Ratio and Proportion
Ratio and Proportion
Mathematics
    Chapter 7 – Ratio and Proportion (Including Properties and
                              Uses)
Exercise – 7(A)
                         5a  b
                           −3
1. If a :b=5 :3 , find
                         5a  b
                           +3
Ans: Here, we have a : b = 5 : 3
             a 5
Therefore,    =
             b 3
                 5a   − 3b 
     5a   − 3b  b 
Now,            
              =
     5a   + 3b  5a   + 3b 
                           
                 b 
                  5a    
                     − 3
                    b
                =       
                  5a    
                    3+ 
                  b     
                  5 
                  5 ×   −3 
                       3 
                =
                      5 
                  5 ×    + 3 
                       3 
                  25 
                  −3 
                    3
                =      
                  25 
                    3+ 
                  3    
                   25 − 9 
                          
                     3 
                =
                   25 + 9 
                          
                   3 
             x 4
Therefore,    =
             y 7
                   3 x +2 y 
                            
     3 x   + 2 y  y 
Now,              
                =
     5 x   + y  5 x    +y
                   y 
                           
                   3x    
                   y   2
                       + 
                 =       
                   5x 
                   + 1
                   y     
                   4 
                   3 ×   + 2 
                       7 
                 =
                   4 
                   5 × + 1
                   7 
                    12 
                      2+ 
                     7   
                 =
                    20 
                    + 1
                    7    
                  26     
                         
                = 7      
                   27
                         
                  7      
                    26
                =
                    27
                         3 x   + 2 y    26
   Hence, Value of                   is    .
                         5 x   +y       27
                                           4a + 3b
3. If a :b=3 :8, find the value of                 .
                                            6a- b
Ans: Here, we have a : b = 3 :8
             a 3
Therefore,    =
             b 8
                 4a   + 3b 
     4a   + 3b  b 
Now,            
              =
     6a − b  6a       −b 
                          
                  b 
                  4a   
                    3+ 
                    b
                =      
                  6a 
                     −1
                  b    
                  3 
                  4 ×   +3 
                      8 
                =
                     3     
                  6 × −1 
                     8 
                  36    
                        
                = 8     
                   10
                        
                  8     
                    36
                =
                    10
                    18
                =
                     5
                     4a   + 3b    18
Hence, Value of                is    .
                     6a − b        5
( 5a+4b+15 ) :( 5a-4b+3 ) .
Ans: Here, we have ( a − b ) : ( a + b ) =
                                         1 :11
⇒
    (a − b) = 1
    ( a + b ) 11
⇒ 11a − 11b =a+b
⇒ 11a − a = b + 11b
⇒ 10a = 12b
    a 12
⇒    =
    b 10
Now,
       ( 5a + 4b + 15) = ( 5  6 + × 5 x +15 )
                            × x   4
        ( 5a − 4b + 3) ( 5  6    − × 5 x +3)
                             × x   4
                    
                  =
                    ( 30 x   20
                           + x +15 )
                     ( 30 x   20
                            − x +3)
                   =
                       ( 50 x +15)
                        (10 x +3)
                       5 (10 x +3)
                   =
                        (10 x +3)
                      =5
Hence, Value of
                  ( 5a + 4b + 15)    is 5.
                   ( 5a − 4b + 3)
                                                       7       8         4
5. Find the number which bears the same ratio to          that    does to .
                                                       33      21        9
Ans: Let the required number be x .
Therefore,
       7   8 4
⇒ x:     =   :
       33 21 9
       8
   x
⇒    = 21
  7    4
  33 9
     x   8  9
          ×
⇒      =
    7 21  4×
    33
      m+n 2            2n 2
6. If       = , find           .
      m + 3n 3       3m 2 + mn
                          m   
                            +n 2
Ans: Here, we have             =
                           
                         m + 3n 3
⇒ 3 ( m + n )= 2 ( m + 3n )
⇒ 3m + 3n = 2m + 6n
⇒ 3m − 2m =6n − 3n
⇒ m = 3n
         2n 2           2n 2
Now,            =
       3m 2 + mn 3 × ( 3n ) + 3n.n
                           2
                        2n 2
                 =
                   3 × 9n 2 + 3n 2
                          2n 2
                    =
                      27 n 2 + 3n 2
                       2n 2
                    =
                      30n 2
                         1
                    =
                        15
                  2n 2      1
Hence, Value of         is    .
                3m + mn
                  2
                           15
  x 2 6 y 2 5 xy
⇒ 2+ 2 =
  y    y     y2
        2
  x         x
⇒   + 6 =5×
   y        y
            x
Let a =
            y
⇒ a2 + 6 =5a
⇒ a 2 − 5a + 6 =0
⇒ a 2 − 2a − 3a + 6 =0
⇒ a ( a − 2 ) − 3( a − 2 ) =
                           0
⇒ ( a − 2 )( a − 3) =
                    0
           or ( a − =
      2 ) 0  
⇒ (a −=             3) 0
⇒ a 2  
=    or a 3
     =
        x        x
Thus,     = 2 or   = 3.
        y        y
                     x
Hence, Value of        is 2 or 3.
                     y
⇒ 22 x − 8 x = 16 y + 11 y
⇒ 14 x = 27 y
        x 27
    ⇒    =
        y 14
                7
    Multiply by   in the above equation, we get
                9
        7 x 7 27
    ⇒      = ×
        9 y 9 14
        7x 3
    ⇒     =
        9y 2
                       7x    3
    Hence, value of       is   .
                       9y    2
                                                     2
9. Divide Rs. 1290 into A, B and C such that A is      of B and B:C = 4 :3 .
                                                     5
                           2      B 4
Ans: here, we have A =       B and =
                           5      C 3
        2
⇒ A=      B and 4C = 3B
        5
        2          3
⇒ A=      B and C = B
        5          4
               1290
Now, A + B + C =
    2     3
⇒           1290
      B+B+ B=
    5     4
10. A school has 630 students. The ratio of the number of boys to the number
of girls is 3:2. This ratio changes to 7:5 after the admission of 90 new
students. Find the number of newly admitted boys.
Ans: Let the number of boys be 3x .
⇒ 5 y + 7 y= 2394 − 1890
⇒ 12 y = 504
       504
⇒ y=
       12
⇒ y = 42
12. The monthly pocket money of Ravi and Sanjeev are in the ratio 5:7. Their
expenditures are in the ratio 3:5. If each saves Rs. 80 every month, find their
monthly pocket money.
Ans: Let the pocket money of Ravi be Rs. 5x .
And the pocket money of Sanjeev is Rs. 7x .
Expenditure of Ravi is 3 y.
Expenditure of Sanjeev is 5y .
13. The work done by ( x-2 ) men in ( 4x+1) days and the work done by
( 4x+1) men in ( 2x-3 ) days are in the ratio 3:8. Find the value of    x.
Ans: here, we have, work done by ( x − 2 ) men in ( 4 x + 1) days and the work
done by ( 4 x + 1) men in ( 2 x − 3) days are in the ratio 3 :8
(x-2)(4x+1).
  And the amount of work done by ( 4 x + 1) men in ( 2 x − 3) days is
  ( 4 x + 1)( 2 x − 3) .
  Now, according to question
  ⇒
       ( x − 2 )( 4 x + 1) = 3
      ( 4 x + 1)( 2 x − 3) 8
  ⇒
       ( x − 2) = 3
      ( 2 x − 3) 8
  ⇒ 8 x − 16 = 6 x − 9
14. The bus fare between two cities is increased in the ratio 7:9. Find the
increase in the fare, if:
The original fare is Rs. 245.
Ans: here, bus fare between two cities is increased in the ratio 7 : 9
And original fare is Rs. 245
Now, according to question
                                   9
⇒ increased bus fare =               × original fare
                                   7
                                     9
                                        
                                 = ×245
                                     7
                                        = 9 × 35
                                 = Rs. 315
Thus, increase in fare = increased fare – original fare
                                      = Rs. 315 – Rs. 245
                                      = Rs. 70.
The increased fare is Rs. 207.
Ans: here, bus fare between two cities is increased in the ratio 7 : 9
And increased fare is Rs. 207
Now, according to question
                                      9
⇒ increased bus fare of=                × original fare
                                      7
15. By increasing the cost of entry ticket to a fair in the ratio 10:13, the
number of visitors to the fair has decreased in the ratio 6:5. In what ratio has
the total collection increased or decreased?
Ans: Let the initial entry ticket cost be Rs.10 x .
And initial number of visitors be 6 y .
= Rs. 60 xy
= Rs. 65 xy
17. In a mixture of 126 kg of milk and water, milk and water are in the ratio
5:2. How much water must be added to the mixture to make this ratio 3:2?
Ans: Let the initial quantity of milk be 5x kg
And the initial quantity of water be 2x kg.
Now, total quantity of mixture = 126 kg
⇒ 5x + 2 x =
           126
⇒ 7 x = 126
       126
⇒ x=
        7
⇒ x = 18
      90       3
⇒            =
    36 + y    2
⇒ 108 + 3 y =
            180
⇒ 3 y = 72
        72
⇒y=
         3
⇒ y = 24
                                                                      2 × 3 × 20
Therefore, the compound ratio of    2 :1,  3 : 5 and   20 : 9 =
                                                                      1× 5 × 9
                                                                         2×2
                                                                  =
                                                                          3
                                                                      2 2
                                                                  =
                                                                       3
(b) 3 3 :2 5
Ans: We know that duplicate ratio of a : b is a 2 : b 2
                                                 ( ) (          )
                                                    2               2
Therefore, duplicate ratio of 3 3 : 2 5 is 3 3          : 2 5
    ( ) (                )
            2                2
= 3 3            : 2 5
    ( )
            2
    3 3
=
    (2 5 )
             2
    9  3
     ×
=
    4  5
     ×
    27
=
    20
= 27 : 20
= 13 : 33
 13
= 3
 3
    1
=
    27
= 1 : 27
Hence, triplicate ratio of 1 : 3 is 1 : 27.
      m n
(b)    :
      2 3
Ans: We know that triplicate ratio of a : b is a 3 : b3
                                                 3        3
                               m n   m n
Therefore, triplicate ratio of  : is   :  
                               2 3    2  3
         3     3
  m n
=   : 
   2  3
  m3 n3
=   :
  8 27
  m3
= 83
  n
  27
= 27 m3 :8n3
                             m n
Hence, triplicate ratio of    : is 27 m3 :8n3 .
                             2 3
= 9 : 16
         9
=
        16
    3
=
    4
=3 :4
Hence, sub- duplicate ratio of 9 :16 is 3 : 4.
(b) ( x − y )   :( x + y )
                     4              6
                                                    ( x − y ) :  
                                                               ( x + y)
                                                            4             6
Therefore, sub - duplicate ratio of                                           is
    ( x − y)             ( x + y)
                 4                      6
                     :
 ( x y) :                 ( x + y)
                     4                      6
=−
        ( x − y)
                     4
=
        ( x + y)
                     6
  ( x − y)
                 2
=
  ( x + y)
                 3
( x − y ) :( x + y )
                 2              3
=
                                                ( x − y ) :  
                                                           ( x + y ) is
                                                        4         6
Hence, sub- duplicate ratio of
 ( x − y ) :( x + y ) .
             2              3
= 3 64 : 3 27
    3
        64
=   3
        27
    3
      4  4  4
       × ×
=   3
      3  3  3
       × ×
    3
        43
=   3
        33
    4
=
    3
= 4 :3
Hence, sub - triplicate ratio of 64 : 27 is 4 : 3.
(b) x 3 :125 y 3
= 3 x 3 : 3 125 y 3
        3
             x3
=
    3
        125 y 3
        3
            x3
=
        (5 y )
                  3
    3
     x
=
    5y
= x :5y
                              x y
Hence, reciprocal ratio of     : is 3 y : 7 x
                              3 7
23. If ( x+3 ) :( 4x+1) is the duplicate ratio of 3 :5. Find the value of x.
Therefore,
⇒
     ( x + 3) = 3
                2
( 4 x + 1) 52
⇒
     ( x + 3) = 9
    ( 4 x + 1) 25
⇒ 36 x + 9= 25 x + 75
⇒ 36 x − 25 x =75 − 9
⇒ 11x = 66
         66
⇒ x=
         11
⇒ x=6
Hence, value of x is 6.
Therefore,
 m ( m   
       + x)
                    2
⇒ =
 n ( n   
       + x)
            2
⇒ mn 2 + 2mnx +   
                mx 2 =nm 2 + 2mnx + nx 2
⇒ mn 2 + mx 2 = nm 2 + nx 2
⇒ mx 2 − nx 2 = nm 2 − mn 2
             ) mn ( m − n )
⇒ x 2 ( m − n=
         mn ( m − n )
⇒ x2 =
          (m − n)
⇒ x 2 = mn
Hence proved.
25. If ( 3x-9 ) :( 5x+4 ) is the triplicate ratio of 3 :4, Find the value of x.
Therefore,
⇒
    ( 3x − 9 ) = 33
(5x + 4) 4 3
⇒
    ( 3x − 9 ) = 27
    ( 5 x + 4 ) 64
⇒
    ( 3x − 9 ) = 27
    ( 5 x + 4 ) 64
⇒ 192 x − 576 = 135 x + 108
⇒ 192 x − 135 x =108 + 576
⇒ 192 x − 135 x =108 + 576
⇒ 57 x = 684
26. Find the ratio compounded of the reciprocal ratio of 15:28 the sub –
duplicate ratio of 36:49 and the triplicate ratio of 5:4.
                                   15    28
Ans: here, the reciprocal ratio of    is    .
                                   28    15
                                     36            36 6
And the sub-duplicate ratio of          is           =
                                     49            49 7
                          5   53 125
The triplicate ratio of     is 3 =
                          4   4    64
                                              28  6
                                                × ×125
Now, the required compound ratio =
                                              15  7  64
                                                × ×
                                              4 × 6 × 25
                                          =
                                                3 × 64
                                              25
                                          =
                                              8
                                          25
Hence, required compound ratio is            .
                                          8
                                                 ( p + r)
                                                            2
                                               =
                                                 (q + r )
                                                           2
                                             p 2 + 2 pr + pq
                                         =
                                             q 2 + 2qr + pq
                                             p ( p + 2r + q )
                                         =
                                             q ( q + 2r + p )
    p
=
    q
Thus, p : q is the duplicate ratio of ( p + r ) : ( q + r ) .
Hence proved.
(b) If   ( p − x ): ( q − x )    be the duplicate ratio of p: q then, show that
1 1 1
 + =.
p q x
Ans: here, we have ( p − x ) : ( q − x ) be the duplicate ratio of p : q .
Therefore,
⇒
    ( p − x) = p    2
(q − x) q 2
             ) p2 ( q − x )
⇒ q 2 ( p − x=
⇒ q 2 p − q 2 x = p 2q − p 2 x
⇒ p 2 x − q 2 x = p 2q − q 2 p
⇒ x ( p 2 − q 2 )= pq ( p − q )
⇒ x ( p − q )( p + q=
                    ) pq ( p − q )
⇒ x( p + q) =
            pq
⇒
    ( p + q) = 1
        pq      x
Exercise- 7(B)
1. Find the fourth proportional to:
1.5, 4.5 and 3.5
Ans: Let the fourth proportional be x.
Therefore, 1.5 : 4.5 = 3.5 : x
    1.5 3.5
⇒       =
    4.5   x
    1 3.5
⇒    =
    3 x
⇒ x = 10.5
Thus, fourth proportional of 1.5, 4.5 and 3.5 is 10.5 .
3. ( a − b ) and ( a 2 − b 2 )
Therefore,
⇒ ( a − b ) : ( a 2 − b2 ) = ( a 2 − b2 ) : x
⇒ x (a − b) =          (a   2
                                − b 2 )( a 2 − b 2 )
⇒ x ( a − b ) = ( a − b )( a + b ) ( a 2 − b 2 )
    ( a b ) ( a 2 − b2 )
⇒ x =+
(a) 6 + 3 3 and 8 − 4 3
Ans: Let the required mean proportional be x .
    (
⇒ 6+3 3 :x =      )
           x : 8−4 3                    (         )
⇒
  ( 6 + 3 3)
             =
                                        x
             x          (8 − 4 3 )
             (
     6+3 3 8−4 3
⇒ x2 =                      )(               )
     48 − 24 3 + 24 3 − 36
⇒ x2 =
⇒ x 2 = 12
⇒ x = 12
⇒ x = ±2 3
Since, the mean proportional to positive number is positive.
Thus, x = 2 3
Therefore,
⇒ ( a − b ) : x = x : ( a 3 − a 2b )
⇒
    (a − b) =        x
       x        ( a − a 2b )
                   3
      ( a b ) ( a 3 − a 2b )
⇒ x 2 =−
     ( a − b ). a 2 ( a − b )
⇒ x2 =
 x2 a2 ( a − b )
                       2
⇒=
           a2 ( a − b)
                           2
⇒ x
=
⇒=x a (a − b)
Therefore,
⇒ ( x + 2 ) : ( x + 5) = ( x + 5) : ( x + 9 )
⇒
    ( x + 2 ) = ( x + 5)
    ( x + 5) ( x + 9 )
⇒ ( x + 5 ) =( x + 2 )( x + 9 )
            2
⇒ x 2 + 10 x + 25 = x 2 + 9 x + 2 x + 18
          16
⇒ x=
           9
          4
⇒ x= ±
          3
                          4
Hence, Value of x is ±      .
                          3
7. What least number must be added to each of the numbers 6, 15, 20 and 43
to make them proportional?
Ans: Let the least number is x to be added to the numbers 6, 15, 20 and 43 to
make them proportional
Therefore,
     6 + x 20 + x
⇒         =
    15 + x 43 + x
           a 2 + b2  b(a + c )
Show that:          = 2
           b(a + c ) b + c2
⇒ ( a 2 + b 2 )( b 2 + c 2 ) = a ( a + c ) .c ( a + c )
⇒ ( a 2 + b 2 )( b 2 + c 2 ) = ac ( a + c )
                                               2
⇒ ( a 2 + b 2 )( b 2 + c 2 ) = b 2 ( a + c )
                                               2
                                                                [ b 2 = ac]
⇒ ( a 2 + b 2 )( b 2 + c 2 ) = b ( a + c ) . b ( a + c )
Hence proved.
(ii) If a , b, c are in continued proportion and a ( b − c ) =
                                                             2b,
                   2(a + b)
Prove that: a − c =         .
                      a
Ans: Here, a, b, c are in continued proportion and a ( b − c ) =
                                                               2b
             a b
Therefore,    =
             b c
⇒ b 2 = ac and a ( b − c ) =
                           2b
⇒ b 2 = ac and ab − ac =
                       2b
                        2b
⇒ b 2 = ac and ab − b 2 =
⇒ b 2 = ac and b ( a − b ) =
                           2b
⇒ b 2 = ac and ( a − b ) =
                         2
Now, L.H.S = a − c
                   a(a − c)
               =
                      a
                   a 2 − ac
              =
                       a
                a 2 − b2
              =                                           [ b 2 = ac ]
                    a
              =
                   ( a + b )( a − b )                       [ a 2 − b 2 = ( a + b )( a − b )]
                           a
                   2(a + b)
              =                                            [a −b =2]
                      a
              = R.H .S
Therefore, L.H.S = R.H.S
                           a 3c + ac 3 ( a + c )
                                                              4
           a c
  (iii). If = , show that: 3          =
                           b d + bd 3 ( b + d )
                                                 4
           b d
                                a c
  Ans: Here, we have             =
                                b d
      a c
  Let = = k , then we get
      b d
⇒ a kb
=    =   
       and c kd
                   a 3c + ac 3
  Now, L.H.S =
                   b3d + bd 3
                  ( kb ) .kd + kb.( kd )
                            3                    3
                =
                            b3d + bd 3
                  k 3b3 .kd + kb.k 3d 3
                =
                       b3d + bd 3
                    k 4b3d + k 4bd 3
                =
                       b3d + bd 3
                   k 4 ( b3d + bd 3 )
               =
                     ( b d + bd )
                        3                   3
= k4
                 (a + c)
                                4
  ⇒    R.H.S   =
                 (b + d )
                                4
                 ( kb + kd )
                                        4
               =
                   (b + d )
                                    4
                 k ( b + d ) 
                                            4
               =
                   (b + d )
                            4
                    k 4 (b + d )
                                        4
               =
                     (b + d )
                                    4
⇒ 329 − 7 x − 47 x + x 2 = 289 − 17 x − 17 x + x 2
⇒ 329 − 54 x = 289 − 34 x
⇒ −54 x + 34 x = 289 − 329
⇒ −20 x =
        −40
        −40
⇒ x=
        −20
⇒ x=2
Thus, the required least number is 2 .
Therefore,
⇒ y 2 = xz ……… (i)
=( x 2 + xz ) ( xz + z 2 ) [ y 2 = xz ]
= x ( x + z ) .z ( x + z )
  xz ( x + z )
                       2
=    
        y2 ( x + z )
                       2
=                                                               [    y 2 = xz ]
 = y( x + z)
  = xy + yz
    pqr ( p + q + r ) =        ( pq + qr + pr ) .
                           3                      3
   Therefore,
   ⇒ q 2 = pr ……… (i)
     = pqr ( p + q + r )
                                          3
   L.H.S
      = q. pr ( p + q + r )
                                          3
      = q.q 2 ( p + q + r )
                                          3
         = q3 ( p + q + r )
                                  3
        =  q ( p + q + r ) 
                                      3
                                      3
           =  pq + q 2 + qr 
                [ pq + pr + qr ]
                                      3
            =                                               [   q 2 = pr ]
Therefore, pqr ( p + q + r ) =   ( pq + qr + pr ) .
                            3                    3
Hence proved.
11. If three quantities are in continued proportion; show that the ratio of the
first to the third is the duplicate ratio of the first to the second.
Ans: Let x, y and z are in continued proportion.
Therefore,
⇒ y 2 = xz
    x x2
⇒    =
    z y2
Hence, the ratio of the first to the third is the duplicate ratio of the first to the
second.
Therefore,
⇒ y 2 = xz ……… (i)
             x2 − y 2 + z 2
Now, L.H.S = −2
            x − y −2 + z −2
                        2        2        2
                    y2   y2   y2 
                    z  − y  + x 
                 =   −2  −2 −2 
                         x −y +z
                      y 4 z −2 − y 4 y −2 + y 4 x −2
                  =
                            x −2 − y −2 + z −2
                      y 4 ( z −2 − y −2 + x −2 )
                  =
                          x −2 − y −2 + z −2
                      y 4 ( x −2 − y −2 + z −2 )
                 =
                       (x   −2
                                 − y −2 + z −2 )
                 = y4
        L.H.S = R.H .S
                 x2 − y 2 + z 2
  Therefore,                      = y4
                x −y +z
                 −2    −2      −2
Hence proved.
13. Given four quantities a , b, c and d are in the proportion. Show that:
  ( a − c ) b : ( b − d ) cd = ( a
            2                              2
                                               − b 2 − ab ) : ( c 2 − d 2 − cd )
  Now, L.H.S =
                       (a − c)b        2
( b − d ) cd
                  =
                        ( kb − kd ) b          2
( b − d ) kd .d
                b2
               = 2
                d
⇒    R.H.S     =
                 (a   2
                             − b 2 − ab )
                                              
                 (c  2
                             − d 2 − cd )
               =
                  (k b    2    2
                                   − b 2 − kb.b )
                 (k d    2    2
                                   − d 2 − kd .d )
               =
                 (k b     2    2
                                   − b 2 − kb 2 )
                 (k d    2    2
                                   − d 2 − kd 2 )
                   b2 ( k 2 − 1 − k )
               =
                   d 2 (k 2 −1− k )
                b2
               = 2
                d
Therefore, L.H.S = R.H.S
Hence proved.
14. Find two numbers such that the mean proportionality between them is
12 and the third proportional to them is 96.
Ans: Let the two numbers are x and y.
⇒ xy = 12
       144
⇒ x=       ……………. Eq(i)
        y
⇒ y 2 = 96 x
                 144
⇒ y=
   2
     96 ×
                  y
⇒ y=
   3
     96 × 144
⇒ y 3 = 12 × 8 × 12 × 12
⇒ y=
   3
     123 × 23
⇒ y 3 = ( 24 )
                 3
⇒ y = 24
       144
⇒ x=
        24
⇒ x=6
Hence, two required numbers are 6 and 24.
                                                  x y
15. Find the third proportional to                 +  and       x2 + y2 .
                                                  y x
Ans: Let the required third proportional be z.
               x y
Therefore,      +  ,            x 2 + y 2 and z are in continued proportion.
               y x
     x y
       +
     y x                 x2 + y 2
⇒           =
     x +y
      2   2
                           z
   x y
                     (                )
                                          2
⇒ z + =                  x2 + y 2
   y x
⇒ ( mp + nq ) : q =
                  ( mr + ns ) : s
Hence proved.
                          1 1 m
17. If p + r =mq and       + = ; then prove that p: q = r: s .
                          q s r
                                        1 1 m
Ans: Here, we have p + r =mq and         + =
                                        q s r
         p+r
⇒ m=
          q
                                  1 1 m
Now, put the value of m in         + = , we get
                                  q s r
     p+r
 1 1  q
⇒ + =
 q s  r
    s+q p+r
⇒       =
     qs   qr
    s+q p+r
⇒      =
     s   r
⇒ r (s + q) = s( p + r )
⇒ rs + qr = sp + rs
⇒ qr = sp
    r p
⇒    =
    s q
    p r
⇒    =
    q s
Hence proved.
Exercise- 7(C)
1. If a: b = c: d , prove that:
( 5a + 7b ): ( 5a − 7b ) = ( 5c + 7d ): ( 5c − 7d )
Ans: Here, we have
                   a : b = c : d
             a c
Therefore,    =
             b d
Hence proved.
Hence proved.
      xa x c 
  ⇒     =  
      yb yd 
      xa xc
  ⇒     =
      yb yd
  Adding 1 to both sides, we get
      xa      xc
  ⇒      + 1=    +1
      yb      yd
      xa + yb xc + yd
  ⇒          =
        yb       yd
      xa + yb yb
  ⇒          =
      xc + yd yd
      xa + yb b
  ⇒          =
      xc + yd d
   ⇒ ( xa + yb ) : ( xc + yd ) =
                               b :d
Hence proved.
4. If a: b = c: d , prove that:
( 6a + 7b )( 3c − 4d ) = ( 6c + 7d )( 3a − 4b ) .
Ans: Here, we have
                   a : b = c : d
             a c
Therefore,    =                   ……… eq (i)
             b d
Hence proved.
            a c
5. Given        , prove that:
             =   
            b d
3a − 5b 3c − 5d
       =        .
3a + 5b 3c + 5d
                       a c
Ans: Here, we have      = .
                       b d
                        3
Now, multiplying by       in the above equation, we get
                        5
    3 a  3 c 
⇒     =  
    5 b  5 d 
    3a 3c
⇒     =
    5b 5d
Applying componendo and dividendo rule
     3a + 5b 3c + 5d
⇒           =
     3a − 5b 3c − 5d
    3a − 5b 3c − 5d
⇒          =
    3a + 5b 3c + 5d
Hence proved.
         5x + 6 y 5x − 6 y
6. If            =         ; then prove that x: y = u: v.
         5u + 6v 5u − 6v
                       5x + 6 y 5x − 6 y
Ans: Here, we have             =         .
                       5u + 6v 5u − 6v
            10 x                10u
⇒                        =
    5 x + 6 y − 5 x + 6 y 5u + 6v − 5u + 6v
    10 x 10u
⇒       =
    12 y 12v
    x u
⇒    =
    y v
⇒ x : y = u :v
Hence proved.
7. If ( 7a + 8b )( 7c − 8d ) = ( 7a − 8b )( 7c + 8d ) ; prove that a: b = c: d .
⇒
    ( 7a + 8b ) = ( 7c + 8d )
    ( 7a − 8b ) ( 7c − 8d )
Applying componendo and dividendo rule
⇒
    ( 7a + 8b ) + ( 7a − 8b ) = ( 7c + 8d ) + ( 7c − 8d )
    ( 7a + 8b ) − ( 7a − 8b ) ( 7c + 8d ) − ( 7c − 8d )
    7 a + 8b + 7 a − 8b 7c + 8d + 7c − 8d
⇒                      =
    7 a + 8b − 7 a + 8b 7c + 8d − 7c + 8d
    14a 14c
⇒      =
    16b 16d
    a c
⇒    =
    b d
⇒ a :b = c :d
                6ab                     x + 3a x + 3b
8. (i) If x =       , find the value of       +       .
                a+b                     x − 3a x − 3b
                            6ab
Ans: Here, we have x =          ……… eq (i)
                            a+b
Now, dividing by 3a in the above equation, we get
     x    6ab
⇒      =
    3a 3a ( a + b )
     x    2b
⇒      =
    3a ( a + b )
    x + 3a   3b + a
⇒          =
    x − 3a 2b − a − b
    x + 3a 3b + a
⇒         =       ……….. eq (ii)
    x − 3a b − a
Now, dividing by 3b in eq (i), we get
     x    6ab
⇒      =
    3b 3b ( a + b )
     x    2a
⇒      =
    3b ( a + b )
    x + 3b   3a + b
⇒          =
    x − 3b 2a − a − b
                4 6                      a+2 2 a+2 3
(ii) If =            , find the value of      +      .
                2+ 3                     a−2 2 a−2 3
                                       4 6
Ans: Here, we have a =                      ……… eq (i)
                                       2+ 3
     a                4 6
⇒           =
    2 2         2 2   (   2+ 3     )
     a              2 3
⇒           =
    2 2         (   2+ 3       )
Applying componendo and dividendo rule
    a+2 2 2 3+ 2+ 3
⇒        =
    a−2 2 2 3− 2 − 3
    a+2 2 3 3+ 2
⇒         =      ……….. eq (ii)
    a−2 2   3− 2
     a              4 6
⇒         =
    2 3       2 3   (   2+ 3       )
     a            2 2
⇒         =
    2 3       (   2+ 3    )
Applying componendo and dividendo rule
⇒
    a+2 3 2 2+ 2+ 3
         =
                              (        )
    a−2 3 2 2 −( 2 + 3 )
    a+2 3 2 2+ 2+ 3
⇒        =
    a−2 3 2 2 − 2 − 3
    a+2 3 3 2+ 3
⇒         =      ……….. eq (iii)
    a−2 3   2− 3
Adding eq (ii) and (iii)
    a+2 2 a+2 3 3 3+ 2 3 2+ 3
⇒        +      =      +
    a−2 2 a−2 3   3− 2   2− 3
                                  3 3+ 2 3 2+ 3
                  =                      −
                                    3− 2   3− 2
                                  3 3 + 2 −3 2 − 3
                          =
                                        3− 2
                        =
                            2 ( 3 − 2)
                             ( 3 − 2)
                        =2
                    a+2 2 a+2 3
Hence value of           +      is 2.
                    a−2 2 a−2 3
9. If   ( a + b + c + d )( a − b − c + d ) = ( a + b − c − d )( a − b + c − d ) ;   Prove that
a: b = c: d .
Ans: Here, we have
( a + b + c + d )( a − b − c + d ) = ( a + b − c − d )( a − b + c − d )
Therefore,
⇒
    (a + b + c + d ) = (a − b + c − d )
    (a + b − c − d ) (a − b − c + d )
Applying componendo and dividendo rule
⇒
    (a + b + c + d ) + (a + b − c − d ) = (a − b + c − d ) + (a − b − c + d )
    (a + b + c + d ) − (a + b − c − d ) (a − b + c − d ) − (a − b − c + d )
    a +b+c+d +a +b−c−d a −b+c−d +a−b−c+d
⇒                     =
    a +b+c+d −a −b+c+d a −b+c−d −a +b+c−d
    2a + 2b 2a − 2b
⇒          =
    2c + 2d 2c − 2d
    2(a + b) 2(a − b)
⇒            =
    2(c + d ) 2(c − d )
⇒
    (a + b) = (a − b)
    (c + d ) (c − d )
⇒
    (a + b) + (a − b) = (c + d ) + (c − d )
    (a + b) − (a − b) (c + d ) − (c − d )
    a +b+a −b c+d +c−d
⇒            =
    a+b−a+b c+d −c+d
    2a 2c
⇒     =
    2b 2d
    a c
⇒    =
    b d
⇒ a :b = c :d
Hence proved.
         a − 2b − 3c + 4d a − 2b + 3c − 4d
10. If                   =                 , show that: 2ad = 3bc
         a + 2b − 3c − 4d a + 2b + 3c + 4d
                         a − 2b − 3c + 4d a − 2b + 3c − 4d
Ans: Here, we have                       =
                         a + 2b − 3c − 4d a + 2b + 3c + 4d
    a − 2b − 3c + 4d a − 2b + 3c − 4d
⇒                   =
    a + 2b − 3c − 4d a + 2b + 3c + 4d
Applying componendo and dividendo rule
⇒
( a − 2b − 3c + 4d ) + ( a + 2b − 3c − 4d ) = ( a − 2b + 3c − 4d ) + ( a + 2b + 3c + 4d )
( a − 2b − 3c + 4d ) − ( a + 2b − 3c − 4d ) ( a − 2b + 3c − 4d ) − ( a + 2b + 3c + 4d )
    a − 2b − 3c + 4d + a + 2b − 3c − 4d a − 2b + 3c − 4d + a + 2b + 3c + 4d
⇒                                      =
    a − 2b − 3c + 4d − a − 2b + 3c + 4d a − 2b + 3c − 4d − a − 2b − 3c − 4d
     2 a − 6c   2a   + 6c
⇒             =
    −4b + 8d −4b − 8d
⇒
    ( a − 3c )  
              =
                ( a + 3c )
    ( b − 2d ) ( b + 2d )
⇒
    ( a − 3c ) = ( b − 2d )
    ( a + 3c ) ( b + 2d )
Applying componendo and dividendo rule
⇒
    ( a − 3c ) + ( a + 3c ) = ( b − 2d ) + ( b + 2d )
    ( a − 3c ) − ( a + 3c ) ( b − 2d ) − ( b + 2d )
    a − 3c   
           + a + 3c b − 2d + b + 2d
⇒                    =
    a − 3c −   a − 3c b − 2d − b − 2d
    2a   2b
⇒      =
    −6c −4d
    a   b
⇒     =
    3c 2d
⇒ 2ad = 3bc
Hence proved.
                                                                          a b
11. If ( a 2 + b 2 )( x 2 + y 2 ) = ( ax + by ) ; prove that
                                                 2
                                                                           = .
                                                                          x y
On simplifying, we get
⇒ a 2 x 2 + a 2 y 2 + b 2 x 2 + b 2 y 2 = a 2 x 2 + b 2 y 2 + 2abxy
                  2abxy
⇒ a 2 y 2 + b2 x2 =
⇒ a 2 y 2 + b 2 x 2 − 2abxy =
                            0
⇒ ( ay − bx ) =
                2
              0
⇒ ay = bx
    a b
⇒    =
    x y
Hence proved.
   a 2 + ab  b
           + 2 a
(a) 2          =
   b   bc  c
       + + 2 c
Ans: Here, a, b and c are in continued proportions
             a b
Therefore,    =
             b c
⇒ b 2 = ac ……… eq (i)
                 a 2 +    
                       ab + b 2
Now, L.H.S =
                 b 2     
                     + bc + c 2
                  a 2 +    
                        ab + ac
                =                                  [From eq (i)]
                  ac     
                      + bc + c 2
                    a ( a     
                          + b + c)
                =
                    c ( a     
                          + b + c)
                    a
                =
                    c
                = R.H .S
Thus, L.H.S = R.H.S
Hence proved.
    a 2   b
        + 2   c
            + 2 a −b  c+
(b)            2 =
    ( a +b  c
           + )     a  b  c
                    + +
                         a + b + c ) − 2 ( ab + bc + b )
                       (       
                                          2                  2
                     =
                                  ( a     
                                      +b + c )
                                                       2
                       (       
                         a + b + c ) − 2b ( a + c + b )
                                          2
                     =
                                 ( a     
                                     +b + c )
                                                   2
                             a + b + c ) [ a + b + c − b]
                           (             2
                     =
                                   ( a     
                                       +b + c )
                                               2
                       =
                           (       
                             a −b + c )
                           ( a      
                               +b+c )
                      = R.H .S
Thus, L.H.S = R.H.S
Hence proved.
         + 5 + x − 16 7
        x    
(a)                  =
         + 5 − x − 16 3
        x   
                                    x   
                                      + 5   
                                          + x − 16 7
Ans: Here, we have                                =
                                      + − x − 16 3
                                    x   5
Applying componendo and dividendo rule in above equation
       x   
         + 5   
             + x − 16    
                     + x + 5 − x − 16 10
⇒                                    =
       x   
         + 5   
             + x − 16        + x − 16 4
                     − x + 5  
      2   5
         x+     5
⇒             =
      2 x − 16 2
        x   5
          +     5
⇒             =
       x − 16 2
Now, squaring both sides, we get
                2
  x   5
     +  5
                 2
⇒         = 
  x − 16  2
       x   5
         +     25
⇒            =
      x − 16 4
⇒ 25 ( x − 16 ) = 4 ( x + 5 )
⇒ 25 x − 400 =4 x + 20
⇒ 25 x − 4 x = 20 + 400
⇒ 21x = 420
         420
⇒ x=
          21
⇒ x = 20
Hence value of x is 20.
         +1 + x − 1 4 x − 1
        x    
(b)                 =
         +1 − x − 1
        x              2
                            x +1   
                                 + x − 1 4x − 1
Ans: Here, we have                      =
                            x +1  
                                 − x −1    2
Applying componendo and dividendo rule in above equation
     x +1   
          + x − 1   
                 + x +1  
                        − x − 1 4 x +1
⇒                              =
     x +1   
          + x − 1       + x − 1 4 x   − 3
                 − x +1   
    2  
      x +1   4 x +1
⇒          =
    2 x − 1 4 x   − 3
     x +1   4 x +1
⇒         =
     x −1 4 x   − 3
Now, squaring both sides, we get
              2
  x +1    4 x +1 2
⇒        =          
  x − 1   4 x   − 3 
  x +1 16 x 2 +1   
                 + 8x
⇒     =
  x −1 16 x   9
           2
             + − 24 x
Applying componendo and dividendo rule in above equation
   x +1   
         + x −1    16 x 2 +1   
                             + 8 x +16 x 2   
                                            + 9 − 24 x
⇒                =
                            + 8 x − (16 x 2   
  x + 1 − ( x −1) 16 x 2 +1                 + 9 − 24 x )
         2x               32 x 2 +10 − 16 x
⇒               =
    x + 1 − x +1 16 x 2 +1   
                           + 8 x − 16 x 2 − 9 + 24 x
  2 x 32 x 2 +10 − 16 x
⇒    =
  2       −8  32
              + x
        32 x 2 +10 − 16 x
⇒ x=
            −8  32
                + x
⇒ −8 x + 32 x 2= 32 x 2 +10 − 16 x
⇒ −8 x =10 − 16 x
⇒ −8 x + 16 x =
              10
⇒ 8 x =10
       3 x  
          + 9x2 − 5
(c)                          = 5.
      3x − 9 x2 − 5
                                  3 x   
                                      + 9x2 − 5        5
Ans: Here, we have                                 =
                                  3x − 9 x 2 − 5       1
Applying componendo and dividendo rule in above equation
       3 x   + 9 x 2 − 5   + 3 x − 9 x 2 − 5           5 +1
⇒                                                  =
                              (
      3 x   + 9 x 2 − 5 − 3 x − 9 x 2 − 5      )       5 −1
                         6x                        6
⇒                                            =
      3x   + 9 x 2 − 5 − 3x + 9 x 2 − 5            4
          6x             6
⇒                    =
      2 9x2 − 5          4
          x          1
⇒                =
       9x2 − 5       2
Now, squaring both sides, we get
                     2            2
    x     1
⇒         = 
  9x − 5   2 
     2
   x2    1
⇒ 2    =
 9x − 5 4
⇒ 9x2 − 5 =4x2
⇒ 9x2 − 4x2 =
            5
⇒ 5x2 = 5
⇒x= 1
⇒ x = ±1
Hence value of x is ±1 .
                 + 3b + a − 3b
                a  
14. If x =                     , prove that 3bx 2 − 2ax + 3b =
                                                             0.
                 + 3 − a − 3b
                a  b
                                   a   + 3b   
                                            + a − 3b
Ans: Here, we have x =
                                   a   + 3b   
                                            − a − 3b
Applying componendo and dividendo rule in above equation
    x +1 2 a   
             + 3b   
⇒       =
    x −1 2 a − 3b
    x +1   a + 3b   
⇒        =
    x −1   a − 3b
Now, squaring both sides, we get
                               2
          a + 3b   
            2
  x +1   
⇒       =         
  x −1   a − 3b 
 x 2 + 2 x +1   a + 3b
⇒ 2           =
 x − 2 x +1     a − 3b
                                          ( x 2 − 2 x +1  )
⇒ ( a − 3b ) ( x 2 + 2 x +1) = ( a + 3b )   
                                                               +1 17
                                                           x 4   
15. Using the properties of proportion, solve for x, given        = .
                                                           2 x2    8
                   x 4 +1 17
Ans: Here, we have       =
                    2x2    8
Applying componendo and dividendo rule in above equation
  x 4 +1   
         + 2 x 2 17  
                   +8
⇒ 4              =
  x +1   − 2 x 17 − 8
               2
  (x       +1)
       2         2
                         25
⇒                    =
  (x       −1)
                 2
       2
                         9
                     2        2
  x 2 +1   5 
⇒ 2        = 
      − 1   3 
  x   
  x 2 +1 5
⇒ 2     =
  x   
     −1 3
⇒ 5 x 2 − 5= 3 x 2 + 3
⇒ 5 x 2 − 3 x 2 =+
                 3 5
⇒ 2x2 = 8
           8
⇒ x2 =
           2
⇒ x2 = 4
⇒ x= 4
⇒ x = ±2
Hence value of x is ± 2 .
                             m        
                               +n + m−n
Ans: Here, we have x =
                             m        
                               +n − m−n
Applying componendo and dividendo rule in above equation
    x +1               
            m+n + m−n + m+n − m−n
⇒        =
    x −1   m        
             + n + m − n − ( m         
                               +n − m−n )
    x +1           2 m    
                       +n
⇒        =
    x −1   m                
             +n + m−n − m+n + m−n
    x +1 2 m    
             +n
⇒       =
    x −1 2     
           m−n
    x +1    
          m+n
⇒       =
    x −1      
          m−n
Now, squaring both sides, we get
                         2
          m+n 
         2
  x +1    
⇒       =      
  x −1        
             m−n 
 x 2 + 2 x +1   m+n
⇒ 2           =
 x − 2 x +1     m−n
Applying componendo and dividendo rule in above equation
  x 2 + 2 x +1   
               + x 2 − 2 x +1      
                                 m+n +m−n
⇒ 2                            =
              − ( x 2 − 2 x +1     
 x + 2 x +1                   ) m + n − (m − n)
              2x2 + 2                2m
⇒                               =
    x 2 + 2 x +1    
                 − x 2 + 2 x −1     
                                  m+n − m+n
  2 x 2 + 2 x 2m
⇒            =
       4x      2n
    2( x 2 + 1) m
⇒              =
        4x       n
           + 3 2 m 3   mn
       x 3   xy      +3 2
17. If            =         , show that nx = my .
       3 x 2 y  y
              + 3 3m 2 n  n
                        + 3
                   x 3 + 3 xy   2
                                    m3 + 3mn 2
Ans: Here, we have                =
                   3 x 2 y   + y 3 3m 2 n   + n3
Applying componendo and dividendo rule in above equation
   x  3 + 3 xy 2 + 3 x 2 y     
                            + y3     m3 + 3mn 2 + 3m 2  
                                                       n + n3
⇒ 3                                =
  x    + 3 xy 2 − ( 3 x 2 y     
                            + y 3 ) m3 + 3mn 2 − ( 3m 2 n   + n3 )
  x 3    
      + y 3 + 3 x 2 y    + 3 xy 2       
                                    m3 + n3 + 3m 2 n    + 3mn 2
⇒ 3                               =
   
  x + 3 xy 2 − 3 x 2 y −      y 3 m3 + 3mn 2 − 3m 2 n − n3
    x 3    
        + y 3 + 3 x 2 y    + 3 xy 2       
                                      m3 + n3 + 3m 2 n    + 3mn 2
⇒                                   =
    x 3    − y 3 −3 x 2 y + 3 xy 2 m3 − n3 − 3m   2
                                                    n + 3mn 2
     + y 3 + 3 xy ( x         
 x 3                                      ( m + n)
                      + y ) m3 + n3 + 3mn     
⇒ 3 3                      = 3 3
  x    
     − y −3 xy                            ( m − n)
                 ( x − y ) m − n − 3mn     
    ( x     
        + y ) (m  n)
             3             3
⇒            =
    ( x     
        − y ) (m − n)
             3             3
                 3             3
  x     
     + y   m+n 
⇒         =       
     − y   m − n 
  x     
    x     
      + y m+n
⇒        =
    x     
      − y m−n
Applying componendo and dividendo rule in above equation
          2x         2m
⇒                =
     x           
       + y − x+ y m+n − m+n
     2 x 2m
⇒       =
     2 y 2n
     x m
⇒     =
     y n
⇒ nx = my
Hence proved.
Exercise- 7(D)
1. If : b = 3: 5 , find (10a + 3b ) : ( 5a + 2b ) .
2. If ( 5 x + 6 y ) : ( 8 x + 5 y ) =
                                    8: 9 , find x: y .
Therefore,
              (5x + 6 y ) = 8
              (8x + 5 y ) 9
⇒ 8 (8x + 5 y ) = 9 ( 5x + 6 y )
⇒ 64 x + 40 y =45 x + 54 y
⇒ 19 x = 14 y
    x 14
⇒    =
    y 19
⇒ x : y = 14 :19
3. If ( 3 x − 4 y ) : ( 2 x − 3 y ) = ( 5 x − 6 y ) : ( 4 x − 5 y ) . find x: y
Therefore,
                 ( 3x − 4 y ) = ( 5 x − 6 y )
                 ( 2x − 3y ) ( 4x − 5 y )
⇒ ( 3 x − 4 y )( 4 x − 5 y ) = ( 5 x − 6 y )( 2 x − 3 y )
⇒ 12 x 2 − 15 xy − 16 xy + 20 y 2 = 10 x 2 − 15 xy − 12 xy + 18 y 2
⇒ 12 x 2 − 31xy + 20 y 2 = 10 x 2 − 27 xy + 18 y 2
⇒ 2 x 2 − 4 xy + 2 y 2 =
                       0
⇒ 2 ( x 2 − 2 xy + y 2 ) =
                         0
⇒ ( x 2 − 2 xy + y 2 ) =
                       0
⇒ ( x − y) =
             2
           0
      0
⇒ x− y=
⇒ x= y
    x
⇒     =1
    y
⇒ x : y = 1 :1
                                                (     ) (           )
                                                       2                2
Therefore, duplicate ratio of 2 2 : 3 5 is 2 2              : 3 5
    (          ) (         )
               2               2
= 2 2              : 3 5
    ( )
               2
        2 2
=
    (3 5 )
               2
    4  2
     ×
=
    9  5
     ×
    8
=
    45
= 8 : 45
= ( 2a ) : ( 3b )
           3         3
  ( 2a )
           3
=
  ( 3b )
           3
  8 a3
=
  27b3
= 8a 3 : 27b3
Hence, triplicate ratio of 2a : 3b is 8a 3 : 27b3 .
= 9 x 2 a 4 : 25 y 6b 2
        9 x2a 4
=
        25 y 6b 2
 3 xa 2
= 3
 5y b
= 3 xa 2 : 5 y 3b
= 3 216 : 3 343
    3
        216
=   3
        343
    3
        6  6  6
         × ×
=   3
        7  7  7
         × ×
    3
        63
=   3
        73
    6
=
    7
= 6 :7
Hence, sub - triplicate ratio of 216 : 343 is 6 : 7.
        36
=
        49
Therefore,
      ( 2 x + 3) = (    )
                            2
                       5
⇒
     ( 5 x − 38) (     6)
                           2
⇒
      ( 2 x + 3) = 5
     ( 5 x − 38) 6
⇒ 5 ( 5 x − 38 ) = 6 ( 2 x + 3)
⇒ 25 x − 190 = 12 x + 18
⇒ 25 x − 12 x =18 + 190
⇒ 13 x = 208
Therefore,
⇒
     ( 2 x + 1) =           9
    ( 3x + 13)              25
⇒
     ( 2 x + 1) =           32
    ( 3x + 13)              52
⇒
     ( 2 x + 1) = 3
    ( 3x + 13) 5
             ) 3( 3x + 13)
⇒ 5 ( 2 x + 1=
⇒ 10 x + 5 = 9 x + 39
⇒ x = 34
Hence, value of x is 34.
Therefore,
⇒
    ( 3x − 7 ) =        3
                            8
    ( 4 x + 3)      3
                            27
⇒
    ( 3x − 7 ) =    3
                            23
    ( 4 x + 3)      3
                            33
7. What quantity must be added to each term of the ratio x: y so that it may
become equal to c: d .
Ans: Let the quantity must be added is p .
             x   
               +p c
Therefore,        =
             y   
               +p d
⇒ dx + dp = cy + cp
⇒ dp − cp = cy − dx
⇒ p ( d − c ) = cy − dx
        cy − dx
⇒ p=
         d −c
                              cy − dx
Hence, required quantity is           .
                               d −c
8. A woman reduces her weight in the ratio 7:5. What does her weight
become if originally it was 84 kg?
Ans: Let the reduced weight of the woman be x kg
             84 7
Therefore,     =
              x 5
⇒ 7=
   x 84 × 5
9. If 15 ( 2 x 2 − y 2 ) =
                         7 xy, find x: y; if x and y both are positive.
⇒ 30 x 2 − 15 y 2 =
                  7 xy
    30 x 2 15 y 2 7 xy
⇒         − 2 =
        
     y2     y      y2
           2
     x       x
⇒ 30   − 15 =
              7 
      y       y
               x
Now, let a =
               y
⇒ 30 a 2 − 15 =
              7a
⇒ 30 a 2 − 7 a − 15 =
                    0
⇒ 30 a 2 − 25a + 18a − 15 =
                          0
⇒ 5a ( 6 a − 5 ) + 3 ( 6 a − 5 ) =
                                 0
⇒ ( 6a − 5 )( 5a + 3) =
                      0
⇒ ( 6a −=
        5 ) 0  or ( 5a +=
                        3) 0
       5          3
⇒ a=        
         or a = −
       6          5
                x
Now, put a =      , we get
                y
Hence, Value of x : y is 5 : 6.
⇒ 2 xy :    :
        x2 = y 2 z
 2xy y 2
⇒ 2 =
  x   z
    2 y
⇒    =
    x z
       xy
⇒ z=
       2
                                            xy
Hence, the required fourth proportion is       .
                                            2
⇒ a 2 − b 2 :    :
             a + b =a + b x
  a 2 − b 2 a   
              +b
⇒          =
   a   
      +b      x
⇒   x=
        a 2 − b2
⇒ x=
       ( a + b )( a + b )                       [ a 2 − b 2 = ( a + b )( a − b )]
       ( a + b )( a − b )
⇒ x=
       (a + b)
       (a − b)
                                        a+b 
Hence, the required third proportion is       .
                                         a −b 
⇒ a 2 − b 2 :    :
             a + b =a + b x
    a 2 − b 2 a   
                +b
⇒            =
     a   
        +b      x
       ( a   
           + b)
                  2
⇒   x=
        a 2 − b2
⇒ x=
       ( a + b )( a + b )                       [ a 2 − b 2 = ( a + b )( a − b )]
       ( a + b )( a − b )
⇒ x=
       (a + b)
       (a − b)
                                        a+b 
Hence, the required third proportion is       .
                                         a −b 
11. Find two numbers such that the mean proportional between them is 14
and third proportional to them 112.
Ans: Let two required numbers be x and y .
⇒ xy = 14
       196
⇒ x=       ………….. eq (i)
        y
Now, according to 2nd condition,
Third proportional of x and y is 112.
Therefore,
    x   y
⇒     =
    y 112
⇒ y 2 = 112 x
                     196
 y 2 112 ×
⇒=
                      y
 y 3 112 × 196
⇒=
⇒ y3 = 7 × 4 × 4 × 7 × 7 × 4
⇒ y 3 = 73.43
⇒ y 3 = ( 28 )
                 3
⇒ y = 28
       196
⇒ x=
        28
⇒ x=7
Hence, two required numbers are 7 and 28.
Therefore,
 x ( x + z)
                  2
⇒ =
 y ( y + z)
            2
⇒ x( y + z) = y( x + z)
              2               2
⇒ x ( y 2 + 2 yz + z 2 ) = y ( x 2 + 2 xz + z 2 )
⇒ xy 2 + xz 2 = yx 2 + yz 2
⇒ xz 2 − yz 2 = yx 2 − xy 2
⇒ z 2 ( x − y )= xy ( x − y )
⇒ z 2 = xy
⇒ z = xy
Hence proved.
             2ab                      x  a
                                       +     x  b
                                              +
13. If x =        , find the value of      +      .
             a  b
              +                       x  a
                                       −     x  b
                                              −
                                  2ab
Ans: Here, we have x =                ……… eq (i)
                                  a+b
Now, dividing by a in the above equation, we get
    x    2ab
⇒     =
    a a (a + b)
    x   2b
⇒     =
    a (a + b)
    x   
      +a   3b + a
⇒        =
    x   
      − a 2b − a − b
    x   
      + a 3b + a
⇒        =       ……….. eq (ii)
    x   
      −a b − a
Now, dividing by b in eq (i), we get
    x   2ab
⇒     =
    b b(a + b)
    x   2a
⇒     =
    b (a + b)
    x +b   3a + b
⇒        =
    x − b 2a − a − b
    x + b 3a + b
⇒        =       ……… eq (iii)
    x −b a − b
Adding eq (ii) and (iii)
    x +   
        a x + b 3b + a 3a + b
⇒        +     =      +
    x −   
        a x −b b − a    a −b
                          3b + a 3a + b
             =                  −
                           b−a    b−a
                          3b + a − 3a − b
                      =
                               b−a
                          2b − 2a
                      =
                           b−a
Therefore,
    ⇒
         ( 4a + 9b ) = ( 4c + 9d )
         ( 4a − 9b ) ( 4c − 9d )
   Applying componendo and dividendo rule
   ⇒
         ( 4a + 9b ) + ( 4a − 9b ) = ( 4c + 9d ) + ( 4c − 9d )
         ( 4a + 9b ) − ( 4a − 9b ) ( 4c   + 9d ) − ( 4c − 9d )
         4a + 9b    4
                   + a − 9b 4c   9+ d   4+ c − 9d
    ⇒                         =
         4a + 9b   − 4a   + 9b 4c   + 9d − 4c   + 9d
          8a   8c
    ⇒        =
         18b 18d
         a c
    ⇒     =
         b d
    ⇒ a :b = c :d
Hence proved.
          a c
15. If     = , show that ( a + b ) : ( c + d ) =                 : c2 + d 2 .
                                                       a 2 + b 2   
          b d
                           a c
Ans: Here, we have          =  ……… eq (i)
                           b d
   Adding 1 to both sides in the above equation,
       a 2 + b2 b
 ⇒             =
       c2 + d 2 d
       a 2 + b2          b
 ⇒                   =     ……….. eq (iii)
       c 2 +   d 2       d
 Now, from eq (ii) and (iii),
  a    
    +b   a 2 + b2
⇒      = 2
  c   
    +d   c +   d 2
  ( a + b ) ( c + d ) =   :
⇒   :                   a 2 + b2 c2 + d 2
Hence proved.
     27   9
⇒       =
    9  
     +y 5
⇒ 81 + 9 y =
           135
⇒ 9=
   y 135 − 81
⇒ 9 y = 54
       54
⇒ y=
        9
⇒ y=6
⇒ 7 x − 4 x =y + 15 y
⇒ 3 x = 16 y
      x 16
⇒      =   …………. Eq (i)
      y 3
Thus, value of x : y is 16 : 3 .
                    9
Now, multiplying by   in eq (i), we get
                    5
      9  x  9  16 
⇒              =  
      5  y  5  3 
      9 x 48
⇒        =
      5y 5
Applying componendo and dividendo rule
      9 x   5
          + y 48  5
                +
⇒             =
      9 x   5
          − y 48 −5
      9 x   5
          + y 53
⇒             =
      9 x   5
          − y 43
                9 x   5
                    + y 53
Hence, value of         is .
                9 x   5
                    − y 43
    3x2 + 2 y2
(b)
    3x2 − 2 y2
                          x 16
Ans: here, we have         =   …………. Eq (i)
                          y 3
    3 x 2 128
⇒        =
    2 y2   3
Applying componendo and dividendo rule
 3 x 2   
       + 2 y 2 128  +3
⇒ 2            =
 3 x   −2y   2
                 128  
                    −3
 3 x 2   
       + 2 y 2 131
⇒ 2           =
 3 x   2
       − y 2 125
                3 x 2   
                      + 2 y 2 131
Hence, Value of                
                             is   .
                3 x 2   2
                      − y 2 125
         4m  n
           +3   7
18. If         = , use properties of proportion to find:
         4m  n
           −3   4
(a) m : n
                      4m   + 3n 7
Ans: Here, we have             =
                      4m   − 3n 4
⇒ 7 ( 4m − 3n )= 4 ( 4m + 3n )
    2m 2 − 11n 2
(b)
    2m 2 + 11n 2
                       m 11
Ans: Here, we have      =
                       n 4
Squaring both sides, we get
        2          2
   m   11 
⇒   = 
  n 4
 m 2 121
⇒ 2 =
  n   16
                2
Multiplying by    in the above equation, we get
               11
  2  m 2  2  121 
⇒  2 =           
 11  n  11  16 
  2m 2 11
⇒      =
  11n 2 8
Applying componendo and dividendo rule
  2m 2 +11n 2 11  
                +8
⇒             =
  2m −11n 11  
    2       2
                −8
  2m 2 +11n 2 19
⇒            =
  2m 2 −11n 2 3
  2m 2 −11n 2 3
⇒            =
  2m 2 +11n 2 19
                                                                    ( x + y)
                                                                               2
                                                                                       x
19. If x , y, z are in continued proportion, prove that                            =     .
                                                                     ( y+z )
                                                                           2
                                                                                       z
Therefore,
    x y
⇒    =
    y z
⇒ y 2 = xz ………….. eq (i)
             ( x + y)
                                2
Now, L.H.S =
             ( y +z)
                                2
                  x 2   + 2 xy   + y 2
                 = 2
                  y   + 2 yz   + z 2
                   x 2   + 2 xy   + xz
                 =                                        [from eq (i)]
                   xz   + 2 yz   + z 2
                            x ( x   2 + z)
                                  + y   
                        =
                              ( x + y   
                            z    2    + z)
                            x
                        =
                            z
                    = R.H.S
Thus, L.H.S = R.H.S
Hence proved.
                        a 2 + b2 + a 2 − b2
20. Given, x =                                  . Use componendo and dividendo to prove
                        a 2 + b2 − a 2 − b2
             2a 2 x
that b 2 =          .
                 +1
             x 2   
    x +1    a 2 + b2 + a 2 − b2 + a 2 + b2 − a 2 − b2
⇒        =
    x −1   a 2 + b 2 +                      (
                       a 2 − b2 − a 2 + b2 − a 2 − b2         )
    x +1                    2 a 2 + b2
⇒        =
    x −1   a 2 + b 2 +      
                       a 2 − b2 − a 2 + b2 + a 2 − b2
  x +1 2 a 2 + b 2
⇒     =
  x −1 2  
         a 2 − b2
  x +1   a 2 + b2
⇒      =
  x −1   a 2 − b2
Squaring both sides, we get
                                  2
  x +1   a + b            
         2     2     2
⇒       =                 
  x −1   a 2 − b 2        
  x 2   
      + 2 x +1 a 2 + b 2
⇒ 2           =
  x − 2 x +1 a 2 − b 2
Applying componendo and dividendo rule
   x 2   
       + 2 x +1   
                + x 2 − 2 x +1    a 2 + b2 + a 2 − b2
⇒ 2                             =
  x  2 x +1                   ) a 2 + b2 − ( a 2 − b2 )
               − ( x 2 − 2 x +1  
            2x2 + 2                2a 2
⇒ 2                          = 2 2
  x +   2 x +1   
               − x 2 + 2 x −1    
                              a + b − a 2 + b2
  2 x 2 + 2 2a 2
⇒          = 2
     4x     2b
    2 ( x 2 +1)         a2
⇒                   =
         4x             b2
⇒
    (x   2
             +1)    a2
                   = 2
      2x            b
       x2 + y2    1
21. If 2       = 2 , find:
       x −y  2
                  8
      x
(a)
      y
                   x2 + y 2    1
Ans: Here, we have 2        =2
                   x −y   2
                               8
  x 2 + y 2 17
⇒ 2        =
  x − y2 8
    ( x 2 − y 2 ) = 8 ( x 2 +   
⇒ 17                          y2 )
⇒ 17 x 2 − 17 y 2 =8 x 2 + 8 y 2
⇒ 17 x 2 − 8 x 2 = 8 y 2 + 17 y 2
⇒ 9 x 2 = 25 y 2
      x 2 25
⇒        =
      y2 9
          2        2
   x  5
⇒   = 
   y  3
      x     5
⇒       = ±
      y     3
                       x     5
Hence, Value of            
                         is ± .
                       y     3
   x 3   + y 3
(b) 3
   x   − y 3
  x 3    
      + y 3 152
⇒ 3 3 =
  x   −y     98
  x 3    
      + y 3 76
⇒ 3 3 =
  x   −y    49
               x 3    
                   + y 3 76
Hence, Value of 3 3     is  .
                x   
                   − y 49
  3x + 4 + 3x − 5
                  =9 .
  3x + 4 − 3x − 5
                          3x + 4 + 3x − 5 9
Ans: Here, we have                       =
                          3x + 4 − 3x − 5 1
  Applying componendo and dividendo rule in above equation
           3 x + 4 + 3 x − 5    + 3 x + 4 − 3 x − 5           9 +1
  ⇒                                                       =
       3x + 4 + 3x − 5 −      (   3x + 4 − 3x − 5     )       9 −1
                    2 3x + 4                     10
  ⇒                                            =
       3 x + 4 + 3 x − 5 − 3 x + 4    + 3 x − 5 8
        3x + 4 5
  ⇒           =
        3x − 5 4
  Squaring both sides, we get
                2
   3x + 4   5 2
 ⇒          = 
   3 x − 5  4
      3 x + 4 25
 ⇒           =
      3 x − 5 16
 ⇒ 25 ( 3 x − 5=
               ) 16 ( 3x + 4  
                            )
 ⇒ 75 x − 125 = 48 x + 64
 ⇒ 75 x − 48 x =64 + 125
 ⇒ 27 x = 189
         189
 ⇒ x=
          27
 ⇒ x=7
 Hence, Value of x is 7.
                +1 + a   
               a      −1
23. If x =               , using properties of proportion show that:
                + 1 − −1
               a    a  
x 2 − 2ax + 1 =0.
                            a +1    
                                 + a −1  
Ans: Here, we have x =
                            a +1    
                                 − a −1
Applying componendo and dividendo rule in above equation
      x +1   a +1    
                  + a −1    
                         + a +1    
                                − a −1  
  ⇒        =
      x −1  a +1    
                 + a −1      (
                        − a +1    
                                − a −1      )
      x +1 2 a +1   
  ⇒       =
      x −1 2  
             a –1
      x +1  a +1   
  ⇒        =
      x −1  a −1
Squaring both sides, we get
                           2
          a +1   
                  
          2
  x +1  
⇒         =    
  x −1   a −1 
    x 2   
        + 2 x +1   a +1
⇒                =
    x 2 − 2 x +1   a −1
Applying componendo and dividendo rule
      x 2   
          + 2 x +1   
                   + x 2 − 2 x +1    a +1   
                                          + a −1
⇒                                  =
                  − ( x 2 − 2 x +1  
    x 2  2 x +1                  ) a +1 − ( a −1)
            2x2 + 2               2a
⇒ 2                         =
  x +   2 x +1   
               − x + 2 x −1  
                  2
                              a +1 − a +1
  2 x 2 + 2 2a
⇒          =
     4x      2
    2 ( x 2 +1)
⇒                  =a
         4x
⇒
    (x   2
             +1)
                   =a
      2x
⇒ x2 + 1 =2ax
⇒ x 2 − 2ax + 1 =0
Hence proved.
          x 3 + 12 x y 3   
                         + 27 y
24. Given           = 2         . Using componendo and dividendo, find x: y.
           6 x   
               2
                 + 8 9 y   
                          + 27
  x 3 + 12 x   
             + 6 x 2   
                     + 8 y 3   
                              + 27 y   
                                     + 9 y 2   
                                             + 27
⇒ 3                     =
  x + 12 x − 6 x 2   8
                     −    y 3   27
                              + y −9 y 2 − 27
 x 3 + 8 + 6 x 2 +12 x    27  9
                         y 3 + + y 2 + 27 y
⇒ 3                    =
  x − 8 − 6 x 2 +12 x y 3 − 27  9
                               − y 2 + 27 y
⇒ 3
                  ( x + 2 )    
 x 3 +   23 + 6 x             y 3 + 33    
                            = 3 3
                                             ( y + 3)
                                       + 9 y   
  x −   2 − 6 x   
          3
                  ( x − 2 ) y − 3 −   9 y    ( y −3)
              ( y + 3)
  ( x + 2 ) =  
           3            3
   
⇒
  ( x − 2 ) ( y − 3)
           3           3
               3            3
   
   x + 2    
              y +3 
⇒         =      
   x − 2   y −3 
    x   + 2 y   + 3
⇒          =
    x − 2 y −3
Applying componendo and dividendo rule in above equation
   x   
     + 2    
         + x −2      y   
                       + 3   
                           + y −3
⇒                  =
  x + 2 − ( x − 2 ) y − 3 − ( y − 3)
           2x             2y
⇒                   =
      x + 2 −  x + 2 y − 3 − y  3
    2x 2 y
⇒     =
    4   6
    x y
⇒    =
    2 3
    x 2
⇒    =
    y 3
       x y z             x 3 y 3 z 3 3 xyz
25. If = =   , show that 3 + 3 + 3 = .
       a b c             a   b c     abc
                   x y z
Ans: Here, we have = =   ………. Eq(i)
                   a b c
            x3 y 3 z 3
Now, L.H.S = 3 + 3 + 3
            a b     c
                        3    3        3
                 x  y z
                =  +  + 
                 a b c
                        3    3        3
                 x x  z
                =  +  +                        [from eq (i) ]
                 a a a
                    x3 x3 x3
                =     + +
                    a3 a3 a3
                    x3
                = 3× 3
                    a
                    x x x
                =3 × × ×
                    a a a
                    x y z
                =3 × × ×                             [from eq (i)]
                    a b c
                    3xyz
                =
                    abc
                = R.H.S
Thus, L.H.S = R.H.S
Hence proved.
                  a2
                 = 2
                  b
                 = R.H.S
Thus, L.H.S = R.H.S
Hence proved.
       7 m  n
          +2   5
27. If        = , use properties of proportion to find:
       7 m  n
          −2   3
(a) m : n
                             7 m   + 2n 5
Ans: Here, we have                     =
                             7 m   − 2n 3
Applying componendo and dividendo rule in above equation
     7 m   
         + 2n   
              + 7 m   − 2n   5  
                              +3
⇒                          =
    7 m + 2n − ( 7 m   2
                     − n ) 5 −3
           14m             8
⇒                        =
    7 m + 2n − 7 m   + 2n 2
   m 2   + n 2
(b) 2
   m − n2
                       m 8
Ans: Here, we have      =  from the part (i)
                       n 7
Now, squaring both sides in above equation,
         2       2
  m 8
⇒   = 
   n  7
 m 2 64
⇒ 2 =
  n   49
Applying componendo and dividendo rule in above equation
 m 2   
     + n 2 64  
             + 49
⇒ 2 2=
 m   −n    64  
             − 49
 m 2   
     + n 2 113
⇒ 2 2=
 m   −n    15
                m 2   
                    + n 2 113
Hence, Value of          is   .
                m 2   
                    − n 2 15
Therefore,
⇒ 6 x 2 − 15 y 2 =
                 xy
 6 x 2 15 y 2 xy
⇒ 2 − 2 =
    
  y     y     y2
             2
    x      x
⇒ 6   − 15 =
              y
     y      
                   x
Now, let a =
                   y
⇒ 6a 2 − 15 =
            a
⇒ 6a 2 − a − 15 =0
⇒ 6a 2 − 10a + 9a − 15 =
                       0
⇒ 2a ( 3a − 5 ) + 3 ( 3a − 5 ) =
                               0
⇒ ( 3a − 5 )( 2a + 3) =
                      0
⇒ ( 3a −=
        5 ) 0  2
             or ( a +=
                     3) 0
         5          3
⇒ a=          
           or a = −
         3          2
                    x
Now, put a =          , we get
                    y
    x 5 x     3
⇒    =   
       or = −
    y 3 y     2
⇒ x : y = 5 : 3   :
               or x y = −3 : 2
Hence, Value of x : y is 5 : 3.