0% found this document useful (0 votes)
24 views45 pages

LEC3

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
24 views45 pages

LEC3

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 45

‫كلية الهندسة‬

Faculty of Engineering

Dr. Shaimaa Abd El-Hamid Kandil


Contact details: shaimaa.kandil@h-eng.helwan.edu.eg
Chapter (2)
Lecture (3)
Single Phase Rectifier……

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 2


Single Phase Full-Wave Controlled Rectifier
Today’s Lecture Outlines:
Single Phase Full-Wave Controlled Rectifier

Center-Tap Transformer Full-wave


Full-Wave Rectifier. Bridge Rectifier.

➢ Resistive Load

➢ Battery Charger

➢ Highly Inductive Load

➢ Highly Inductive Load with FWD

➢ Single Phase Full-Wave Half-Controlled Rectifier.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 3


Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier.

The single-phase bridge uses 4 thyristors and produces


an output average voltage which is almost double that
produced from a half-wave rectifier operating at the
same conditions.

Operation:
Positive half-cycle: Negative half-cycle:

𝒗𝒐 = 𝒗𝒔 𝒗𝒐 = −𝒗𝒔
T1 & T2 are forward conduction, T3 & T4 are forward conduction,
T3 & T4 are reversed. T1 & T2 are reversed.
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 4
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier.

The single phase bridge uses 4 thyristors and produces


an output average voltage which is almost double that
produced from a half-wave rectifier operating at the
same conditions.
To ensure the proper operation:
▪ T1 and T2 are fired together at α, during the +ve half cycle, while
▪ T3 and T4 are fired together at π+α during the –ve half cycle.
▪ Thus, to analyze the circuit, we draw both vs and –vs

vs vs -vs

π 2π 3π w t

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 5


Single Phase Full-Wave Controlled Rectifier

Center-Tap Transformer Full-Wave Rectifier.

Center-tapped Transformer

𝑉𝑠 𝑁𝑠
=
𝑉𝑃 2𝑁𝑝

𝐼𝐴 2𝑁𝑝
=
𝐼𝑃 𝑁𝑠
𝐼𝑠 = 𝐼𝐴 − 𝐼𝐵
𝐼𝐵 2𝑁𝑝
=
𝐼𝑃 𝑁𝑠
6
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 6
Single Phase Full-Wave Controlled Rectifier

Center-Tap Transformer Full-Wave Rectifier.

Center-tapped Transformer
Operation:
Positive half-cycle: Negative half-cycle:

𝒗𝒐 = 𝒗𝒔 𝒗𝒐 = −𝒗𝒔
T1 is forward conduction, T2 is forward conduction,
T2 is reversed. T1 is reversed.
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 7
Single Phase Full-Wave Controlled Rectifier
Center-Tap Rectifier. Resistive Load.

𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 8


Single Phase Full-Wave Controlled Rectifier
Center-Tap Rectifier. Resistive Load.
𝑵𝒑 : 2 𝑵𝒔

𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕

Operation:
During Positive Half Cycle:
T1 turns on , T2 off.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 9


Single Phase Full-Wave Controlled Rectifier
i=0
Waveforms : 𝝎𝒕 = 𝝅
Center-Tap Rectifier. Resistive Load. vs Vm

𝑵𝒑 : 2 𝑵𝒔

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig2 T1 ON
π+a wt
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕 T2 ON
vo

Operation: wt

During Positive Half Cycle:


T1 turns on , T2 off.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 10


Single Phase Full-Wave Controlled Rectifier
i=0
Waveforms : 𝝎𝒕 = 𝝅
Center-Tap Rectifier. Resistive Load. vs Vm

𝑵𝒑 : 2 𝑵𝒔

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig2 T1 ON
π+a wt
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕 T2 ON
vo

Operation: iT1 wt

During Positive Half Cycle:


iT2 wt
T1 turns on , T2 off.
io wt

is 𝐼𝑇1
𝑁𝑠
𝑁𝑝
wt

wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 11
Single Phase Full-Wave Controlled Rectifier
i=0
Waveforms : 𝝎𝒕 = 𝝅
Center-Tap Rectifier. Resistive Load. vs Vm

𝑵𝒑 : 2 𝑵𝒔

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig2 T1 ON
π+a wt
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕 T2 ON
vo

Operation: iT1 wt

During Positive Half Cycle:


iT2 wt
T1 turns on , T2 off.
During Negative Half Cycle: io wt

T1 turns off , T2 Conduct.


is 𝐼𝑇1
𝑁𝑠
𝑁𝑝
wt

wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 12
Single Phase Full-Wave Controlled Rectifier
i=0
Waveforms : 𝝎𝒕 = 𝝅
Center-Tap Rectifier. Resistive Load. vs Vm

𝑵𝒑 : 2 𝑵𝒔

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig2 T1 ON
π+a wt
𝒗𝒔 = 𝑽𝒎 𝐬𝐢𝐧 𝝎𝒕 T2 ON
vo

Operation: iT1 wt

During Positive Half Cycle:


iT2 wt
T1 turns on , T2 off.
During Negative Half Cycle: io wt

T1 turns off , T2 Conduct.


is 𝐼𝑇1
𝑁𝑠
𝑁𝑝 𝑁
wt
-𝐼𝑇2 𝑁𝑠
𝑁𝑠 𝑝
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇2 ∗ wt
𝑁𝑝
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 13
Single Phase Full-Wave Controlled Rectifier
i=0
Waveforms : 𝝎𝒕 = 𝝅
Center-Tap Rectifier. Resistive Load. vs Vm
Circuit Performance parameters:
1- Average Output Voltage:
π 2π 3π w t
1 𝜋
𝑉𝑜𝑎𝑣 = න 𝑉𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡 ig1
𝜋 𝛼
-Vm
2- Average Output Current: a 2π+a wt
𝑉𝑜𝑎𝑣 ig2 T1 ON
𝐼𝑜𝑎𝑣 =
𝑅 π+a wt
3- RMS Output Voltage: T2 ON
vo
1 𝜋
𝑉𝑜𝑟𝑚𝑠 = න 𝑉 𝑠𝑖𝑛(𝜔𝑡) 2 𝑑𝜔𝑡
𝜋 𝛼 𝑚
wt
4- RMS Output Current: iT1
𝑉𝑜𝑟𝑚𝑠 iT2
𝐼𝑜𝑟𝑚𝑠 = wt
𝑅
5- Average Output Power:
2
io wt
𝑃𝑜 = 𝐼𝑜𝑟𝑚𝑠 ∗𝑅

6- Input Power Factor: is 𝐼𝑇1


𝑁𝑠
𝑁𝑝 𝑁
wt
𝑃𝑜 -𝐼𝑇2 𝑁𝑠
𝑝
𝑝. 𝑓𝑠 =
𝑉𝑠𝑟𝑚𝑠 𝐼𝑠𝑟𝑚𝑠 wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 14
Single Phase Full-Wave Controlled Rectifier
i=0
Waveforms : 𝝎𝒕 = 𝝅
Center-Tap Rectifier. Resistive Load. vs Vm
Circuit Performance parameters:
7- RMS Supply Current:
π 2π 3π w t
𝑁
𝐼𝑠𝑟𝑚𝑠 =𝐼𝑜𝑟𝑚𝑠 𝑁𝑠 ig1
𝑝 -Vm
a 2π+a wt
8- Average Thyristor Current: ig2 T1 ON
π+a wt
𝐼𝑜𝑎𝑣
𝐼𝑇𝑎𝑣 = T2 ON
2 vo
9- RMS Thyristor Current:
wt
𝐼𝑜𝑟𝑚𝑠 iT1
𝐼𝑇𝑟𝑚𝑠 = 2
iT2 wt

io wt

is 𝐼𝑇1
𝑁𝑠
𝑁𝑝 𝑁
wt
-𝐼𝑇2 𝑁𝑠
𝑝

wt
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 15
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier.

Battery Charger (R-E Load).

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 16


Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐

Battery Charger (R-E Load). 𝛼𝑜 = 𝑠𝑖𝑛−1


𝐸𝑏
𝑉𝑚
π 2π 3π w t
𝛼 ≥ 𝛼𝑜
ig1,2
-Vm
a 2π+a wt
ig3,4 T1,2 ON
π+a wt
T3,4 ON
vo
Operation:
During Positive Half Cycle: wt
T1 & T2 turns on , T3 & T4 off.

𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 17
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐

Battery Charger (R-E Load). 𝛼𝑜 = 𝑠𝑖𝑛−1


𝐸𝑏
𝑉𝑚
π 2π 3π w t
𝛼 ≥ 𝛼𝑜
ig1,2
-Vm
a 2π+a wt
ig3,4 T1,2 ON
π+a wt
T3,4 ON
vo
Operation:
During Positive Half Cycle: iT1,2 wt
T1 & T2 turns on , T3 & T4 off.
iT3,4 wt

io wt

is wt

wt

𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 18
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐

Battery Charger (R-E Load). 𝛼𝑜 = 𝑠𝑖𝑛−1


𝐸𝑏
𝑉𝑚
π 2π 3π w t
𝛼 ≥ 𝛼𝑜
ig1,2
-Vm
a 2π+a wt
ig3,4 T1,2 ON
π+a wt
T3,4 ON
vo
Operation:
During Positive Half Cycle: iT1,2 wt
T1 & T2 turns on , T3 & T4 off.
iT3,4 wt

During Negative Half Cycle: wt


io
T1 & T2 turns off , T3 & T4 on.
is wt

wt

𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 19
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐

Battery Charger (R-E Load). 𝛼𝑜 = 𝑠𝑖𝑛−1


𝐸𝑏
𝑉𝑚
π 2π 3π w t
𝛼 ≥ 𝛼𝑜
ig1,2
-Vm
a 2π+a wt
ig3,4 T1,2 ON
π+a wt
T3,4 ON
vo
Operation:
During Positive Half Cycle: iT1,2 wt
T1 & T2 turns on , T3 & T4 off.
iT3,4 wt

During Negative Half Cycle: wt


io
T1 & T2 turns off , T3 & T4 on.
is wt

𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4 wt

𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 20
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐

Battery Charger (R-E Load).


Circuit Performance parameters: π 2π 3π w t
1- Average Output Voltage: ig1,2
1 𝜋−𝛼𝑜 𝜋+𝛼 -Vm
𝑉𝑜𝑎𝑣 = න 𝑉𝑚 sin 𝜔𝑡 𝑑𝜔𝑡 + න 𝐸 𝑑𝜔𝑡 a 2π+a wt
𝜋 𝛼 𝜋−𝛼𝑜 ig3,4 T1,2 ON
=
𝑉𝑚
− cos 𝜋 − 𝛼𝑜 + cos 𝛼 +
𝐸
𝛼 + 𝛼𝑜 π+a wt
𝜋 𝜋 T3,4 ON
2- Average Output Current: vo
𝑉𝑜𝑎𝑣 − 𝐸
𝐼𝑜𝑎𝑣 =
𝑅 iT1,2 wt
3- RMS Output Voltage:
iT3,4 wt
𝜋−𝛼𝑜 𝜋+𝛼
1 2
𝑉𝑜𝑟𝑚𝑠 = න 𝑉𝑚 sin 𝜔𝑡 𝑑𝜔𝑡 + න 𝐸 2 𝑑𝜔𝑡
𝜋 𝛼 𝜋−𝛼𝑜 io wt

4- RMS Output Current: is wt

𝑉𝑜𝑟𝑚𝑠 − 𝐸
𝐼𝑜𝑟𝑚𝑠 = wt
𝑅
𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 21
Single Phase Full-Wave Controlled Rectifier
Waveforms : i=0
Full Bridge Rectifier. vs Vm 𝝎𝒕 = 𝝅 − 𝜶𝒐

Battery Charger (R-E Load).


Circuit Performance parameters: π 2π 3π w t

5- Output DC Power: ig1,2


-Vm
2
𝑃𝑜 = 𝐼𝑜𝑟𝑚𝑠 ∗ 𝑅 + 𝐸 ∗ 𝐼𝑜𝑎𝑣 a 2π+a wt
ig3,4 T1,2 ON
6- Input Power Factor: π+a wt
T3,4 ON
𝑃𝑜
𝑝. 𝑓𝑠 =
𝑉𝑠𝑟𝑚𝑠 𝐼𝑠𝑟𝑚𝑠
vo
7- RMS Supply Current: iT1,2 wt

𝐼𝑠𝑟𝑚𝑠 = 𝐼𝑜𝑟𝑚𝑠 iT3,4 wt

8- Average Thyristor Current: wt


io
𝐼𝑜𝑎𝑣
𝐼𝑇𝑎𝑣 = 2 is wt
9- RMS Thyristor Current:
𝐼𝑜𝑟𝑚𝑠 wt
𝐼𝑇𝑟𝑚𝑠 = 2
𝜶𝒐
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 22
Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Rectifier. vs Vm

Highly Inductive Load.


π 2π 3π w t
ig1,2
-Vm
a 2π+a wt
ig3,4 T1,2 ON
π+a wt
Io T3,4 ON

vo wt

wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 23


Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Rectifier. vs Vm

Highly Inductive Load.


π 2π 3π w t
ig1,2
-Vm
a 2π+a wt
ig3,4 T1,2 ON
π+a wt
Io T3,4 ON

vo wt

wt
IT1,2
IT3,4 wt

wt
is
wt
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 24
Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Rectifier. vs Vm

Highly Inductive Load.


Circuit Performance parameters: π 2π 3π w t

1- Average Output Voltage: ig1,2


-Vm
1 𝜋+𝛼
𝑉𝑜𝑎𝑣 = න 𝑉𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡 a 2π+a wt
𝜋 𝛼 ig3,4 T1,2 ON
2- RMS Output Voltage: π+a wt
Io T3,4 ON
1 𝜋+𝛼
𝑉𝑜𝑟𝑚𝑠 = න 𝑉𝑚 𝑠𝑖𝑛(𝜔𝑡) 2 𝑑𝜔𝑡
𝜋 𝛼
vo wt
3- Average Output Current:
𝑉𝑜𝑎𝑣 − 𝐸
𝐼𝑜𝑎𝑣 = wt
𝑅 IT1,2
4- RMS Output Current:
𝐼𝑜𝑎𝑣 = 𝐼𝑜𝑟𝑚𝑠
IT3,4 wt
5- Output Power:
𝑃𝑜 = 𝑉𝑜𝑎𝑣 ∗ 𝐼𝑜𝑎𝑣 wt
is
wt
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 25
Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Rectifier. vs Vm

Highly Inductive Load.


Circuit Performance parameters: π 2π 3π w t

6- Input Power Factor: ig1,2


𝑃𝑜 -Vm
𝑝. 𝑓𝑠 = 𝐼𝑠𝑟𝑚𝑠 = 𝐼𝑜𝑟𝑚𝑠 a
𝑉𝑠𝑟𝑚𝑠 𝐼𝑠𝑟𝑚𝑠 2π+a wt
ig3,4 T1,2 ON
7- Average SCR Current: π+a wt

𝜋+𝛼
Io T3,4 ON
1 𝐼𝑜𝑎𝑣
𝐼𝑇𝑎𝑣 = න 𝐼𝑜𝑎𝑣 𝑑𝜔𝑡 =
2𝜋 𝛼 2
vo wt
8- RMS SCR Current:
1 𝜋+𝛼 2
𝐼𝑜𝑟𝑚𝑠 wt
𝐼𝑇𝑟𝑚𝑠 = න 𝐼𝑜𝑎𝑣 𝑑𝜔𝑡 =
2𝜋 𝛼 2 IT1,2
IT3,4 wt

wt
is
wt
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 26
Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Rectifier. vs Vm

Highly Inductive Load without Battery.


π 2π 3π w t
ig1,2
-Vm
a 2π+a wt
ig3,4 T1,2 ON
π+a wt
Io T3,4 ON

The same waveforms and the same analysis


except: vo wt

Average Output Current: wt


IT1,2
𝑉𝑜𝑎𝑣
𝐼𝑜𝑎𝑣 =
𝑅
IT3,4 wt

wt
is
wt
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇4
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 27
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier.

Highly Inductive Load without Battery.

To draw The thyristors voltage:


𝒗𝑻𝟏
𝒗𝑻𝟑

𝒗𝑻𝟒 𝒗𝑻𝟐

T1 & T2 on , T3 & T4 off. T3 & T4 on , T1 & T2 off .

𝒗𝒐 = 𝒗𝒔 𝒗𝒐 = −𝒗𝒔

𝒗𝑻𝟏 = 𝒗𝑻𝟐 = 𝟎 𝒗𝑻𝟑 = 𝒗𝑻𝟒 = 𝟎

𝒗𝑻𝟑 = 𝒗𝑻𝟒 = −𝒗𝒐 = −𝒗𝒔 𝒗𝑻𝟏 = 𝒗𝑻𝟐 = −𝒗𝒐 = 𝒗𝒔

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 28


Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Rectifier. vs Vm

Highly Inductive Load without Battery.


π 2π 3π w t
ig1,2
-Vm
a 2π+a wt
ig3,4 T1,2 ON
π+a wt
Io T3,4 ON
Period Thyristors Thyristors Off SCR
ON off voltage
wt
0 < 𝜔𝑡 < 𝛼 𝑇3 & 𝑇4 𝑇1 & 𝑇2 𝑣𝑠
𝒗𝑻𝟏,𝟐
𝛼 < 𝜔𝑡 < 𝜋 + 𝛼 𝑇1 & 𝑇2 𝑇3 & 𝑇4 −𝑣𝑠
𝜋 + 𝛼 < 𝜔𝑡 < 2𝜋 + 𝛼 𝑇3 & 𝑇4 𝑇1 & 𝑇2 𝑣𝑠 wt

𝒗𝑻𝟑,𝟒

wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 29


Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier. vs Vm

Highly Inductive Load with FWD

π 2π 3π
wt

io -Vm

vo wt

iT1 wt
iT4
iT2 wt
iT3
wt
iD
wt
is
𝑖𝑠 = 𝑖 𝑇1 − 𝑖 𝑇3 wt
a π+a 2π+a
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 30
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier. vs Vm

Highly Inductive Load with FWD


Circuit Performance parameters: π 2π 3π
1- Average Output Voltage: wt

1 𝜋 io -Vm
𝑉𝑜𝑎𝑣 = න 𝑉𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
𝜋 𝛼

vo wt
Voav with FWD is < or > Voav without FWD?
iT1 wt
iT4
iT2 wt
iT3
wt
iD
wt
Voav with FWD is > Voav without FWD is
wt
a π+a 2π+a
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 31
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier. vs Vm

Highly Inductive Load with FWD


Circuit Performance parameters: π 2π 3π
1- Average Output Voltage: wt

1 𝜋 io -Vm
𝑉𝑜𝑎𝑣 = න 𝑉𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
𝜋 𝛼
2- Average Output Current:
vo wt
𝑉𝑜𝑎𝑣
𝐼𝑜𝑎𝑣 =
𝑅
3- RMS Output Current: iT1 wt

𝐼𝑜𝑎𝑣 = 𝐼𝑜𝑟𝑚𝑠 iT4


4- RMS Output Voltage: iT2 wt
iT3
1 𝜋
𝑉𝑜𝑟𝑚𝑠 = න 𝑉 𝑠𝑖𝑛(𝜔𝑡) 2 𝑑𝜔𝑡 wt
𝜋 𝛼 𝑚
iD
5- Average Output Power:
wt
𝑃𝑜 = 𝑉𝑜𝑎𝑣 ∗ 𝐼𝑜𝑎𝑣 is
6- Input Power Factor: 𝑃𝑜
𝑝. 𝑓𝑠 = wt
𝑉𝑠𝑟𝑚𝑠 𝐼𝑠𝑟𝑚𝑠
π+a
a 2π+a
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 32
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier. vs Vm

Highly Inductive Load with FWD

7- RMS Supply Current: π 2π 3π


wt
𝜋
1∗2
𝐼𝑆𝑟𝑚𝑠 = න 𝐼
2𝜋 𝛼 𝑜𝑎𝑣
2 𝑑𝜔𝑡
𝐼𝑠𝑟𝑚𝑠 ≠ 𝐼𝑜𝑟𝑚𝑠 io -Vm

8- Average Thyristor Current:


𝜋
vo wt
1
𝐼𝑇𝑎𝑣 = න 𝐼 𝑑𝜔𝑡
2𝜋 𝛼 𝑜𝑎𝑣
iT1 wt
9- RMS Thyristor Current:
iT4
1 𝜋 2 iT2 wt
𝐼𝑇𝑟𝑚𝑠 = න 𝐼 𝑑𝜔𝑡
2𝜋 𝛼 𝑜𝑎𝑣 iT3
wt
10- Average Diode Current:
1 𝛼
iD
𝐼𝐷𝑎𝑣 = න 𝐼𝑜𝑎𝑣 𝑑𝜔𝑡
𝜋 0 wt
is
11- RMS Diode Current:
1 𝛼 2 wt
𝐼𝐷𝑟𝑚𝑠 = න 𝐼 𝑑𝜔𝑡
𝜋 0 𝑜𝑎𝑣 π+a a2π+a
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 33
Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier.

Highly Inductive Load with FWD

To draw The thyristors voltage:

𝒗𝑻𝟐 𝒗𝑻𝟏 𝒗𝑻𝟏 𝒗𝑻𝟐

𝒗𝑻𝟑
𝒗𝑻𝟒 𝒗𝑻𝟑 𝒗𝑻𝟒

T1 & T4 on , T3 & T2 & FWD off. T3 & T2 on , T1 & T4 & FWD off. All SCRs off , FWD on.

𝒗𝒐 = 𝒗𝒔 𝒗𝒐 = −𝒗𝒔 𝒗𝒐 = 𝟎
𝒗𝒔
𝒗𝑻𝟏 = 𝒗𝑻𝟒 = 𝟎 𝒗𝑻𝟑 = 𝒗𝑻𝟐 = 𝟎 𝒗𝑻𝟏 = 𝒗𝑻𝟒 =
𝟐
𝒗𝑻𝟏 = 𝒗𝑻𝟒 = −𝒗𝒐 = 𝒗𝒔 𝒗𝒔
𝒗𝑻𝟑 = 𝒗𝑻𝟐 = −𝒗𝒐 = −𝒗𝒔 𝒗𝑻𝟑 = 𝒗𝑻𝟐 = −
𝟐

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 34


Single Phase Full-Wave Controlled Rectifier
Full Bridge Rectifier. vs Vm

Highly Inductive Load with FWD

π 2π 3π
wt

io -Vm

vo wt

Period Thyristors 𝑣𝑎𝑘 𝑣𝑎𝑘


ON across across 𝒗𝑻𝟏,𝟒 wt
𝒗𝒔 𝒗𝒔
𝑇1 & 𝑇4 𝑇3 & 𝑇2
𝟐 𝟐
0 < 𝜔𝑡 < 𝛼 𝑛𝑜𝑛𝑒 𝑣𝑠 −𝑣𝑠
2 2 wt
𝒗𝒔 𝑣𝑠
𝛼 < 𝜔𝑡 < 𝜋 𝑇1 & 𝑇4 0 −𝑣𝑠 𝟐

𝜋 < 𝜔𝑡 < 𝜋 + 𝛼 𝑛𝑜𝑛𝑒 𝑣𝑠 −𝑣𝑠 𝒗𝑻𝟑,𝟐 −𝒗𝒔


𝟐
2 2
−𝑣𝑠 wt
𝜋 + 𝛼 < 𝜔𝑡 < 2𝜋 𝑇2 & 𝑇3 𝑣𝑠 0 −𝒗𝒔 −𝒗𝒔 −𝑣𝑠
𝑣𝑠 −𝑣𝑠 𝟐 𝟐
2𝜋 < 𝜔𝑡 < 2𝜋 + 𝛼 𝑛𝑜𝑛𝑒
2 2
π+a a 2π+a
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 35
Single Phase Controlled Rectifier
➢ Single Phase Full-Wave Fully-Controlled Rectifier.

➢ Single Phase Full-Wave Half-Controlled (Semi-Controlled) Rectifier.


Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Semi-Controlled Rectifier. vs Vm

Highly Inductive Load

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 D2 T1 & D 2

Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.

𝜶 ≤ 𝝎𝒕 ≤ 𝝅 T1 & D2 turns on , T3 & D4 off.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 37


Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Semi-Controlled Rectifier. vs Vm

Highly Inductive Load

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 D2 T1 & D 2
io
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
vo wt

𝜶 ≤ 𝝎𝒕 ≤ 𝝅 T1 & D2 turns on , T3 & D4 off.


wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 38


Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Semi-Controlled Rectifier. vs Vm

Highly Inductive Load

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 D2 T1 & D 2
D2
io D4
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
vo wt

𝜶 ≤ 𝝎𝒕 ≤ 𝝅 T1 & D2 turns on , T3 & D4 off.


wt
During Positive Half Cycle:
𝝅 ≤ 𝝎𝒕 ≤ 𝝅 + 𝜶 D4 conduct with D2 as FWD, T1 , T3 off.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 39


Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Semi-Controlled Rectifier. vs Vm

Highly Inductive Load

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 T1 & D 2
D2 T3 & D 4 D2
io D4
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
vo wt

𝜶 ≤ 𝝎𝒕 ≤ 𝝅 T1 & D2 turns on , T3 & D4 off.


wt
During Positive Half Cycle:
𝝅 ≤ 𝝎𝒕 ≤ 𝝅 + 𝜶 D4 conduct with D2 as FWD, T1 , T3 off.
𝝅 + 𝜶 ≤ 𝝎𝒕 ≤ 𝟐𝝅 T3 & D4 turns on , T1 & D2 off.

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 40


Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Semi-Controlled Rectifier. vs Vm

Highly Inductive Load

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 T1 & D 2
D2 T3 & D 4 D2
io D4 D4 D4
Operation:
During Positive Half Cycle:
𝟎 ≤ 𝝎𝒕 ≤ 𝜶 D2 conduct, T1 , T3 & D4 off.
vo wt

𝜶 ≤ 𝝎𝒕 ≤ 𝝅 T1 & D2 turns on , T3 & D4 off.


wt
During Positive Half Cycle:
𝝅 ≤ 𝝎𝒕 ≤ 𝝅 + 𝜶 D4 conduct with D2 as FWD, T1 , T3 off.
𝝅 + 𝜶 ≤ 𝝎𝒕 ≤ 𝟐𝝅 T3 & D4 turns on , T1 & D2 off.

During Positive Half Cycle:


𝟐𝝅 ≤ 𝝎𝒕 ≤ 𝟐𝝅 + 𝜶 D2 conduct with D4 as FWD, T1 , T3 off.
Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 41
Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Semi-Controlled Rectifier. vs Vm

Highly Inductive Load

π 2π 3π w t
ig1
-Vm
a 2π+a wt
ig3
π+a wt
D2 T1 & D 2 T1 & D 2
D2 T3 & D 4 D2
io D4 D4 D4

vo wt

iT1 wt

iT3 wt

iD2 wt

iD4 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… w


42t
Single Phase Full-Wave Controlled Rectifier
Waveforms :
Full Bridge Semi-Controlled Rectifier. vs Vm

Highly Inductive Load

Circuit Performance parameters: π 2π 3π w t


1- Average Output Voltage: ig1
1 𝜋 -Vm
𝑉𝑜𝑎𝑣 = න 𝑉𝑚 𝑠𝑖𝑛(𝜔𝑡) 𝑑𝜔𝑡
𝜋 𝛼 a 2π+a wt
ig3
2- Average Output Current:
π+a wt
D2 T1 & D 2 T1 & D 2
𝑉𝑜𝑎𝑣 − 𝐸 D2 T3 & D 4 D2
𝐼𝑜𝑎𝑣 =
𝑅 io D4 D4 D4
3- Average Thyristor Current:

1 𝜋
vo wt
𝐼𝑇𝑎𝑣 = න 𝐼 𝑑𝜔𝑡
2𝜋 𝛼 𝑜𝑎𝑣
iT1 wt
4- Average Diode Current:
iT3 wt
1 𝜋+𝛼
𝐼𝐷𝑎𝑣 = න 𝐼𝑜𝑎𝑣 𝑑𝜔𝑡
2𝜋 0 iD2 wt

iD4 wt

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… w


43t
Single Phase Full-Wave Controlled Rectifier
Assignment (2)
▪ Study the following circuits, sketch the output waveforms then compare between both
circuits' performance parameters.

𝑣𝑠 = 120 2 sin 𝜔𝑡
𝑅 =5Ω

𝐸 = 20 𝑉
𝛼 = 60𝑜

L is so large to keep the output current constant.


Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 44
Thank You

Study hard

See you the next lecture …….

Dr. Shaimaa A. Kandil………………………………………………………………………………………………………………………………………………………… 45

You might also like