) : ( 4 x − 5 y ) . find x: y

Ans: Here, we have ( 3 x − 4 y ) : ( 2 x − 3 y ) = ( 5 x − 6 y ) : ( 4 x − 5 y )

Therefore,
( 3x − 4 y ) = ( 5 x − 6 y )
( 2x − 3y ) ( 4x − 5 y )
⇒ ( 3 x − 4 y )( 4 x − 5 y ) = ( 5 x − 6 y )( 2 x − 3 y )

⇒ 12 x 2 − 15 xy − 16 xy + 20 y 2 = 10 x 2 − 15 xy − 12 xy + 18 y 2

⇒ 12 x 2 − 31xy + 20 y 2 = 10 x 2 − 27 xy + 18 y 2

⇒ 2 x 2 − 4 xy + 2 y 2 =
0

⇒ 2 ( x 2 − 2 xy + y 2 ) =
0

⇒ ( x 2 − 2 xy + y 2 ) =
0

⇒ ( x − y) =
2
0

0
⇒ x− y=

⇒ x= y

x
⇒ =1
y
⇒ x : y = 1 :1

Hence, value of x : y is 1  :1 .

Class X Mathematics www.vedantu.com 67


4. Find the:

(a) Duplicate ratio of 2 2 : 3 5


Ans: We know that duplicate ratio of a : b is a 2 : b 2

( ) ( )
2 2
Therefore, duplicate ratio of 2 2 : 3 5 is 2 2 : 3 5

( ) ( )
2 2
= 2 2 : 3 5

( )
2
2 2
=
(3 5 )
2

4  2
×
=
9  5
×
8
=
45
= 8 : 45

Hence, duplicate ratio of 2 2 : 3 5 is 8 : 45.

(b) Triplicate ratio of 2a: 3b.


Ans: We know that triplicate ratio of a : b is a 3 : b3

Therefore, triplicate ratio of 2a : 3b is ( 2a ) : ( 3b )


3 3

= ( 2a ) : ( 3b )
3 3

( 2a )
3

=
( 3b )
3

8 a3
=
27b3
= 8a 3 : 27b3
Hence, triplicate ratio of 2a : 3b is 8a 3 : 27b3 .

Class X Mathematics www.vedantu.com 68


(c) Sub – duplicate ratio of 9 x 2a 4 : 25 y 6b 2 .

Ans: We know that sub - duplicate ratio of a : b is a: b

Therefore, sub - duplicate ratio of 9 x 2 a 4 : 25 y 6b 2 is 9 x 2 a 4 : 25 y 6b 2

= 9 x 2 a 4 : 25 y 6b 2

9 x2a 4
=
25 y 6b 2

3 xa 2
= 3
5y b

= 3 xa 2 : 5 y 3b

Hence, sub- duplicate ratio of 9 x 2 a 4 : 25 y 6b 2 is 3 xa 2 : 5 y 3b.

(d) Sub – triplicate ratio of 216: 343.

Ans: We know that sub - triplicate ratio of a : b is 3


a :3b

Therefore, sub - triplicate ratio of 216 : 343 is 3


216 : 3 343

= 3 216 : 3 343
3
216
= 3
343
3
6  6  6
× ×
= 3
7  7  7
× ×
3
63
= 3
73
6
=
7
= 6 :7
Hence, sub - triplicate ratio of 216 : 343 is 6 : 7.

Class X Mathematics www.vedantu.com 69


(e) Reciprocal ratio of 3: 5.
1 1
Ans: We know that reciprocal ratio of a : b is : .
a b
1 1
Therefore, reciprocal ratio of 3 : 5 is : .
3 5
1 1
= :
3 5
1
=3
1
5
5
=
3
= 5 :3
Hence, reciprocal ratio of 3 : 5 is 5 : 3.

5. Ratio compounded of the duplicate ratio of 5:6, the reciprocal ratio of


25: 42 and the sub – duplicate ratio of 36: 49.
Ans: The duplicate ratio of 5 : 6 is 52 : 62
52
= 2
6
25
=
36
And the reciprocal ratio of 25 : 42 is 42 : 25
42
=
25

Now, sub – duplicate ratio of 36 : 49 is 36 : 49

36
=
49

Class X Mathematics www.vedantu.com 70


62
=
72
6
=
7
25 42 6
Thus, the compound ratio of    ,    and will be,
36 25 7
25 × 42 × 6
=
36 × 25 × 7
6×6
=
36
36
=
36
=1
Hence, the required compound ratio is 1 :1 .

6. Find the value of x , if:

(a) ( 2 x + 3) : ( 5 x − 38 ) is the duplicate ratio of 5  : 6 .

Ans: We have ( 2 x + 3) : ( 5 x − 38 ) is the duplicate ratio of 5  : 6

Therefore,

( 2 x + 3) = ( )
2
5

( 5 x − 38) ( 6)
2


( 2 x + 3) = 5
( 5 x − 38) 6
⇒ 5 ( 5 x − 38 ) = 6 ( 2 x + 3)

⇒ 25 x − 190 = 12 x + 18
⇒ 25 x − 12 x =18 + 190
⇒ 13 x = 208

Class X Mathematics www.vedantu.com 71


208
⇒ x=
13
⇒ x = 16
Hence, value of x is 16.

(b) ( 2 x + 1) : ( 3 x + 13) is the sub - duplicate ratio of 9: 25.

Ans: We have ( 2 x + 1) : ( 3 x + 13) is the sub - duplicate ratio of 9 : 25

Therefore,


( 2 x + 1) = 9
( 3x + 13) 25


( 2 x + 1) = 32
( 3x + 13) 52


( 2 x + 1) = 3
( 3x + 13) 5
) 3( 3x + 13)
⇒ 5 ( 2 x + 1=

⇒ 10 x + 5 = 9 x + 39
⇒ x = 34
Hence, value of x is 34.

(c) ( 3 x − 7 ) : ( 4 x + 3) is the sub - triplicate ratio of 8: 27.

Ans: We have ( 3 x − 7 ) : ( 4 x + 3) is the sub - triplicate ratio of 8 : 27

Therefore,


( 3x − 7 ) = 3
8
( 4 x + 3) 3
27


( 3x − 7 ) = 3
23
( 4 x + 3) 3
33

Class X Mathematics www.vedantu.com 72



( 3x − 7 ) = 2
( 4 x + 3) 3
⇒ 3 ( 3 x − 7=
) 2 ( 4 x + 3)
⇒ 9 x − 21 = 8 x + 6
⇒ 9 x − 8 x =6 + 21
⇒ x = 27
Hence, value of x is 27.

7. What quantity must be added to each term of the ratio x: y so that it may
become equal to c: d .
Ans: Let the quantity must be added is p .

x   
+p c
Therefore, =
y   
+p d
⇒ dx + dp = cy + cp

⇒ dp − cp = cy − dx

⇒ p ( d − c ) = cy − dx

cy − dx
⇒ p=
d −c
cy − dx
Hence, required quantity is .
d −c

8. A woman reduces her weight in the ratio 7:5. What does her weight
become if originally it was 84 kg?
Ans: Let the reduced weight of the woman be x kg
84 7
Therefore, =
x 5
⇒ 7=
x 84 × 5

Class X Mathematics www.vedantu.com 73


84  5
×
⇒ x=
7
x 12 × 5
⇒ =
⇒ x = 60 kg
Hence, the reduced weight of the woman is 60 kg.

9. If 15 ( 2 x 2 − y 2 ) =
7 xy, find x: y; if x and y both are positive.

Ans: Here, we have 15 ( 2 x 2 − y 2 ) =


7 xy

⇒ 30 x 2 − 15 y 2 =
7 xy

Divide by y 2 in the above equation,

30 x 2 15 y 2 7 xy
⇒ − 2 =
   
y2 y y2
2
x x
⇒ 30   − 15 =
7 
 y  y
x
Now, let a =
y

⇒ 30 a 2 − 15 =
7a
⇒ 30 a 2 − 7 a − 15 =
0
⇒ 30 a 2 − 25a + 18a − 15 =
0
⇒ 5a ( 6 a − 5 ) + 3 ( 6 a − 5 ) =
0

⇒ ( 6a − 5 )( 5a + 3) =
0

⇒ ( 6a −=
5 ) 0  or ( 5a +=
3) 0

5 3
⇒ a=    
or a = −
6 5
x
Now, put a = , we get
y

Class X Mathematics www.vedantu.com 74


x 5 x 3
⇒ =   
or = −
y 6 y 5
⇒ x : y = 5 : 6   :
or x y = −3 : 5

Since, x and y Both are positive. Thus, value of x : y will be positive.

Hence, Value of x : y is 5 : 6.

10. Find the:


(a) Fourth proportional to 2 xy,   x 2 and y 2 .

Ans: Let the fourth proportional be z.


Therefore, 2 xy, x 2 , y 2 and z are in continued proportion.

⇒ 2 xy :    :
x2 = y 2 z

2xy y 2
⇒ 2 =
x z
2 y
⇒ =
x z
xy
⇒ z=
2
xy
Hence, the required fourth proportion is .
2

(b) Third proportional to a 2 − b 2 and a + b .


Ans: Let the third proportional be x.
Therefore, a 2 − b 2 , a + b and x are in continued proportion.

⇒ a 2 − b 2 :    :
a + b =a + b x
a 2 − b 2 a   
+b
⇒ =
a   
+b x

Class X Mathematics www.vedantu.com 75


( a   
+ b)
2

⇒ x=
a 2 − b2

⇒ x=
( a + b )( a + b ) [ a 2 − b 2 = ( a + b )( a − b )]
( a + b )( a − b )

⇒ x=
(a + b)
(a − b)
a+b 
Hence, the required third proportion is  .
 a −b 

(c) Mean proportional to ( x − y ) and ( x 3 − x 2 y ).

Ans: Let the third proportional be x.


Therefore, a 2 − b 2 , a + b and x are in continued proportion.

⇒ a 2 − b 2 :    :
a + b =a + b x
a 2 − b 2 a   
+b
⇒ =
a   
+b x

( a   
+ b)
2

⇒ x=
a 2 − b2

⇒ x=
( a + b )( a + b ) [ a 2 − b 2 = ( a + b )( a − b )]
( a + b )( a − b )

⇒ x=
(a + b)
(a − b)
a+b 
Hence, the required third proportion is  .
 a −b 

11. Find two numbers such that the mean proportional between them is 14
and third proportional to them 112.
Ans: Let two required numbers be x and y .

Class X Mathematics www.vedantu.com 76


Now, according to the 1st condition,
The mean proportional between x and y is 14

⇒ xy = 14

Squaring both sides,


⇒ xy = 196

196
⇒ x= ………….. eq (i)
y
Now, according to 2nd condition,
Third proportional of x and y is 112.

Therefore,
x y
⇒ =
y 112

⇒ y 2 = 112 x

196
y 2 112 ×
⇒=
y

y 3 112 × 196
⇒=

⇒ y3 = 7 × 4 × 4 × 7 × 7 × 4

⇒ y 3 = 73.43

⇒ y 3 = ( 28 )
3

⇒ y = 28

Now, put the value of y in equation (i),

196
⇒ x=
28
⇒ x=7
Hence, two required numbers are 7 and 28.

Class X Mathematics www.vedantu.com 77


12. If x and y . be unequal and x: y is the duplicate ratio of x + z and y+z,
prove that z is mean proportional between x and y.
Ans: We have x : y is the duplicate ratio of ( x + z ) and ( y + z ) .

Therefore,

x ( x + z)
2

⇒ =
y ( y + z)
2

⇒ x( y + z) = y( x + z)
2 2

⇒ x ( y 2 + 2 yz + z 2 ) = y ( x 2 + 2 xz + z 2 )

⇒ xy 2 + 2 xyz + xz 2 =yx 2 + 2 xyz + yz 2

⇒ xy 2 + xz 2 = yx 2 + yz 2

⇒ xz 2 − yz 2 = yx 2 − xy 2

⇒ z 2 ( x − y )= xy ( x − y )

⇒ z 2 = xy

⇒ z = xy

Thus, z is mean proportional between x and y.

Hence proved.

2ab x  a
+ x  b
+
13. If x = , find the value of + .
a  b
+ x  a
− x  b

2ab
Ans: Here, we have x = ……… eq (i)
a+b
Now, dividing by a in the above equation, we get
x 2ab
⇒ =
a a (a + b)

x 2b
⇒ =
a (a + b)

Class X Mathematics www.vedantu.com 78


Applying componendo and dividendo rule
x   
+a 2b + a + b
⇒ =
− a 2b − ( a + b )
x   

x   
+a 3b + a
⇒ =
x   
− a 2b − a − b
x   
+ a 3b + a
⇒ = ……….. eq (ii)
x   
−a b − a
Now, dividing by b in eq (i), we get
x 2ab
⇒ =
b b(a + b)

x 2a
⇒ =
b (a + b)

Applying componendo and dividendo rule


x +b 2a + a + b
⇒ =
x − b 2a − ( a + b )

x +b 3a + b
⇒ =
x − b 2a − a − b
x + b 3a + b
⇒ = ……… eq (iii)
x −b a − b
Adding eq (ii) and (iii)
x +   
a x + b 3b + a 3a + b
⇒ + = +
x −   
a x −b b − a a −b
3b + a 3a + b
= −
b−a b−a
3b + a − 3a − b
=
b−a
2b − 2a
=
b−a

Class X Mathematics www.vedantu.com 79


2(b − a )
=
(b − a )
=2
x +   
a x +b
Hence value of + is 2.
x −   
a x −b

14. If ( 4a + 9b )( 4c − 9d ) = ( 4a − 9b )( 4c + 9d ) , prove that a: b = c: d .

Ans: Here, we have ( 4a + 9b )( 4c − 9d ) = ( 4a − 9b )( 4c + 9d )

Therefore,


( 4a + 9b ) = ( 4c + 9d )
( 4a − 9b ) ( 4c − 9d )
Applying componendo and dividendo rule


( 4a + 9b ) + ( 4a − 9b ) = ( 4c + 9d ) + ( 4c − 9d )
( 4a + 9b ) − ( 4a − 9b ) ( 4c   + 9d ) − ( 4c − 9d )
4a + 9b    4
+ a − 9b 4c   9+ d   4+ c − 9d
⇒ =
4a + 9b   − 4a   + 9b 4c   + 9d − 4c   + 9d
8a 8c
⇒ =
18b 18d
a c
⇒ =
b d
⇒ a :b = c :d
Hence proved.

a c
15. If = , show that ( a + b ) : ( c + d ) = : c2 + d 2 .
a 2 + b 2   
b d
a c
Ans: Here, we have = ……… eq (i)
b d
Adding 1 to both sides in the above equation,

Class X Mathematics www.vedantu.com 80


a c
⇒ +1= +1
b d
a     
+b c+d
⇒ =
b d
a   
+b b
⇒ = ……… eq (ii)
c   
+d d
Now, squaring both sides in eq (i), we get
2 2
a  c 
⇒   = 
b d 
a2 c2
⇒ =
b2 d 2
Adding 1 to both sides in the above equation,
a2 c2
⇒ 2 + 1= 2 + 1
b d
a 2 +   
b2 c2 + d 2
⇒ =
b2 d2
a 2 + b2 b2
⇒ 2 =
c +d2 d2
Taking square root to both sides, we get,

a 2 + b2 b
⇒ =
c2 + d 2 d

a 2 + b2 b
⇒ = ……….. eq (iii)
c 2 +   d 2 d
Now, from eq (ii) and (iii),

a    
+b a 2 + b2
⇒ = 2
c   
+d c +   d 2

( a + b ) ( c + d ) =   :
⇒   : a 2 + b2 c2 + d 2

Hence proved.

Class X Mathematics www.vedantu.com 81


16. There are 36 members in a student council in a school and the ratio of
the number of boys to the number of girls is 3:1. How many more girls should
be added to the council so that the ratio of number of boys to the number of
girls may be 9:5?
Ans: here, we have the ratio of the number of boys to the number of girls is 3 :1
.
Let the number of boys be 3 x.
And number of girls be x.
Now, according to question
⇒ Total no. of members in council = 36
⇒ 3x + x =
36
⇒ 4 x = 36
36
⇒ x=
4
⇒ x=9
Thus, the number of boys = 3 × 9 = 27
And the number of girls = 9
Let y more girls should be added to get required ratio 9 : 5. .

27 9
⇒ =
9  
+y 5
⇒ 81 + 9 y =
135

⇒ 9=
y 135 − 81

⇒ 9 y = 54

54
⇒ y=
9
⇒ y=6

Thus, 6 girls should be added.

Class X Mathematics www.vedantu.com 82


7. If 7 x − 15 y =4 x + y , find the value of x: y . Hence, use componendo and
dividendo to find the values of:
9 x  y
+5
(a)
9 x −5 y
Ans: here, we have 7 x − 15 y =4 x + y .

⇒ 7 x − 4 x =y + 15 y

⇒ 3 x = 16 y

x 16
⇒ = …………. Eq (i)
y 3
Thus, value of x : y is 16 : 3 .

9
Now, multiplying by   in eq (i), we get
5

9  x  9  16 
⇒ =  
5  y  5  3 

9 x 48
⇒ =
5y 5
Applying componendo and dividendo rule
9 x   5
+ y 48  5
+
⇒ =
9 x   5
− y 48 −5
9 x   5
+ y 53
⇒ =
9 x   5
− y 43
9 x   5
+ y 53
Hence, value of      is .
9 x   5
− y 43

3x2 + 2 y2
(b)
3x2 − 2 y2
x 16
Ans: here, we have = …………. Eq (i)
y 3

Class X Mathematics www.vedantu.com 83


Now, squaring both sides in eq (i),
2 2
 x   16 
⇒   = 
 y  3 
x 2 256
⇒ =
y2 9
3
Multiplying by in the above equation, we get
2
3  x 2  3  256 
⇒  2 =  
2 y  2 9 

3 x 2 128
⇒ =
2 y2 3
Applying componendo and dividendo rule
3 x 2   
+ 2 y 2 128  +3
⇒ 2 =
3 x   −2y 2
128  
−3

3 x 2   
+ 2 y 2 131
⇒ 2 =
3 x   2
− y 2 125

3 x 2   
+ 2 y 2 131
Hence, Value of   
is .
3 x 2   2
− y 2 125

4m  n
+3 7
18. If = , use properties of proportion to find:
4m  n
−3 4
(a) m : n
4m   + 3n 7
Ans: Here, we have =
4m   − 3n 4
⇒ 7 ( 4m − 3n )= 4 ( 4m + 3n )

⇒ 28m − 21n = 16m + 12n


⇒ 28m − 16m =12n + 21n
⇒ 12m = 33n

Class X Mathematics www.vedantu.com 84


m 33
⇒ =
n 12
m 11
⇒ =
n 4
Hence, value of m : n is 11 : 4 .

2m 2 − 11n 2
(b)
2m 2 + 11n 2
m 11
Ans: Here, we have =
n 4
Squaring both sides, we get
2 2
 m   11 
⇒   = 
n 4
m 2 121
⇒ 2 =
n 16
2
Multiplying by    in the above equation, we get
11
2  m 2  2  121 
⇒  2 =  
11  n  11  16 

2m 2 11
⇒ =
11n 2 8
Applying componendo and dividendo rule
2m 2 +11n 2 11  
+8
⇒ =
2m −11n 11  
2 2
−8
2m 2 +11n 2 19
⇒ =
2m 2 −11n 2 3
2m 2 −11n 2 3
⇒ =
2m 2 +11n 2 19

Class X Mathematics www.vedantu.com 85


2m 2 −11n 2 3
Hence, Value of is .
  
2m 2 +11n 2 19

( x + y)
2
x
19. If x , y, z are in continued proportion, prove that = .
( y+z )
2
z

Ans: Here, x, y, z are in continued proportion

Therefore,
x y
⇒ =
y z

⇒ y 2 = xz ………….. eq (i)

( x + y)
2

Now, L.H.S =
( y +z)
2

x 2   + 2 xy   + y 2
= 2
y   + 2 yz   + z 2

x 2   + 2 xy   + xz
=    [from eq (i)]
xz   + 2 yz   + z 2

x ( x   2 + z)
+ y   
=
( x + y   
z    2 + z)

x
=
z
= R.H.S
Thus, L.H.S = R.H.S
Hence proved.

a 2 + b2 + a 2 − b2
20. Given, x = . Use componendo and dividendo to prove
a 2 + b2 − a 2 − b2
2a 2 x
that b 2 = .
+1
x 2   

Class X Mathematics www.vedantu.com 86


a 2 + b2 + a 2 − b2
Ans: Here, we have x =
a 2 + b2 − a 2 − b2
Applying componendo and dividendo rule

x +1    a 2 + b2 + a 2 − b2 + a 2 + b2 − a 2 − b2
⇒ =
x −1 a 2 + b 2 +      (
a 2 − b2 − a 2 + b2 − a 2 − b2 )
x +1 2 a 2 + b2
⇒ =
x −1 a 2 + b 2 +      
a 2 − b2 − a 2 + b2 + a 2 − b2

x +1 2 a 2 + b 2
⇒ =
x −1 2  
a 2 − b2

x +1 a 2 + b2
⇒ =
x −1 a 2 − b2
Squaring both sides, we get
2
 x +1   a + b 
2 2 2

⇒  = 
 x −1   a 2 − b 2 
x 2   
+ 2 x +1 a 2 + b 2
⇒ 2 =
x − 2 x +1 a 2 − b 2
Applying componendo and dividendo rule
x 2   
+ 2 x +1   
+ x 2 − 2 x +1    a 2 + b2 + a 2 − b2
⇒ 2 =
x  2 x +1    ) a 2 + b2 − ( a 2 − b2 )
− ( x 2 − 2 x +1  

2x2 + 2 2a 2
⇒ 2 = 2 2
x +   2 x +1   
− x 2 + 2 x −1    
a + b − a 2 + b2
2 x 2 + 2 2a 2
⇒ = 2
4x 2b
2 ( x 2 +1) a2
⇒ =
4x b2


(x 2
+1) a2
= 2
2x b

Class X Mathematics www.vedantu.com 87


2a 2 x
⇒ b2 =
( x 2 +1)
Hence proved.

x2 + y2 1
21. If 2 = 2 , find:
x −y 2
8
x
(a)
y

x2 + y 2 1
Ans: Here, we have 2 =2
x −y 2
8

x 2 + y 2 17
⇒ 2 =
x − y2 8

( x 2 − y 2 ) = 8 ( x 2 +   
⇒ 17   y2 )

⇒ 17 x 2 − 17 y 2 =8 x 2 + 8 y 2

⇒ 17 x 2 − 8 x 2 = 8 y 2 + 17 y 2

⇒ 9 x 2 = 25 y 2

x 2 25
⇒ =
y2 9
2 2
 x  5
⇒   = 
 y  3
x 5
⇒ = ±
y 3
x 5
Hence, Value of   
is ± .
y 3

x 3   + y 3
(b) 3
x   − y 3

Class X Mathematics www.vedantu.com 88


x 5
Ans: Here, we have = from part (i)
y 3
Now, cubing both sides in above equation
3 3
 x  5
⇒   = 
 y  3
x 3 125
⇒ 3=
y 27
Applying componendo and dividendo rule
x 3    
+ y 3 125  
+ 27
⇒ 3 3 =
x   − y 125 − 27

x 3    
+ y 3 152
⇒ 3 3 =
x   −y 98

x 3    
+ y 3 76
⇒ 3 3 =
x   −y 49

x 3    
+ y 3 76
Hence, Value of 3 3    is .
x   
− y 49

22. Using componendo and dividendo, find the value of x :

3x + 4 + 3x − 5
=9 .
3x + 4 − 3x − 5

3x + 4 + 3x − 5 9
Ans: Here, we have =
3x + 4 − 3x − 5 1
Applying componendo and dividendo rule in above equation

3 x + 4 + 3 x − 5    + 3 x + 4 − 3 x − 5 9 +1
⇒ =
3x + 4 + 3x − 5 − ( 3x + 4 − 3x − 5 ) 9 −1

2 3x + 4 10
⇒ =
3 x + 4 + 3 x − 5 − 3 x + 4    + 3 x − 5 8

Class X Mathematics www.vedantu.com 89


2 3x + 4 5
⇒ =
2 3x − 5 4

3x + 4 5
⇒ =
3x − 5 4
Squaring both sides, we get
2
 3x + 4   5 2
⇒  = 
 3 x − 5  4
3 x + 4 25
⇒ =
3 x − 5 16
⇒ 25 ( 3 x − 5=
) 16 ( 3x + 4  
)
⇒ 75 x − 125 = 48 x + 64
⇒ 75 x − 48 x =64 + 125
⇒ 27 x = 189
189
⇒ x=
27
⇒ x=7
Hence, Value of x is 7.

+1 + a   
a     −1
23. If x = , using properties of proportion show that:
+ 1 − −1
a    a  
x 2 − 2ax + 1 =0.

a +1    
+ a −1  
Ans: Here, we have x =
a +1    
− a −1
Applying componendo and dividendo rule in above equation

x +1   a +1    
+ a −1    
+ a +1    
− a −1  
⇒ =
x −1 a +1    
+ a −1   (
− a +1    
− a −1 )

Class X Mathematics www.vedantu.com 90


x +1 2 a +1   
⇒ =
x −1 a +1    
+ a −1  
− a +1   
+ a −1

x +1 2 a +1   
⇒ =
x −1 2  
a –1

x +1  a +1   
⇒ =
x −1 a −1
Squaring both sides, we get
2
  a +1   

2
 x +1  
⇒  =  
 x −1   a −1 

x 2   
+ 2 x +1   a +1
⇒ =
x 2 − 2 x +1   a −1
Applying componendo and dividendo rule
x 2   
+ 2 x +1   
+ x 2 − 2 x +1   a +1   
+ a −1
⇒ =
− ( x 2 − 2 x +1  
x 2  2 x +1    ) a +1 − ( a −1)
2x2 + 2 2a
⇒ 2 =
x +   2 x +1   
− x + 2 x −1  
2
a +1 − a +1
2 x 2 + 2 2a
⇒ =
4x 2
2 ( x 2 +1)
⇒ =a
4x


(x 2
+1)
=a
2x
⇒ x2 + 1 =2ax
⇒ x 2 − 2ax + 1 =0
Hence proved.

x 3 + 12 x y 3   
+ 27 y
24. Given = 2 . Using componendo and dividendo, find x: y.
6 x   
2
+ 8 9 y   
+ 27

Class X Mathematics www.vedantu.com 91


x 3 + 12 x y 3   27
+ y
Ans: Here, we have =
6 x 2   
+ 8 9 y 2   
+ 27
Applying componendo and dividendo rule in above equation
x 3 + 12 x   
+ 6 x 2   
+8 y 3   
+ 27 y   
+ 9 y 2   
+ 27
⇒ 3 = 3
x + 12 x − ( 6 x   
2
+ 27 y − ( 9 y   
+ 8 ) y    2
+ 27 )

x 3 + 12 x   
+ 6 x 2   
+ 8 y 3   
+ 27 y   
+ 9 y 2   
+ 27
⇒ 3 =
x + 12 x − 6 x 2   8
− y 3   27
+ y −9 y 2 − 27

x 3 + 8 + 6 x 2 +12 x    27  9
y 3 + + y 2 + 27 y
⇒ 3 =
x − 8 − 6 x 2 +12 x y 3 − 27  9
− y 2 + 27 y

⇒ 3
( x + 2 )    
x 3 +   23 + 6 x     y 3 + 33    
= 3 3
( y + 3)
+ 9 y   
x −   2 − 6 x   
3
( x − 2 ) y − 3 −   9 y    ( y −3)
( y + 3)
( x + 2 ) =  
3 3
  

( x − 2 ) ( y − 3)
3 3

3 3
  
 x + 2    
 y +3 
⇒  = 
 x − 2   y −3 

x   + 2 y   + 3
⇒ =
x − 2 y −3
Applying componendo and dividendo rule in above equation
x   
+ 2    
+ x −2 y   
+ 3   
+ y −3
⇒ =
  x + 2 − ( x − 2 ) y − 3 − ( y − 3)

2x 2y
⇒ =
  x + 2 −  x + 2 y − 3 − y  3
2x 2 y
⇒ =
4 6
x y
⇒ =
2 3
x 2
⇒ =
y 3

Class X Mathematics www.vedantu.com 92


Hence, Value of x : y is 2 : 3 .

x y z x 3 y 3 z 3 3 xyz
25. If = = , show that 3 + 3 + 3 = .
a b c a b c abc
x y z
Ans: Here, we have = = ………. Eq(i)
a b c
x3 y 3 z 3
Now, L.H.S = 3 + 3 + 3
a b c
3 3 3
x  y z
=  +  + 
a b c
3 3 3
x x  z
=  +  +  [from eq (i) ]
a a a
x3 x3 x3
= + +
a3 a3 a3
x3
= 3× 3
a
x x x
=3 × × ×
a a a
x y z
=3 × × × [from eq (i)]
a b c
3xyz
=
abc
= R.H.S
Thus, L.H.S = R.H.S
Hence proved.

26. If b is the mean proportion between a and c , show that:


a 4 + a 2b 2 + b 4 a 2
= .
b 4 + b 2c 2 + c 4 c 2

Class X Mathematics www.vedantu.com 93


Ans: Here, we have b is the mean proportion between a and c
Therefore,
⇒ b 2 = ac
Now, squaring both sides
⇒ b 4 = a 2c 2
a 4 + a 2b 2 + b 4
Thus, L.H.S   
= 4
b + b 2c 2 + c 4
a 4 + a 2b 2 + a 2 c 2
= 2 2 [ b 4 = a 2c 2 ]
a c + b 2c 2 + c 4
a 2 ( a 2 +b 2 + c 2 )
=
c2 ( a 2 + b2 + c2 )

a2
= 2
b
= R.H.S
Thus, L.H.S = R.H.S
Hence proved.

7 m  n
+2 5
27. If    = , use properties of proportion to find:
7 m  n
−2 3
(a) m : n
7 m   + 2n 5
Ans: Here, we have =
7 m   − 2n 3
Applying componendo and dividendo rule in above equation
7 m   
+ 2n   
+ 7 m   − 2n 5  
+3
⇒ =
7 m + 2n − ( 7 m   2
− n ) 5 −3

14m 8
⇒ =
7 m + 2n − 7 m   + 2n 2

Class X Mathematics www.vedantu.com 94


14m
⇒ =4
4n
7m
⇒ =4
2n
m 8
⇒ =
n 7
Hence, Value of m : n is 8 : 7 .

m 2   + n 2
(b) 2
m − n2
m 8
Ans: Here, we have = from the part (i)
n 7
Now, squaring both sides in above equation,
2 2
m 8
⇒   = 
 n  7
m 2 64
⇒ 2 =
n 49
Applying componendo and dividendo rule in above equation
m 2   
+ n 2 64  
+ 49
⇒ 2 2=
m   −n 64  
− 49
m 2   
+ n 2 113
⇒ 2 2=
m   −n 15
m 2   
+ n 2 113
Hence, Value of     is .
m 2   
− n 2 15

28. (i) If x and y both are positive and ( 2 x 2 − 5 y 2 ) : xy =


1: 3, find x: y .

Ans: Here, we have ( 2 x 2 − 5 y 2 ) : xy =


1 :3

Therefore,

Class X Mathematics www.vedantu.com 95



( 2x 2
− 5 y2 )
=
1
xy 3

⇒ 6 x 2 − 15 y 2 =
xy

Divide by y 2 in above equation,

6 x 2 15 y 2 xy
⇒ 2 − 2 =
   
y y y2
2
x x
⇒ 6   − 15 =
 y
 y  
x
Now, let a =
y

⇒ 6a 2 − 15 =
a
⇒ 6a 2 − a − 15 =0
⇒ 6a 2 − 10a + 9a − 15 =
0
⇒ 2a ( 3a − 5 ) + 3 ( 3a − 5 ) =
0

⇒ ( 3a − 5 )( 2a + 3) =
0

⇒ ( 3a −=
5 ) 0  2
or ( a +=
3) 0

5 3
⇒ a=    
or a = −
3 2
x
Now, put a = , we get
y
x 5 x 3
⇒ =   
or = −
y 3 y 2
⇒ x : y = 5 : 3   :
or x y = −3 : 2

Since, x and y both are positive. Thus, value of x : y will be positive.

Hence, Value of x : y is 5 : 3.

Class X Mathematics www.vedantu.com 96


3
 a  x
−  a   x+
(ii). Find x , if 16   = .
 a  x
+  a  x

3
 a     
−x  a+ x
Ans: Here, we have 16   =
 a     
+ x  a−x
4
a+x
⇒  = 16
a−x
4
a+x
 =2
4
⇒
a−x
a+x
⇒ = ±2
a−x
a+x
Case 1: When =2
a−x
⇒ a + x = 2a − 2 x
⇒ x + 2 x = 2a − a
⇒ 3x = a
a
⇒ x =   
3
a+x
Now, Case 2: = −2
a−x
⇒ −2a + 2 x =a + x
⇒ 2 x − x = a + 2a
⇒ x = 3a
a
Hence, Value of x is or 3a.
3

Class X Mathematics www.vedantu.com 97

You might also like