0 ratings0% found this document useful (0 votes) 317 views39 pagesIDS Unit-1-Handwritten
Introduction to Data Science- Engineering 4th Semester
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, 
claim it here.
Available Formats
Download as PDF or read online on Scribd
UNIT-L oO
— _Sntrodluction to Auta Scene =
ConTENTS a beficition of Baila scfance ; ty batt ard balasdence hype,
Ging post the hype ' Blin, caren lardscepe of perspec
Glatistteal Anfewnce, populalions and aie : staticltea| rndellng thm
a mexlroree ie: Enplolraton bata arolie.
deliefitton of Dale sdianee— ;
1. beitascfence %s the ort of stady thal extiacks rang maryland ‘ntespae
Krooked. fem vac omount of data. xen various ackenlfe melhods ' afi
and: HOCLSELS ,
2, bata sdunce is on mullidtecplinasy field thot allows yore elt trl
fiom ctuclired w+ unskuctired dala.
3. hala sclance enables you'to banslate o business poblentato axesearch pal
and then translate 9t back ilo a pratical solution
4. bata science “fers te get of theoses and lechei aes fiom rary fidds and
discipline axe used to fevestigate and orale alae aroun of alala to help
deck ston makers in many Industiies such as scfencey engineering e-Commerce,
economies, polis finance, and education
Bata seance process of Wfecyce 5Biscover
\
[
|
lancfing
 
Bxblding
\ Bisconey Besxoey stip fowolves al data-fro alt the ickotified ‘
4nternal and etteral Sources which helps your answer the buciness
question |
2. peepoaon- hati. can have macy anrcorsistencies like missing values, blank
columns, an incorrect dei fovenat, which need st be cleaned
3 beat ploctog —Th this slg youned to determine the method and
‘techriqae ty dra the velalion belween inp andl ouput
vardables.
Ho Model eat The aclual model buildé pocess staid Here, bate |
Seclenttel dictvibulec datasets fo: Tatrng and tty
 
5. Operattonalise + fou debiver the inal baseltned mode! with vapors code
_ |
=and technical documents tn this clage. ©.
be Conpenucticale Results Ih “this stages the Key +fiedicgs axe communicated
6 all stakeholders,
Applicalfors of bala Schence—
Vet Talent search = Geo le seach uses dala sciance Techndogy search fp
spec xeatt with a-fiactin ofa second oe
a Recperruedation syslen + Te cveike avecommendalion sae foteq,
Saale fisids'0n ‘face book o¥ cited videos on
ee .
5. tog and speech Rescatlon- speech Ge suit (ke simi, §eeqle /
-Acctstant and Aleta wn onthe datascience techie
Moreover; facebook eo gout falerd when ypu uploe aphale
with then A
4, eodog nies EA gots Sony, niatendo are vstrg dat ecanee tehrlogy
“This enhances ye qty expec.
8. online price comparision — price Runner} ura i shop {la workvon the olla
eeience mechanism .
hy Dalagciance%s fen oitant 2
t, To poss ava volanesof dala ‘Acodlrg tb tOc by 805 qlotal dala.
will qoute 5 zattabylis To pores lange volumeof dat.
&. bala sefence enables compories Ta ef ficien undexttand complex chuctaved
dala ‘fein enattiple sources anddevive valuable feats to make smavtex
dala dviven decistone
30 Watacdence % widely ured in various ‘inducty ea) rrotib
hreattheave,-ftrarce, banking 1 pobty worksand more.
What 4s Btq: pala
4, By palais acollectton of dale that fs agen dalame yet psy expe
nth Ge EE is adata with so laige dice and completily that name none
Taditiona| data: iraranerent ols can store t ot process ery
Example
te Social med, The statistic shows that Boo + teal of new data
qd anceited Galo the databases of Social medtactte Face- |
book every dow THs data % mde generate fn teres of phil
ard video uploads, reesioge EeneeHt; patting commeals ele.
 
 
@ The Nusyork Stock Exchanges an eipenple a etait tht quel |
about one terabyte of new bade Baap
Bo a tndine can ger tor teabyle of dalaén 30 minules
of i with rare thossand| -flsghts per day rvalien of
data ac caches. upto ee pelaby tesLys of Bq dala +
@
le Shudlurad dala An dala that ean be loved accessec| and processed flhe
form t fi ated post
asterened as a shaclived data
c “Tabi es| '
8 Nowadays pwe-arve foresedi fssues whena size such dala ins
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
toa huge eitent /Lypical sizes ay athe tage of rattle
_ altel ‘igs -
Employee 1D. : Employee tame _ | Gender, | Depattment | salary Trt
Q365 R ie h Kulkorrti Male Fconce a
3348 peatibha joshi * Feanale ot 600000
AAYGB shushil Roy J Male Aderfin 00000
aoe ‘shu hofit Das male Finance | 0co0
4614 a aSane Female france 5600000
a unskuitard oPoy data with unknown form ov the shiuckan fcc sifted
+ as undkiuctared data Th oddflton to the size: bein Pages ;
un-atwuclaved data poses cnalbiple eatin farterens of ils Pe
ina fe devi vir
aA typo al
value ott oft,
 
a cormbinal en
t
€ f undiidluved data ts a hetivog eos aks source canln
sep eat lesa Nideos ete «The oalpat of
Se ogl seaseh))3. Sunhistiaclured ¢ Serri-Shuclared dt can comtefs both The forms 9
data neon sue ssn cit as atacand fom
bak tt acualy not defined
Saori Semi-clyucived data fsa data precited finan xmb file
LieC>
Chayaclaistics of efg ota ;~
te volume © Refers to the amount of dala that exists Af The volume of
data is lage enough, if thea be concidered bay dala,
her
2 yal vast of hte snuees and there of il, bth
cTiuckived and undtructared
3. lat & Refie to the ape of qentn of dali the dala
generated and proces ed to meet the demands , deleyentines
» real potenltal inthe data .
4. Vedoktltly <7 wef te the Snconets rng which can be chown by the
: at afte «thas harpeting th process of. big able te
handle and ranage ‘the data effi j
a. value - Refers to the value that big data can provide, ard. at alates dlely
“Lo wha oxgoricalios cando-uilhy thal calleled dala.Applications of Big bila
'e Banking and AInsuvdince seclars
Qe commurticalfens, Meda’ and! enlevtaioment
Tu
Bo Healthcare providers
4. tducalion
Be Morag ard niilaval Resources
6. Government
Alo Retail ard wholesale Fade . cys
& Toonspallon
Ne Energy are utility .
Liretaltons of Big oat’:
be Sees, ata.cats can Xequtre-condleable seoureecto above .
2 Focmaltin sed al cnt edie fra im avd clarog elds
ray be vagtved before dita aie :
Be Qualfly conliol 3 canbe di seatl-and often, has to be-done thro eral
aaa vi ome . t
flin more cole than fo Tiadittona|
data cits ‘
cece ‘acd early of hes _ al ap proaches are anal new
and fenpeect although these aa continue tO
 
 
ii 4
ie Sacwdtly ard phienpeoneror
‘ny yore over Lime6, atacscance 's bluny term: bataccencefca ver genveal tern and does not
AR AAA AAS
hove a defintte defteiton. whilett has become abuxzwoarel
atts ay hurd to write cownithe enact rooting ofa bala
cehenltel.
s Mailog hla scoee ts nace fopesbles bang anizlare ro ffelds, bala,
dence. ems fren stltstes compute Sdeece and enathemaltes
Tf th fs fav -fiem posible ts waster tach fide and be eos
eipeitinall of fem '
fo Large ferust of Domain kouledge agree dtsodvarlage orale
Scunceis is deperdene on domdin Knowledges A person usith a-
const derable: background fn slalfilfes ore engl eGo willie
‘ot db ficult Te solve data scence poblen ufithoul ¥ backooure troche
Ae Aeilany balieey yl eneepeiti sll sf dala scunlict orth dale. |
* aed makes easefal precicfons tnowderte ocililalz the dacstn-snkg
process ttar ines the deta prof is sty ard does rok yal |
eapected walls | m4
lo. peblin at bate phvscyt: oanate aindushies dala istheivfadl. bala
etunlicts help compares make daita-diven decistors.
“Howeiethe dats ubilee tithe process may bach the
privacy of eaflrne. |Big pal aod bala setts o
ie Given the hype cxound ‘data scence; the vealfli 4 that most compante sit
fail +o ose mach of the dala they collect-and tore dat my business pébRities
& wh Y Now + Tichnalogy ‘makes This posstble
oT vashudluve-for laege dl tat
process
a7 neteaseenrery and bardusidlh
DiteRetion
Ladataftealfen is the jie op ley all aps of bf an Teg ,
daa toi
bataftealfon aliens to Frarsfon erost aspeils of abutinsiote oposlfinle
datacthat- can be tracked rnoriiboved ‘ord onalyeed
15 “tax on eran fila o
 
2, Rofeys to The vse og Tals and processes +
data-driven erferplse
Exompls
nl to Tilley dilafes aby hou ts
Lo Untedin dati pafeseal Aelowrks -
3o Geog cue ealty glasses daliy geceClocts)
Cees lardtape of pps
— > batascence 4 not enevel afaliclics ov hacking ormalherelics helesetence te the civil enjiowog f datas Ft fncludes. | pod
to staltétics C traditional malfemalica| oral
8» bala changing pouieget ging en eile ts data)
80 int qe sae)
> Th isa proética| Knowledge er tools and malevi ae odilh theo
undelands of whals a
Currant landscape of pospectis +
1 Mallon stattetes trauledae Mathematics is the cyitical port of dal, oti ence
Mathurales iovolesthe tlady of cporltly chuck, Spee
and chong’. for ad. sdsnbttteowhalye opgred enathundlies
fs asceattal , ctatiatics ts one of the moct rit tampanetsop ala
Golance, stabietics 4s any 0 collet ord analyze ‘the nametical dala
fina lage amount and Skea mearioafl tnsehts fren it.
 
 
a, SubstarkiveC coméin) Expeittee The dubslartie Knowledge 6 the Krowaledye
pedtic ts the oxen where dita sciance te appliiol FL s
ry ait
offin “ee pate a tontele fox sample if
ya ate ai ing dala actence be eae problems, ve should
have eubetantive Kraul de onthe togfe
0 “Heston stiles The Po skiils vefero ths cor itey scence stills, Aada‘ts
data. Todt effiialy costal the diy yin8 have some progeoer ails, ypaneed to be confortable at the carerarc| lin,
be oble to coral fils of differ forals peoparn alin that wil
enodtty the doita, ete
Me achion lustig + machine mails is backbone of data sctince machine {eavri
‘ 46 all aboal to prone tcf Joamadtine solhal it canagl
as ahumen btn. Tn data science, weuse various machine
{ earsiin algo ¢ lke Supewied Le rset ca
and Refoforeroent Leayetng algortthims to solve the piobleme. Theveave
Yoxious cocktail aloo thos which ave broadly being used
4g data cciance suc as Reqress ory Beciston Tre, clustering prt
corp anal Sofpect veclor erachines, Naive. ae ; teal
Aeural nchwork and ~Apstosi alin.
1. Stalisttes tsa branch of Mathemeltes that deals
fei eipcatton, ard the preselalion af the omefical dala
&, “The main pospese o ctalfettes gS make an accudle conclaion wg aictited
, ‘
with the collecLian, ard
Sor abit 0 eres popelalion
Tapes of claletlics ¢
le bucriplieslalislics 2 bucetibe aboril the dala
"8, Thfeenttal stabtclics s Pt helps to make pedtcins forthe data
a68, Salictica| ar fete maedins Gussey which means raking Inference aboit-
Bemething .
4, Talistica| “Toferance fs the discipline that concems with the develo nut :
pourdares rmethods pand theorens that allow usto ethact meacing and:
fnfowralion fismdata that: has-been gered 4 ctachaélte Crarclorn) processes
Be The overall pores fs claalsn fom
te The acttiltes ox processes §nithe world to the. dite '
2. Manipulate the data and then
8. From the data back tothe world, % the fe i olatisttea| fofirence
'
Eroinple-
' poses. och teocling ord ae) mails sons
& bata = ae seat and veceived wey dey forthe last 3 months
8, dofene ~ Find aa] rover neil ond wil) be Gerit or recived
, An the neil ammoalhs
Slattettcal In Res pies and pala
pete 9 eae
' »
Prscess
ls The aclivite ox arclins which ave hopperog foand around the world
y
8s called process
% one chould Know abexit rage ducevibe, unolexiting ard rnake sence of
thee processes Ho understand the world baller ard undleratay in These processes
is past of the solulion to problens,pata @
to at repre the bce of the veal -norld processes, and “il ochich traces
we qther ave decided byooe dita colle lfor o¥ sornpl malhod,
2 once we have all the data to dlevive newridea, and that's “fa deplfy those
caplavedl Braces Catal eile enove compehuncible iene should founda mathematical
models ov fureltons of the dati, Kroun as tiltettcal enodet or ectimatos
3. Note That, the process and data will be random and uncertatity in ralare.
Exomgles- Fam the shu fleal packs ofcards acad 8s drawn. This Hal fs
“epialed for yoo Times, and the suits are ie below,
Suite Spade: clubs tears Diamonds
Novof tines dvawn | 90 too 120 qo
T
> Quslion. while acavd's ted att vandomn her ruhatt. és the probability of
 
 
 
 
 
 
git a Barcond| cord.
Sclalion > “Total comber of veils -yoo
Nombey of Kials tn which diamond cord %s drown=4o
Therefore, pCdiamand card )= 401400 = 0.886
'» population refers tothe entie epouy oF indtviduals abot hom gost
te draw conclusfons.
Q. Somnple vefess tothe subset of peopl (fem poplin] from which you vil]be Si dala.
   
beta under invitbgalitn = pat f pppulaion
Cer Lae pfattlotewelh)
36 In slattelica “Inference i lhe tery population
denotes the aioe obec orartls ' suchas tueils
ov photographs ot élavts .
 
4, The setof chavactevisltes that are measured Saceyli aTfesence
 
ox citrated erste objecls 4s called as obsewalions Kcomple
and this denoted as ni-the number of obsenalfins fern the population,
Exarnples
‘= population s The emails sent tasty ton by employee
Re observation, Thesendels nore, ‘he lel of vecihuil,
bata cunt rTetof amdil,
ee) chavecters and gentences tnrthe email
No. of veths in the enelil and
The length of Time untel fiestve ply.~ soorpe vefes toa subset ofthe uct of size n ‘fom popalalienthit aye conte
In order to charrfine |
about'the poplin,
the obsewalions to dvaw conclusion and make ‘inference
~~ Thee oe def fiant: ning that ean be followed fox ia cubsel of dala
which ave called earmpltrg mechasfcrns
— nite that, some a mechariisms rnay ‘introduce biases ‘ilo the dala
and distor it. once t
and Asélovled.
 
at happens any conclusfon yet deaus will sieply be very
‘ Example > Employee Emoils
E Saropde=d ca lo of Employeesard thay ends at Yarden
& serrply 8 Alto oF Emails adits Eglo erly ‘
— Bat f we counted hows ol email nnessage each peson seat, andused thal?
fo ebimalt the undef disli bibl of aril sen by all ae raeotaht
qt | dlffennt: ansuseys .
Populations VS Soenples ¢—
Basis fox
Comparison population Sornples
aaa populalion ai “lo the colleeki
ofall elornecls pasting omen pop of the mernbets
characteristic thet comprises of popalalon choosen fr
UNNerse
Sareple means sub
pritecipalin YiotheTrcludes Each and ever art of the only a hand al of wns “f
a : popula fon
charac terielic pavornles olalictic
bata collection coir, rene sarnple a or Sai .
. Census
Fecus on Te apy yey ' ray vn
chavacleticlics about popal ppelatien
 
Se epee si im
° The big alatla. world ‘is defied by the nox enoas arnaxrit of eer- copa diver
data. being gent tcolleated| andl aval enact Bel politiones eke
ae While Large daitacis allow ete” eto oneal tsi about guneval treds,
“emalley sures contatned withthe tase data cet ave sttl| veefal,
 
 
3. For erorplercnstley concep of petonalfalfon works Cpertoralized medicine)
Hove forthe lage «dat. ca ne cxete oral, horegenas data ect ta make :
prectickfons within emalles pours
a, Za thts context pone can apy thc of pln and samples tod wre
usefal§ bal hl é far smaller clita ete Cea) vshich usas condelered| ern er lager
dita cite epi
ap TResues need te braddvarced
ie sooopling solves game enyfonting seslines2. Hidden biases of big dala
3. Sampling milhod|
4 underlyin assomptfons
Be samplicg dtstbalfon,
Modelling '
'. Mode Iteg fic destbing mndkhenalfcally a gfludtion in veliy forty porpese of
to a apsestion 4nrthat sitacilion {froma
solving a problem ox fieding aanswey
& Mode Mog press Aincludes on terative porss at agains cveailivik and
favankiveness and in which malhemalfcal yScecliffe and Techefical Frrdedaets
 
applied bo descr be cus citaabions ¢ bat)
8, Modelle peceess consists of the aclivatec walatid to
zo dilerminin a ileilagy le ut ‘the model
— anabsiny orarlling ‘to the bolton of he pobleen a a
— aa vaaboles silling ap vlation beloocen atables yard
— deplo gag malhemalical ard eomgilabiona locls,
tes of palais cet buepas ard tite
 
Yen Architect coplare albabit
Airnenstenal ; scaled-down versions
an atrudlare with three-dimenonal
Be A molecalar biologicte plane pot
sicualiclfon op he connections bilwoeen antina atids
6. Nok that ,amodel san, avi fied conatiuc Lten where all
een vemoved or absteactad .
Leibrnal detail basphysical Theokt
YS Ca
obseveln Reasorfinr
Esper “ais tps
Medasarement / \ 1
|e \ |
Research ala eptaaltt
les 1 otal
> onthe lek hand afde ave aclvitie velatig to rescore suchas “
That are used tn the medel andlor cam be usedte assess “thie modellsing ws
~—+ on the wight hand efde avecreelal acliitic that must lucl tsthe develop~
een of amodel, leis and fal hagalbces te beteted. +
Yow te Buble a Mock 5
“The bey slips Anvolued Andale scherce oan ave
Shipt ¢ undectandtns the probleme
“The first cep tnvolved tn data ecence col fe uncherstandting The
problem Ndatasciealeet Utin-foc key words and phates when (leainga line ~f ~bustiness eaperk about a business tats a precedaal ft oy!
Sowolves ahdtelte HoarSaray “f “the business ee
stipe: ba exten
Aatjust any dais, but the unituatared data pieces qe collect velevant
to The business poblem fae faq 6 addiss, The dala Faleacltan % done
fom yasfous Sources online aan rand eisling dlatabaces.
ae 3% bate claring 5 = beta cloning Re veefal ay as youneedty sanilte data
while qithatrad qT illoutry axesorre of theoct tpl
Causes gt dala inangighertns ond Eros:
to feale Gleme ave reduced froma. gael of batabyces
Bo The evor aith the innit eats in terms of preston
3. Vafables ustth aa values acvors mali batabaces
shpas Exptl bala Aral Exon Se és CEs] tsaxvoluit
‘ee for for" id fact "4 al with dita antec
usefa fl Sociable
ets pe Cealare selittions Featine ealcléon is the process epelifrg
electing the ‘fish that contethale “Lhe most to he
p cdtclion vastable or supa that jena aotereitiol
ithe galorslially orecnnall
2
 
fin
Stipes Treorporaling Machine | wuntng-Al ilfins -
Pie ery Ree
PpThee fs one ofthe most eonuckail processes Gndala scferce rvclig as The ml
Alaofths aids tn etg a usable bala Model,
bs Supervised leunt
> Linear Regression
— tardom fort
— Suppo veclox machines
> upsupesed lsat
. =) tin
= K-means a
> AH earchical clus al
~— | be acKlony
= oan
+t Pheu
— vat, Rewsard -stali-Aclen(sarse)
~ hep @ Niliaork
steps © biog the medals The dan model te applied 15 the tct-date tocheck
oe ipit’s accavalt “ath all desivable flares . 2
can farther aural rode to ideslify an
adjusters that night beteqiced to enhance the
per fowrance arc achéi ve thedectved vesulls.
slopes Spleen thet  Ahe melel which povidethe bact “alt bason tstieg fied 5 complied anc deploy tthe packalton enteral shewer
the dectved wesalt é achieved though proper tesbing as per the business needs
Stati lien Tens
1 stabicticn) model is atype of mathenalical model that cp ope
assumglfon undertaken te describe the da qunwalin press
1 Type prep ralhematice| rode dy Haltetca) credel % non-detererfcitie unlike
other mathemabiin| models where vasables have spe ift los.
wostable to stabtihtcal model are clochailic t. vty hove pobati ay
deatvibutions.
, Howto Housto build aslalistic| sell ling =
—» while building acta sttca| model “the ‘erpoitant step 4st choose the ce
Stalicten| model based on seqitenels
a Ask the follosing to ily gor te emens
ts bo you wankbe address ee 4 ovatch ts rake forecasts from
ase @ of tated)
&. what's the number explontay Cindeperert) and rere
aveilable)
Be what’ the umber f valbles youu a foclade the model 9
Issues —+ The maf fssues fowalved tleeg armed ase =
1. urdes KN "4 process about he pln
a 2 Resumibens about the problen
Be Sfenple vs corrglen. ma ed
“4, matiuaratteal eaprestons vs ls rrathods
Prabatsy sib -biclibutfon—yeutable
oA voulable fs agparlly whose ae
Boh discvili voutable is avadable sshose valueis obtained by curling
Epornylss nuenbey q dadust pest
B.A continous variable sa vasiable whose value is blaine] ey rosin
,
£qr haght » all students inclass
 
4, Arandom vatfable %s avefable whose valueis.a numerical outcome op arndlem
phenomenon
aA pbb dik batten af acrandem vasfable x tells what the posible
alae apa ave are how probabilities ave aston
> Avardon vaskable car be disctelt or cartiness
pesbaliltly bistabalin bistiibaltons —
te staltetical meadel ts non-dleternsiriskic models, where vasiables are stochastic,
Crordor) fa natave Tac they have probotitity diikibslions, $0 (the probit| dtskbitis gxcthe fron o titel ores ®
A probabil dsitabalten %6 amnalhemalia| pron that descri bes'the pobetsl
*f dipferert posstble valaes of avautoble  probalsity dictabultens areaflen dlp
usiog ane ox probols iy ‘Tables
Exasngle = one udio-f lp
Geka
oa
Jypes os
to Thee ave alypes of pebabilft
to pobabilsty dtsbibulton f one vandon radial.
a probability dsiltbution of wal ple Pandoen yostable int py
destabulin)
 
te Aviat pabalglfly pote oie
« conditiona| probsbSiily probabil eveck J fanewn
aes ee ee ee
3. prbebilty dest balm f indeendlure and tll
t pally tbe Scrabble
‘oat quantifies how Irkely ealcalta outcome ise a tandom votiable
gachas the fp ofacoingthe roll of adlice,ox draseg a plofing cad fem a
deck.
& For avandorn vostable x; po is a-forebion That i a probally tpallwalues of X.
pobabslity sstibutions op = pos
vobabidity % calculated gs the nurebey f desired oalcomes divided by titel
|
ossible ouiteomes
proba by =Crumbey of deste outcomes { tll curbavop posstbl cits)
> for eg the probably ofadie miley a6 ts cokulalid asone culcorne op oll
a 5A} divided by the total norrbey of dtserale calcormes (4) ov-t}6 ovabout
601600 orabout 6. 66>
Exomph
te Let avardom vosable x Cthe aereast op He until the next bus awtyes)
a. tet poo ee probly cltcbabalton, wich ig a poi
xeal number. ‘Let usassume thal the flame fara af nut bus ts fun
oS pod) sae &h
3, “Then if yoawant ts calculate the probability Clikelthoad) of thou bus
: ariivieg Gn balaoeen taand 3 erfailec fs as
am
a peobelilly dectababien dsctitbation of Rardory val vatiables +-( fatal (jak pebolatst)
de The vobabslity o oft Taso Cov more) events ts called the jact probaly > Te
Gofat pobabilly of tine or more vardem vauiables 4s vel ened to as ‘thejetat re cli deattbalten 8
&. for the vardom variable x ard y 1 posry 6 afatat potable ardit is!
oa possi as
probabil beclabalon poe) = porands) = fox pty)
8. The calculalfon of the jet ps is sorralfines called the-funclorrantal
vale of pobats ity ovthe pode of remy oilhe chetrsule °f prbal iy
Examph-
+ what is the joa pobstily ef a a Key that's black )
Evert A’ = The pobstily of deosig abe: ulogsoote 7 |
Event’ 2 The pebelsty of das ablack cord = 26| 68 =0250
Vistas the joi prabastty of earth and 8 45
pC L5a) x pCaols9) =000385 = 369¢] iy
io The pobabilst ob ancenst qientheaceurerce of onather event 4s called
the conde bfonal picks
& The conditfona| pobebilsty of one vasicble bone ox move tard vatiables
fs vefeud ty as the corditfern| poballey distithalter -
z
 
8. The condi tor pe baby for ent A f en avant B's cglealiti| a-folloses
 
 
pCAle) = pon qivene) = pCAord €) | pC)Not +
to This npkalten assomes that the pobsbslty of erat Bis not  ausarth took tooo test . The poobasll pasty both lasts 4s 0.6 . The pebe-
4 ley of pay the frat Tat iso ob srahait is the flames ‘fre
Second test qfren that she has passe theficth im)
pC second [fect = pe Cesk anc suond) Ob
past) Oak
:Ey acl .
5 sity arnodel refs te adjusting the prcaerstethe mode “to Tepe
aeunaty othe process fovolves
ts Rar on alathn on dala fo which the laugd vastable is knounrts produce
a mathematta| mode
Bo Then, the model’ aulzornes ave corpo tthe seal  obserad values of the
“tsadd vasiable to detevering the accanany
B= Theat spf eto te alts sda poor ood
xeduce"the level oferior and make. the model more accuals
Yo This press Ac ve peat senteval tienes vali] “the rode fied the option pears
to make prcdiettons with substacttal seca
Quetsrttin and underfittin
te when ins bao ndise in the ki tae dala are pict ced of
and teayned as cone bythe med el, the mode| overfils
a. ovesff " nape the peiformance of the model on newdata.
3. TH wil | pee seen wellon the bilining sel bul vey pork onthe lat cet.
This nega eng “the enodel's ably ts generalise ord rake i
predliclions-fov new dataovesfitig
— Sr hoppers when the made| canndt su etal model thy
alata nox qenvialice ows dala
Ht Ain undesf?t model is nstiasuttable model, this wilr-be obvious artt wit
have a poow fies ete data.
> He Comrplet pfelare of dala ecfence process can be dlepicted as shousn
below. 7Explorator
re 1
1 Analysts
data t
PE ML
nly rithms
ctaltelical
models
 
   
  
{hernrrrarenemnes
      
communica.
 
 
 
visuali zalfons | | b
. | ep pg | 7 adore
~+ Tnstdethe Real world ave lost vow dacla- bag olymgies shoes ppt
; product
eméils ror recovded gertlic maluied
> we wort to poces thts to make st clon focoralysts-to we bildandase
rp lines op dat, rund? pie craig wera bg ox whatever jaent
to eal ak. Todo this we uselools sach as pythershel [sryts 8,07 SL oral
—> ance we have this clean dataset we should be dein come kind of Epon
the course. of deieg Epfy, we ray alee that +t tect acally clean beacuse
of du pbalsyasirg values (absurd outliers and data. that met actially
logad oc Treorn tly logge.
> Nuck we esti the model to use sorne aliptin Uike- K-nearest ae
CK-NN) ; bimeas Nequssion iNaive Bays oY all alse Themed we choosendaar onthe tpe of poblen recat tole
~+ nctheo can‘etrpt, foul ep or cm cay wsatl THiscoald
‘take the {own * al the valli up te basiness-fo make desis.
—> Alternatively cthe goal may may to be build or prot pe ae produ ie
Spam clessfev, ror seach oh algorithm or a recornmendlalton sien
Expeton Raldvolys
— aul Sacra terta) an approach to age ‘the data wing
visual Techovique
— tHhisuced ts disoved Cunds falls or to check assomptionsusith the help
of slabtalica| Sarcoma and apltcl “presen
— taal | ae asteriftcatt slip totake before a nto
Stabtilica| erodelf a ie ensure the data és wally vohat fs
alaimed ts be- and that there ace no obvious enoxs.
= Epa should be pat of dala sciunce pofcsinwvery onquicallin
hy Sapo batty;
~The primo geal of viplowlony dala anvalstt Goto uncoyer the ander tg
shud «The shuclave af the vauious dala cele deteverfine the tends, pollen s
and velabenchips aren then -—> A bustness cannot came'to afinal conclusion or draw assomgtions
from ahuge ayoonltly of dale andvaithey “aguis Taig anexhauclivelook
at the data set ‘hreaghan analyeal tang
Therefore, pofartey an lc “| hale roalyts al allouss data. scienbists
lelect evvore j teed assomplions and eesich wore alltel aeled an
ay
4
april p redtcLive model.
Obs yelies’ om
~ He val af EDA GS allow dita ectentiels ts gf ancight ilo a dust
and at the came Lme provide Spesffc pitzores that aditasdenlist would
wont to vifvaet foe the dla fr th ditasel. y ‘cludes
— List ofouttiers
+ ketiatsfrpoonig
=a, vneedtataltes tov thace uttmoles
 
SB
— Let of all4 erpoitant fecloes
~~ conclusfon ov vr Tfons acto whither’ cutlain aindevidual
factors axe ctaktctPeall { ly escenttal
~~ optimal edllings
— A qed predictive moeclel
Balsi-~—> The baste tools of EDA ave plats graphs and suromary Slalieltes
— > “The Epa as amethenl fs ental qe Me “the datate othe
fellnsteg
a potig dstabutfons ofal vostables(: aia plat)
a plo Bene sevies f dala
— “Frans forefing vasfables
> looking at ail predic alas belioeer, vastabks wi
scothtiglate malvices
— cael Sarena etal lics
—=> com alin the mean rricimony mation ll “f pper aoe ower quills
ond idunlip " outlinrs,nkioductton to R Lana age om , : ;
te RAs an open-sarce pagel laaoge and envivonmerit used fox slatted
aval dala, visualizalfon, and ae i :
a Being open -seuree has oe community that conlfrously works'te tnpoe
“the envionment as well as helps members worldustele ‘to iraprove and tanovali
8. Tthas over to,000 differant librates and pactones 6 anhonce and add
on to als abvady significant capable . i '
be Ris aneilension of the S-prgeameag larguage hich uss cvealid by john
chambers at Bell Labordlartes 4 1496, 8 was a punter tool ‘fo slaticlica|
*Cecearch
Q. Tn ta92, Ross thaka. and Robert Gentleman eyeitea Rat the urbasly f .
Aucklin riuwaealond asottao| that thay etadenls. could learn ard use easly
3. thaka and Geritleman released the tlfal yerston tn Habanda cable bite
Marston was veleated in dodo.
‘open source s Ris in opensource envinonment , Eis cost-ef ficltie for pods
Of any sine ands sidely-ovtloble ‘3. “hore apgties, Khas voufous (thavives and packages avollable for
pling allviaclive are elegrt graphs. Thee car also be used te credbi™
ny inteaclive ges fo data-driven ily ‘ellng yaswell
3 Ry has -amassive communtiy that wostrachcly ts oe and odd apon
Bs abilities. cRAN ov comprehend & Archive Nitiork has ove¥ 101000
fee eilenstons that can beusedl fie ‘aa High-depriin ppt
to craig Interactive reb—apps
Me Bean pein comple mathematical and otaltibtea| opens on veelors,
evalvtces data frames ays and othe data ol ik # raging shes.
B. Rigan inter peated lenjuoge and does not need compilers at genesis :
rocketed that 5 lg rd hl potable
6, Ris a ctrapechencive peganning lorquages that sappoes object ostentid
as well as procedural poem oath genet ard ‘fiectelass-fanclins
4. ek supports bath cormurd line faterface and Spophical user interface by which «
users can be allowed to do peng at console (evel ardalso allows te work
with sevipts
t, R suppois autde vote of packanes fo handle the problems finthe avon
a fironcal exclos, Heathens, High perfowrnance compily dlesbibuited comin
statics and many more-qe Compitiable vith vastous. dthey a ° Roan inegal with anombe (ig)
fF ai [feet techelri and preqiarerg lng bry was
_ Biodenles- . .
to The & ceemste Se easy Lean at the begteig but ttc haed to
matter it,
a0 with the conmand basedl rit bear Highly incon vesent-for the statistician
and non— comaing profissfonas to wet
8. Redmnmards dot oncen wth rion gporagrert sand ef Rcan
concume a lange amount of memor (
4 ducts lange nember F F packages dwilable and the efi ee
senang then S092 + porta can be 9 por opal :
R Roveorenut ibbp—Teelall Ron weds
alps + Got CRAN profict website
Stipa click on the Download Ror windows link |
Botetamtsiip = "
chp = &clfckon the base subalel clay I [en ox frctall forthe fiat Ufine lok
te mur click Download R-3e3- “4 windows ord ae erecatable cere
i ‘le
Sucpe gun the wet fite and oll the Snctallalion tnéttuctions .~> Boa select the desired lorquage ard The clicked
Sepe5 Ran'the ete file ond flow the anstallalien inctiuction
"e+ Bb. Read the license agrees or click lect
—? Bice gelect the coronas yo usch to install. click Neat
> Bed. Fier [browse the folder pith qoussch to fnslall picts then
conftsm by clicking Nut.
—> bua. Select additional tasks l?ke “ decklop chorlcuts ete shen .
click nleek :
> Bef. wait -for The tnstallation poocessta compte
> Boge click on Finish to 0 camel ‘the installation
R- Environment Estlap-ostal R studio on windows
Sep domalo) begin gots dounload esticlto and atic onthe dlsusnloacl ballon
fox ectidlfo desktop ;
Stepar click orrthe Link-for the window version gclidto and savethe
° tiefile
Sheps ~ Bun the eke and follow the inctallalten indtvucltons
Baas click Netkon the welcome window.
Beb. Enter | browse the path + the inclallbton folder andelick
neal te proc ud.Beco Select the ole of th ctait mena chovkeat ovclick pndo nok cvedde
ohovteats. and then click Next.
Bede wot for thejnstallation proces eave
Bees click Ficich'to end the instaltatfon. ,
Bees eens ee) Uoox 1
te “Add Rte ype epost ey by typh fi the: oll bulng command
> sudo echo "dep bil: II cyan.y claelio. coml bint ubuntiniact ‘atl | a |
A
Tee -O ete | apt | Spares Ie lect. ' 7
Here fe beast vefers to ubuata, 4s 04; poy versfon of ubarikit 48 installed
fin yu arena ane vith the veped Wve Version fron thee art website
do Add ete pubunt keph ‘
> 9p} Kegsewer keyserte. se eet ey Fogq4pney
a : a
> qP] -a— ergot Eo 644 DBAY { suclo apt key add —
3e Finally gnclal| R- Base '
> sudo apt qt up . ,
> sudo apt- qt natal y—base'x— base-dev ty update
“Ai tas way +o tnttal| Ris b ia by -yom commend. The command line
 
an apace ceti)-forthe gare is
4 yor install iBIK cornmand #nélalls the tore fanclfons of the R popsnnieg language
and also the standaxd package equ xed forthe woortiog with Renfler
fncta Ing all the slandasd packages yosean anétall the addflfona| npr
by auschieg Reonsole a)
$R
TRis command feitiatis the R promt > and the neces aug pckages can be
fnstalled b a pg ‘Them as commands. gan
> install. pects Cpl’)
R-Eovracrat stp Tratll Retudfoon Uruk $=
10363 “Instatlin ord tenfiqarrg etadio an Linuk 8
“afte andtalling @-base the next Sep 156 inctall Refadto tEcan be inilalled
by a the fo ca Senple commands. :
to Ftc tnelalll the cove clebsin Cominar| 7 instatlolien i ‘the debsin
| Versfon of Rstadto ra
 
> chido apt- get instal P qdebi cote
~& using the: eget commard| fitch: ‘the debate vextion of gctadto
> penis Il dounload 1 sy ctadto « cong vido soai3b~and 6Yedeb
3. “Apter fe itching Réladto the falascg com corortands inital @ cdo ust The
stordard amON
> sudo gptebi _nvstadto -160.136-and64odeb
Ly. Attis inétalling @ sludko, vernot the nallalton file f ov oa dick gpa
Sm. ¥sladto—tooa4y —amdéyedeb .