0 ratings0% found this document useful (0 votes) 36 views34 pagesAnswers
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
ANSWERS
Answers to questions taken from past examination papers are the sole
responsibility of the authors and have not been approved by the
Examining Boards.
Exercise 1b-p. 3
Re-2
Ryowty
4 Spa
Sayty
6 Pas txt7
1541-0
ML 3x24 18-20
Wt ab—2ae + cb
13, Uer—2er"~ ss?
= +98
5. may + 28 ~
16. SRS + SRF
Exercise 1e-p. 4
7
22
.@t -5 ®t
4@t 0 3
Exercise 1d-p. 4
Le +6r+8
Rb eet 1s
Rat be+a
4s 154 56
Se 41+ 66
62e + Iles
1. 5p 428+ 15
8 Gat a4 12
9. 38 + 861+ 48
10, 95:7 + #2 +6
2 28+ Se 20
4e 43
810
a
Answers
2. 6g — 9-15
Boxy?
30.2 Far 6
Exercise 1e-p.5
Lend
Pere
2
3
4. 92 + 30r + 25
5 ax + 28x +99
62 2e+t
Txt 6r +9
Bae artt
9. 16x? — dar +9
10, 25x — 20+ 4
1, 9p — 421489
Berdyty
13, dp? + 36p + 8
14, 992 ~ 664 + 121
1S. dr? — 2017 + 25)"
Exerse tg-p.7
Ix 2-12
bee
36-254 ae
4 lip? 3p~2
Opt ip +t
ase tr?
aap ent
ise 3— 8
tay Hay
10. 16x?-9
1 oe! +204 49
WB 1s-R-2R°
13. a? ~ 6ab + 96°
14. de? — 20¢ + 25,
15, #0" — 46?
16, 90° + 300b + 256?
1. @) 6-22 () IS,
Ow @ al
Exercise 1h-p. 9
1 + S943)
2 w+ e+ 4)
3 @toet)
4 tae +3)
1 @— Dee=9)
6 @-3)
1+ OMe +2)
8-9-1)
9. @ + Ne -2)
e+ 4u-3)
Ste = She +)
= +)
(+72)
«-P
= e43)
+ 9-3)
+o
= De+
= 6 +3)
te
2. (r= 4x +4)
2B. r= 390x43)
B. tear
Exercise 11
|. Gx = 40x +3)
Ge = 396-2)
ax — Dee
Gx = 2) =
er
= 298 +2)
I. (Sx 4) Sx + 4)
G+a-2
. (x= Nex = 12)
Gx + 5
6-00 +)
0+ 44-30)
1 (xy)
Gx +2)
ety)
(= 2990 +29)
1. x= 9?
3G +20)
rx
20. Gx 48x +3)
ait812
21. (x + 30, - 5)
22. (6~ Sx)6+ 54)
BG ie +y)
4. Ox=29))
25. 06)?
26 (x - 350+ 39)
2 +5)
arty)
2. Gx + 4)2x+9)
30. (pq 2)"
Exercise Up. 11
1
2
3
4
5. not possibte
6 not possible
7, not possible
8% ~2
9. 3x —2yee+ 1)
Wo. r= 344)
11, 36-4 +2)
2.
B
rs
1s.
6
1.
1
(~ oe +2)
not possible
4er= 5x +5)
see
not possible
not poss
not possible
Exercise 1k- p. 12
LO-# 4-2
2 Be ast?
340 8e + 1-5
4-28 +1
5. 2e 9 ~ 24-9
6 +60 + Ihr 6
Ie tae eet
Pea ted
18 e+ 182-9
38 — Six +10
i? + 68x +210
Gc + 2B ~
“16,28
22, 6-1
Bae dey + dey ty
Date dey + Gay ay yt
Exercise 11-p. 14
Loo +904 2427
2 t= 84 2a He + 16
Rirtt4e doe tact
4 bet ne sort
5. x5 15x! + 90" — 270? + 405 ~ 248,
Se"
1b
ay
*— Apa + 69a" — Apa +
4 36+ Ste +27
= oe + Tee ~ G40 + 12808
= 1024
9, hat ~ 108° + $42— IB #1
10, 1 + 200+ 130a! + Sa’ + 6250
1, Gta ~1920"b + 24a? ~ 16a"!
+ ab ~ 120d +B
12, B= te + IS ~ 125
Ma 2)ee- 1)
280
40 -396049)
ae acer
«5
7
CHAPTER 2
Exercise 2a-p. 17
Ay
2 +2)
3a}
Answers
rel
OFD0-9
1
36H)
x42
4,
16
1.
ve
@trsd
18 + not possible
(e+ sKae 2p Ps
el
Besa
)
ery
Exercise 2b~p. 18
Lz
ae
2
a
813
240+ 3)
x3
3
x0
=m
15
sinB + sind
Mad sin B
sind + 008.4
M1 cos sind{ 815
Exercise 2e~ p. 23 aa
‘3 ae IE) eD
4 3ett e+) 26-0 7 ‘
0 :
” _ Saq=3 Teed
= e+
1
a
1. 23-3
S248
. 25 + SVS
4
Z -
See— 1) 3x #3)
24
Gn
Mixed Exercise 2-p. 23
Po9 eth 1Exercise 39 - p. 38
1. bog p + log
2. togp + long + log
i = 12 = O80 of ~1554
ae eee 13. x = 0804 oF 1554
Br =0orr =}
13 Sore = 4 _
15.5 = tor = -
w. tax 2ore =
h -
2 :
Leredye drat
B REssy ease
u. Raekye nee?
5 ereaysaeect
%. eee
n. @redye nbn
Bray
eres Exercise Af p. 50
ae Lox ft
Exercise 3f- p. 36 Gh
Re Peee ies
a6 Ranaye3Answers Answers 819
‘Multiple Cholce Exercise A-p. 58 :
LA Lor
LE =
erent cn 2 IN = 2SemLN = 4Sem
ae 3, BC = 2.25¢em
ferent ae ve
ae ds
7 oY
;
;
;
Bex = Hy2l- Dy = 16-29
“4-4
CHAPTER 5
Exercise 5a-p. 66
12cm
I 2 Sem
3 20cm
4 @) Hom () Trem
55:7
ome |ara (©) pespendicular
perpendicular @) neither
(©) parallel
Exercise 64-p. 89
La=Ob=4
313
14, no; an angle and the side opposite to
it are not known
74
on
821
or
5 (@) 18" (b) 126°
6
1. Idem, 68°
Exercise 79-p. 115,
‘740m
Bem
150m
(2B = 8%sa = em
@ = Ietem:e = 272m
28 3410 = S10em
1. ZC = 8b = deme = 135em
Baeaieac
5
Coraeat
Exercise 7e-
1. 529
29
239
4 408
%
120
1 640
aos
cise 71 - p. 113
4 2BA0 = 14", ZCA0 = 52°; Rom?Answers
823
10, the unshaded region is
the one required.
3
CHAPTER 10
Exercise 10a-p. 152
1. @) ZADE. ZACE—_(b) ZAFE
(@) ZABC
(0) ZCAD. ZCED.
(2) 6.9),531°
ay
5. P = $54°,Q = 312, = 24"
wom we
ou"
Be-2y¥+7 = 0 xed
0.34419 = 0
CHAPTER 9
a Mixed Exercise 9~p. 149
on
3 st
2 * x. 10. Y,
3 uli S S
3 S RS
Spt
aaoswers
0, 8000
(©) = Ofer << 20000
(= 2000) forx > 20000
overeat
x20 (yes fw
() B2em"
5m, 139mm!
) 2S en?
oom
18, 196m, 108 cn domain x > 0 butx < GNPH)
range f(s)> 0
(&) 94t em
(@) 688m
CONSOLIDATION &
Multiple Choice Exercise B- p. 173
Le mB *
Ze 1.BC 4
xc 8. '
ae 2. ® 3
SA wAB
ec nic
a BAC *
ap WE
oA 25.7 Hs
WA wT Oe
c nF
A wT
BD BT
4D a0 7
1D BF t
: :
| 7
40.2455)
1S, (4Y2, 8/24 4).(2 + 4/2, 8/2, a
4 (o 0
5 (@)
4x> bande c-1
S.x>2+ylandx<2-y7
6 -E Sand mTand -Scx<-3
~4ex<-}
meprer
3Sandp 6018 <1
exe
Tees
tered
x>-1
x>landx <-3
2 2h
|. The curve y = 2° is translated 3 units
Ges? +1)
HBG +3)
9x?
(©) Qn Dx. Qne pr
Leas value is 2, greatest valve
0,60", 120%, 180°
dant
409°, 2209°
@) ty2.tv6
in the diection Ox and translated
$ units in the direction yO followed
by a stretch offacior 2 parallel to Oy.
PQ) > 3x2
fla) = 34+ V+
u.
3.
26,
ny.
r-y4tB = 0
(a) 161° + 180"?
(o) 272" + 34, 1528" + 360n°
Onin dm 2m
nn, 2am
x ~4and “1 2
x= 72024
‘odd with period» (&) odd
even (@) even with period 2n
(@) aad (€)
CONSOLIDATION F
‘Multiple Choice Exercise Fp. 688
8
17. AB
c AC
A BAC
gE DAC
E WBC
c Ra
a BAB
c wa
8 2k
A 6.7
E mF
B aT
€ BF
Wc mF
D LT
Ee
+ ot?
2 1p nage gig Ow,
paager
Bon ix he lxi<3Mx = Vy = Pande = =v
yech?
Is x 2p = Sande Ry ot
Worn ya hee ey a3
m72-2ia
Inthe remaining questions, the degree of
aceuracy depends upon the accuracy of
the first approximation: these answers are
15, ~091735, 086366
16. 31038
17. ~14837, 053979
Mixed Exercise 38 - p. 716
OF
(@) -4+ 1y-%
ow -ies
meen
2 Yo, v.2V6
ys
4A = 103.8 =
anata
B= 1+)
15, p> pata
39d-p. 738
~ bai + 34+ 20)
Grn tnAy 2-2 ae
Exercise 39¢~ p. 742868.
TL, (a) arecos
(0) atccos j
) #6 -2)
(46+)
(@) contained in the plane,
Exercise 39)-p. 771
1
©
there is no special
them,
Exercise 40d - p. 790
‘Arguments ate given in ten
6leos0+ i
®
@ 0421
o
Sleoss + isin)
(i) 0-34
869
Mixed Exercse 40~ p. 793
Ge ow
142
CONSOLIDATION G
Multiple Choice Exercise G--p. 799
B 7B
A a
c
E 20.4
D mA
a 2 BC
D BBC
ry WBC
c 2A
E 6B
A 2.BC
c 2. F
.D BF
D 2.7
Cc aL F
E Re
3053"
(@) S13", 287"
bn, 067 rad, 248 rad870
1x = sy = Fors = By = 3"
INDEX
Abscissa 16 ofa triangle 728
‘Acceleration S47 ‘of a volume of revolution 566, $67
BBs Wit j++ AM 3j—W;-2 “Abtimde of a triangle 72 Chain rule 324,377
i ‘Ambiguous case 10S ‘Change of variable 436,
‘Amplitude 358,787 Chord 222
‘Angle 94,163, Circles 150,439
between a line and a plane 125,771 tangents to 157, 158, 482
between two lines 420, 754 touching 447
between two planes 125, 70 Circular (ie. trig) functions 260
between two Vectors 721, 752 fraps of 262,267, 269
enema 94 inverse 361,362, 363
small 366 Coefficient 3
ibn subtended by an are ISL Combination 619, 627, 628,634, 636, 637
#6-3) Common difference 594
i Common ratio 60
Comparative rate of change 403,
Complementary angles 271
Complete primitive $40
Complex number _ 774,796, 777,791
argument of 787
bounded by a curve 462,467,468, conjugate 775
471,351 imaginary part of 776
‘Argand diagram 782 modulus of | 787
‘Asqument 787 real par of 776
| ‘Anthmedic mean 607 vector representation of 783, 784
Avithmetic progression 594, $96 zero 716
Acymptote 192 Complex roots of a quadratic
Compound functions 206
difereniation of 324,373,379
Conic sections» 449
Conjugate 775
Constant of integration 460
Continuous 262,672
Convergence 606
theorem — 642, 80 price
Canesian 76
Cartesian coordinates 76,417 parametric 389
‘equation 437 Cosecant 273
equations of aline 748 Cosine function 266,267
i Centre of gravity 563 ratio 9
Centce of mass 563 rule 109, 112
Centroid 563 Cotangent 273
‘of area 563, 564 Coverup method 505
8713872
Cubic curve 190
funetion 190
Cure sketching 186 187, 200,39,
456, 662
(Cyclic quadrilateral 158
tofind a volume of revolution $56
Delia pref (6) 26
Derivative 227,229
second 250
Derived function 227,229
Difference method 611
Dilference of two squares
coefficient 538
equation 384, $38, $49
solution of 539, 540, 4
variables separable 539
Differentiation — 227,232, 233,234
from first principles 227
‘compound functions 324,343,373, 379
‘exponential functions — 332, 342,343,
188
function of a function $24,330
logarithmic functions 340,342,343,
products 235,327
quotients 235,329
trigonometric functions 370
Direction ratios 736
vector 737
Displacement 546,718
equivalent 718
Distance
‘of plane from origin 761
of point from line 421
fine from plane 767
Element 463,471
Ellipse 449,451
gsation
‘approximate solution of 706,340,713
meaning of 136
ofacincle 439,440
ofan ellipse 451
ofa hyperbola 4s1
‘afaparabola 450
ofa normal 241
quadratic 39
trigonometsic 277,284, 286,291, 358,
359, 697
Equations 136
te complex rots of 780
with repeated roots 52,702
Even function 670
Exponent 194
Exponential equation 700
function — 194, 332
Factor theorem
Factorial 621, 628,631
First moment of area St
fof volume of revolution 566
Frictions
partial 21, S04, $05, $06, 307
proper 22
Frame of reference 75
Free vector 726
Function 181, 182
elie 262
even 610
194,332, 334
201, 202,208
logarithmic 339
Index
modulus of | 674
odd 670
ofa function 207
Period of a 262, 671
Periodic "262, 71
Polynomial 191
quadratic 187
rational 192
sine 260,261
tangent 260,269
trigonometric 260,354
General angle 94
trig ratios of 94,97, 98
General sotution of tig equations
Geometric mean 607
Geometric progression 601, 607
Gradient "83.223
of normal 237
of tangent 237
Hyperbola 449,451
rectangular 452
Identity 279
Inegrat 460
‘approximate value of 472
Sefinite 465,490, 496,
constant of 460
873
Timits of | 466
‘aspect of 481,484, 519,
S32
Intercept 140
Interection 147, $14,676
Traverse trig function 361,362,363,
Inverse function 201,202
graph of 202
Irrational number 26
Terave methods 709
‘equation of 139
gradient of 83
Tength of 79
midpoint of 80
of greatest slope 126
‘angle between 420,754
gradients of perpendicular 86
non-parallel 86, 749)
perpendicular 86
parallel 85,748
skew 748
Locus 437
Logarithm | 34
base of 34
‘Mapping 180
Maximum value 2473874
Mean value of a function $70
2
ou
‘equation 616
of a complex number 787
ofa function 674
ofa vector 718,731
Moment
first of area S64
Using Newton-Raphson 713,
using = gtx) 710
044 fonction 670,
Ordinate 76
Origin 76
Periodic function 262, 671
Permutation 619, 620, 22 634,636,
267.385
125, 70
number 26
Rectangular hyperbola 452
Regression lines 427
Remainder theorem S08
Repeated roots $2,515
Resolved parts 755
Resultant vector 720
Roots
ube 25
general 25
square 2
polynomial equation $12,702
of 706
quadratic equation 39, $1,499
jon to coefficients 499
Sealar 717
Index
Segment 150
Separating the variables 487
Sequence 591
nature of 248
Theorems 63, 67,68, 71
‘Threedimensional space 729
‘Transformation 196, 62
one-way stretch 265, 266, 663
reflecion 198, 62
197, 662
centroid of 728
Undefined 270
Unit vector 730, 796
Canesian 730
representation
resolved parts of 755,
resultant 720
tied 725
tnit 730,736
Vectors 717
angle berween 721.752
Volume of revolution 556Coré Maths for A-level has been written to cover the whaie of the Common Core
syllabus for A level Hathematies, together withthe additional material required bY
most Examining Boards
© Because students enter A-level courses (rom a variety of backgrounds, the early]
chapters provide transitional material of an introductory nature.
Allchapters contain some new work however, to interest those students who
come to the course With a higher level of skilis and knowledge.
Exercises are included at frequent intervals, giving ample provision ot
straightforward questions
Consolidation Sections contain a summary.of the preceding work and multiple:
choice questions as well as quéstiansat the level of sophistication found in
‘A-level examination papers. These questions are intended for practice when
udent has, through experience, developed conficience and Skil