LEC3
LEC3
Faculty of Engineering
➢ Resistive Load
➢ Battery Charger
Operation:
Positive half-cycle: Negative half-cycle:
𝒗𝒐 = 𝒗𝒔 𝒗𝒐 = −𝒗𝒔
T1 & T2 are forward conduction, T3 & T4 are forward conduction,
T3 & T4 are reversed. T1 & T2 are reversed.
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 4
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier.
vs vs -vs
π 2π 3π w t
Center-tapped Transformer
𝑉𝑠 𝑁𝑠
=
𝑉𝑃 2𝑁𝑝
𝐼𝐴 2𝑁𝑝
=
𝐼𝑃 𝑁𝑠
𝐼𝑠 = 𝐼𝐴 − 𝐼𝐵
𝐼𝐵 2𝑁𝑝
=
𝐼𝑃 𝑁𝑠
6
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 6
Single Phase Full-Wave Controlled Rectifier
Center-tapped Transformer
Operation:
Positive half-cycle: Negative half-cycle:
𝒗𝒐 = 𝒗𝒔 𝒗𝒐 = −𝒗𝒔
T1 is forward conduction, T2 is forward conduction,
T2 is reversed. T1 is reversed.
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 7
Single Phase Full-Wave Controlled Rectifier
Center-Tap Rectifier. Resistive Load.
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕
Operation:
During Positive Half Cycle:
T1 turns on , T2 off.
𝑵𝒑 : 2 𝑵𝒔
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig2 T1 ON
π+a wt
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕 T2 ON
vo
Operation: wt
𝑵𝒑 : 2 𝑵𝒔
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig2 T1 ON
π+a wt
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕 T2 ON
vo
Operation: iT1 wt
is 𝐼𝑇1
𝑁𝑠
𝑁𝑝
wt
wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 11
Single Phase Full-Wave Controlled Rectifier
i=0
Waveforms : 𝝎𝒕 = 𝝅
Center-Tap Rectifier. Resistive Load. vs Vm
𝑵𝒑 : 2 𝑵𝒔
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig2 T1 ON
π+a wt
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕 T2 ON
vo
Operation: iT1 wt
wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 12
Single Phase Full-Wave Controlled Rectifier
i=0
Waveforms : 𝝎𝒕 = 𝝅
Center-Tap Rectifier. Resistive Load. vs Vm
𝑵𝒑 : 2 𝑵𝒔
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig2 T1 ON
π+a wt
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕 T2 ON
vo
Operation: iT1 wt
io wt
is 𝐼𝑇1
𝑁𝑠
𝑁𝑝 𝑁
wt
-𝐼𝑇2 𝑁𝑠
𝑝
wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 15
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier.
𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 17
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐
io wt
is wt
wt
𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 18
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐
wt
𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 19
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4 wt
𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 20
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐
𝑉𝑜𝑟𝑚𝑠 − 𝐸
𝐼𝑜𝑟𝑚𝑠 = wt
𝑅
𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 21
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐
vo wt
wt
vo wt
wt
IT1,2
IT3,4 wt
wt
is
wt
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 24
Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Rectifier. vs Vm
𝜋+𝛼
Io T3,4 ON
1 𝐼𝑜𝑎𝑣
𝐼𝑇𝑎𝑣 = න 𝐼𝑜𝑎𝑣 𝑑𝜔𝑡 =
2𝜋 𝛼 2
vo wt
8- RMS SCR Current:
1 𝜋+𝛼 2
𝐼𝑜𝑟𝑚𝑠 wt
𝐼𝑇𝑟𝑚𝑠 = න 𝐼𝑜𝑎𝑣 𝑑𝜔𝑡 =
2𝜋 𝛼 2 IT1,2
IT3,4 wt
wt
is
wt
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 26
Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Rectifier. vs Vm
wt
is
wt
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 27
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier.
𝒗𝑻𝟒 𝒗𝑻𝟐
𝒗𝒐 = 𝒗𝒔 𝒗𝒐 = −𝒗𝒔
𝒗𝑻𝟑,𝟒
wt
π 2π 3π
wt
io -Vm
vo wt
iT1 wt
iT4
iT2 wt
iT3
wt
iD
wt
is
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇3 wt
a π+a 2π+a
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 30
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier. vs Vm
1 𝜋 io -Vm
𝑉𝑜𝑎𝑣 = න 𝑉𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
𝜋 𝛼
vo wt
Voav with FWD is < or > Voav without FWD?
iT1 wt
iT4
iT2 wt
iT3
wt
iD
wt
Voav with FWD is > Voav without FWD is
wt
a π+a 2π+a
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 31
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier. vs Vm
1 𝜋 io -Vm
𝑉𝑜𝑎𝑣 = න 𝑉𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
𝜋 𝛼
2- Average Output Current:
vo wt
𝑉𝑜𝑎𝑣
𝐼𝑜𝑎𝑣 =
𝑅
3- RMS Output Current: iT1 wt
𝒗𝑻𝟑
𝒗𝑻𝟒 𝒗𝑻𝟑 𝒗𝑻𝟒
T1 & T4 on , T3 & T2 & FWD off. T3 & T2 on , T1 & T4 & FWD off. All SCRs off , FWD on.
𝒗𝒐 = 𝒗𝒔 𝒗𝒐 = −𝒗𝒔 𝒗𝒐 = 𝟎
𝒗𝒔
𝒗𝑻𝟏 = 𝒗𝑻𝟒 = 𝟎 𝒗𝑻𝟑 = 𝒗𝑻𝟐 = 𝟎 𝒗𝑻𝟏 = 𝒗𝑻𝟒 =
𝟐
𝒗𝑻𝟏 = 𝒗𝑻𝟒 = −𝒗𝒐 = 𝒗𝒔 𝒗𝒔
𝒗𝑻𝟑 = 𝒗𝑻𝟐 = −𝒗𝒐 = −𝒗𝒔 𝒗𝑻𝟑 = 𝒗𝑻𝟐 = −
𝟐
π 2π 3π
wt
io -Vm
vo wt
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 D2 T1 & D 2
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 D2 T1 & D 2
io
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
vo wt
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 D2 T1 & D 2
D2
io D4
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
vo wt
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 T1 & D 2
D2 T3 & D 4 D2
io D4
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
vo wt
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 T1 & D 2
D2 T3 & D 4 D2
io D4 D4 D4
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
vo wt
π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 T1 & D 2
D2 T3 & D 4 D2
io D4 D4 D4
vo wt
iT1 wt
iT3 wt
iD2 wt
iD4 wt
1 𝜋
vo wt
𝐼𝑇𝑎𝑣 = න 𝐼 𝑑𝜔𝑡
2𝜋 𝛼 𝑜𝑎𝑣
iT1 wt
4- Average Diode Current:
iT3 wt
1 𝜋+𝛼
𝐼𝐷𝑎𝑣 = න 𝐼𝑜𝑎𝑣 𝑑𝜔𝑡
2𝜋 0 iD2 wt
iD4 wt
𝑣𝑠 = 120 2 sin 𝜔𝑡
𝑅 =5Ω
𝐸 = 20 𝑉
𝛼 = 60𝑜
Study hard