0% found this document useful (0 votes)
23 views43 pages

LEC4

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
23 views43 pages

LEC4

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 43

‫كلية الهندسة‬

Faculty of Engineering

Dr. Shaimaa Abd El-Hamid Kandil


Contact details: shaimaa.kandil@h-eng.helwan.edu.eg
Chapter (3)
Lecture (4)
Three Phase Rectifier

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 2


Introduction
Rectifiers

Single Phase Rectifier Three Phase Rectifier

Controlled Rectifier Uncontrolled Rectifier

Half-wave Rectifier Full-wave Rectifier

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 3


Power Electronics Converters
Today’s Lecture Outlines:
➢ Types of Three Phase Rectifiers.

➢ Principle of Operation.

➢ Analysis of Three Phase Half Wave Controlled Rectifier Circuits

✓ Resistive Load

✓ Battery Charger.

✓ Highly Inductive Load.

✓ Highly Inductive Load with FWD.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 4


Three Phase Controlled Rectifier
Introduction
Three Phase Rectifiers

Half-Wave Rectifiers Full-Wave Rectifiers


(Three pulses) (Six Pulses)

The advantages of using three phase rectifiers are:


➢ The output power is high, and thus, they are used to supply power to large loads.

➢ The ripples in the output voltage are low, which means that the output voltage waveform is closer to

the DC waveform.

➢ The input power factor is higher as compared to single phase rectifiers.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 5


Three Phase Controlled Rectifier
Introduction
➢ Three phase rectifiers are divided into two main categories:
1- Uncontrolled three phase rectifiers.
2- Controlled three phase rectifiers.
Uncontrolled Three Phase Rectifiers

Uncontrolled 3-Phase Uncontrolled 3-Phase


Half-Wave Rectifier Full-Wave Rectifier

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 6


Three Phase Controlled Rectifier
Introduction
➢ Three phase rectifiers are divided into two main categories:
1- Uncontrolled three phase rectifiers.
2- Controlled three phase rectifiers.
Controlled Three Phase Rectifiers

Controlled 3-Phase Controlled 3-Phase


Half-Wave Rectifier Full-Wave Rectifier

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 7


Three Phase Controlled Rectifier
Introduction
Three Phase Voltage Source
✓ Three phase circuits can be balanced or unbalanced; however, we will
focus only on balanced three phase circuits.
✓ A balanced three phase voltage source is composed of three single
phase voltage supplies each having the same magnitude, but they are
phase shifted by 120 o from each other.

✓ The three phases are usually named a, b and c.

✓ There is a reference node from which the phase voltages are measured
and is called the neutral point n.

✓ The voltages that are measured from the neutral point are called the phase voltages.

✓ The voltages that are measured from phase to another phase are called the line voltages.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 8


Three Phase Controlled Rectifier
Introduction
Three Phase Voltage Source

✓ The balanced phase voltages can be expressed by:

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 9


Three Phase Half -

Wave Controlled

Rectifier

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 10


Three Phase Half-Wave Controlled Rectifier
Power Circuit: Principle of operation:

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 11


Three Phase Half-Wave Controlled Rectifier
Power Circuit: Principle of operation:

➢ If Va> Vb & Va > Vc T1 conduct


Vo = Va

T1

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 12


Three Phase Half-Wave Controlled Rectifier
Power Circuit: Principle of operation:

➢ If Va> Vb & Va > Vc T1 conduct


Vo = Va

➢ If Vb > Va & Vb > Vc T2 conduct

Vo = Vb

T1 T2

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 13


Three Phase Half-Wave Controlled Rectifier
Power Circuit: Principle of operation:

➢ If Va> Vb & Va > Vc T1 conduct


Vo = Va

➢ If Vb > Va & Vb > Vc T2 conduct

Vo = Vb

➢ If Vc > Va & Vc > Vb T3 conduct

Vo = Vc

T1 T2 T3

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 14


Three Phase Half-Wave Controlled Rectifier
Power Circuit: Principle of operation:
✓ The firing angles for the three thyristors are equal.
✓ The firing angle of each thyristor is measured from
the intersection between two phase voltages.

✓ Each thyristor can conduct for 360o/3 = 120o

✓ The output voltage waveform can be positive only or


have a negative portion depending on the firing
angle and the load.

T1 T2 T3

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 15


Analysis of Three Phase Half Wave

Controlled Rectifier Circuits

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 16


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏
Vs
Va Vb Vc

wt

Vo
T3 T1 T2 T3 T1

wt
io
R- Load 𝜶 < 𝟑𝟎𝒐
The output voltage will be continuous iT1 wt
𝑣𝑜
𝑖𝑜 =
𝑅 iT2 wt
𝑖𝑎 = 𝑖 𝑇1
iT3 wt
𝑖𝑏 = 𝑖 𝑇2

𝑖𝑐 = 𝑖 𝑇3 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 17


Three Phase Half-Wave Controlled Rectifier
𝒐
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 R- Load 𝜶 < 𝟑𝟎
Vs
Va Vb Vc
Circuit Performance parameters:
1- Average Output Voltage:
𝑜 +120𝑜
1 𝛼+30 wt
𝑉𝑜𝑎𝑣 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜

Vo
𝛼+5𝜋ൗ6
1 T1 T2 T3 T1
𝑉𝑜𝑎𝑣 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡 T3
2𝜋Τ3 𝛼+𝜋ൗ
6
wt
io
3 3
𝑉𝑜𝑎𝑣 = 𝑉 cos 𝛼
2𝜋 𝑝ℎ𝑚
iT1 wt

iT2 wt

iT3 wt

wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 18


Three Phase Half-Wave Controlled Rectifier
𝒐
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 R- Load 𝜶 < 𝟑𝟎
Vs
Va Vb Vc
Circuit Performance parameters:
1- Average Output Voltage:
𝑜 +120𝑜
1 𝛼+30 wt
𝑉𝑜𝑎𝑣 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜

Vo
2- Average Output Current:
T3 T1 T2 T3 T1
𝑉𝑜𝑎𝑣
𝐼𝑜𝑎𝑣 =
𝑅 wt
io
3- RMS Output Voltage:

1 𝛼+30𝑜 +120𝑜
2
iT1 wt
𝑉𝑜𝑟𝑚𝑠 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜
iT2 wt

4- RMS Output Current:


iT3 wt
𝑉𝑜𝑟𝑚𝑠
𝐼𝑜𝑟𝑚𝑠 =
𝑅 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 19


Three Phase Half-Wave Controlled Rectifier
𝒐
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 R- Load 𝜶 < 𝟑𝟎
Vs
Va Vb Vc
Circuit Performance parameters:
5- Average Thyristor Current:
𝐼𝑜𝑎𝑣
𝐼𝑇𝑎𝑣 = wt
3
6- RMS Thyristor Current:
Vo
𝐼𝑜𝑟𝑚𝑠
𝐼𝑇𝑟𝑚𝑠 = T1 T2 T3 T1
3 T3
5- Average Output Power: wt
2
𝑃𝑜 = 𝐼𝑜𝑟𝑚𝑠 ∗𝑅
io

6- Input Power Factor: iT1 wt


𝑃𝑜
𝑝. 𝑓𝑠 = iT2 wt
3𝑉𝑝ℎ𝑟𝑚𝑠 𝐼𝑝ℎ𝑟𝑚𝑠

7- RMS Phase Current: iT3 wt


𝐼𝑜𝑟𝑚𝑠
𝐼𝑇𝑟𝑚𝑠 = 𝐼𝑝ℎ𝑟𝑚𝑠 =
3 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 20


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 α = 60o
Vs
Va Vb Vc

wt

Vo

T3 T1 T2 T3 T1
wt
io
R- Load 𝜶 > 𝟑𝟎𝒐
The output voltage will be discontinuous iT1 wt

𝑖𝑎 = 𝑖 𝑇1 iT2 wt

𝑖𝑏 = 𝑖 𝑇2 iT3 wt

𝑖𝑐 = 𝑖 𝑇3
wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 21


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 α = 60o
Vs
Va Vb Vc
Circuit Performance parameters:
1- Average Output Voltage:
𝜋
1 wt
𝑉𝑜𝑎𝑣 = න 𝑉 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜 𝑝ℎ𝑚

Vo
𝜋
1
𝑉𝑜𝑎𝑣 = න 𝑉 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+𝜋ൗ 𝑝ℎ𝑚
6
T3 T1 T2 T3 T1
wt

3 𝜋
io
𝑉𝑜𝑎𝑣 = 𝑉𝑝ℎ𝑚 1 + cos 𝛼 +
2𝜋 6
iT1 wt

iT2 wt

iT3 wt

wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 22


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 α = 60o
Vs
Va Vb Vc
Circuit Performance parameters:
1- Average Output Voltage:
𝜋
1 wt
𝑉𝑜𝑎𝑣 = න 𝑉 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜 𝑝ℎ𝑚

Vo
2- Average Output Current:
𝑉𝑜𝑎𝑣
T3 T1 T2 T3 T1
𝐼𝑜𝑎𝑣 =
𝑅 wt
io
3- RMS Output Voltage:

1 𝜋
2 iT1 wt
𝑉𝑜𝑟𝑚𝑠 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜
iT2 wt
4- RMS Output Current:
iT3 wt
𝑉𝑜𝑟𝑚𝑠
𝐼𝑜𝑟𝑚𝑠 =
𝑅 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 23


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 α = 60o
Vs
Va Vb Vc
Circuit Performance parameters:
5- Average Thyristor Current:
𝐼𝑜𝑎𝑣
𝐼𝑇𝑎𝑣 = wt
3
6- RMS Thyristor Current:
Vo
𝐼𝑜𝑟𝑚𝑠
𝐼𝑇𝑟𝑚𝑠 =
3 T3 T1 T2 T3 T1
5- Average Output Power: wt
2
𝑃𝑜 = 𝐼𝑜𝑟𝑚𝑠 ∗𝑅
io

6- Input Power Factor: iT1 wt


𝑃𝑜
𝑝. 𝑓𝑠 = iT2 wt
3𝑉𝑝ℎ𝑟𝑚𝑠 𝐼𝑝ℎ𝑟𝑚𝑠
7- RMS Phase Current:
iT3 wt
𝐼𝑜𝑟𝑚𝑠
𝐼𝑇𝑟𝑚𝑠 = 𝐼𝑝ℎ𝑟𝑚𝑠 =
3 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 24


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏
Vs
Va Vb Vc

wt

Vo
T3 T1 T2 T3 T1
wt
io
R- Load 𝜶 = 𝟑𝟎𝒐
At a firing angle of 30o the output
voltage waveform touches the x-axis
iT1 wt

The output voltage will be critically iT2 wt


continuous
𝑖𝑎 = 𝑖 𝑇1 iT3 wt

𝑖𝑏 = 𝑖 𝑇2
wt
𝑖𝑐 = 𝑖 𝑇3 The same calculations for R- Load 𝜶 < 𝟑𝟎𝒐 𝒐𝒓 R− Load 𝜶 > 𝟑𝟎𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 25
Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 α = 60o
Vs
Va Vb Vc

wt

Vo

T3 T1 T2 T3 T1
wt
io
R- Load 𝜶 > 𝟑𝟎𝒐
The output voltage will be discontinuous iT1 wt

𝑖𝑎 = 𝑖 𝑇1 iT2 wt

𝑖𝑏 = 𝑖 𝑇2 iT3 wt

𝑖𝑐 = 𝑖 𝑇3
wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 26


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 α = 60o
Vs
Va Vb Vc
Circuit Performance parameters:
1- Average Output Voltage:
𝜋
1 wt
𝑉𝑜𝑎𝑣 = න 𝑉 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜 𝑝ℎ𝑚

Vo
2- Average Output Current:
𝑉𝑜𝑎𝑣
T3 T1 T2 T3 T1
𝐼𝑜𝑎𝑣 =
𝑅 wt
io
3- RMS Output Voltage:

1 𝜋
2 iT1 wt
𝑉𝑜𝑟𝑚𝑠 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜
iT2 wt
4- RMS Output Current:
iT3 wt
𝑉𝑜𝑟𝑚𝑠
𝐼𝑜𝑟𝑚𝑠 =
𝑅 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 27


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 α = 60o
Vs
Va Vb Vc
Circuit Performance parameters:
5- Average Thyristor Current:
𝐼𝑜𝑎𝑣
𝐼𝑇𝑎𝑣 = wt
3
6- RMS Thyristor Current:
Vo
𝐼𝑜𝑟𝑚𝑠
𝐼𝑇𝑟𝑚𝑠 =
3 T3 T1 T2 T3 T1
5- Average Output Power: wt
2
𝑃𝑜 = 𝐼𝑜𝑟𝑚𝑠 ∗𝑅
io

6- Input Power Factor: iT1 wt


𝑃𝑜
𝑝. 𝑓𝑠 = iT2 wt
3𝑉𝑝ℎ𝑟𝑚𝑠 𝐼𝑝ℎ𝑟𝑚𝑠
7- RMS Phase Current:
iT3 wt
𝐼𝑜𝑟𝑚𝑠
𝐼𝑇𝑟𝑚𝑠 = 𝐼𝑝ℎ𝑟𝑚𝑠 =
3 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 28


Three Phase Half-Wave Controlled Rectifier
Resistive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏
Vs
Va Vb Vc

wt

Vo
T3 T1 T2 T3 T1
wt
io
R- Load 𝜶 = 𝟑𝟎𝒐
At a firing angle of 30o the output
voltage waveform touches the x-axis
iT1 wt

The output voltage will be critically iT2 wt


continuous
𝑖𝑎 = 𝑖 𝑇1 iT3 wt

𝑖𝑏 = 𝑖 𝑇2
wt
𝒐 𝒐
𝑖𝑐 = 𝑖 𝑇3 The same calculations for R- Load 𝜶 < 𝟑𝟎 𝒐𝒓 R− Load 𝜶 > 𝟑𝟎
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 29
Three Phase Half-Wave Controlled Rectifier
Highly Inductive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏
Vs
Va Vb Vc

wt

Vo
T3 T1 T2 T3 T1

wt
io 𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠
𝜶 < 𝟑𝟎𝒐
iT1 wt
The output voltage will be continuous

𝑖𝑎 = 𝑖 𝑇1 iT2 wt

𝑖𝑏 = 𝑖 𝑇2 iT3 wt

𝑖𝑐 = 𝑖 𝑇3 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 30


Three Phase Half-Wave Controlled Rectifier
Highly Inductive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 𝜶 < 𝟑𝟎𝒐
Vs
Va Vb Vc
Circuit Performance parameters:
1- Average Output Voltage:

1 𝛼+30 𝑜 +120𝑜
wt
𝑉𝑜𝑎𝑣 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜
Vo
2- Average Output Current:
T3 T1 T2 T3 T1
𝑉𝑜𝑎𝑣
𝐼𝑜𝑎𝑣 =
𝑅 wt
𝑉𝑜𝑎𝑣 − 𝐸𝑏 io 𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠
➢ with 𝐸𝑏 𝐼𝑜𝑎𝑣 =
𝑅
3- RMS Output Voltage: iT1 wt

1 𝛼+30 𝑜 +120𝑜
2 iT2 wt
𝑉𝑜𝑟𝑚𝑠 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜
iT3 wt
4- RMS Output Current:
wt
𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 31
Three Phase Half-Wave Controlled Rectifier
Highly Inductive Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏 𝜶 < 𝟑𝟎𝒐
Vs
Va Vb Vc
Circuit Performance parameters:
5- Average Thyristor Current:
𝐼𝑜𝑎𝑣
𝐼𝑇𝑎𝑣 = wt
3
6- RMS Thyristor Current:
Vo
𝐼𝑜𝑟𝑚𝑠
𝐼𝑇𝑟𝑚𝑠 = T1 T2 T3 T1
3 T3
5- Average Output Power: wt

𝑃𝑜 = 𝑉𝑜𝑎𝑣 ∗ 𝐼𝑜𝑎𝑣
io 𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠

6- Input Power Factor: iT1 wt


𝑃𝑜
𝑝. 𝑓𝑠 = iT2 wt
3𝑉𝑝ℎ𝑟𝑚𝑠 𝐼𝑝ℎ𝑟𝑚𝑠
7- RMS Phase Current:
iT3 wt
𝐼𝑜𝑟𝑚𝑠
𝐼𝑇𝑟𝑚𝑠 = 𝐼𝑝ℎ𝑟𝑚𝑠 =
3 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 32


Three Phase Half-Wave Controlled Rectifier
Highly Inductive Load : α = 60o
Vs
Va Vb Vc

wt

Vo
T3 T1 T2 T3 T1
wt
io 𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠
𝜶 > 𝟑𝟎𝒐

The output voltage will be continuous iT1 wt

For : 𝜶 < 𝟑𝟎𝒐 iT2 wt


or 𝜶 ≥ 𝟑𝟎𝒐
𝑜 +120𝑜
𝛼+30
iT3 wt
1
𝑉𝑜𝑎𝑣 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜
wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 33


Three Phase Half-Wave Controlled Rectifier
Highly Inductive Load with FWD : α = 60o
Vs
Va Vb Vc

wt

Vo
T3 T1 T2 T3 T1
wt
io 𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠
𝜶 > 𝟑𝟎𝒐

The output voltage will be discontinuous iT1 wt

iT2 wt

iT3 wt

iFWD wt

wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 34
Three Phase Half-Wave Controlled Rectifier
Highly Inductive Load with FWD : α = 60o
Vs
Circuit Performance parameters: Va Vb Vc
1- Average Output Voltage:
𝜋
1
𝑉𝑜𝑎𝑣 = න 𝑉 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡 wt
2𝜋Τ3 𝛼+30𝑜 𝑝ℎ𝑚

2- Average Output Current:


𝑉𝑜𝑎𝑣
Vo
𝐼𝑜𝑎𝑣 =
𝑅 T3 T1 T2 T3 T1
3- RMS Output Voltage: wt

𝜋
io 𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠
1 2
𝑉𝑜𝑟𝑚𝑠 = න 𝑉𝑝ℎ𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
2𝜋Τ3 𝛼+30𝑜
iT1 wt
4- RMS Output Current:
iT2 wt
𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠
iT3 wt
5- Average Output Power:
iFWD wt
𝑃𝑜 = 𝑉𝑜𝑎𝑣 ∗ 𝐼𝑜𝑎𝑣
wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 35
Three Phase Half-Wave Controlled Rectifier
Highly Inductive Load with FWD : α = 60o
Vs
Circuit Performance parameters: Va Vb Vc
6- Average Thyristor Current:
1 𝜋
𝐼𝑇𝑎𝑣 = න 𝐼 𝑑𝜔𝑡
2𝜋 𝛼+30𝑜 𝑜𝑎𝑣 wt

7- RMS Thyristor Current:


1 𝜋 Vo
𝐼𝑇𝑟𝑚𝑠 = න 𝐼𝑜𝑎𝑣 2 𝑑𝜔𝑡
2𝜋 𝛼+30𝑜
T3 T1 T2 T3 T1
8- Average Diode Current: wt
𝜋+𝛼−30𝑜
3 io 𝐼𝑜𝑎𝑣 ≈ 𝐼𝑜𝑟𝑚𝑠
𝐼𝐷𝑎𝑣 = න 𝐼𝑜𝑎𝑣 𝑑𝜔𝑡
2𝜋 𝜋
𝑜
3 𝛼+30 iT1 wt
or : 𝐼𝐷𝑎𝑣 = න
2𝜋 60𝑜
𝐼𝑜𝑎𝑣 𝑑𝜔𝑡
iT2 wt
9- Input Power Factor:
𝑃𝑜 iT3 wt
𝑝. 𝑓𝑠 =
3𝑉𝑝ℎ𝑟𝑚𝑠 𝐼𝑝ℎ𝑟𝑚𝑠
iFWD wt
10- RMS Phase Current:
𝐼𝑝ℎ𝑟𝑚𝑠 = 𝐼𝑇𝑟𝑚𝑠 wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 36
Three Phase Half-Wave Controlled Rectifier
R-Eb Load : 𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟏
Vs
Va Vb Vc
𝐸𝑏
𝛼𝑜 = 𝑠𝑖𝑛−1
𝑉𝑝ℎ𝑚
𝛼 ≥ 𝛼𝑜
wt

Vo

T3 T1 T2 T3 T1
wt
io
R- Load 𝜶 = 𝟑𝟎𝒐
At 𝜔𝑡 = 𝜋 − 𝛼𝑜 the output current
waveform touches the x-axis.
iT1 wt

𝑖𝑎 = 𝑖 𝑇1 iT2 wt
𝑖𝑏 = 𝑖 𝑇2
𝑖𝑐 = 𝑖 𝑇3 iT3 wt

Can you calculate the circuit


wt
performance parameters?

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 37


Three Phase Half-Wave Controlled Rectifier
Highly Inductive Load with FWD :
To draw the thyristors anode cathode voltage:
𝑣𝑇1 = 𝑣𝑎 − 𝑣𝑜

𝑣𝑇2 = 𝑣𝑏 − 𝑣𝑜

𝑣𝑇3 = 𝑣𝑐 − 𝑣𝑜
The output voltage is a phase voltage so the voltage drop across the thyristors will be line voltages; so the
line voltages have to be drawn.
𝑣𝑎 − 𝑣𝑏 = 𝑣𝑎𝑏
𝑣𝑎 − 𝑣𝑐 = 𝑣𝑎𝑐

𝑣𝑏 − 𝑣𝑐 = 𝑣𝑏𝑐
𝑣𝑏 − 𝑣𝑎 = 𝑣𝑏𝑎

𝑣𝑐 − 𝑣𝑎 = 𝑣𝑐𝑎
𝑣𝑐 − 𝑣𝑏 = 𝑣𝑐𝑏

The line voltage lead the phase voltage by angle 30𝑜 , the phase shift between line voltages are 60𝑜
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 38
Three Phase Half-Wave Controlled Rectifier
For Highly Inductive Load with or without FWD with 𝛼 < 30𝑜 : α = 20o
The same for resistive load and
firing angle less than 30o.

T3 T1 T2 T3

𝒗𝑻𝟏 = 𝒗𝒂 − 𝒗𝒐
𝒗𝒂𝒄
𝒗𝑻𝟐 = 𝒗𝒃 − 𝒗𝒐

𝒗𝑻𝟑 = 𝒗𝒄 − 𝒗𝒐
𝒗𝒄𝒃

𝒗𝒄𝒂 𝒗𝒃𝒄
𝒗𝒃𝒄 𝒗𝒃𝒂 𝒗𝒂𝒃 𝒗𝒂𝒄

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 39


Three Phase Half-Wave Controlled Rectifier
For Highly Inductive Load without FWD with 𝛼 > 30𝑜 : α = 60o

𝒗𝑻𝟏 = 𝒗𝒂 − 𝒗𝒐
T3 T1 T2 T3
𝒗𝑻𝟐 = 𝒗𝒃 − 𝒗𝒐

𝒗𝑻𝟑 = 𝒗𝒄 − 𝒗𝒐

𝒗𝒂𝒄

𝒗𝒃𝒂 𝒗𝒄𝒃 𝒗𝒂𝒄

𝒗𝒃𝒄
𝒗𝒄𝒂 𝒗𝒂𝒃 𝒗𝒃𝒄

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 40


Three Phase Half-Wave Controlled Rectifier
For Highly Inductive Load with FWD with 𝛼 > 30𝑜 : α = 60o

𝒗𝑻𝟏 = 𝒗𝒂 − 𝒗𝒐
T3 T1 T2 T3
𝒗𝑻𝟐 = 𝒗𝒃 − 𝒗𝒐

𝒗𝑻𝟑 = 𝒗𝒄 − 𝒗𝒐

𝒗𝒂 𝒗𝒃 𝒗𝒄

𝒗𝒂𝒄

𝒗𝒄 𝒗𝒂 𝒗𝒃

𝒗𝒃𝒂 𝒗𝒄𝒃 𝒗𝒂𝒄


𝒗𝒃 𝒗𝒄 𝒗𝒂
𝒗𝒃𝒄
𝒗𝒄𝒂 𝒗𝒂𝒃 𝒗𝒃𝒄

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 41


Three Phase Half-Wave Controlled Rectifier
Assignment (3)
➢ In the converter circuit shown, L is so large such that the current I is assumed constant,
𝒗𝒂 = 𝟐𝑽 𝐬𝐢𝐧 𝝎𝒕
𝒗𝒃 = 𝟐𝑽 𝐬𝐢𝐧 𝝎𝒕 − 𝟐𝝅Τ𝟑
𝒗𝒄 = 𝟐𝑽 𝐬𝐢𝐧 𝝎𝒕 + 𝟐𝝅Τ𝟑
𝑽 = 𝟏𝟐𝟎 𝑽
𝑹 = 𝟏𝟎 𝜴
𝜶 = 𝟑𝟎𝒐
𝑬𝒃 = 𝟐𝟎 𝑽

▪ Sketch waveforms of va, vb, vc, vo. iT1 , iT2 and VT3

▪ Calculate the average value of I0 and rms value of output voltage.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 42


Thank You

Study hard

See you the next lecture …….

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 43

You might also like