0% found this document useful (0 votes)
82 views40 pages

Helium Turboexpander Optimization

Uploaded by

psiddheshd
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as TXT, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
82 views40 pages

Helium Turboexpander Optimization

Uploaded by

psiddheshd
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as TXT, PDF, TXT or read online on Scribd
You are on page 1/ 40

FN Clarivate Analytics Web of Science

VR 1.0
PT J
AU Kumar, M
AF Kumar, Manoj
TI A comparative investigation of thermodynamic performance and flow field
structure of a modified Collins cycle-based helium turboexpander system
SO INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER
LA English
DT Article
DE Modified Collins cycle; Turboexpander; Numerical analysis; Optimization
ID OFF-DESIGN PERFORMANCE; RADIAL-INFLOW TURBINE; EXPANDER; HYDROGEN
AB The optimum design of radial expansion turbine and nozzle (turboexpander) have a
remarkable effect on the thermophysical performance of gas liquefaction cycles. The
present study proposes a new mean-line design, sensitivity analysis, and
optimization method to develop three turboexpander systems for a modified Collins
cycle-based helium liquefaction system. The proposed method deals with the real gas
equation of state to determine the turboexpander configurations and their
performance at off-design conditions. The mean-line design approach integrated with
different loss correlations has been performed using an in-house code in Matlab (R)
environment. Furthermore, sensitivity analysis and artificial neural network-based
optimization process of thirteen design coefficients and non-dimensional variables
has been carried out which improves the off-design performance of the turboexpander
up to 4.43%, 12.57%, and 16.36% for total-to-static efficiency, total losses, and
power output respectively. Applying the aforementioned procedure, three
turboexpanders have been designed. After that, a three-dimensional transient blade-
row turbulent flow simulations have been carried out to stimulate the rotor-stator
interaction at different operating conditions (25 bar & 80 K, 7 bar & 50 K, and 25
bar & 30 K) and rotational speeds (2.84 x 105, 1.61 x 105, and 2.75 x 105 rpm)
using k-omega shear stress transport turbulence model. The commercial Navier-Stokes
finite volume solver ANSYS CFX (R) has been used to study a comparative
thermodynamic performance and flow field structures at different streamwise and
spanwise directions of the entire flow passage. Additionally, the present numerical
results have been validated with available experimental and computational data in
the open literature. The present design, optimization, and numerical procedure
presented herein will be advantageous for the future development of efficient
small-scale turboexpander systems subjected to wide operating ranges.
C1 [Kumar, Manoj] Bharatiya Vidya Bhavans Sardar Patel Coll Engn W, Dept Mech Engn,
Mumbai 400058, Maharashtra, India.
RP Kumar, M (corresponding author), Bharatiya Vidya Bhavans Sardar Patel Coll Engn
W, Dept Mech Engn, Mumbai 400058, Maharashtra, India.
EM manojbeg526@gmail.com
RI Kumar, Manoj/AAT-7257-2020
OI Kumar, Manoj/0000-0002-6201-0090; kumar, Manoj/0000-0002-5985-4807
CR Aungier R. H., 2006, Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine
Design and Analysis
Bahamonde S, 2019, APPL THERM ENG, V150, P1353, DOI
10.1016/j.applthermaleng.2018.12.099
Bahamonde S, 2017, J ENG GAS TURB POWER, V139, DOI 10.1115/1.4035841
Baines NC, 1998, IMECHE CONF TRANS, V1998, P45
Chakravarty A, 2017, IOP CONF SER-MAT SCI, V278, DOI
10.1088/1757-899X/278/1/012028
Chang HM, 2018, CRYOGENICS, V91, P68, DOI 10.1016/j.cryogenics.2018.02.007
Rocha PAC, 2014, ENERGY, V65, P412, DOI 10.1016/j.energy.2013.11.050
DADONE A, 1969, INT J MECH SCI, V11, P241, DOI 10.1016/0020-7403(69)90043-5
DAVYDENKOV IA, 1992, CRYOGENICS, V32, P84, DOI 10.1016/0011-2275(92)90115-Q
Fiaschi D, 2015, APPL ENERG, V138, P517, DOI 10.1016/j.apenergy.2014.10.052
Ghosh SK, 2011, J FLUID ENG-T ASME, V133, DOI 10.1115/1.4003661
Ghosh SK, 2010, APPL THERM ENG, V30, P1304, DOI
10.1016/j.applthermaleng.2010.02.017
Ino N., 1992, ADV CRYOGEN ENG, P835
Izumi H., 1986, ADV CRYOGENIC ENG, P811
Jadhav MM, 2021, CRYOGENICS, V113, DOI 10.1016/j.cryogenics.2020.103237
Jansen W., 1967, ASME 1967 WINT ANN M
KATO T, 1994, ADV CRYOG ENG, V39, P917
Kato T., 1990, ADV CRYOG ENG, P1005
Ke CL, 2021, INT J REFRIG, V122, P81, DOI 10.1016/j.ijrefrig.2020.09.016
Kumar Manoj, 2021, Advances in Air Conditioning and Refrigeration. Select
Proceedings of RAAR 2019. Lecture Notes in Mechanical Engineering (LNME), P79, DOI
10.1007/978-981-15-6360-7_8
Kumar M, ENG REP 2022 E12346
Kumar M, 2020, J HEAT TRANS-T ASME, V142, DOI 10.1115/1.4047838
Kumar M, 2019, ENERGY, V189, DOI 10.1016/j.energy.2019.116267
Kumar M, 2020, HEAT MASS TRANSFER, V56, P1015, DOI 10.1007/s00231-019-02777-w
Kumar M, 2019, SN APPL SCI, V1, DOI 10.1007/s42452-019-1503-3
Kumar M, 2019, APPL THERM ENG, V162, DOI 10.1016/j.applthermaleng.2019.114273
Kumar M, 2019, J BRAZ SOC MECH SCI, V41, DOI 10.1007/s40430-019-1989-z
Kumar M, 2019, LECT N MECH ENG, P179, DOI 10.1007/978-981-13-6416-7_17
Kumar M, 2019, ENG SCI TECHNOL, V22, P294, DOI 10.1016/j.jestch.2018.10.006
Meitner P.L., 1980, NATL AERONAUTICS SPA
Meitner PL, 1980, NATL AERONAUTICS SPA
Moustapha H., 2003, CONCEPTS NREC WHITE, V2
Rodriguez G.J. Otero, ENERGY, V217
Sam AA, 2020, CRYOGENICS, V106, DOI 10.1016/j.cryogenics.2020.103052
Sam AA, 2017, INT J REFRIG, V81, P111, DOI 10.1016/j.ijrefrig.2017.05.026
Sam AA, 2017, CRYOGENICS, V82, P1, DOI 10.1016/j.cryogenics.2017.01.004
Shankar T. N, 2008, NEURAL NETWORKS
Sixsmith H., 1982, ADV CRYOG ENG, V27
Sixsmith H., 1990, ADV CRYOGENIC ENG, P989
Suhrmann JF, 2010, PROCEEDINGS OF THE ASME TURBO EXPO 2010: TURBOMACHINERY:
AXIAL FLOW FAN AND COMPRESSOR AERODYNAMICS DESIGN METHODS, AND CFD MODELING FOR
TURBOMACHINERY, VOL 7, PTS A-C, P1937
Ventura CAM, 2012, J FLUID ENG-T ASME, V134, DOI 10.1115/1.4006174
WHITFIELD A, 1976, INT J MECH SCI, V18, P179, DOI 10.1016/0020-7403(76)90023-0
WHITFIELD A, 1990, J TURBOMACH, V112, P50, DOI 10.1115/1.2927420
Yang K.J., 1990, ADV CRYOGENIC ENG, P997
Zhao HL, 2009, APPL THERM ENG, V29, P1702, DOI
10.1016/j.applthermaleng.2008.07.028
Zheng Y, 2017, APPL THERM ENG, V112, P25, DOI
10.1016/j.applthermaleng.2016.10.036
Zou ZP, 2020, INT COMMUN HEAT MASS, V114, DOI
10.1016/j.icheatmasstransfer.2020.104588
NR 47
TC 9
Z9 10
U1 4
U2 11
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0735-1933
EI 1879-0178
J9 INT COMMUN HEAT MASS
JI Int. Commun. Heat Mass Transf.
PD OCT
PY 2021
VL 127
AR 105554
DI 10.1016/j.icheatmasstransfer.2021.105554
EA AUG 2021
PG 14
WC Thermodynamics; Mechanics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Thermodynamics; Mechanics
GA WA3YR
UT WOS:000702824900004
DA 2024-07-09
ER

PT J
AU Rane, SB
Potdar, PR
Aware, S
AF Rane, Santosh B.
Potdar, Prathamesh R.
Aware, Shivani
TI Strategies for development of smart and green products using
Blockchain-IoT integrated architecture
SO OPERATIONS MANAGEMENT RESEARCH
LA English
DT Article
DE Product design; Product development; Industry 4; 0; MCDM Techniques;
Smart Product Design; Green Product Design; Blockchain; Internet of
things (IoT); TOPSIS; Air Conditioner
ID LIFE-CYCLE; CONCEPTUAL-FRAMEWORK; TOPSIS METHOD; DESIGN; INNOVATION;
INTERNET; THINGS; CHALLENGES; MANAGEMENT; BARRIERS
AB The extensive use of Air Conditioners (AC) has significantly contributed to the
adverse environmental impacts during the global warming era. To mitigate this,
governments are mandating AC manufacturers to redesign products for environmental
protection. Consequently, there is a growing need to prioritize and address various
stages of AC design and development to ensure environmental sustainability. This
research aims to identify critical barriers and develop a blockchain-IoT integrated
architecture for the design and development of smart and green Air Conditioners
(AC). Critical barriers are identified through a systematic literature survey and
the application of the Technique for Order Preference by Similarity to the Ideal
Solution (TOPSIS) method. The top 5 barriers for smart AC design and development
include lack of awareness of integration of its technologies, lack of funds for
investment, lack of stakeholder's engagement, lack of training, and lack of
security and privacy protection. Similarly, the top 5 barriers for green AC design
and development encompass lack of waste management, lack of technical training to
employees, less information on green energy, design complications to recycle or
reuse products, and high cost of eco-friendly disposal techniques. A set of 9
strategies has been formulated using the blockchain-IoT integrated architecture to
mitigate the impact of critical barriers in the development of Air Conditioners
(AC). This architecture enables comprehensive monitoring of the AC development
process, ensuring security at every level. Consequently, it optimizes the product
development process, reduces employee fatigue and stress, minimizes product
development time, and mitigates the effects of critical barriers. By reducing the
likelihood of critical barriers and product development time, there is a
corresponding decrease in resource consumption, resulting in a reduced
environmental impact.
C1 [Rane, Santosh B.; Aware, Shivani] Sardar Patel Coll Engn, Mumbai 400058, India.
[Potdar, Prathamesh R.] Parul Univ, Parul Inst Technol, Vadodara 391760, India.
C3 Parul University
RP Potdar, PR (corresponding author), Parul Univ, Parul Inst Technol, Vadodara
391760, India.
EM s_rane@spce.ac.in; prathameshpotdar122@gmail.com; shivaaware12@gmail.com
OI Potdar, Dr. Prathamesh R./0000-0001-8896-5322
CR Alaba FA, 2017, J NETW COMPUT APPL, V88, P10, DOI 10.1016/j.jnca.2017.04.002
Bhuiyan N, 2011, J IND ENG MANAG-JIEM, V4, P746, DOI 10.3926/jiem.334
Bidikar SG, 2022, INT J SYST ASSUR ENG, V13, P203, DOI 10.1007/s13198-021-01199-
4
Blengini GA, 2012, WASTE MANAGE, V32, P1000, DOI 10.1016/j.wasman.2011.10.018
Caputo A, 2016, BUS PROCESS MANAG J, V22, P383, DOI 10.1108/BPMJ-05-2015-0072
Chan HK, 2014, BRIT ACCOUNT REV, V46, P344, DOI 10.1016/j.bar.2014.10.004
Chen ZH, 2020, J CLEAN PROD, V273, DOI 10.1016/j.jclepro.2020.122931
Jabbour CJC, 2015, J CLEAN PROD, V87, P442, DOI 10.1016/j.jclepro.2014.09.036
Dalenogare LS, 2018, INT J PROD ECON, V204, P383, DOI 10.1016/j.ijpe.2018.08.019
Dandage R, 2018, INT J MANAG PROJ BUS, V11, P317, DOI 10.1108/IJMPB-06-2017-0070
Das D, 2022, OPER MANAGE RES, V15, P249, DOI 10.1007/s12063-021-00200-4
Davis L, 2021, GLOBAL ENVIRON CHANG, V69, DOI 10.1016/j.gloenvcha.2021.102299
Davis LW, 2015, P NATL ACAD SCI USA, V112, P5962, DOI 10.1073/pnas.1423558112
de Medeiros JF, 2014, J CLEAN PROD, V65, P76, DOI 10.1016/j.jclepro.2013.08.035
Dekoninck EA, 2016, J CLEAN PROD, V135, P410, DOI 10.1016/j.jclepro.2016.06.045
Driessen PH, 2013, IEEE T ENG MANAGE, V60, P315, DOI 10.1109/TEM.2013.2246792
Du P, 2020, J CLEAN PROD, V265, DOI 10.1016/j.jclepro.2020.121853
Gohil D., 2021, Modern Supply Chain Res. Appl., V3, P78, DOI [10.1108/mscra-10-
2020-0028, 10.1108/mscra10-2020-0028, DOI 10.1108/MSCRA10-2020-0028]
Govindan K, 2014, INT J PROD ECON, V147, P555, DOI 10.1016/j.ijpe.2013.08.018
Grignon-Massé L, 2011, ENERG POLICY, V39, P2152, DOI 10.1016/j.enpol.2011.02.004
Guo R, 2020, RESOUR CONSERV RECY, V153, DOI 10.1016/j.resconrec.2019.104580
Gupta H, 2018, SCI TOTAL ENVIRON, V633, P122, DOI
10.1016/j.scitotenv.2018.03.173
Hong ZF, 2018, TRANSPORT RES E-LOG, V115, P1, DOI 10.1016/j.tre.2018.03.013
Hu J, 2013, INTERACT LEARN ENVIR, V21, P211, DOI 10.1080/10494820.2012.705858
Husain Z, 2021, OPER MANAGE RES, V14, P256, DOI 10.1007/s12063-021-00197-w
Iç YT, 2014, APPL MATH COMPUT, V227, P630, DOI 10.1016/j.amc.2013.11.043
Iç YT, 2012, ROBOT CIM-INT MANUF, V28, P245, DOI 10.1016/j.rcim.2011.09.005
Jasti NVK, 2015, BENCHMARKING, V22, P426, DOI 10.1108/BIJ-06-2014-0060
Jeswiet J, 2005, MATER DESIGN, V26, P629, DOI 10.1016/j.matdes.2004.08.016
Kahle JH, 2020, TECHNOL FORECAST SOC, V156, DOI 10.1016/j.techfore.2020.120024
Karuppiah K, 2020, J CLEAN PROD, V265, DOI 10.1016/j.jclepro.2020.121737
Kazi AS, 2023, INT J INDUS SYST ENG, V44, P220, DOI [10.1504/IJISE.2023.131543,
DOI 10.1504/IJISE.2023.131543]
Khan SAR, 2022, ENVIRON DEV SUSTAIN, V24, P10633, DOI 10.1007/s10668-021-01876-1
Khan SAR, 2021, ANN OPER RES, DOI 10.1007/s10479-021-04275-x
Kirkire MS, 2018, BENCHMARKING, V25, P178, DOI 10.1108/BIJ-07-2016-0112
Knight P, 2009, J CLEAN PROD, V17, P549, DOI 10.1016/j.jclepro.2008.10.002
Konstantinos I, 2019, ENERG POLICY, V132, P232, DOI 10.1016/j.enpol.2019.05.020
Kumar R, 2020, J CLEAN PROD, V275, DOI 10.1016/j.jclepro.2020.124063
Kusneniwar A, 2019, LECT N MECH ENG, P239, DOI 10.1007/978-981-13-2490-1_22
Lin MC, 2008, COMPUT IND, V59, P17, DOI 10.1016/j.compind.2007.05.013
Liu JC, 2018, J CLEAN PROD, V189, P211, DOI 10.1016/j.jclepro.2018.04.103
Liu JR, 2016, APPL ENERG, V184, P1026, DOI 10.1016/j.apenergy.2015.11.100
Luh YP, 2010, COMPUT IND, V61, P223, DOI 10.1016/j.compind.2009.09.002
Mahdevari S, 2014, SCI TOTAL ENVIRON, V488, P85, DOI
10.1016/j.scitotenv.2014.04.076
Masood T, 2020, COMPUT IND, V121, DOI 10.1016/j.compind.2020.103261
Moreira N, 2015, J CLEAN PROD, V105, P371, DOI 10.1016/j.jclepro.2014.09.056
Mougayar W., 2016, The Business Blockchain: Promise, Practice, and Application
of the Next Internet Technology
Mukherjee AA, 2022, OPER MANAGE RES, V15, P46, DOI 10.1007/s12063-021-00180-5
Murray A, 2016, BUS PROCESS MANAG J, V22, P341, DOI 10.1108/BPMJ-05-2015-0077
Netake A, 2019, LECT N MECH ENG, P253, DOI 10.1007/978-981-13-2490-1_23
Nishijima D, 2017, ENERG POLICY, V104, P340, DOI 10.1016/j.enpol.2017.01.045
Nizetic S, 2020, J CLEAN PROD, V274, DOI 10.1016/j.jclepro.2020.122877
Pasi B.N., 2020, International Journal of Mechanical and Production Engineering
Research and Development, V10, P727, DOI [10.24247/ijmperdjun202067, DOI
10.24247/IJMPERDJUN202067]
Pasi BN, 2021, INT J PRODUCT PERFOR, V70, P1017, DOI 10.1108/IJPPM-04-2020-0196
Potdar PR., 2018, IND ENG J, V11, P21, DOI DOI 10.26488/IEJ.11.10.1147
Potdar PR, 2013, INT J ENG SCI INNOV, V4, P26
Prasartkaew B, 2014, ENERG BUILDINGS, V68, P156, DOI
10.1016/j.enbuild.2013.09.001
Ramakrishnan S, 2021, EUR RESPIR J, V58, DOI 10.1183/13993003.congress-
2021.RCT4270
Rana NP, 2019, INFORM SYST FRONT, V21, P503, DOI 10.1007/s10796-018-9873-4
Rane S., 2020, INT J PROCURE MANAG, V1, P1, DOI [10.1504/ijpm.2020.10032403, DOI
10.1504/IJPM.2020.10032403]
Rane SB, 2021, MANAG ENVIRON QUAL, V32, P1166, DOI 10.1108/MEQ-11-2019-0248
Rane SB, 2021, J MODEL MANAG, V16, P310, DOI 10.1108/JM2-03-2019-0069
Rane SB, 2021, BENCHMARKING, V28, P1883, DOI 10.1108/BIJ-12-2018-0445
Rane SB, 2019, INT J SYST ASSUR ENG, V10, P1668, DOI 10.1007/s13198-019-00914-6
Rane SB, 2021, BENCHMARKING, V28, P1451, DOI 10.1108/BIJ-03-2019-0123
Rane SB, 2019, MANAG ENVIRON QUAL, V31, P741, DOI 10.1108/MEQ-06-2019-0136
Rane SB, 2023, INT J SYST ASSUR ENG, V14, P1990, DOI 10.1007/s13198-023-01980-7
Rane SB, 2021, INT J 6 SIGMA COMPET, V13, P241, DOI [10.1504/IJSSCA.2021.120219,
DOI 10.1504/IJSSCA.2021.120219]
Rani P, 2020, J CLEAN PROD, V257, DOI 10.1016/j.jclepro.2020.120352
Redante RC, 2019, SUSTAIN PROD CONSUMP, V19, P247, DOI 10.1016/j.spc.2019.04.006
Khan SAR, 2022, INT J LOGIST-RES APP, V25, P605, DOI
10.1080/13675567.2021.1872512
Ren S, 2019, J CLEAN PROD, V210, P1343, DOI 10.1016/j.jclepro.2018.11.025
Riel A, 2017, CIRP ANN-MANUF TECHN, V66, P177, DOI 10.1016/j.cirp.2017.04.037
Rostamzadeh R, 2011, EXPERT SYST APPL, V38, P5166, DOI
10.1016/j.eswa.2010.10.045
Saberi S, 2019, INT J PROD RES, V57, P2117, DOI 10.1080/00207543.2018.1533261
Sharma M, 2022, OPER MANAGE RES, V15, P268, DOI 10.1007/s12063-021-00198-9
Shi H, 2008, J CLEAN PROD, V16, P842, DOI 10.1016/j.jclepro.2007.05.002
Singh PK, 2020, J CLEAN PROD, V246, DOI 10.1016/j.jclepro.2019.118991
Solano-Olivares K, 2019, J CLEAN PROD, V240, DOI 10.1016/j.jclepro.2019.118206
Song ML, 2020, J CLEAN PROD, V258, DOI 10.1016/j.jclepro.2020.120849
Taghaboni-Dutta F, 2010, EXPERT SYST APPL, V37, P7319, DOI
10.1016/j.eswa.2010.04.025
Tariq A, 2017, TECHNOL SOC, V51, P8, DOI 10.1016/j.techsoc.2017.06.002
Thakker SV, 2018, MANAG ENVIRON QUAL, V29, P938, DOI 10.1108/MEQ-03-2018-0052
Thongkaew S, 2018, 2018 22 INT COMP SCI, P17, DOI [10.1109/ICSEC.2018.8712656,
DOI 10.1109/ICSEC.2018.8712656]
Tomiyama T, 2019, CIRP ANN-MANUF TECHN, V68, P727, DOI
10.1016/j.cirp.2019.05.010
Tu YD, 2017, SCI TECHNOL BUILT EN, V23, P151, DOI 10.1080/23744731.2017.1251790
Uddin MA, 2021, BLOCKCHAIN-RES APPL, V2, DOI 10.1016/j.bcra.2021.100006
van Hemel C, 2002, J CLEAN PROD, V10, P439, DOI 10.1016/S0959-6526(02)00013-6
Varjovi AE, 2020, SUSTAIN COMPUT-INFOR, V28, DOI 10.1016/j.suscom.2020.100448
Vila C, 2016, INT J PROD RES, V54, P2856, DOI 10.1080/00207543.2015.1110632
Weichhart G, 2016, COMPUT IND, V79, P34, DOI 10.1016/j.compind.2015.07.002
Wu JH, 2019, ENERG POLICY, V125, P368, DOI 10.1016/j.enpol.2018.10.038
Xie X., 2014, J CLEAN PROD, V85, P1572, DOI [10.1016/j.jclepro.2020.123520, DOI
10.1016/J.JCLEPRO.2020.123520]
Yadav S, 2022, OPER MANAGE RES, V15, P1, DOI 10.1007/s12063-020-00164-x
Yi Y, 2021, J MANUF SYST, V58, P94, DOI 10.1016/j.jmsy.2020.04.013
Yu BF, 2009, INT J REFRIG, V32, P3, DOI 10.1016/j.ijrefrig.2008.05.004
Yuan JH, 2019, SCI TOTAL ENVIRON, V696, DOI 10.1016/j.scitotenv.2019.133817
Zhang SY, 2017, ENGINEERING-PRC, V3, P631, DOI 10.1016/J.ENG.2017.04.005
Zhang XX, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.123164
Zhang XX, 2018, SUSTAIN CITIES SOC, V43, P357, DOI 10.1016/j.scs.2018.08.013
Zhao ZD, 2017, ADV BUILD ENERGY RES, V11, P52, DOI 10.1080/17512549.2015.1123650
Zhou J, 2021, APPL SOFT COMPUT, V98, DOI 10.1016/j.asoc.2020.106850
Ziqi Shi, 2020, Journal of Physics: Conference Series, V1646, DOI 10.1088/1742-
6596/1646/1/012115
NR 103
TC 0
Z9 0
U1 5
U2 16
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 1936-9735
EI 1936-9743
J9 OPER MANAGE RES
JI Oper. Manag. Res.
PD DEC
PY 2023
VL 16
IS 4
BP 1830
EP 1857
DI 10.1007/s12063-023-00398-5
EA AUG 2023
PG 28
WC Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA CO7E0
UT WOS:001043649300002
DA 2024-07-09
ER

PT J
AU Mishra, N
Rane, SB
AF Mishra, Nandkumar
Rane, Santosh B.
TI Prediction and improvement of iron casting quality through analytics and
Six Sigma approach
SO INTERNATIONAL JOURNAL OF LEAN SIX SIGMA
LA English
DT Article
DE Six sigma; Benchmarking; Analytics; Chi-square test; DMAIC approach;
Prediction model
ID PROCESS PARAMETERS; OPTIMIZATION; METHODOLOGY; DEFECTS; ALLOY; MODEL
AB Purpose The purpose of this technical paper is to explore the application of
analytics and Six Sigma in the manufacturing processes for iron foundries. This
study aims to establish a causal relationship between chemical composition and the
quality of the iron casting to achieve the global benchmark quality level.
Design/methodology/approach The case study-based exploratory research design is
used in this study. The problem discovery is done through the literature survey and
Delphi method-based expert opinions. The prediction model is built and deployed in
11 cases to validate the research hypothesis. The analytics helps in achieving the
statistically significant business goals. The design includes Six Sigma DMAIC
(Define - Measure - Analyze - Improve and Control) approach, benchmarking,
historical data analysis, literature survey and experiments for the data
collection. The data analysis is done through stratification and process capability
analysis. The logistic regression-based analytics helps in prediction model
building and simulations. Findings The application of prediction model helped in
quick root cause analysis and reduction of rejection by over 99 per cent saving
over INR6.6m per year. This has also enhanced the reliability of the production
line and supply chain with on-time delivery of 99.78 per cent, which earlier was 80
per cent. The analytics with Six Sigma DMAIC approach can quickly and easily be
applied in manufacturing domain as well. Research limitations implications - The
limitation of the present analytics model is that it provides the point estimates.
The model can further be enhanced incorporating range estimates through Monte Carlo
simulation. Practical implications - The increasing use of prediction model in the
near future is likely to enhance predictability and efficiencies of the various
manufacturing process with sensors and Internet of Things. Originality/value - The
researchers have used design of experiments, artificial neural network and the
technical simulations to optimise either chemical composition or mould properties
or melt shop parameters. However, this work is based on comprehensive historical
data- based analytics. It considers multiple human and temporal factors, sand and
mould properties and melt shop parameters along with their relative weight, which
is unique. The prediction model is useful to the practitioners for parameter
simulation and quality enhancements. The researchers can use similar analytics
models with structured Six Sigma DMAIC approach in other manufacturing processes
for the simulation and optimisations.
C1 [Mishra, Nandkumar; Rane, Santosh B.] Sardar Patel Coll Engn, Dept Mech Engn,
Bhavans Campus, Mumbai, Maharashtra, India.
RP Mishra, N (corresponding author), Sardar Patel Coll Engn, Dept Mech Engn,
Bhavans Campus, Mumbai, Maharashtra, India.
EM mishranu@yahoo.com
RI Rane, Santosh Bhagawat/AAQ-5960-2021
OI Rane, Santosh Bhagawat/0000-0003-0636-2048
CR [Anonymous], 2002, The Delphi method
[Anonymous], 1989, BENCHMARKING SEARCH
Arcidiacono G, 2015, INT J LEAN SIX SIG, V6, P111, DOI 10.1108/IJLSS-02-2014-
0005
Auschitzky E, 2014, How big data can improve manufacturing?
Bharathi SK, 2017, INT J LEAN SIX SIG, V8, P181, DOI 10.1108/IJLSS-01-2016-0001
Breyfogle FW., 1999, IMPLEMENTING 6 SIGMA, V2nd
Calcaterra S, 2000, J MATER PROCESS TECH, V104, P74, DOI 10.1016/S0924-
0136(00)00514-8
Cheung N, 2001, ENG APPL ARTIF INTEL, V14, P229, DOI 10.1016/S0952-
1976(00)00075-0
Das A, 2015, INT J QUAL RELIAB MA, V32, P718, DOI 10.1108/IJQRM-07-2013-0122
Desai D, 2017, INT J LEAN SIX SIG, V8, P411, DOI 10.1108/IJLSS-06-2016-0022
Frazzon E, 2017, INT J LEAN SIX SIG, V8, P262, DOI 10.1108/IJLSS-03-2016-0009
Gijo EV, 2014, INT J LEAN SIX SIG, V5, P193, DOI 10.1108/IJLSS-09-2013-0052
Guharaja S, 2006, INT J ADV MANUF TECH, V30, P1040, DOI 10.1007/s00170-005-0146-
2
Han ZW, 2010, ISIJ INT, V50, P1637, DOI 10.2355/isijinternational.50.1637
Hilbe JM, 2009, CH CRC TEXT STAT SCI, P1
Hiremath S.S., 2015, INT J INNO ENG RES T, V2, P1
Isack HD, 2018, INT J LEAN SIX SIG, V9, P133, DOI 10.1108/IJLSS-02-2017-0017
Ishikawa K., 1989, INTRO QUALITY CONTRO
Islam S, 2016, INT J LEAN SIX SIG, V7, P294, DOI 10.1108/IJLSS-08-2015-0029
Kumar Sushil, 2013, TQM Journal, V25, P29, DOI 10.1108/17542731311286414
Kumar S, 2013, INT J QUAL RELIAB MA, V30, P4, DOI 10.1108/02656711311288397
Lavalle S, 2011, MIT SLOAN MANAGE REV, V52, P21
Lewis RW, 2001, ENG COMPUTATION, V18, P392, DOI 10.1108/02644400110387082
Li J, 2014, J MATER SCI TECHNOL, V30, P991, DOI 10.1016/j.jmst.2014.03.011
Mehta N., 2014, International Journal of Intelligent Enterprise, V2, P325, DOI
DOI 10.1504/IJIE.2014.069075
Mizuno S., 1988, MANAGEMENT QUALITY I
Montgomery D. C., 2007, Introduction to statistical quality control
Noori B, 2018, INT J LEAN SIX SIG, V9, P50, DOI 10.1108/IJLSS-11-2016-0074
Ozcelik B, 2006, J MATER PROCESS TECH, V171, P437, DOI
10.1016/j.jmatprotec.2005.04.120
Papaefthymiou SA, 2013, INT J STRUCT INTEGR, V4, P91, DOI
10.1108/17579861311303654
Patel GCM, 2016, APPL MATH MODEL, V40, P6869, DOI 10.1016/j.apm.2016.02.029
Perzyk M, 2001, J MATER PROCESS TECH, V109, P305, DOI 10.1016/S0924-
0136(00)00822-0
Raffaeli R, 2015, ENG COMPUTATION, V32, P102, DOI 10.1108/EC-03-2013-0075
Ransbotham S., 2016, MIT SLOAN MANAGE REV, V57
Reosekar RS, 2014, INT J LEAN SIX SIG, V5, P392, DOI 10.1108/IJLSS-12-2013-0059
Rowe G, 1999, INT J FORECASTING, V15, P353, DOI 10.1016/S0169-2070(99)00018-7
Saikaew C, 2012, APPL CLAY SCI, V67-68, P26, DOI 10.1016/j.clay.2012.07.005
Senthilkumar B, 2009, J MATER PROCESS TECH, V209, P554, DOI
10.1016/j.jmatprotec.2008.02.025
Singaram L, 2010, INT J DESIGN MANUFAC, V4, P1, DOI DOI 10.18000/ijodam.70071
Snee RD, 2010, INT J LEAN SIX SIG, V1, P9, DOI 10.1108/20401461011033130
Timelli G, 2016, J MATER SCI TECHNOL, V32, P515, DOI 10.1016/j.jmst.2016.03.010
Vaus D.D., 2001, Research design in social research
Wilson WJ, 2018, INT J LEAN SIX SIG, V9, P199, DOI 10.1108/IJLSS-03-2017-0022
NR 53
TC 26
Z9 28
U1 0
U2 38
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 2040-4166
EI 2040-4174
J9 INT J LEAN SIX SIG
JI Int. J. Lean Six Sigma
PD MAR 4
PY 2019
VL 10
IS 1
BP 189
EP 210
DI 10.1108/IJLSS-11-2017-0122
PG 22
WC Engineering, Industrial; Management
WE Social Science Citation Index (SSCI)
SC Engineering; Business & Economics
GA HO8KK
UT WOS:000461199200010
DA 2024-07-09
ER

PT J
AU Rane, SB
Narvel, YAM
Bhandarkar, BM
AF Rane, Santosh B.
Narvel, Yahya Abdul Majid
Bhandarkar, Bhaskar M.
TI Developing strategies to improve agility in the project procurement
management (PPM) process Perspective of business intelligence (BI)
SO BUSINESS PROCESS MANAGEMENT JOURNAL
LA English
DT Article
DE Delphi; Agility; Business intelligence; Interpretive structural
modelling; MICMAC; Project procurement management
ID SUPPLY CHAIN MANAGEMENT; MEDICAL DEVICE DEVELOPMENT; GREEN; PERFORMANCE;
IMPACT; FLEXIBILITY; BARRIERS; RANKING; SUPPORT; SYSTEMS
AB Purpose The ability of an organization to observe varying demands and
efficiently meet them can be described as agility. Project procurement management
(PPM) in the past was stable as things did not change very often and were very
predictable. Due to hyper-competition, less predictable market and exponential
innovation, the existing PPM becomes very unstable which marks the requirement of
an agile model to manage procurement projects effectively. The paper aims to
discuss this issue. Design/methodology/approach For achieving the improvements,
various barriers to improving agility in PPM were identified from the literature
and experts' review, followed by obtaining quantified impacts of identified
barriers from the experts using the Delphi technique. Finally, interpretive
structural modeling along with Matrice d' Impacts Croises Multiplication Applique
an Classement analysis was used to analyze the interactions among barriers to
prioritize and strategize their mitigation. Findings As per the analysis, the lack
of top management alignment and commitment, lack of digital strategy, lack of new
technology competencies and inefficiencies of financial factors were the most
critical barriers that would come across while improving agility in PPM for any
organization. Industries should have a stable, well-established and supportive top
management that has a vision for digital transformation along with upgrading the
companies' technology layer for automating most of the manual processes to have
intelligent decision-making capability. Originality/value Industries need to be
agile in their operations for being more competitive and responsive to the market.
PPM being the most critical part of the entire value chain needs to be agile in the
first place. The strategies developed as an output of this research can be utilized
by industries for improving agility in their business processes.
C1 [Rane, Santosh B.; Narvel, Yahya Abdul Majid] Sardar Patel Coll Engn, Dept Mech
Engn, Mumbai, Maharashtra, India.
[Narvel, Yahya Abdul Majid] Larsen & Toubro Infotech Ltd, Digital Solut, Oracle
Practice, Mumbai, Maharashtra, India.
[Bhandarkar, Bhaskar M.] Indian Inst Ind Engn, Mumbai, Maharashtra, India.
RP Narvel, YAM (corresponding author), Sardar Patel Coll Engn, Dept Mech Engn,
Mumbai, Maharashtra, India.; Narvel, YAM (corresponding author), Larsen & Toubro
Infotech Ltd, Digital Solut, Oracle Practice, Mumbai, Maharashtra, India.
EM yahyanarvel@gmail.com
RI Rane, Santosh Bhagawat/AAQ-5960-2021
OI Rane, Santosh Bhagawat/0000-0003-0636-2048
CR Abd Aziz AK, 2011, INT PROC COMPUT SCI, V5, P456
Agarwal A, 2006, EUR J OPER RES, V173, P211, DOI 10.1016/j.ejor.2004.12.005
Aitken J., 2002, International Journal of Logistics: Research and Applications,
V5, P59, DOI [10.1080/13675560110084139, DOI 10.1080/13675560110084139]
Al-Mashari M., 2000, BUS PROCESS MANAG J, V6, P10, DOI 10.1108/14637150010283045
Al-Mashari M., 2001, Bus. Process Manage. J, V7, P437, DOI DOI
10.1108/14637150110406812
Al-Mashari Majed., 1999, BUS PROCESS MANAG J, V5, P87
Alon I, 2016, CROSS CULT STRATEG M, V23, P78, DOI 10.1108/CCSM-10-2015-0138
[Anonymous], 2016, SMART PROCUREMENT
[Anonymous], 2017, A Guide to the SCRUM BODY OF KNOWLEDGE (SBOK TM GUIDE) Third
Edition A Comprehensive Guide to Deliver Projects using Scrum Includes two chapters
about Scaling Scrum for Large Projects and the Enterprise
[Anonymous], 2015, INT STRATEGIC MANAGE, DOI DOI 10.1016/J.ISM.2015.05.001
Atmo GU, 2017, INT J PUBLIC SECT MA, V30, P118, DOI 10.1108/IJPSM-02-2016-0047
Aziz K., 2014, INT C INN DRIV SUPPL
Bartolini, 2013, AGILITY MOBILITY VIS
Bernardes ES, 2009, INT J OPER PROD MAN, V29, P30, DOI 10.1108/01443570910925352
de Araújo MCB, 2017, INT J PROJ MANAG, V35, P353, DOI
10.1016/j.ijproman.2017.01.008
Bowen FE, 2001, PROD OPER MANAG, V10, P174
Braunscheidel MJ, 2009, J OPER MANAG, V27, P119, DOI 10.1016/j.jom.2008.09.006
BURGESS TF, 1994, INT J OPER PROD MAN, V14, P23, DOI 10.1108/01443579410068620
Burnson P., 2015, SUPPLY CHAIN MANAGEM
Chidambaranathan S, 2009, INT J ADV MANUF TECH, V43, P1081, DOI 10.1007/s00170-
008-1788-7
Chongwatpol J, 2016, IND MANAGE DATA SYST, V116, P1779, DOI 10.1108/IMDS-11-
2015-0473
Dandage Rahul V., 2018, Journal of Industrial Engineering International, V14,
P153, DOI 10.1007/s40092-017-0215-9
Dandage R.V., 2019, INT J MANAGING PROJE, DOI 10.1108/IJMPB-07-2018-0128
Dandage R, 2018, INT J MANAG PROJ BUS, V11, P317, DOI 10.1108/IJMPB-06-2017-0070
Dashore K., 2013, International Journal of Engineering Research Technology, V2,
P2021
Deign J., 2016, WHAT ARE BIGGEST CHA
Doheny M., 2012, MCKIN Q, P126
Donati M., 2015, STUDY REVEALS BARRIE
Faisal MN, 2006, BUS PROCESS MANAG J, V12, P535, DOI 10.1108/14637150610678113
Fouhal S., 2012, AGILE PROCUREMENT MA
Friend B., 2015, TAIL SPEND
GEP, 2013, TRENDS PROC TECHN MI
Goldman S.L., 1995, AGILE COMPETITORS VI
Gosling J, 2010, INT J PROD ECON, V128, P11, DOI 10.1016/j.ijpe.2009.08.029
Hemmingsen A.S., 2013, 7 BARRIERS IMPLEMENT
Hsu CW, 2008, INT J ENVIRON SCI TE, V5, P205, DOI 10.1007/BF03326014
Humphreys P., 2001, The Journal of Management Development, V20, P604
Jadhav J. R., 2015, Journal of Industrial Engineering International, V11, P331,
DOI 10.1007/s40092-014-0092-4
Jadhav J. R., 2015, Journal of Industrial Engineering International, V11, P179,
DOI 10.1007/s40092-014-0074-6
Jadhav Jagdish Rajaram, 2014, Journal of Industrial Engineering International,
V10, DOI 10.1007/s40092-014-0072-8
Jadhav J. R., 2014, International Journal of Procurement Management, V7, P316,
DOI 10.1504/IJPM.2014.060790
Jadhav J.R., 2014, INT J PROCUREMENT MA, V7, P3, DOI 10.1504/IJPM.2014.060790
Jadhav J.R., 2013, IJCA P INT C GREEN C, P5
Jadhav JR, 2014, INT J LEAN SIX SIG, V5, P122, DOI 10.1108/IJLSS-12-2012-0014
Jain V, 2008, ENG APPL ARTIF INTEL, V21, P367, DOI
10.1016/j.engappai.2007.07.004
Kannan G., 2008, International Journal of Management and Decision Making, V9,
P163, DOI 10.1504/IJMDM.2008.017198
Khan ME, 2014, PMI GLOB C EMEA DUB
Kisperska-Moron D, 2011, INT J PROD ECON, V133, P127, DOI
10.1016/j.ijpe.2009.12.013
Kuuse A., 2014, DELTABID
Liebenthal M., 2015, IMPORTANCE TECHNOLOG
Limberakis C., 2016, WHAT DO PROCUREMENT
Lin RJ, 2013, J CLEAN PROD, V40, P32, DOI 10.1016/j.jclepro.2011.06.010
Lonsdale C, 2017, IND MARKET MANAG, V65, P157, DOI
10.1016/j.indmarman.2017.04.001
Luthra S, 2013, J IND ENG MANAG-JIEM, V6, P930, DOI 10.3926/jiem.693
Madaan J, 2015, SYSTEMIC FLEXIBILITY, P343, DOI DOI 10.1007/978-81-322-2151-7_21
Mahsa P, 2014, AM J APPL SCI, V11, P548
Maltaverne B., 2016, BEGINNERS GUIDE AGIL
Mandal A., 1994, International Journal of Operations & Production Management,
V14, P52, DOI 10.1108/01443579410062086
Mangla Sachin, 2014, International Journal of Logistics Systems and Management,
V17, P125, DOI 10.1504/IJLSM.2014.059113
Mangla S., 2014, International Journal of Mechanical Engineering Robotics
Research, V1, P30
Mani V., 2014, INT STRATEGIC MANAGE, V2, P98, DOI DOI 10.1016/J.ISM.2014.10.003
Mathiyazhagan K, 2013, J CLEAN PROD, V47, P283, DOI
10.1016/j.jclepro.2012.10.042
Mol M.J., 2003, Journal of Purchasing and Supply Management, V9, P43, DOI
[10.1016/S0969-7012(02)00033-3, DOI 10.1016/S0969-7012(02)00033-3]
Mollenkopf D, 2010, INT J PHYS DISTR LOG, V40, P14, DOI
10.1108/09600031011018028
Mosley JC, 2017, ENG CONSTR ARCHIT MA, V24, P1004, DOI 10.1108/ECAM-02-2016-0055
Mudgal R.K., 2010, Int. Journal of Logistics Systems and Management, V7, P81,
DOI [DOI 10.1504/IJLSM.2010.033891, 10.1504/IJLSM.2010.033891]
Naim MM, 2011, INT J PROD ECON, V131, P342, DOI 10.1016/j.ijpe.2010.04.045
Newton K., 2016, PROCUREMENT TRANSPOR
Nicoletti, 2018, AGILE PROCUREMENT, P113, DOI 10.1007/978-3-319-61082-5_6
Noble J., 2014, OVERCOME 4 COMMON BA
Ohlmann H., 2016, TOP 10 BIGGEST PROCU
Paulraj A, 2009, BUS STRATEG ENVIRON, V18, P453, DOI 10.1002/bse.612
Pheng L.S., 2018, PROJECT PROCUREMENT
Plantinga H, 2016, INT J MANAG PROJ BUS, V9, P53, DOI 10.1108/IJMPB-09-2015-0096
Pramod VR., 2010, INT J BUS EXCELL, V3, P38
Rane Arun Bhiva, 2016, International Journal of Procurement Management, V9, P223
Rane Santosh B., 2018, International Journal of Business Excellence, V15, P308
Rane S.B., 2008, INT J ADV ENG APPL, V1, P1
Rane SB, 2017, INT J SYST ASSUR ENG, V8, P1816, DOI 10.1007/s13198-017-0678-5
Rane SB, 2017, INT J SYST ASSUR ENG, V8, P451, DOI 10.1007/s13198-015-0399-6
Rane SB, 2016, INT J SYST ASSUR ENG, V7, P356, DOI 10.1007/s13198-016-0497-0
Rao P, 2005, INT J OPER PROD MAN, V25, P898, DOI 10.1108/01443570510613956
Rao P, 2002, INT J OPER PROD MAN, V22, P632, DOI 10.1108/01443570210427668
Reynolds A., 2008, PURCHASING MODELS HD
Rouhani S, 2016, J ENTERP INF MANAG, V29, P19, DOI 10.1108/JEIM-12-2014-0126
Rozemeijer Frank, 2008, Journal of Purchasing and Supply Management, V14, P205,
DOI 10.1016/j.pursup.2008.06.001
Russell D., 2017, REAL IMPACT HIGH TRA
Sherehiy B, 2007, INT J IND ERGONOM, V37, P445, DOI 10.1016/j.ergon.2007.01.007
Singh Rajesh K., 2007, International Journal of Productivity and Quality
Management, V2, P423, DOI 10.1504/IJPQM.2007.013336
SPEKMAN RE, 1994, LONG RANGE PLANN, V27, P76, DOI 10.1016/0024-6301(94)90211-9
Staff, 2017, LACK INT RES TAL MAY
Swafford PM, 2008, INT J PROD ECON, V116, P288, DOI 10.1016/j.ijpe.2008.09.002
Swafford PM, 2006, J OPER MANAG, V24, P170, DOI 10.1016/j.jom.2005.05.002
Tan K. C., 1998, International Journal of Purchasing and Materials Management,
V34, P1, DOI DOI 10.1111/J.1745-493X.1998.TB00042.X
Tassabehji Rana, 2008, Journal of Purchasing and Supply Management, V14, P55,
DOI 10.1016/j.pursup.2008.01.005
Thakker SV, 2018, MANAG ENVIRON QUAL, V29, P938, DOI 10.1108/MEQ-03-2018-0052
Thamir A., 2015, International Journal of Global Business, V8, P34
Tiwari R.K., 2013, Uncertain Supply Chain Management, V1, P237, DOI
[10.5267/j.uscm.2013.08.005, DOI 10.5267/J.USCM.2013.08.005]
TOKE LK, 2012, INT J APPL SCI ENG R, V1, P372, DOI DOI 10.6088/IJASER.0020101038
Trieu VH, 2017, DECIS SUPPORT SYST, V93, P111, DOI 10.1016/j.dss.2016.09.019
Ubeda R, 2015, J BUS RES, V68, P177, DOI 10.1016/j.jbusres.2014.09.026
Vachon S, 2006, INT J OPER PROD MAN, V26, P795, DOI 10.1108/01443570610672248
Van Hoek R.I., 2001, International Journal of Physical Distribution Logistics
Management, V31, P290, DOI DOI 10.1108/09600030110394941
VASTAG G, 1994, INT J OPER PROD MAN, V14, P73, DOI 10.1108/01443579410068657
Walker DHT, 2016, CONSTR INNOV-ENGL, V16, P158, DOI 10.1108/CI-03-2015-0015
Warfield J.W., 1974, IEEE Transactions on Systems Men and Cybernetics, V4, P51,
DOI [10.1109/tsmc.1974.5408524, DOI 10.1109/TSMC.1974.5408524]
Wetzstein J., 2016, PROCUREMENT 4 0 ARE
White GRT, 2016, STRATEG CHANG, V25, P285, DOI 10.1002/jsc.2061
Whitmore B., 2017, GET YOUR PURCHASING
Wittemann C., 2010, BUSINESS INTELLIGENC
Yadav V., 2017, BUILDING FLEXIBLE AG
Yusuf Y. Y., 2003, Management Decision, V41, P613, DOI 10.1108/00251740310495540
Yusuf YY, 1999, INT J PROD ECON, V62, P33, DOI 10.1016/S0925-5273(98)00219-9
Zairi M, 2005, KNOWL PROCESS MANAG, V12, P190, DOI 10.1002/kpm.229
Zhelyazkov G., 2011, AGILE SUPPLY CHAIN Z
Zhu Q, 2007, INT J PROD RES, V45, P4333, DOI 10.1080/00207540701440345
NR 116
TC 29
Z9 33
U1 4
U2 94
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1463-7154
EI 1758-4116
J9 BUS PROCESS MANAG J
JI Bus. Process. Manag. J.
PD SEP 2
PY 2019
VL 26
IS 1
BP 257
EP 286
DI 10.1108/BPMJ-07-2017-0196
PG 30
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA KC8BT
UT WOS:000507397300001
DA 2024-07-09
ER

PT J
AU Vankar, SR
Kaore, AN
Yerramalli, CS
AF Vankar, Sachin R.
Kaore, Ameya N.
Yerramalli, Chandra S.
TI Methodology for testing the compressive strength of pultruded composites
SO JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
LA English
DT Article
DE Unidirectional composites; pultrusion; compressive strength; testing
fixture
ID FIBER COMPOSITES; UNIDIRECTIONAL COMPOSITE; FAILURE; MODEL
AB Unidirectional (UD) composites with 0 degrees fibre orientation have high axial
strength along the direction of fibres. Hence, the axial compressive testing of 0
degrees UD composites is extremely difficult due to associated issues like
misalignment, buckling, non-uniform gripping and non-uniform stress distribution.
These issues can intensify during fatigue testing, especially at higher load
levels. The data available in the literature on the compressive response of
unidirectional fibre reinforced composites is scarce. Many researchers have
attempted designing a standard testing fixture for compressive testing of the fibre
reinforced polymers (FRPs). Two most common fixtures are Boeing-modified ASTM D695
end loading fixture and ASTM D6641 combined loading compression (CLC) fixture.
However, these fixtures are only feasible for compressive testing of the
rectangular composite laminates. There is no standard fixture for compressive
testing of cylindrical pultruded composites. This paper presents a methodology for
testing the compressive strength of pultruded cylindrical composites. A fixture is
designed and fabricated to conduct the tests. Different misalignment, gripping and
stress concentration issues that could occur during the compression testing are
addressed and a corresponding solution is provided. Unidirectional (UD)
carbon/epoxy pultruded rods are used as test specimens. The test data of 21
specimens is presented and the failure modes are analysed using scanning electron
microscope (SEM) images.
C1 [Vankar, Sachin R.; Kaore, Ameya N.; Yerramalli, Chandra S.] Indian Inst
Technol, Aerosp Engn, Mumbai 400076, India.
[Vankar, Sachin R.] Sardar Patel Coll Engn, Mech Engn, Mumbai, India.
C3 Indian Institute of Technology System (IIT System); Indian Institute of
Technology (IIT) - Bombay
RP Yerramalli, CS (corresponding author), Indian Inst Technol, Aerosp Engn, Mumbai
400076, India.
EM chandra@aero.iitb.ac.in
OI yerramalli, chandra sekher/0000-0002-9888-7038
FU Department of Science and Technology, Government of India
[RD/0118-DST0000-028]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This study
was conducted as a part of a project funded by Department of Science and
Technology, Government of India (Project Code No. RD/0118-DST0000-028).
CR Adams DF, 1997, J COMPOS MATER, V31, P2283, DOI 10.1177/002199839703102204
Bai J, 2005, INT J SOLIDS STRUCT, V42, P2089, DOI 10.1016/j.ijsolstr.2004.08.011
Baumann A, 2021, J COMPOS SCI, V5, DOI 10.3390/jcs5040114
Baumann A, 2021, ADV ENG MATER, V23, DOI 10.1002/adem.202000646
Bech JI, 2011, STRAIN, V47, P21, DOI 10.1111/j.1475-1305.2008.00521.x
Berbinau P, 1999, COMPOS SCI TECHNOL, V59, P1451, DOI 10.1016/S0266-
3538(98)00181-X
Berg C.A., 1973, FIBRE SCI TECHNOL, V6, P79
BUDIANSKY B, 1993, J MECH PHYS SOLIDS, V41, P183, DOI 10.1016/0022-
5096(93)90068-Q
Chaudhuri RA, 1996, J COMPOS MATER, V30, P672, DOI 10.1177/002199839603000603
Garland BD, 2001, COMPOS SCI TECHNOL, V61, P2461, DOI 10.1016/S0266-
3538(01)00176-2
Grimes G.C., 1981, ASTM STP 734, P281
HARPER JF, 1993, POLYM TEST, V12, P15, DOI 10.1016/0142-9418(93)90023-I
Hsu SY, 1999, INT J SOLIDS STRUCT, V36, P575, DOI 10.1016/S0020-7683(98)00030-4
Kar NK, 2012, COMPOS SCI TECHNOL, V72, P1283, DOI
10.1016/j.compscitech.2012.05.001
Kore S, 2021, MATER TODAY COMMUN, V28, DOI 10.1016/j.mtcomm.2021.102669
Ku H, 2011, COMPOS PART B-ENG, V42, P856, DOI 10.1016/j.compositesb.2011.01.010
Lee J, 2008, COMPOS SCI TECHNOL, V68, P2359, DOI
10.1016/j.compscitech.2007.09.003
Milette J.-F., 1995, P 10 INT C COMP MAT
Narayanan S, 1999, COMPOS SCI TECHNOL, V59, P2201, DOI 10.1016/S0266-
3538(99)00074-3
Narsai M., 2018, R&D j. (Matieland, Online), V34, P37
Tran P, 2021, COMPOS STRUCT, V263, DOI 10.1016/j.compstruct.2021.113684
Rojek J., 2019, ICCM INT C COMP MAT
Schultheisz CR, 1996, PROG AEROSP SCI, V32, P1, DOI 10.1016/0376-0421(94)00002-3
Shioya M, 2000, COMPOS SCI TECHNOL, V60, P219, DOI 10.1016/S0266-3538(99)00123-2
Soutis C, 2000, J MATER SCI, V35, P3441, DOI 10.1023/A:1004832606677
STEIF PS, 1990, INT J SOLIDS STRUCT, V26, P549, DOI 10.1016/0020-7683(90)90028-T
Vankar S R., 2021, MECHCOMP7 FAILURE CO, P127
Vankar SR., 2019, P 22 INT C COMP MAT
Waas AM, 1996, PROG AEROSP SCI, V32, P43, DOI 10.1016/0376-0421(94)00003-4
Yerramalli CS, 2004, J APPL MECH-T ASME, V71, P402, DOI 10.1115/1.1756923
Yerramalli CS, 2003, INT J SOLIDS STRUCT, V40, P1139, DOI 10.1016/S0020-
7683(02)00649-2
Yerramalli CS, 2002, J ENG MATER-T ASME, V124, P152, DOI 10.1115/1.1446471
NR 32
TC 2
Z9 2
U1 1
U2 13
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0731-6844
EI 1530-7964
J9 J REINF PLAST COMP
JI J. Reinf. Plast. Compos.
PD JUN
PY 2023
VL 42
IS 11-12
BP 544
EP 557
DI 10.1177/07316844221133293
PG 14
WC Materials Science, Composites; Polymer Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Materials Science; Polymer Science
GA I6VP4
UT WOS:001004145200003
DA 2024-07-09
ER

PT J
AU Dandage, RV
Mantha, SS
Rane, SB
AF Dandage, Rahul Vishwanath
Mantha, Shankar S.
Rane, Santosh B.
TI Strategy development using TOWS matrix for international project risk
management based on prioritization of risk categories
SO INTERNATIONAL JOURNAL OF MANAGING PROJECTS IN BUSINESS
LA English
DT Article
DE Interpretive structural modelling (ISM); International projects; Project
risk; Project strategies
ID MEDICAL DEVICE DEVELOPMENT; MANUFACTURING SYSTEM; BUILDING-PROJECTS;
BARRIERS; ISM; PERSPECTIVE; ALLOCATION; VARIABLES; INDIA
AB Purpose International projects very commonly experience failure due to various
factors at the global level. Especially, large projects at the international level
virtually have no chance of meeting scope, time, cost and quality. This fact has
been underlined by most of the international surveys and published literature.
Effective risk management plays a vital role in preventing projects from failure by
implementing appropriate risk response strategies. The success of risk management
will be based on the understanding of various risk categories which specifically
affect international projects, analysis of their interdependence, prioritize them
according to their importance and develop strategies for risk management based on
the prioritization. The paper aims to discuss these issues.
Design/methodology/approach This paper represents typical eight risk categories
frequently observed in the international projects through literature survey and
feedback from project professionals. Interpretive structural modeling (ISM) and
Matrice d'Impacts croises-multiplication applique ' an classment (MICMAC) analysis
have been used to analyze the interactions among the risk categories and prioritize
them. The strategy management tool threats, opportunities, weaknesses and strengths
(TOWS) matrix has been used to develop the strategies for effective project risk
management. Findings The analysis represents political risks, contractual and legal
risks, cultural risks, and financial and economic risks as the highest priority
risk categories, the mitigation of which should be paid the highest attention. The
strengths-threats strategy has been applied to develop the strategies by
identifying the various internal strengths of project organization to overcome the
various threats caused by the eight risk categories observed in international
projects. Originality/value This paper uses ISM and MICMAC for risk prioritization
in international projects and TOWS matrix for developing risk management
strategies. This may trigger new opportunities for in-depth research in the risk
management strategy development for international projects.
C1 [Dandage, Rahul Vishwanath] Rajendra Mane Coll Engn & Technol, Dept Mech Engn,
Ratnagiri, India.
[Dandage, Rahul Vishwanath; Rane, Santosh B.] Sardar Patel Coll Engn, Dept Mech
Engn, Mumbai, Maharashtra, India.
[Mantha, Shankar S.] Veermata Jijabai Technol Inst, Dept Mech Engn, Mumbai,
Maharashtra, India.
[Mantha, Shankar S.] All India Council Tech Educ, New Delhi, India.
C3 Veermata Jijabai Technological Institute (VJTI)
RP Dandage, RV (corresponding author), Rajendra Mane Coll Engn & Technol, Dept Mech
Engn, Ratnagiri, India.; Dandage, RV (corresponding author), Sardar Patel Coll
Engn, Dept Mech Engn, Mumbai, Maharashtra, India.
EM dandagerahul@gmail.com
RI Rane, Santosh Bhagawat/AAQ-5960-2021; Dandage, Dr. Rahul
Vishwanath/N-7509-2018
OI Rane, Santosh Bhagawat/0000-0003-0636-2048; Dandage, Dr. Rahul
Vishwanath/0000-0002-2602-2107; Mantha, Shankar/0000-0001-7826-1604
CR Aarseth W, 2013, INT J MANAG PROJ BUS, V7, P103, DOI 10.1108/IJMPB-02-2011-0008
Abdul-Rahman H, 2012, J RISK RES, V15, P417, DOI 10.1080/13669877.2011.634520
Adler TR, 2016, INT J PROJ MANAG, V34, P914, DOI 10.1016/j.ijproman.2016.04.003
Ahsan K, 2010, INT J PROJ MANAG, V28, P68, DOI 10.1016/j.ijproman.2009.03.005
Ajmal M, 2017, INT J MANAG PROJ BUS, V10, P749, DOI 10.1108/IJMPB-03-2017-0027
Al Khattab Adel, 2007, International Journal of Project Management, V25, P734,
DOI 10.1016/j.ijproman.2007.03.006
Al-Sabah R, 2014, CONSTR MANAG ECON, V32, P382, DOI 10.1080/01446193.2014.884281
Alawamleh M, 2011, INT J PROD RES, V49, P6041, DOI 10.1080/00207543.2010.519735
Anderson S.W., 2000, 102 NAT W MIN C DENV
[Anonymous], 2021, GUID PROJ MAN BOD KN, V7th
[Anonymous], INT J COMPUTER APPL
[Anonymous], 2009, INTERPRETING INTERPR
Attri R., 2013, RES J MANAGEMENT SCI, V2319, P3
Attri R, 2013, INT J SYST ASSUR ENG, V4, P313, DOI 10.1007/s13198-012-0088-7
Attri R, 2013, INT J SYST ASSUR ENG, V4, P365, DOI 10.1007/s13198-012-0122-9
Aven T, 2016, EUR J OPER RES, V253, P1, DOI 10.1016/j.ejor.2015.12.023
Boateng P, 2015, INT J PROJ MANAG, V33, P1795, DOI
10.1016/j.ijproman.2015.08.007
Bush JK, 2005, DRUG SAFETY, V28, P1, DOI 10.2165/00002018-200528010-00001
Cagliano AC, 2015, J RISK RES, V18, P232, DOI 10.1080/13669877.2014.896398
Charan P, 2008, BUS PROCESS MANAG J, V14, P512, DOI 10.1108/14637150810888055
Charoenngam C., 1999, International Journal of Project Management, V17, P29, DOI
10.1016/S0263-7863(97)00064-1
Dandage Rahul V., 2018, Journal of Industrial Engineering International, V14,
P153, DOI 10.1007/s40092-017-0215-9
Dandage R, 2018, INT J MANAG PROJ BUS, V11, P317, DOI 10.1108/IJMPB-06-2017-0070
Doloi H, 2012, INT J PROJ MANAG, V30, P479, DOI 10.1016/j.ijproman.2011.10.004
El-Sayegh SM, 2015, J MANAGE ENG, V31, DOI 10.1061/(ASCE)ME.1943-5479.0000365
Elkington P., 2002, International Journal of Project Management, V20, P49, DOI
10.1016/S0263-7863(00)00034-X
Eswarlal VK, 2011, J SCI IND RES INDIA, V70, P713
Eybpoosh M, 2011, J CONSTR ENG M, V137, P1164, DOI 10.1061/(ASCE)CO.1943-
7862.0000382
Faisal MN, 2006, BUS PROCESS MANAG J, V12, P535, DOI 10.1108/14637150610678113
Faisal MN, 2010, INT J LOGIST-RES APP, V13, P179, DOI 10.1080/13675560903264968
Famiyeh S, 2015, INT J MANAG PROJ BUS, V8, DOI 10.1108/IJMPB-04-2014-0033
Fan M, 2008, INT J PROD ECON, V112, P700, DOI 10.1016/j.ijpe.2007.06.006
Florence Yean Yng Ling, 2006, International Journal of Project Management, V24,
P261, DOI 10.1016/j.ijproman.2005.11.003
Flüeler T, 2003, J RISK RES, V6, P213, DOI 10.1080/1366987032000088856
Geordan G., 2015, J RISK RES, V19, P581, DOI [10.1080/13669877.2014.1003323, DOI
10.1080/13669877.2014.1003323]
Gottfried O, 2018, J CLEAN PROD, V184, P632, DOI 10.1016/j.jclepro.2018.02.173
Grant KP, 2006, RES TECHNOL MANAGE, V49, P52, DOI 10.1080/08956308.2006.11657408
Grey C., 2010, PROJECT MANAGEMENT M, P615
Guo F, 2014, INT J PROJ MANAG, V32, P815, DOI 10.1016/j.ijproman.2013.10.001
Gupta J. P., 1998, International Journal of Project Management, V16, P99, DOI
10.1016/S0263-7863(97)00030-6
Hachicha W, 2014, J RISK RES, V17, P1301, DOI 10.1080/13669877.2013.841734
Han SH, 2008, AUTOMAT CONSTR, V17, P342, DOI 10.1016/j.autcon.2007.05.012
Hartono B, 2014, INT J PROJ MANAG, V32, P400, DOI 10.1016/j.ijproman.2013.05.011
Hwang BG, 2017, SUSTAIN CITIES SOC, V30, P237, DOI 10.1016/j.scs.2017.01.020
Hwang BG, 2015, PROJ MANAG J, V46, P76, DOI 10.1002/pmj.21512
Hwang BG, 2013, INT J PROJ MANAG, V31, P424, DOI 10.1016/j.ijproman.2012.08.003
Jacobs G., 2014, INT J RES ENG TECHNO, V2, P161
Jadhav J. R., 2015, Journal of Industrial Engineering International, V11, P331,
DOI 10.1007/s40092-014-0092-4
Jadhav J. R., 2015, Journal of Industrial Engineering International, V11, P179,
DOI 10.1007/s40092-014-0074-6
Jadhav Jagdish Rajaram, 2014, Journal of Industrial Engineering International,
V10, DOI 10.1007/s40092-014-0072-8
Jadhav J. R., 2014, International Journal of Procurement Management, V7, P316,
DOI 10.1504/IJPM.2014.060790
Jadhav J.R., 2015, INT J BUSINESS PERFO, V7, P141
Jamil M., 2008, 1 INT C CONSTR DEV C
Jannadi OA, 2003, J CONSTR ENG M ASCE, V129, P492, DOI 10.1061/(ASCE)0733-
9364(2003)129:5(492)
Kannan G., 2008, International Journal of Management and Decision Making, V9,
P163, DOI 10.1504/IJMDM.2008.017198
Kannan G, 2009, RESOUR CONSERV RECY, V54, P28, DOI
10.1016/j.resconrec.2009.06.004
Ke YJ, 2010, INT J PROJ MANAG, V28, P482, DOI 10.1016/j.ijproman.2009.08.007
Keizer JA, 2002, J PROD INNOVAT MANAG, V19, P213
Kirkire Milind Shrikant, 2015, Journal of Industrial Engineering International,
V11, P595, DOI 10.1007/s40092-015-0113-y
Kirkire MS, 2018, BENCHMARKING, V25, P178, DOI 10.1108/BIJ-07-2016-0112
Kumar N, 2013, J IND ENG MANAG-JIEM, V6, P996, DOI 10.3926/jiem.508
Kumar Sanjay, 2013, Journal of Industrial Engineering International, V9, DOI
10.1186/2251-712X-9-6
Kumar S, 2015, INT J SYST ASSUR ENG, V6, P511, DOI 10.1007/s13198-014-0279-5
Kwan TW, 2011, IEEE T SOFTWARE ENG, V37, P635, DOI 10.1109/TSE.2010.108
Lam K. C., 2007, International Journal of Project Management, V25, P485, DOI
10.1016/j.ijproman.2006.11.005
Lambrechts D, 2017, J RISK RES, V20, P1320, DOI 10.1080/13669877.2016.1153502
Latham M., 1994, CONSTRUCTING TEAM
Lee E, 2009, EXPERT SYST APPL, V36, P5880, DOI 10.1016/j.eswa.2008.07.057
Li S., 2009, International Business Research, V2, P193
Li Y, 2018, J RISK RES, V21, P952, DOI 10.1080/13669877.2016.1264451
Liu JY, 2015, INT J PROJ MANAG, V33, P564, DOI 10.1016/j.ijproman.2014.08.004
Low S.P., 2001, WORK STUDY, V50, P276, DOI DOI 10.1108/00438020110409215
Luthra S, 2011, J IND ENG MANAG-JIEM, V4, P231, DOI 10.3926/jiem.2011.v4n2.p231-
257
Majumdar R, 2016, INT J SYST ASSUR ENG, V7, P435, DOI 10.1007/s13198-016-0477-4
Mandal A., 1994, International Journal of Operations & Production Management,
V14, P52, DOI 10.1108/01443579410062086
Marle F, 2011, RES ENG DES, V22, P189, DOI 10.1007/s00163-011-0106-9
Miller R., 2001, INT J PROJ MANAG, V19, P437, DOI [DOI 10.1016/S0263-
7863(01)00045-X, 10.1016/s0263-7863(01)00045-x, DOI 10.1016/S0263-7863(01)00045]
Mudgal R.K., 2010, Int. Journal of Logistics Systems and Management, V7, P81,
DOI [DOI 10.1504/IJLSM.2010.033891, 10.1504/IJLSM.2010.033891]
Palm K, 2015, INT J PROJ MANAG, V33, P828, DOI 10.1016/j.ijproman.2014.10.002
Patidar L, 2017, INT J SYST ASSUR ENG, V8, P1783, DOI 10.1007/s13198-017-0669-6
Patterson F. D., 2002, International Journal of Project Management, V20, P365,
DOI 10.1016/S0263-7863(01)00040-0
Pfohl HC, 2011, INT J PHYS DISTR LOG, V41, P839, DOI 10.1108/09600031111175816
Qazi A, 2016, INT J PROJ MANAG, V34, P1183, DOI 10.1016/j.ijproman.2016.05.008
Raj T, 2008, INT J PROD RES, V46, P6883, DOI 10.1080/00207540701429926
Rane SB, 2017, INT J SYST ASSUR ENG, V8, P451, DOI 10.1007/s13198-015-0399-6
Rane SB, 2016, INT J SYST ASSUR ENG, V7, P356, DOI 10.1007/s13198-016-0497-0
Ravi V, 2005, TECHNOL FORECAST SOC, V72, P1011, DOI
10.1016/j.techfore.2004.07.002
Raz T., 2001, INT J PROJ MANAG, V19, P9, DOI [10.1016/S0263-7863, DOI
10.1016/S0263-7863, DOI 10.1016/S0263-7863(99)00036-8]
SAGE AP, 1977, COMPUT ELECTR ENG, V4, P185, DOI 10.1016/0045-7906(77)90029-5
Sagheer S, 2009, INT J PRODUCT PERFOR, V58, P136, DOI 10.1108/17410400910928734
Sato T, 2013, INT J PROJ MANAG, V31, P126, DOI 10.1016/j.ijproman.2012.04.002
Shahabadkar P., 2012, INT J IND ENG PRODUC, V23, P195
SHARMA HD, 1995, TECHNOL FORECAST SOC, V48, P285, DOI 10.1016/0040-
1625(94)00066-6
Sharma S.K., 2011, International Journal of Modeling and Optimization, V1, P101,
DOI [DOI 10.7763/IJMO.2011.V1.18, 10.7763/ijmo.2011.v1.18]
Sindhwani R, 2017, INT J SYST ASSUR ENG, V8, P253, DOI 10.1007/s13198-016-0426-2
Singh, 2003, J ADV MANAGEMENT RES, V1, P28, DOI [DOI 10.1108/97279810380000356,
10.1108/97279810380000356]
Singh MD, 2008, INT J MANAG SCI ENG, V3, P141, DOI
10.1080/17509653.2008.10671042
Singh Rajesh K., 2007, International Journal of Productivity and Quality
Management, V2, P423, DOI 10.1504/IJPQM.2007.013336
Smith PrestonG., 2002, PROACTIVE RISK MANAG
Sohani N., 2012, Journal of Engineering, Science Management Education, V5, P495
Solanki K.L., 2014, INT J RES AERONAUTIC, V2, P96
Stewart R., 1995, International Journal of Project Management, V13, P279, DOI
DOI 10.1016/0263-7863(95)00024-K
Thakkar J., 2007, International Journal of Productivity and Performance
Management, V56, P25, DOI DOI 10.1108/17410400710717073
Thakkar J, 2007, J MANUF TECHNOL MANA, V19, P92, DOI 10.1108/17410380810843471
Thirupathi RM, 2016, INT J PROD RES, V54, P6661, DOI
10.1080/00207543.2015.1126372
Turner R, 2010, INT J PROJ MANAG, V28, P744, DOI 10.1016/j.ijproman.2010.06.005
Walewski J., 2003, International Project Risk Assessment: Methods, Procedures,
and Critical Factors
Ward S., 2003, INT J PROJ MANAG, V21, P97, DOI DOI 10.1016/S0263-7863(01)00080-1
WARFIELD JN, 1974, IEEE T SYST MAN CYB, VSMC4, P81, DOI
10.1109/TSMC.1974.5408524
WEIHRICH H, 1982, LONG RANGE PLANN, V15, P54, DOI 10.1016/0024-6301(82)90120-0
Xiao H, 2010, ENG CONSTR ARCHIT MA, V17, P549, DOI 10.1108/09699981011090189
Yang RJ, 2014, BUILD ENVIRON, V73, P208, DOI 10.1016/j.buildenv.2013.12.014
Yazid A., 2014, INT BUSINESS MANAGEM, V8, P342
Yrd D., 2010, YONETIM VE EKONOMI, V17, P207
Zhang XL, 2011, HABITAT INT, V35, P514, DOI 10.1016/j.habitatint.2011.02.005
Zhang Y, 2016, INT J PROJ MANAG, V34, P819, DOI 10.1016/j.ijproman.2016.03.001
Zwikael O, 2007, J OPER MANAG, V25, P755, DOI 10.1016/j.jom.2006.12.001
Zwikael O, 2014, INT J PROJ MANAG, V32, P435, DOI 10.1016/j.ijproman.2013.07.002
NR 118
TC 23
Z9 23
U1 3
U2 70
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 1753-8378
EI 1753-8386
J9 INT J MANAG PROJ BUS
JI Int. J. Manag. Proj. Bus.
PD DEC 2
PY 2019
VL 12
IS 4
BP 1003
EP 1029
DI 10.1108/IJMPB-07-2018-0128
PG 27
WC Business; Management
WE Social Science Citation Index (SSCI)
SC Business & Economics
GA JN4OK
UT WOS:000496878300008
DA 2024-07-09
ER

PT J
AU Gadhari, NS
Patil, SS
Gholave, JV
Patil, VR
Upadhyay, SS
AF Gadhari, Nayan S.
Patil, Suyog S.
Gholave, Jayram, V
Patil, Vishwanath R.
Upadhyay, Sharad S.
TI Highly efficient potentiometric sensing device for gadolinium based on
Tetraazacyclododecane-1, 4, 7, 10-tetraaceticacid crown ether and
multiwalled carbon nanotube composite
SO MICROCHEMICAL JOURNAL
LA English
DT Article
DE Gadolinium; Tetraazacyclododecane-1, 4, 7, 10-tetraaceticacid;
Multi-walled carbon nanotube; Ion selective electrode; Potentiometry
ID ION-SELECTIVE ELECTRODE; COATED GRAPHITE ELECTRODE; SENSOR; GD(III);
QUANTIFICATION; CONSTRUCTION; COMPLEXES; SAMPLES
AB A hydrophilic cavity presents in tetraazacyclododecane-1, 4, 7, 10-
tetraaceticacid crown ether (DOTA) provides the opportunity for Gadolinium (Gd3+)
transfer from an aqueous medium to a lipophilic phase and mimic the ionophoric
properties due to strong coordinating link. Therefore, we have developed Gd3+ ion
selective electrode (ISE) incorporating synthesized nanocomposite of DOTA as an
ionophore and multiwalled carbon nanotube (MWCNT) as signal enhancer in poly vinyl
chloride (PVC) membrane sensor employing potentiometry. The composite DOTA-MWCNT
was characterized by scanning electron microscopy (SEM). The Nernstian slope of
20.05 +/- 0.18 mV per decade with linear range 1 x 10(-2) to 1 x 10(-8) M and the
detection limit was found to be 7.2 +/- 0.16 x 10(-9) M. This electrode has an
excellent selectivity over mono, bi, tri and tetravalent interferent metal species.
The proposed sensor was favourably applied as an indicator electrode in the
titration of Gd3+ ions with EDTA and recovery of gadolinium (III) from diverse
synthetic samples. The presence of four ionizable carboxylic acids groups imparts
advantages to DOTA-MWCNT composite in the formation of strong complexes and
enhanced solubility of Gd3+ which became the basis for in-vivo analysis of Gd3+ in
pharmaceutical and soil samples. DOTA-MWCNT as host forms 1:1 chelate complex with
guest Gd3+ employing square wave voltammetry. The stability constant (Log K =
25.41) and Gibbs free energy (DG) of DOTA-MWCNT - Gd3+ complex was calculated which
established exothermic and spontaneous inclusion mechanism. The higher stability
constant obtained for DOTA-MWCNT chelate complex can provide the opportunity to
researchers of biomedical science to minimize/control the amount of free Gd3+
release in the human body through the process of drug delivery.
C1 [Gadhari, Nayan S.; Patil, Suyog S.; Patil, Vishwanath R.; Upadhyay, Sharad S.]
Univ Mumbai, Dept Chem, Mumbai 400098, Maharashtra, India.
[Gholave, Jayram, V] Sardar Patel Coll Engn, Dept Appl Chem, Mumbai 400058,
Maharashtra, India.
C3 University of Mumbai
RP Patil, VR; Upadhyay, SS (corresponding author), Univ Mumbai, Dept Chem, Mumbai
400098, Maharashtra, India.
EM upadhyaysharad21@gmail.com
FU DST-SERB [SR/S1/PC-14/2012]
FX We are thankful to DST-SERB (Project SR/S1/PC-14/2012) for financial
assistance.
CR Agrahari SK, 2011, ELECTROANAL, V23, P1531, DOI 10.1002/elan.201100097
Amini MK, 1999, ANAL CHEM, V71, P2502, DOI 10.1021/ac9812633
Anelli PL, 2001, INORG CHIM ACTA, V317, P218, DOI 10.1016/S0020-1693(01)00364-4
ARNAUDNEU F, 1994, CHEM SOC REV, V23, P235, DOI 10.1039/cs9942300235
Atta NF, 2019, ELECTROANAL, V31, P1204, DOI 10.1002/elan.201800065
Bhat VS, 2004, SENSOR ACTUAT B-CHEM, V99, P98, DOI 10.1016/j.snb.2003.11.001
Bizzarri BM, 2020, RSC ADV, V10, P17185, DOI 10.1039/d0ra02785e
Ceulemans M, 2015, INORGANICS, V3, P516, DOI 10.3390/inorganics3040516
Cosentino U, 2002, J AM CHEM SOC, V124, P4901, DOI 10.1021/ja017666t
Crespo GA, 2009, ANAL CHEM, V81, P676, DOI 10.1021/ac802078z
Dai LX, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-03315-8
De Marco R, 2008, PHYS CHEM CHEM PHYS, V10, P73, DOI 10.1039/b714248j
Faridbod F, 2008, SENSORS-BASEL, V8, P1645, DOI 10.3390/s8031645
Faridbod F, 2008, ANAL LETT, V41, P2972, DOI 10.1080/00032710802440525
Gadhari NS, 2021, J ELECTROANAL CHEM, V882, DOI 10.1016/j.jelechem.2021.114981
Ganjali MR, 2005, ELECTROANAL, V17, P2032, DOI 10.1002/elan.200503324
Ganjali MR, 2003, ELECTROANAL, V15, P1038, DOI 10.1002/elan.200390125
Ganjali MR, 2003, ANAL CHIM ACTA, V495, P51, DOI 10.1016/S0003-2670(03)00921-8
Gaudino C., 2014, ORG BIOMOL CHEM, V00, P1
Gong ZL, 1997, MIKROCHIM ACTA, V126, P117, DOI 10.1007/BF01242672
Gräfe JL, 2010, NUCL INSTRUM METH B, V268, P2451, DOI 10.1016/j.nimb.2010.04.006
Gupta VK, 2013, ELECTROCHIM ACTA, V95, P132, DOI 10.1016/j.electacta.2013.02.053
Hanna JR, 2017, MOLECULES, V22, DOI 10.3390/molecules22050802
Hu JB, 2016, TRAC-TREND ANAL CHEM, V76, P102, DOI 10.1016/j.trac.2015.11.004
Isildak Ö, 2020, J CHEM SCI, V132, DOI 10.1007/s12039-019-1734-2
Isildak Ö, 2021, CRIT REV ANAL CHEM, V51, P218, DOI
10.1080/10408347.2019.1711013
Khaled E., 2015, Anal. Chem. Lett, V5, P329, DOI [10.1080/22297928.2016.1143393,
DOI 10.1080/22297928.2016.1143393]
Kirk O. R., 1982, ENCY CHEM TECHNOLOGY
Künnemeyer J, 2009, ENVIRON SCI TECHNOL, V43, P2884, DOI 10.1021/es803278n
KUMAR K, 1994, INORG CHEM, V33, P3567, DOI 10.1021/ic00094a021
Lingane JJ, 1941, CHEM REV, V29, P1, DOI 10.1021/cr60092a001
Mihali C, 2012, RECENT ADV PLASTICIZ, DOI [10.5772/37006, DOI 10.5772/37006]
Morf WE., 1981, The Principle of Ion-Selective Electrodes and of Membrane
Transport
Normann PT, 2000, J PHARMACEUT BIOMED, V22, P939, DOI 10.1016/S0731-
7085(00)00255-7
Özbek O, 2021, BIOCHEM ENG J, V176, DOI 10.1016/j.bej.2021.108181
Özbek O, 2023, INT J ENVIRON AN CH, V103, P1587, DOI
10.1080/03067319.2021.1877283
Özbek O, 2020, J INCL PHENOM MACRO, V98, P1, DOI 10.1007/s10847-020-01004-y
Ganjali MR, 2007, SENSOR ACTUAT B-CHEM, V120, P487, DOI
10.1016/j.snb.2006.03.001
Sastri V.S., 2003, MODERN ASPECTS RARE, V1st
Shamsipur M, 2007, ANAL CHIM ACTA, V589, P22, DOI 10.1016/j.aca.2007.02.030
SHANNON RD, 1976, ACTA CRYSTALLOGR A, V32, P751, DOI 10.1107/S0567739476001551
Shao YZ, 2020, CHEM SOC REV, V49, P4405, DOI 10.1039/c9cs00587k
Shao YZ, 2019, MICROCHIM ACTA, V186, DOI 10.1007/s00604-019-3878-7
Sharma HK, 2009, E-J CHEM, V6, P1139, DOI 10.1155/2009/301016
Sherry AD, 2009, J MAGN RESON IMAGING, V30, P1240, DOI 10.1002/jmri.21966
Sil A, 2004, ANAL BIOANAL CHEM, V378, P1666, DOI 10.1007/s00216-003-2443-7
Sil A, 2002, ELECTROANAL, V14, P1215, DOI 10.1002/1521-
4109(200209)14:17<1215::AID-ELAN1215>3.0.CO;2-W
Singh AK, 2009, ELECTROCHIM ACTA, V54, P5640, DOI
10.1016/j.electacta.2009.04.071
TAKETATSU T, 1978, ANAL CHIM ACTA, V98, P397, DOI 10.1016/S0003-2670(01)84071-X
Telgmann L, 2011, METALLOMICS, V3, P1035, DOI 10.1039/c1mt00054c
Umezawa Y, 2000, PURE APPL CHEM, V72, P1851, DOI 10.1351/pac200072101851
Upadhyay SS, 2020, BIOSENS BIOELECTRON, V165, DOI 10.1016/j.bios.2020.112397
Upadhyay SS, 2019, NEW J CHEM, V43, P11178, DOI 10.1039/c9nj02508a
Upadhyay SS, 2017, ELECTROCHIM ACTA, V248, P258, DOI
10.1016/j.electacta.2017.07.141
Vahdani M, 2013, INT J ELECTROCHEM SC, V8, P2734
Zamani HA, 2007, ANAL CHIM ACTA, V598, P51, DOI 10.1016/j.aca.2007.07.028
Zamani HA, 2014, MAT SCI ENG C-MATER, V43, P488, DOI 10.1016/j.msec.2014.07.035
Zamani HA, 2012, MAT SCI ENG C-MATER, V32, P712, DOI 10.1016/j.msec.2012.01.013
Zamani HA, 2012, E-J CHEM, V9, P308, DOI 10.1155/2012/239245
NR 59
TC 3
Z9 3
U1 2
U2 22
PU ELSEVIER
PI AMSTERDAM
PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS
SN 0026-265X
EI 1095-9149
J9 MICROCHEM J
JI Microchem J.
PD APR
PY 2022
VL 175
AR 107130
DI 10.1016/j.microc.2021.107130
EA JAN 2022
PG 11
WC Chemistry, Analytical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry
GA YG5WQ
UT WOS:000742558900007
DA 2024-07-09
ER

PT J
AU Vankar, SR
Yerramalli, CS
AF Vankar, Sachin R.
Yerramalli, Chandra S.
TI Micromechanics based analytical model for composites subjected to
combined torsion-compression loading
SO JOURNAL OF REINFORCED PLASTICS AND COMPOSITES
LA English
DT Article
DE Composites; longitudinal compression; combined compression-torsion;
micromechanics model
ID FAILURE; STRENGTH; PREDICTION
AB A micromechanics based analytical model under combined loading for
unidirectional composites has been developed. The peak compressive load predicted
from the combined loading analytical model is compared with the experimental
results of carbon epoxy pultruded rod having a volume fraction 60%. The specimens
were subjected to torsional load under rotational control and longitudinal
compressive load using displacement control. The model captures the compressive
strength of the composite subjected to remotely applied shear stress. It is
observed that the peak compressive strength of the composite decreases linearly
with an increase in shear stress. The analytical modeling results are in good
agreement with the experiment data. The analytical model and the experimental
results are used to find the effect of shear stress on longitudinal compressive
loading. The peak compressive strength caused in the presence of applied shear
stress and compressive load and the effect of shear on the compressive strength are
predicted using a 2D analytical model in this study. The model results are
confirmed using experimental data from combined loading.
C1 [Vankar, Sachin R.; Yerramalli, Chandra S.] Indian Inst Technol, Dept Aerosp
Engn, Mumbai 400076, Maharashtra, India.
[Vankar, Sachin R.] Indian Inst Technol, Sardar Patel Coll Engn, Dept Aerosp
Engn, Mumbai, India.
C3 Indian Institute of Technology System (IIT System); Indian Institute of
Technology (IIT) - Bombay; Indian Institute of Technology System (IIT
System); Indian Institute of Technology (IIT) - Bombay
RP Yerramalli, CS (corresponding author), Indian Inst Technol, Dept Aerosp Engn,
Mumbai 400076, Maharashtra, India.
EM chandra@aero.iitb.ac.in
OI yerramalli, chandra sekher/0000-0002-9888-7038
FU Department of Science and Technology (DST), Government of India
[RD/0118-DST0000-028]
FX The author(s) disclosed receipt of the following financial support for
the research, authorship, and/or publication of this article: This study
was funded by Department of Science and Technology(DST), Government of
India. (Project Code No. RD/0118-DST0000-028)
CR Argon A. S., 1972, Treatise on Materials Science and Technology vol.1, P79
BUDIANSKY B, 1993, J MECH PHYS SOLIDS, V41, P183, DOI 10.1016/0022-
5096(93)90068-Q
BUDIANSKY B, 1983, COMPUT STRUCT, V16, P3, DOI 10.1016/0045-7949(83)90141-4
CHUNG I, 1994, INT J SOLIDS STRUCT, V31, P2519, DOI 10.1016/0020-7683(94)90035-3
Davidson P, 2016, MATH MECH SOLIDS, V21, P667, DOI 10.1177/1081286514535422
DeMorais AB, 1997, J COMPOS MATER, V31, P1397, DOI 10.1177/002199839703101403
FLECK NA, 1995, J APPL MECH-T ASME, V62, P329, DOI 10.1115/1.2895935
Hahn H.T., 1986, Composite Materials Testing and Design. STP, V893, P115
Hsu SY, 1999, INT J PLASTICITY, V15, P807, DOI 10.1016/S0749-6419(99)00012-1
JELF PM, 1992, J COMPOS MATER, V26, P2706, DOI 10.1177/002199839202601804
KYRIAKIDES S, 1995, INT J SOLIDS STRUCT, V32, P689, DOI 10.1016/0020-
7683(94)00157-R
Lee SH, 1999, INT J FRACTURE, V100, P275, DOI 10.1023/A:1018779307931
Pimenta S, 2009, COMPOS SCI TECHNOL, V69, P956, DOI
10.1016/j.compscitech.2009.02.003
Prabhakar P, 2013, COMPOS STRUCT, V98, P85, DOI 10.1016/j.compstruct.2012.11.005
Rosen BW., 1965, MECH COMPOS MATER, DOI [10.1115/1.3423688, DOI
10.1115/1.3423688]
Schultheisz CR, 1996, PROG AEROSP SCI, V32, P1, DOI 10.1016/0376-0421(94)00002-3
SUN CT, 1994, COMPOS SCI TECHNOL, V52, P577, DOI 10.1016/0266-3538(94)90041-8
Vankar SR, 2023, J REINF PLAST COMP, V42, P544, DOI 10.1177/07316844221133293
Vogler TJ, 2000, INT J SOLIDS STRUCT, V37, P1765, DOI 10.1016/S0020-
7683(98)00323-0
Wadee MA, 2012, PHILOS T R SOC A, V370, P1827, DOI 10.1098/rsta.2011.0380
Yerramalli CS, 2004, CMES-COMP MODEL ENG, V6, P1
Yerramalli CS, 2003, INT J SOLIDS STRUCT, V40, P1139, DOI 10.1016/S0020-
7683(02)00649-2
Zidek RAE, 2014, INT J NONLIN MECH, V62, P23, DOI
10.1016/j.ijnonlinmec.2014.02.004
NR 23
TC 0
Z9 0
U1 2
U2 4
PU SAGE PUBLICATIONS LTD
PI LONDON
PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND
SN 0731-6844
EI 1530-7964
J9 J REINF PLAST COMP
JI J. Reinf. Plast. Compos.
PD JUL
PY 2024
VL 43
IS 13-14
BP 770
EP 782
DI 10.1177/07316844231196767
EA AUG 2023
PG 13
WC Materials Science, Composites; Polymer Science
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Materials Science; Polymer Science
GA WA7X3
UT WOS:001060470500001
DA 2024-07-09
ER

PT J
AU Gadhari, NS
Gholave, JV
Patil, SS
Patil, VR
Upadhyay, SS
AF Gadhari, Nayan S.
Gholave, Jayram, V
Patil, Suyog S.
Patil, Vishwanath R.
Upadhyay, Sharad S.
TI Enantioselective high performance new solid contact ion-selective
electrode potentiometric sensor based on sulphated γ-cyclodextrin -
carbon nano fi ber composite for determination of multichiral drug moxi
fl oxacin
SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY
LA English
DT Article
DE Chiral drugs; Solid-contact ion-selective electrode; S gamma-CD-CNF;
Potentiommetry; Host-guest interaction
ID LIQUID-CHROMATOGRAPHY; CHIRAL RECOGNITION; MOXIFLOXACIN HYDROCHLORIDE;
ALPHA-CYCLODEXTRINS; ASSAY; ENANTIOMERS; MECHANISMS; SEPARATION;
DISCRIMINATION; NANOCOMPOSITE
AB Multiple chiral centered drugs not only pose greater risk than single center in
asymmetric medium of human bodies but also beneficial to them in many ways.
Therefore, online monitoring and rapid chiral sensing method is always desirable
for both isomers as well as their impurities. In the present paper, we have
developed a new solid-contact ion selective electrode (SC-ISE) for enantioselective
recognition of RR and SS moxifloxacin (RR-MX/SS-MX) based on chiral nanocomposite
of sulphated gamma-cyclodextrin (S gamma-CD) and carbon nanofibers (CNF)
incorporated into a plasticized poly vinyl chloride (PVC) employing potentiometry.
CNF are used for the first time to fabricate SC-ISE as the intermediate layer
between an ionophore-doped polymeric membrane and a glassy carbon electrode (GC)
for MX enantiomers. The host-guest interaction takes place between gamma-CD and
RR/SS isomer in the polymeric membrane of the solid-contact electrode forming 1:1
chelate complex where enantioselectivity is achieved in the terms of stability
constant (SS MX = 1786 M-1 and RR-MX = 390 M-1 and Gibbs free energy employing
square wave voltammetry (SWV). The new electrode displays a Nernstian slope (60.10
+/- 0.25 mV/decade) with the linear range obtained was 1 x 10-2 to 6.5 x 10-7 M and
the detection limit of 1.5 +/- 0.16 x 10-7 M. The developed solid-contact electrode
shows very small drift in potential (E Delta/t Delta = 154 mu Vh-1) and fast
response time of less than 5 s throughout the linear range. The assay of SS-MX in
the presence of its antimer RR-MX was carried out using different ratios of both
enantiomers, recovery of SS-MX in the presence of RR clearly demonstrate the
enantioselectivity and stereospecificity of the proposed SC-ISE. The practical
analytical utility of developed chiral potentiometric sensor was demonstrated by
measurement of SS-MX in pharmaceutical formulations, urine and blood serum samples.
Surface characterization of solid contact electrode was performed using Frequency
Response Analyzer (FRA), Scanning electron microscopy (SEM) and the effect of the
interfacial water film was evaluated using potentiometric water layer test.
C1 [Gadhari, Nayan S.; Patil, Vishwanath R.; Upadhyay, Sharad S.] Univ Mumbai, Dept
Chem, Mumbai 400098, Maharashtra, India.
[Gholave, Jayram, V] Sardar Patel Coll Engn, Dept Appl Chem, Mumbai 400058,
Maharashtra, India.
[Patil, Suyog S.] Govt Maharashtra, Home Dept, Biol Div Aurangabad, Reg Forens
Sci Lab, Mumbai, Maharashtra, India.
C3 University of Mumbai
RP Patil, VR; Upadhyay, SS (corresponding author), Univ Mumbai, Dept Chem, Mumbai
400098, Maharashtra, India.
EM vishwanathrpatil03@gmail.com; upadhyaysharad21@gmail.com
RI Upadhyay, Sharad/ABI-8288-2020
OI Upadhyay, Sharad/0000-0002-3845-2438; Gholave,
Jayram/0000-0002-8401-6362
FU DST-SERB [SR/S1/PC-14/2012]
FX We are thankful to DST-SERB (Project SR/S1/PC-14/2012) for financial
assistance.
CR [Anonymous], 2021, J ELECTROANAL CHEM, V882
ARMSTRONG DW, 1994, ANAL CHEM, V66, P1473, DOI 10.1021/ac00081a019
Bakker E, 2007, ANGEW CHEM INT EDIT, V46, P5660, DOI 10.1002/anie.200605068
Bobacka J, 2006, ELECTROANAL, V18, P7, DOI 10.1002/elan.200503384
Bobacka J, 2008, CHEM REV, V108, P329, DOI 10.1021/cr068100w
Bratov A, 2010, ANAL CHIM ACTA, V678, P149, DOI 10.1016/j.aca.2010.08.035
Chamsaz M., 2009, J IRAN CHEM SOC, V2, P1
Crespo GA, 2008, ANAL CHEM, V80, P1316, DOI 10.1021/ac071156l
Cruz LA, 2005, J PHARMACEUT BIOMED, V38, P8, DOI 10.1016/j.jpba.2004.12.004
De Marco R, 2008, PHYS CHEM CHEM PHYS, V10, P73, DOI 10.1039/b714248j
Djurdjevic P, 2009, J PHARMACEUT BIOMED, V50, P117, DOI
10.1016/j.jpba.2009.03.029
Düzgün A, 2011, ANAL BIOANAL CHEM, V399, P171, DOI 10.1007/s00216-010-3974-3
Easton CJ, 1996, CHEM SOC REV, V25, P163, DOI 10.1039/cs9962500163
Elghobashy MR, 2014, ANAL BIOANAL ELECTRO, V6, P461
Fouskaki M, 2008, ANALYST, V133, P1072, DOI 10.1039/b719759d
FREISER H, 1978, ION SELECTIVE ELECTR
Guerra FLB, 2005, J AOAC INT, V88, P1086
Hefnawy MM, 2014, CHEM CENT J, V8, DOI 10.1186/s13065-014-0059-y
Horvath V, 1997, ANAL LETT, V30, P1591
Hu JB, 2014, ANAL CHEM, V86, P7111, DOI 10.1021/ac501633r
Idress M.O., 2017, PHARM ANAL ACTA, V8, P2153
Iwata YT, 2002, ELECTROPHORESIS, V23, P1328, DOI 10.1002/1522-
2683(200205)23:9<1328::AID-ELPS1328>3.0.CO;2-Z
Jebali I, 2015, IEEE SENS J, V15, P2287, DOI 10.1109/JSEN.2014.2375212
Kalambate PK, 2021, J MATERIOMICS, V7, P226, DOI 10.1016/j.jmat.2020.09.004
Kano K, 2002, J INCL PHENOM MACRO, V44, P355, DOI 10.1023/A:1023040507737
KATAKY R, 1992, ANALYST, V117, P1313, DOI 10.1039/an9921701313
Lämmerhofer M, 2010, J CHROMATOGR A, V1217, P814, DOI
10.1016/j.chroma.2009.10.022
Lai CZ, 2009, J SOLID STATE ELECTR, V13, P123, DOI 10.1007/s10008-008-0579-2
Lemoine T, 2000, J CHROMATOGR B, V742, P247, DOI 10.1016/S0378-4347(00)00166-3
Li FH, 2012, ANALYST, V137, P618, DOI 10.1039/c1an15705a
Martel A. M., 1997, Drugs of the Future, V22, P109
Mattinen U, 2011, ELECTROCHIM ACTA, V56, P10683, DOI
10.1016/j.electacta.2011.07.082
Moamed G.G., 2015, PHARM ANAL ACTA, V7, P2153
Morf WE, 2000, J PHYS CHEM B, V104, P8201, DOI 10.1021/jp000655m
Motwani SK, 2007, SPECTROCHIM ACTA A, V68, P250, DOI 10.1016/j.saa.2006.11.023
O'Neil GD, 2011, ANAL CHEM, V83, P5749, DOI 10.1021/ac201072u
Ocana J.A., 2021, ANALYST, V882, P2322
Ozoemena KI, 2005, TALANTA, V66, P501, DOI 10.1016/j.talanta.2004.11.024
Ozoemena KI, 2005, SENSOR ACTUAT B-CHEM, V105, P425, DOI
10.1016/j.snb.2004.06.032
Paczosa-Bator B, 2012, TALANTA, V93, P424, DOI 10.1016/j.talanta.2012.02.013
Parra EJ, 2009, ANALYST, V134, P1905, DOI 10.1039/b908224g
Pranger AD, 2010, J ANAL TOXICOL, V34, P135, DOI 10.1093/jat/34.3.135
Rat'ko AA, 2004, TALANTA, V63, P515, DOI 10.1016/j.talanta.2003.11.036
Sakur A.A., 2015, INT J ACADAMIC SCI R, V3, P66
Scriba GKE, 2012, CHROMATOGRAPHIA, V75, P815, DOI 10.1007/s10337-012-2261-1
Shahgaldian P, 2006, SENSORS-BASEL, V6, P593, DOI 10.3390/s6060593
Shao YZ, 2020, CHEM SOC REV, V49, P4405, DOI 10.1039/c9cs00587k
Skuredina AA, 2017, COLLOID J+, V79, P668, DOI 10.1134/S1061933X17050143
Stalcup AM, 1996, ANAL CHEM, V68, P1360, DOI 10.1021/ac950764a
Stass H, 1998, ANTIMICROB AGENTS CH, V42, P2060, DOI 10.1128/AAC.42.8.2060
Stefan RI, 1999, TALANTA, V48, P1139, DOI 10.1016/S0039-9140(98)00335-X
Stefan RI, 1999, CHIRALITY, V11, P631, DOI 10.1002/(SICI)1520-
636X(1999)11:8<631::AID-CHIR4>3.0.CO;2-K
Stefan RL, 2001, CRYST ENG, V4, P113, DOI 10.1016/S1463-0184(00)00047-2
Sun CJ, 2004, ANAL LETT, V37, P2259, DOI 10.1081/AL-200028059
Szabó ZI, 2018, J MOL STRUCT, V1166, P228, DOI 10.1016/j.molstruc.2018.04.045
Szejtli J, 2004, PURE APPL CHEM, V76, P1825, DOI 10.1351/pac200476101825
TESTA B, 1986, TRENDS PHARMACOL SCI, V7, P60, DOI 10.1016/0165-6147(86)90255-5
Trindade MAG, 2005, MICROCHEM J, V81, P209, DOI 10.1016/j.microc.2005.06.002
Umezawa Y, 2000, PURE APPL CHEM, V72, P1851, DOI 10.1351/pac200072101851
Upadhyay SS, 2020, BIOSENS BIOELECTRON, V165, DOI 10.1016/j.bios.2020.112397
Upadhyay SS, 2017, ELECTROCHIM ACTA, V248, P258, DOI
10.1016/j.electacta.2017.07.141
Vamvakaki V, 2006, ANAL CHEM, V78, P5538, DOI 10.1021/ac060551t
Ye JJ, 2015, ELECTROCHEM COMMUN, V50, P60, DOI 10.1016/j.elecom.2014.10.014
Yin TJ, 2013, TRAC-TREND ANAL CHEM, V51, P79, DOI 10.1016/j.trac.2013.06.009
Zhu WH, 2001, ELECTROPHORESIS, V22, P1394, DOI 10.1002/1522-
2683(200105)22:7<1394::AID-ELPS1394>3.0.CO;2-E
NR 65
TC 21
Z9 21
U1 2
U2 27
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 1572-6657
EI 1873-2569
J9 J ELECTROANAL CHEM
JI J. Electroanal. Chem.
PD FEB 1
PY 2021
VL 882
DI 10.1016/j.jelechem.2021.114981
EA JAN 2021
PG 12
WC Chemistry, Analytical; Electrochemistry
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Chemistry; Electrochemistry
GA QT0EV
UT WOS:000626266500003
DA 2024-07-09
ER

PT J
AU Navandar, YV
Bari, C
Gaikwad, PG
AF Navandar, Yogeshwar, V
Bari, Chintaman
Gaikwad, P. G.
TI Failure factors-a comparative study of private and government
construction firms
SO ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT
LA English
DT Article
DE Construction; Engineering; Management
ID BUSINESS FAILURE; SUCCESS FACTORS; PROJECTS; PERFORMANCE; STRATEGIES
AB Purpose The purpose of the present study is to examine the failure factors for
the construction firms in a developing nation. Furthermore, the comparison of
failure factors for private and government firms are evaluated.
Design/methodology/approach In the present study, comparison between private and
government construction firms is done in the context of a construction firm
failure. About 60 construction firms were selected in and around the Nashik region
for the investigation, where a simple multi-attribute rating technique (SMART) is
used for analysis purpose. Findings It is found that for private firms (private
contractors and builders) lack of experience is the major factor for failure of the
business as against lack of managerial experience is a critical factor in case of a
government contractor. Practical implications The outcome of the present study will
be used to guide the policymakers during the implementation of governmental and
private projects in order to lessen the construction project failures.
Originality/value Construction company failure is an important aspect in developing
countries like India. The limited studies were available in literature which shows
failure factors for government and private firms and distinguished them. Hence, the
present study extends the construction company failure literature by focusing on
government and private firms. Also, the study provides some theoretical guidelines
for management to avoid construction company failure in India.
C1 [Navandar, Yogeshwar, V] Natl Inst Technol Calicut, Dept Civil Engn, Calicut,
Kerala, India.
[Bari, Chintaman] Sardar Vallabhbhai Natl Inst Technol, Dept Civil Engn, Surat,
India.
[Gaikwad, P. G.] Sardar Patel Coll Engn, Civil Engn Dept, Mumbai, Maharashtra,
India.
C3 National Institute of Technology (NIT System); National Institute of
Technology Calicut; National Institute of Technology (NIT System);
Sardar Vallabhbhai National Institute of Technology
RP Navandar, YV (corresponding author), Natl Inst Technol Calicut, Dept Civil Engn,
Calicut, Kerala, India.
EM yogeshwaryog@rediffmail.com
RI Bari, Chintaman Santosh/GRF-3315-2022; Navandar, Yogeshwar/ABA-3197-2021
OI Navandar, Yogeshwar/0000-0001-5788-0609
CR Abbas A, 2016, PROCEDIA ENGINEER, V145, P804, DOI 10.1016/j.proeng.2016.04.105
Adebisi EO, 2018, INT J BUILD PATHOL, V36, P210, DOI 10.1108/IJBPA-10-2017-0048
Aghimien DO, 2018, ENG CONSTR ARCHIT MA, V25, P861, DOI 10.1108/ECAM-06-2017-
0106
Anon, 2015, International Journal of Innovative Research in Science, Engineering
and Technology, V4, P3285
[Anonymous], 2014, INT J ENG SCI
Belassi W., 1996, International Journal of. Project. Management, V14, P141, DOI
10.1016/0263-7863(95)00064-X
Business Failure, 2011, FINANCIAL GLOSSARY
Chen W., 2019, Sustainability., V11, P1, DOI 10.1108/SAMPJ-09-2018-0248
Damoah IS, 2018, INT J MANAG PROJ BUS, V11, P558, DOI 10.1108/IJMPB-04-2017-0042
Enshassi A, 2006, J CONSTR DEV CTRIES, V11, P1
Greenberg B, 2009, INTRO PRACTICE STAT
Gudiene N, 2013, PROCEDIA ENGINEER, V57, P392, DOI 10.1016/j.proeng.2013.04.051
Hjelmbrekke H, 2015, PROC ECON FINANC, V21, P72, DOI 10.1016/S2212-
5671(15)00152-5
Holt Gary D., 2013, Construction Innovation, V13, P50, DOI
10.1108/14714171311296057
Isik Z, 2010, J MANAGE ENG, V26, P9, DOI 10.1061/(ASCE)0742-597X(2010)26:1(9)
KANGARI R, 1992, J CONSTR ENG M ASCE, V118, P349, DOI 10.1061/(ASCE)0733-
9364(1992)118:2(349)
KANGARI R, 1988, J CONSTR ENG M ASCE, V114, P172, DOI 10.1061/(ASCE)0733-
9364(1988)114:2(172)
Khlaifat DM, 2019, INT J CONSTR MANAG, V19, P65, DOI
10.1080/15623599.2017.1382092
Kivrak S., 2008, BUILDING ABROAD OCT, P297
Lim E.S.J, 2013, J CONSTR ENG M
Mahamid I, 2011, INT P ECON DEV RES, V15, P1
Nguyen T.P., 2013, ASS RES CONSTRUCTION, P929
Odeyinka HA, 2008, J FINANC MANAG PROP, V13, P5, DOI 10.1108/13664380810882048
Ozorhon B, 2007, J MANAGE ENG, V23, P156, DOI 10.1061/(ASCE)0742-
597X(2007)23:3(156)
Rafat K.F., 2017, International Journal of Social, Behavioral, Educational,
Economic, Business and Industrial Engineering, V10, P166, DOI
[10.5281/zenodo.1339822, DOI 10.5281/ZENODO.1339822]
Satankar P.P., 2015, International Research Journal of Engineering and
Technology, V2, P804
Shadish W., 2005, EXPT QUASIEXPERIMENT, V100, P1, DOI DOI 10.1198/JASA.2005.S22
Taylor JM, 2014, J DEF MODEL SIMUL-AP, V11, P227, DOI 10.1177/1548512914525516
Tripathi KK, 2018, KSCE J CIV ENG, V22, P1052
Tripathi KK, 2018, ENG CONSTR ARCHIT MA, V25, P758, DOI 10.1108/ECAM-01-2017-
0004
Wibowo MA, 2015, PROCEDIA ENGINEER, V125, P95, DOI 10.1016/j.proeng.2015.11.015
NR 31
TC 2
Z9 2
U1 0
U2 5
PU EMERALD GROUP PUBLISHING LTD
PI BINGLEY
PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND
SN 0969-9988
EI 1365-232X
J9 ENG CONSTR ARCHIT MA
JI Eng. Constr. Archit. Manag.
PD JUN 24
PY 2022
VL 29
IS 6
BP 2495
EP 2513
DI 10.1108/ECAM-03-2020-0184
EA JUN 2021
PG 19
WC Engineering, Industrial; Engineering, Civil; Management
WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index
(SSCI)
SC Engineering; Business & Economics
GA 2H7SN
UT WOS:000661472200001
DA 2024-07-09
ER

PT J
AU Jondhale, R
Halkarni, SS
Raykar, NR
Sridharan, A
Prabhu, SV
AF Jondhale, Ravikiran
Halkarni, Surfarazhussain S.
Raykar, N. R.
Sridharan, Arunkumar
Prabhu, S. V.
TI Influence of converging and diverging geometry on the pressure drop
distribution in randomly packed beds
SO PARTICULATE SCIENCE AND TECHNOLOGY
LA English
DT Article
DE Void fraction; packed bed; cylindrical and spherical particles; pressure
drop; converging channel and diverging channel
ID FIXED-BED; SPHERES
AB Packed beds with diverging geometry find applications in packed bed reactors and
converging geometry are used in the ethanol fermentation process. Experimental
studies are conducted on pressure drop characteristics of converging and diverging
packed beds with spheres of same diameter, spheres of different diameters,
cylindrical inserts and mixing of spherical and cylindrical particles. The packing
material spheres used is made up of stainless steel (SS304) having particle
diameters 2.38 and 5 mm and cylinders of copper having 2 mm diameter and 4.6 mm
height. The pressure drop is measured for a Reynolds number (based on particle
diameter) range of 20-1200 with water as the working fluid. In this work, the
effects of various converging and diverging angles of test section on the pressure
drop in packed beds are studied. The pressure drop in packed beds with cylindrical
inserts is higher as compared to pressure drop with packing of 2.38 and 5 mm
spherical particles. The deviation in pressure drop for converging and diverging
ducts at similar range of particle Reynolds number is less than 15% for majority of
the cases. The pressure drop behavior for mixed packing of spheres and cylinders in
converging and diverging channels are also explored in this work. The feasibility
of using cylindrical packed bed correlation for very small differential elements of
converging and diverging channels is examined in this study. The method used to
calculate the pressure drop by using straight channel correlation is found to be
applicable for both the converging and diverging channel packed beds.
C1 [Jondhale, Ravikiran; Raykar, N. R.] Sardar Patel Coll Engn, Dept Mech Engn,
Mumbai, Maharashtra, India.
[Halkarni, Surfarazhussain S.; Sridharan, Arunkumar; Prabhu, S. V.] Indian Inst
Technol, Dept Mech Engn, Mumbai, Maharashtra, India.
[Halkarni, Surfarazhussain S.] SRM Univ AP, Dept Mech Engn, Amaravati 522502,
Andhra Pradesh, India.
C3 Indian Institute of Technology System (IIT System); Indian Institute of
Technology (IIT) - Bombay; SRM University-AP
RP Halkarni, SS (corresponding author), SRM Univ AP, Dept Mech Engn, Amaravati
522502, Andhra Pradesh, India.
EM surfarazhalkarni@gmail.com
RI Raykar, Nilesh R/G-3576-2013; Halkarni, Surfarazhussain/AAT-5833-2021
OI Raykar, Nilesh/0000-0002-8598-7224
FU IIT Bombay
FX We would like to thank IIT Bombay for funding the experiments.
CR Allen KG, 2013, POWDER TECHNOL, V246, P590, DOI 10.1016/j.powtec.2013.06.022
Baskakov A. P., 1965, INGH FIG ZH, V2, P217
BISWAL KC, 1984, CHEM ENG J BIOCH ENG, V29, P47, DOI 10.1016/0300-9467(84)80006-
4
Eisfeld B, 2001, CHEM ENG SCI, V56, P4321, DOI 10.1016/S0009-2509(00)00533-9
ERGUN S, 1949, IND ENG CHEM, V41, P1179, DOI 10.1021/ie50474a011
Gelperin N. I., 1960, KHIM TEKIN TOPL MASE, V8, P51
Halkarni SS, 2016, EXP THERM FLUID SCI, V74, P181, DOI
10.1016/j.expthermflusci.2015.12.009
HAMAMCI H, 1987, BIOTECHNOL BIOENG, V29, P994, DOI 10.1002/bit.260290811
KOLOINI T, 1973, CAN J CHEM ENG, V51, P499, DOI 10.1002/cjce.5450510416
MOFFAT RJ, 1985, J FLUID ENG-T ASME, V107, P173, DOI 10.1115/1.3242452
Montillet A, 2007, CHEM ENG PROCESS, V46, P329, DOI 10.1016/j.cep.2006.07.002
Montillet A, 2004, J FLUID ENG-T ASME, V126, P139, DOI 10.1115/1.1637928
Murthy J. S. N., 1981, INDIAN CHEM ENG, V23, P44
Murthy J. S. N., 1986, J I ENG INDIA, V66, P50
Rose H.E., 1945, P I MECH ENG, V153, P141, DOI DOI
10.1243/PIME_PROC_1945_153_018_02
NR 15
TC 0
Z9 0
U1 1
U2 8
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 0272-6351
EI 1548-0046
J9 PARTICUL SCI TECHNOL
JI Part. Sci. Technol.
PD MAR 4
PY 2021
VL 39
IS 3
BP 344
EP 361
DI 10.1080/02726351.2020.1733153
EA MAR 2020
PG 18
WC Engineering, Chemical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Engineering
GA QX0KI
UT WOS:000519457800001
DA 2024-07-09
ER

PT J
AU Patil, SV
Babu, PVV
Bhole, KS
AF Patil, S. V.
Babu, P. V. Vijay
Bhole, K. S.
TI Experimental studies on heat transfer augmentation and friction factor
characteristics for laminar flow of water in a square duct induced by
full-length helical tapes
SO HEAT AND MASS TRANSFER
LA English
DT Article
ID PRESSURE-DROP CHARACTERISTICS; TRANSFER ENHANCEMENT; TURBULENT-FLOW;
TUBE; INSERTS
AB Experimental studies on heat transfer enhancement and friction factor
characteristics of water flowing in Laminar flow regime through a square duct,
fitted with full-length helical inserts of varying twist ratio have been reported
in the present paper. The test liquid flows in the laminar flow through a square
duct and in counter current manner a hot water at very high flow rate is directed
though the annulus to ensure a constant wall temperature conditions. A plain duct
fitted with helical inserts provides higher friction factor and Nusselt number than
that of empty duct. The heat transfer and pressure loss were observed to be higher
at minimum twist ratio. The thermo hydraulic performance ratio on constant pumping
power of the duct induced by helical inserts at different twist of 1.44, 2.55,
3.66, 4.66 were found to be 5.20, 4.44, 4.01, and 3.50 times higher than the plain
duct.
C1 [Patil, S. V.] UT Adm DNH & DD, Govt Polytech Daman, Daman 396210, India.
[Babu, P. V. Vijay] Dr Babasaheb Ambedkar Technol Univ, Dept Chem Engn, PO
Lonere, Raigad 402103, Maharashtra, India.
[Bhole, K. S.] Sardar Patel Coll Engn, Dept Mech Engn, Mumbai, India.
C3 Dr. Babasaheb Ambedkar Technological University
RP Patil, SV (corresponding author), UT Adm DNH & DD, Govt Polytech Daman, Daman
396210, India.
EM suhasvinayak72@gmail.com; vjaybabu@yahoo.co.in; kiran_bhole@spce.ac.in
RI Bhole, Kiran/AAV-4964-2020
OI Bhole, Kiran/0000-0002-7466-2213
CR Agarwal SK, 1996, INT J HEAT MASS TRAN, V39, P3547, DOI 10.1016/0017-
9310(96)00039-7
Al-Fahed S, 1998, EXP THERM FLUID SCI, V18, P323, DOI 10.1016/S0894-
1777(98)10037-7
Bergles AE., 1985, HDB HEAT TRANSFER AP
DATE AW, 1974, INT J HEAT MASS TRAN, V17, P845, DOI 10.1016/0017-9310(74)90152-5
Date AW., 1972, ASME J HEAT TRANSF, V72, P17
Eiamsa-Ard S, 2005, SOL ENERGY, V78, P483, DOI 10.1016/j.solener.2004.09.021
HONG SW, 1976, J HEAT TRANS-T ASME, V98, P251, DOI 10.1115/1.3450527
Lokanath, 1997, PROC 14 NATL HEAT MA
MANGLIK RM, 1993, J HEAT TRANS-T ASME, V115, P881, DOI 10.1115/1.2911383
McClintock Kline F.A., 1953, Mech. Eng, V75, P3
Patil AG, 2000, J HEAT TRANS-T ASME, V122, P143, DOI 10.1115/1.521448
Patil SV, 2012, HEAT TRANSF-ASIAN RE, V41, P227, DOI 10.1002/htj.20410
Patil SV, 2014, EXP HEAT TRANSFER, V27, P124, DOI 10.1080/08916152.2012.757674
Patil SV, 2012, HEAT MASS TRANSFER, V48, P1803, DOI 10.1007/s00231-012-1031-9
Patil S, 2014, CAN J CHEM ENG, V92, P663, DOI 10.1002/cjce.21864
Patil SV, 2014, HEAT TRANSFER ENG, V35, P1380, DOI 10.1080/01457632.2013.877318
Patil SV., 2011, Int. J. Chem. Eng. Appl, V2, P326
Pramanik D, 2006, J HEAT TRANS-T ASME, V128, P1070, DOI 10.1115/1.2345432
Ray S, 2003, INT J HEAT MASS TRAN, V46, P889, DOI 10.1016/S0017-9310(02)00355-1
Saha SK, 2005, J HEAT TRANS-T ASME, V127, P966, DOI 10.1115/1.2010493
Saha SK, 2001, INT J HEAT MASS TRAN, V44, P4211, DOI 10.1016/S0017-
9310(01)00077-1
Shivkumar C., 1988, ASME HTD, V96, P685
Sieder EN, 1936, IND ENG CHEM, V28, P1429, DOI 10.1021/ie50324a027
Sivashanmugam P, 2007, CHEM ENG PROCESS, V46, P1292, DOI
10.1016/j.cep.2006.10.009
Sivashanmugam P, 2007, EXP THERM FLUID SCI, V32, P192, DOI
10.1016/j.expthermflusci.2007.03.005
Sivashanmugam P, 2007, APPL THERM ENG, V27, P1311, DOI
10.1016/j.applthermaleng.2006.10.035
Sivashanmugam P, 2007, EXP THERM FLUID SCI, V31, P301, DOI
10.1016/j.expthermflusci.2006.05.005
Sivashanmugam P, 2006, APPL THERM ENG, V26, P1990, DOI
10.1016/j.applthermaleng.2006.01.008
Smithberg E., 1964, J HEAT TRANSF, V86, P39, DOI [10.1115/1.3687060, DOI
10.1115/1.3687060]
Steele WG., 1989, EXPT UNCERTAINTY ANA
Vijay Babu PV, 1991, ASME HTD, V174, P59
NR 31
TC 0
Z9 0
U1 0
U2 3
PU SPRINGER
PI NEW YORK
PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES
SN 0947-7411
EI 1432-1181
J9 HEAT MASS TRANSFER
JI Heat Mass Transf.
PD AUG
PY 2023
VL 59
IS 8
BP 1565
EP 1573
DI 10.1007/s00231-023-03351-1
EA MAR 2023
PG 9
WC Thermodynamics; Mechanics
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Thermodynamics; Mechanics
GA M0EW7
UT WOS:000946629800001
DA 2024-07-09
ER

PT J
AU Shaikh, NS
Padalkar, NS
Lokhande, VC
Ji, T
Patil, SP
Sabale, SR
Shaikh, HM
Shaikh, JS
Praserthdam, S
Kanjanaboos, P
AF Shaikh, Navajsharif S.
Padalkar, Navnath S.
Lokhande, Vaibhav C.
Ji, Taeksoo
Patil, Susmita P.
Sabale, Sandip R.
Shaikh, Haseen M.
Shaikh, Jasmin S.
Praserthdam, Supareak
Kanjanaboos, Pongsakorn
TI Graphene-Based Aqueous Magnesium Ion Hybrid Supercapacitors with an
Appealing Energy Density Advanced by a KI Additive
SO ENERGY & FUELS
LA English
DT Article
ID REDOX ADDITIVES; OXIDE; ELECTROLYTE; CARBONS
AB ABSTRACT: The electric double-layer capacitance (EDLC)based capacitor is
hindered with low capacitance and low energy density. Here, in this report, we
focused on the fabrication of a symmetric device having graphene as an EDLC
electrode material and redox additive KI-integrated aqueous MgSO4 as an
electrolyte. The high surface area of graphene was produced by annealing of
graphene oxide in an inert atmosphere and confirmed through Xray photoelectron
spectroscopy and Raman spectroscopy. The strategic 6% KI into MgSO4 delivered the
highest specific capacitance with a wide working window of 0.7 V. Electrochemical
measurements showed that graphene delivered a significantly greater specific
capacitance (727.6 F/g) in a KI-integrated electrolyte (MgSO4 + KI) compared to
89.2 F/g in a MgSO4 electrolyte, owing to species such as IO3- and I3-(oxidation
states of I). The symmetric device showed the maximum energy density (ED) of 69.3
Wh/kg, which can be achieved at the power density of 2.5 kW/kg, better than
reported values in monovalent-based electrolyte devices. In this report, the charge
storage mechanism, interactive association between Mg2+ ion insertion/extraction,
and integration of redox KI had been comprehensively studied. The strategy shows a
new path in the design of excellent ED capacitors without compromising the
supercapacitor properties.
C1 [Shaikh, Navajsharif S.; Kanjanaboos, Pongsakorn] Mahidol Univ, Fac Sci, Sch Mat
Sci & Innovat, Nakhon Pathom 73170, Thailand.
[Shaikh, Navajsharif S.; Padalkar, Navnath S.] DY Patil Univ, Ctr
Interdisciplinary Res, Kolhapur 416006, Maharashtra, India.
[Lokhande, Vaibhav C.; Ji, Taeksoo] Chonnam Natl Univ, Dept Elect & Comp Engn,
Gwangju 61186, South Korea.
[Lokhande, Vaibhav C.; Ji, Taeksoo] Chonnam Natl Univ, Dept ICT Convergence Syst
Engn, Gwangju 61186, South Korea.
[Patil, Susmita P.; Sabale, Sandip R.] Jaysingpur Coll, PG Dept Chem, Jaysingpur
416101, Maharashtra, India.
[Shaikh, Haseen M.] Sardar Patel Coll Engn, Mumbai 400053, Maharashtra, India.
[Shaikh, Jasmin S.; Praserthdam, Supareak] Chulalongkorn Univ, Fac Engn, Dept
Chem Engn, Bangkok 10330, Thailand.
C3 Mahidol University; Chonnam National University; Chonnam National
University; Chulalongkorn University
RP Kanjanaboos, P (corresponding author), Mahidol Univ, Fac Sci, Sch Mat Sci &
Innovat, Nakhon Pathom 73170, Thailand.; Ji, T (corresponding author), Chonnam Natl
Univ, Dept Elect & Comp Engn, Gwangju 61186, South Korea.; Ji, T (corresponding
author), Chonnam Natl Univ, Dept ICT Convergence Syst Engn, Gwangju 61186, South
Korea.
EM tji@chonnam.ac.kr; pongsakorn.kan@mahidol.edu
RI Kanjanaboos, Pongsakorn/Q-1050-2015; Sabale, Sandip R./J-2261-2017
OI Kanjanaboos, Pongsakorn/0000-0002-4854-1733; Sabale, Sandip
R./0000-0001-9254-1872; SHAIKH, NAVAJSHARIF
SHAMSHUDDIN/0000-0001-7489-2812; Padalkar, Navnath/0000-0001-6565-8709;
Shaikh, Haseen/0000-0002-4463-8714
FU National Research Council of Thailand (NRCT) [N41A640095]
FX This project is funded by the National Research Council of Thailand
(NRCT) with the grant number N41A640095. We acknowledge the Center of
Excellence for Innovation in Chemistry (PERCH-CIC) , Ministry of Higher
Education, Science, Research and Innovation, Thailand. We acknowledge
Toray Science Foundation, Japan, and the CIF-CNI grant from Faculty of
Science, Mahidol University.
CR Aneke M, 2016, APPL ENERG, V179, P350, DOI 10.1016/j.apenergy.2016.06.097
Béguin F, 2014, ADV MATER, V26, P2219, DOI 10.1002/adma.201304137
Chabot V, 2014, ENERG ENVIRON SCI, V7, P1564, DOI 10.1039/c3ee43385d
Chen J, 2013, J PHYS CHEM LETT, V4, P1244, DOI 10.1021/jz400160k
Chen LB, 2014, ENERG ENVIRON SCI, V7, P1750, DOI 10.1039/c4ee00002a
Choi JH, 2018, CARBON, V132, P16, DOI 10.1016/j.carbon.2018.01.105
Han L, 2021, ACS SUSTAIN CHEM ENG, V9, P9165, DOI 10.1021/acssuschemeng.0c09118
Johra FT, 2014, J IND ENG CHEM, V20, P2883, DOI 10.1016/j.jiec.2013.11.022
Katkar PK, 2021, LANGMUIR, V37, P5260, DOI 10.1021/acs.langmuir.1c00243
Katkar PK, 2020, SYNTHETIC MET, V267, DOI 10.1016/j.synthmet.2020.116446
Kim J, 2016, SCI REP-UK, V6, DOI 10.1038/srep27773
Li B, 2016, ENERG ENVIRON SCI, V9, P102, DOI 10.1039/c5ee03149d
Liu XR, 2013, ACS APPL MATER INTER, V5, P4667, DOI 10.1021/am4012808
Ma XP, 2019, ENERGY STORAGE MATER, V20, P335, DOI 10.1016/j.ensm.2018.10.020
Madito MJ, 2021, ACS APPL MATER INTER, V13, P37014, DOI 10.1021/acsami.1c07104
Muthu RN, 2020, ENERGY STORAGE, V2, DOI 10.1002/est2.134
Olabi AG, 2021, RENEW SUST ENERG REV, V135, DOI 10.1016/j.rser.2020.110026
Padalkar NS, 2022, ADV MATER INTERFACES, V9, DOI 10.1002/admi.202101216
Pal B, 2019, NANOSCALE ADV, V1, P3807, DOI 10.1039/c9na00374f
Poh HL, 2013, ACS NANO, V7, P5262, DOI 10.1021/nn401296b
Qin W, 2020, ACS OMEGA, V5, P3801, DOI 10.1021/acsomega.9b04063
Rathore M, 2019, MATER TODAY-PROC, V10, P106, DOI 10.1016/j.matpr.2019.02.195
Sankar KV, 2015, CARBON, V90, P260, DOI 10.1016/j.carbon.2015.04.023
Shaikh JS, 2021, MATER TODAY CHEM, V21, DOI 10.1016/j.mtchem.2021.100480
Shaikh JS, 2021, NANOTECHNOLOGY, V32, DOI 10.1088/1361-6528/ac0190
Shaikh JS, 2018, J COLLOID INTERF SCI, V527, P40, DOI 10.1016/j.jcis.2018.05.022
Shaikh NS, 2021, ENERG FUEL, V35, P14241, DOI 10.1021/acs.energyfuels.1c01753
Shao YL, 2020, ACS NANO, V14, P7308, DOI 10.1021/acsnano.0c02585
Sun XN, 2017, ACS SUSTAIN CHEM ENG, V5, P5972, DOI 10.1021/acssuschemeng.7b00759
Tao BR, 2022, NEW J CHEM, V46, P3288, DOI 10.1039/d1nj05191a
Wu XZ, 2021, ELECTROCHIM ACTA, V368, DOI 10.1016/j.electacta.2020.137610
Zaka A, 2021, ACS APPL ELECTRON MA, V3, P574, DOI 10.1021/acsaelm.0c00953
Zhao SS, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.202000815
Zheng W, 2021, ACS APPL MATER INTER, V13, P9561, DOI 10.1021/acsami.0c19188
Zou KX, 2019, J COLLOID INTERF SCI, V537, P475, DOI 10.1016/j.jcis.2018.11.050
NR 35
TC 5
Z9 5
U1 3
U2 24
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
EI 1520-5029
J9 ENERG FUEL
JI Energy Fuels
PD JUL 7
PY 2022
VL 36
IS 13
BP 7186
EP 7193
DI 10.1021/acs.energyfuels.1c032787186
PG 8
WC Energy & Fuels; Engineering, Chemical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Energy & Fuels; Engineering
GA 2Z1NY
UT WOS:000826353800001
DA 2024-07-09
ER

PT J
AU Shaikh, NS
Padalkar, NS
Lokhande, VC
Ji, T
Patil, SP
Sabale, SR
Shaikh, HM
Shaikh, JS
Praserthdam, S
Kanjanaboos, P
AF Shaikh, Navajsharif S.
Padalkar, Navnath S.
Lokhande, Vaibhav C.
Ji, Taeksoo
Patil, Susmita P.
Sabale, Sandip R.
Shaikh, Haseen M.
Shaikh, Jasmin S.
Praserthdam, Supareak
Kanjanaboos, Pongsakorn
TI orcid.org/0000-0001-9254-1872 Haseen M. Shaikh -; ? orcid.org/
SO ENERGY & FUELS
LA English
DT Article; Early Access
ID ENERGY DENSITY; REDOX ADDITIVES; GRAPHENE; OXIDE; ELECTROLYTE;
SUPERCAPACITORS; CARBONS
AB ABSTRACT: The electric double-layer capacitance (EDLC)based capacitor is
hindered with low capacitance and low energy density. Here, in this report, we
focused on the fabrication of a symmetric device having graphene as an EDLC
electrode material and redox additive KI-integrated aqueous MgSO4 as an
electrolyte. The high surface area of graphene was produced by annealing of
graphene oxide in an inert atmosphere and confirmed through Xray photoelectron
spectroscopy and Raman spectroscopy. The strategic 6% KI into MgSO4 delivered the
highest specific capacitance with a wide working window of 0.7 V. Electrochemical
measurements showed that graphene delivered a significantly greater specific
capacitance (727.6 F/g) in a KI-integrated electrolyte (MgSO4 + KI) compared to
89.2 F/g in a MgSO4 electrolyte, owing to species such as IO3??? and I3???
(oxidation states of I). The symmetric device showed the maximum energy density
(ED) of 69.3 Wh/kg, which can be achieved at the power density of 2.5 kW/kg, better
than reported values in monovalent-based electrolyte devices. In this report, the
charge storage mechanism, interactive association between Mg2+ ion
insertion/extraction, and integration of redox KI had been comprehensively studied.
The strategy shows a new path in the design of excellent ED capacitors without
compromising the supercapacitor properties.
C1 [Shaikh, Navajsharif S.; Kanjanaboos, Pongsakorn] Mahidol Univ, Fac Sci, Sch Mat
Sci & Innovat, Salaya 73170, Nakhon Pathom, Thailand.
[Shaikh, Navajsharif S.; Padalkar, Navnath S.] DY Patil Univ, Ctr
Interdisciplinary Res, Kolhapur 416006, Maharashtra, India.
[Lokhande, Vaibhav C.; Ji, Taeksoo] Chonnam Natl Univ, Dept Elect & Comp Engn,
Gwangju 61186, South Korea.
[Lokhande, Vaibhav C.; Ji, Taeksoo] Chonnam Natl Univ, Dept ICT Convergence Syst
Engn, Gwangju 61186, South Korea.
[Patil, Susmita P.; Sabale, Sandip R.] Jaysingpur Coll, PG Dept Chem, Jaysingpur
416101, Maharashtra, India.
[Shaikh, Haseen M.] Sardar Patel Coll Engn, Mumbai 400053, Maharashtra, India.
[Shaikh, Jasmin S.; Praserthdam, Supareak] Chulalongkorn Univ, Fac Engn, Dept
Chem Engn, Bangkok 10330, Thailand.
[Kanjanaboos, Pongsakorn] Minist Higher Educ Sci Res & Innovat, Ctr Excellence
Innovat Chem PERCH CIO, Bangkok 10400, Thailand.
C3 Mahidol University; Chonnam National University; Chonnam National
University; Chulalongkorn University
RP Kanjanaboos, P (corresponding author), Mahidol Univ, Fac Sci, Sch Mat Sci &
Innovat, Salaya 73170, Nakhon Pathom, Thailand.; Ji, T (corresponding author),
Chonnam Natl Univ, Dept Elect & Comp Engn, Gwangju 61186, South Korea.; Ji, T
(corresponding author), Chonnam Natl Univ, Dept ICT Convergence Syst Engn, Gwangju
61186, South Korea.; Kanjanaboos, P (corresponding author), Minist Higher Educ Sci
Res & Innovat, Ctr Excellence Innovat Chem PERCH CIO, Bangkok 10400, Thailand.
EM tji@chonnam.ac.kr; pongsakorn.kan@mahidol.edu
RI Kanjanaboos, Pongsakorn/Q-1050-2015; Sabale, Sandip R./J-2261-2017;
Shaikh, Haseen Muneeroddin/HPC-5368-2023
OI Kanjanaboos, Pongsakorn/0000-0002-4854-1733; Sabale, Sandip
R./0000-0001-9254-1872; Shaikh, Haseen Muneeroddin/0000-0002-4463-8714
CR Aneke M, 2016, APPL ENERG, V179, P350, DOI 10.1016/j.apenergy.2016.06.097
Béguin F, 2014, ADV MATER, V26, P2219, DOI 10.1002/adma.201304137
Chabot V, 2014, ENERG ENVIRON SCI, V7, P1564, DOI 10.1039/c3ee43385d
Chen J, 2013, J PHYS CHEM LETT, V4, P1244, DOI 10.1021/jz400160k
Chen LB, 2014, ENERG ENVIRON SCI, V7, P1750, DOI 10.1039/c4ee00002a
Choi JH, 2018, CARBON, V132, P16, DOI 10.1016/j.carbon.2018.01.105
Han L, 2021, ACS SUSTAIN CHEM ENG, V9, P9165, DOI 10.1021/acssuschemeng.0c09118
Johra FT, 2014, J IND ENG CHEM, V20, P2883, DOI 10.1016/j.jiec.2013.11.022
Katkar PK, 2021, LANGMUIR, V37, P5260, DOI 10.1021/acs.langmuir.1c00243
Katkar PK, 2020, SYNTHETIC MET, V267, DOI 10.1016/j.synthmet.2020.116446
Kim J, 2016, SCI REP-UK, V6, DOI 10.1038/srep27773
Li B, 2016, ENERG ENVIRON SCI, V9, P102, DOI 10.1039/c5ee03149d
Liu XR, 2013, ACS APPL MATER INTER, V5, P4667, DOI 10.1021/am4012808
Ma XP, 2019, ENERGY STORAGE MATER, V20, P335, DOI 10.1016/j.ensm.2018.10.020
Madito MJ, 2021, ACS APPL MATER INTER, V13, P37014, DOI 10.1021/acsami.1c07104
Muthu RN, 2020, ENERGY STORAGE, V2, DOI 10.1002/est2.134
Olabi AG, 2021, RENEW SUST ENERG REV, V135, DOI 10.1016/j.rser.2020.110026
Padalkar NS, 2022, ADV MATER INTERFACES, V9, DOI 10.1002/admi.202101216
Pal B, 2019, NANOSCALE ADV, V1, P3807, DOI 10.1039/c9na00374f
Poh HL, 2013, ACS NANO, V7, P5262, DOI 10.1021/nn401296b
Qin W, 2020, ACS OMEGA, V5, P3801, DOI 10.1021/acsomega.9b04063
Rathore M, 2019, MATER TODAY-PROC, V10, P106, DOI 10.1016/j.matpr.2019.02.195
Sankar KV, 2015, CARBON, V90, P260, DOI 10.1016/j.carbon.2015.04.023
Shaikh JS, 2021, MATER TODAY CHEM, V21, DOI 10.1016/j.mtchem.2021.100480
Shaikh JS, 2021, NANOTECHNOLOGY, V32, DOI 10.1088/1361-6528/ac0190
Shaikh JS, 2018, J COLLOID INTERF SCI, V527, P40, DOI 10.1016/j.jcis.2018.05.022
Shaikh NS, 2021, ENERG FUEL, V35, P14241, DOI 10.1021/acs.energyfuels.1c01753
Shao YL, 2020, ACS NANO, V14, P7308, DOI 10.1021/acsnano.0c02585
Sun XN, 2017, ACS SUSTAIN CHEM ENG, V5, P5972, DOI 10.1021/acssuschemeng.7b00759
Tao BR, 2022, NEW J CHEM, V46, P3288, DOI 10.1039/d1nj05191a
Wu XZ, 2021, ELECTROCHIM ACTA, V368, DOI 10.1016/j.electacta.2020.137610
Zaka A, 2021, ACS APPL ELECTRON MA, V3, P574, DOI 10.1021/acsaelm.0c00953
Zhao SS, 2020, ADV FUNCT MATER, V30, DOI 10.1002/adfm.202000815
Zheng W, 2021, ACS APPL MATER INTER, V13, P9561, DOI 10.1021/acsami.0c19188
Zou KX, 2019, J COLLOID INTERF SCI, V537, P475, DOI 10.1016/j.jcis.2018.11.050
NR 35
TC 0
Z9 0
U1 1
U2 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0887-0624
EI 1520-5029
J9 ENERG FUEL
JI Energy Fuels
PD 2022 JUN 17
PY 2022
DI 10.1021/acs.energyfuels.1c03278
EA JUN 2022
PG 8
WC Energy & Fuels; Engineering, Chemical
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Energy & Fuels; Engineering
GA 2S6JD
UT WOS:000821895500001
DA 2024-07-09
ER

PT J
AU Pawar, U
Bhole, KS
Oza, A
Panchal, H
Shah, MA
Jaber, MM
AF Pawar, Usha
Bhole, Kiran S.
Oza, Ankit
Panchal, Hitesh
Shah, Mohd Asif
Jaber, Mustafa Musa
TI A case study on the design and development of solar food cooking system
with a PCM as a heat storage unit
SO INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES
LA English
DT Article
DE phase change material; heat transfer; evacuated tube solar air collector
(ETSAC); solar cooker
ID THERMAL PERFORMANCE; COOKER; COLLECTOR
AB This study presents the design and fabrication of an urban solar food cooking
system with a phase change material (PCM) as a heat storage tank. The effort has
been taken to test the system experimentally and explore its thermal performance
under actual climatic conditions of Mumbai, India. The solar heat energy is stored
in the tank using commercial-grade erythritol as PCM in current research work. A
heat exchanger is well designed and fabricated to regulate the flow of solar heat
energy from the storage tank to the cooking vessel, similar to the domestic
liquefied petroleum gas (LPG) cooking system. This solar cooker is designed to cook
food twice a day for four family members (equivalent to an energy of 5000 KJ).
Cooking experiments were conducted on 19 April 2019 for the afternoon and evening
slots with rice and potato as cooking loads, respectively. The time taken for
cooking rice and potato are from 12:30 pm to 12:52 pm (22 minute) and from 05:30 pm
to 05:59 pm (29 minutes), respectively. The heat transfer rate was also observed at
different storage tanks and cooking unit points. The experiments show cooking is
possible twice a day and considered as convenient as domestic LPG stoves.
Furthermore, it was found that comparatively less time was required for cooking
food than other existing solar cookers.
C1 [Pawar, Usha] Datta Meghe Coll Engn, Dept Mech Engn, Navi Mumbai 400708, India.
[Bhole, Kiran S.] Sardar Patel Coll Engn, Dept Mech Engn, Mumbai 400058, India.
[Oza, Ankit] Inst Adv Res, Dept Comp Sci & Engn, Gandhinagar 382426, Gujarat,
India.
[Panchal, Hitesh] Govt Engn Coll Patan, Dept Mech Engn, Patan 384265, Gujarat,
India.
[Shah, Mohd Asif] Kebri Dehar Univ, Dept Econ, Kebri Dehar 250, Somali,
Ethiopia.
[Shah, Mohd Asif] Woxsen Univ, Sch Business, Hyderabad 502345, Telangana, India.
[Jaber, Mustafa Musa] Dijlah Univ Coll, Dept Med Instruments Engn Tech, Baghdad
10021, Iraq.
[Jaber, Mustafa Musa] Al Farahidi Univ, Dept Med Instruments Engn Tech, Baghdad
10021, Iraq.
RP Shah, MA (corresponding author), Kebri Dehar Univ, Dept Econ, Kebri Dehar 250,
Somali, Ethiopia.; Shah, MA (corresponding author), Woxsen Univ, Sch Business,
Hyderabad 502345, Telangana, India.
EM usha.pawar@dmce.ac.in; kiran_bhole@spce.ac.in; ankit.oza@iar.ac.in;
engineerhitesh2000@gmail.com; drmohdasifshah@kdu.edu.et;
mustafa.jaber@turath.edu.iq
RI Shah, Mohd Asif/GOJ-7931-2022
OI Shah, Mohd Asif/0000-0002-0351-9559; BHOLE, KIRAN/0000-0002-7466-2213;
Pawar, Dr. Usha/0000-0002-6516-5354
CR Buddhi D, 1997, ENERG CONVERS MANAGE, V38, P493, DOI 10.1016/S0196-
8904(96)00066-0
DOMANSKI R, 1995, ENERGY, V20, P607, DOI 10.1016/0360-5442(95)00012-6
Esen M, 2004, SOL ENERGY, V76, P751, DOI 10.1016/j.solener.2003.12.009
GELLER HS, 1982, P INDIAN AS-ENG SCI, V5, P373
Honguntiker PV., 2019, IJSART, V5, P329
Hussein HMS, 2008, ENERG CONVERS MANAGE, V49, P2237, DOI
10.1016/j.enconman.2008.01.026
Pawar U C., SPRINGER LECT SERIES, P53
Pawar UC., 2017, IJSART, V3, P791
Pawar UC., 2019, INT RES J ENG TECHNO, V6, P1814
Pawar UC., 2017, INT J COMPUT ENG RES, V4, P5
Pawar UC., 2018, J THERM ENG TECHNOL, V3, P1
Pawar UC., 2015, IJETMAS, V3, P190
Rane MV., 2015, PCT Application, Patent No. [2015-0000269, 20150000269]
RM, 1994, AM EN COOK
Sharma SD, 2005, SOL ENERGY, V78, P416, DOI 10.1016/j.solener.2004.08.001
Shukla A., 2003, Proceedings of the EM4 Indore workshop IEA ECES IA annex, P21
Wang YF, 2016, INT J HEAT MASS TRAN, V99, P770, DOI
10.1016/j.ijheatmasstransfer.2016.03.125
World Energy and Climate Statistics, YEARB
World Energy Outlook, 2015 SPEC REP IND EN, P2015
Zalba B, 2003, APPL THERM ENG, V23, P251, DOI 10.1016/S1359-4311(02)00192-8
NR 20
TC 4
Z9 4
U1 0
U2 3
PU OXFORD UNIV PRESS
PI OXFORD
PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND
SN 1748-1317
EI 1748-1325
J9 INT J LOW-CARBON TEC
JI Int. J. Low-Carbon Technol.
PD FEB 4
PY 2023
VL 18
BP 184
EP 190
DI 10.1093/ijlct/ctad002
PG 7
WC Thermodynamics; Energy & Fuels
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Thermodynamics; Energy & Fuels
GA J0UK0
UT WOS:001006841300018
OA gold
DA 2024-07-09
ER

PT J
AU Mehta, J
Panwar, DS
Kohli, D
Tudu, B
Shah, V
Patel, J
Panchal, H
Oza, AD
Bhole, K
Gupta, NK
Prakash, C
AF Mehta, Jigesh
Panwar, D. S.
Kohli, Deepak
Tudu, Balraj
Shah, Vishal
Patel, Jigna
Panchal, Hitesh
Oza, Ankit D.
Bhole, Kiran
Gupta, Naveen Kumar
Prakash, Chander
TI Efficacious elimination of salts from a convoluted ethylene glycol-water
solution employing nanofiltration membranes
SO ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS
LA English
DT Article
DE Ethylene glycol solution; dilution factor; concentration polarization;
chemical cleaning; nanofiltration
ID WASTE-WATER; SEPARATION; ULTRAFILTRATION; STABILITY; TRANSPORT; REMOVAL;
METALS; REUSE; IONS
AB In the current scientific studies, a flat-sheet module pilot plant with an HPP-
200 nanofiltration membrane was employed to process an ethylene glycol-water
mixture from Jayshree Chemicals, Ankleshwar, India, that contained a significant
amount of sodium sulfate. The membrane clogged due to degradation fueled by the
excessive salt concentration. Hence, the solution was treated because it was
diminished, and the impact of dilution was investigated. Consequently, fouling
occurs due to increased flux and reduced concentration polarization. 294, 490, and
784 Kpa pressures were applied to the solution. With the dilution factor, the flow
rises while the rejection decreases. Rejection rates range from 97% for membrane
plugging without dilution to 92% for five folds and 85% for ten folds dilution. The
efficacy of chemical cleaning was investigated using 2% solutions of citric acid
and ethylenediamine tetra acetic acid (EDTA). Fourier-transform infrared (FTIR)
spectroscopy analysis revealed alterations in membrane structure resulting from
interactions with the sodium sulfate feed solution. Scanning Electron microscope
(SEM) analysis showed substantial fouling on the membrane surface, which was
successfully eliminated through chemical cleaning process. The implementation of
dilution and pressure control strategies demonstrated efficacy in the mitigation of
fouling phenomena and the enhancement of membrane performance. The efficacy of EDTA
in flux recovery (69.84%) was superior to that of citric acid (55.77%) during
chemical cleaning processes. These findings have potential to facilitate the
implementation of nanofiltration technology in industrial wastewater treatment
processes on commercial scale.
C1 [Mehta, Jigesh; Panwar, D. S.; Kohli, Deepak; Tudu, Balraj; Shah, Vishal; Patel,
Jigna] PP Savani Univ, Dept Chem Engn, Surat, India.
[Panchal, Hitesh] Govt Engn Coll Patan, Dept Mech Engn, Patan, India.
[Oza, Ankit D.] Parul Univ, Dept Mech Engn, Vadodara, Gujarat, India.
[Bhole, Kiran] Sardar Patel Coll Engn, Dept Mech Engn, Mumbai, India.
[Gupta, Naveen Kumar] GLA Univ, Dept Mech Engn, Mathura, India.
[Prakash, Chander] Lovely Profess Univ, Dept Mech Engn, Phagwara, India.
[Mehta, Jigesh] PP Savani Univ, Dept Chem Engn, GIDC, B-86,Near Ganesh Pk
Soc,500 Quarters Rd, Bharuch 393002, India.
C3 Parul University; GLA University; Lovely Professional University
RP Panchal, H (corresponding author), Govt Engn Coll Patan, Dept Mech Engn, Patan,
India.; Mehta, J (corresponding author), PP Savani Univ, Dept Chem Engn, GIDC, B-
86,Near Ganesh Pk Soc,500 Quarters Rd, Bharuch 393002, India.
EM jigesh.mehta@ppsu.ac.in; engineerhitesh2000@gmail.com
RI Oza, Ankit/AAN-7541-2020; Patel, Jigna/D-4726-2019; Prakash,
Chander/T-4766-2018
OI Oza, Ankit/0000-0001-8104-1266; Patel, Jigna/0000-0002-5081-2379;
Prakash, Chander/0000-0003-0856-9712; shah,
vishalkumar/0000-0002-0508-9708; panchal, hitesh/0000-0002-3787-9712;
Panwar, Dr. Deepak Singh/0000-0003-0785-8782
FU The authors are grateful to the P P Savani University research facility
to perform the experiments and permission to publish this research.
FX The authors are grateful to the P P Savani University research facility
to perform the experiments and permission to publish this research.
CR Ahmed M, 2022, ARAB J SCI ENG, V47, P6181, DOI 10.1007/s13369-021-06018-3
Almoalimi K, 2022, CHEMOSPHERE, V288, DOI 10.1016/j.chemosphere.2021.132507
Alves AMB, 2000, DESALINATION, V130, P147
Arsian-Alaton I, 2004, J ENVIRON SCI HEAL A, V39, P1681, DOI 10.1081/ESE-
120037869
Balan Anuradha, 2012, Enzyme Res, V2012, P987523, DOI 10.1155/2012/987523
Banerjee P, 2007, J HAZARD MATER, V140, P95, DOI 10.1016/j.jhazmat.2006.06.075
Buonomenna MG, 2022, WATER-SUI, V14, DOI 10.3390/w14172718
Casse O, 2012, MACROMOLECULES, V45, P4772, DOI 10.1021/ma300621g
Chen G, 2018, ENVIRON SCI-WAT RES, V4, P851, DOI [10.1039/c8ew00081f,
10.1039/C8EW00081F]
Delée W, 1998, J CHEM TECHNOL BIOT, V73, P323, DOI 10.1002/(SICI)1097-
4660(199812)73:4<323::AID-JCTB976>3.0.CO;2-S
Dogan H, 2010, DESALINATION, V258, P120, DOI 10.1016/j.desal.2010.03.027
Dong CJ, 2022, DESALINATION, V534, DOI 10.1016/j.desal.2022.115793
Emamjomeh MM, 2019, APPL WATER SCI, V9, DOI 10.1007/s13201-019-0949-1
Gozálvez-Zafrilla JM, 2008, DESALINATION, V222, P272, DOI
10.1016/j.desal.2007.01.173
Hinkova A, 2012, PROCEDIA ENGINEER, V42, P1425, DOI 10.1016/j.proeng.2012.07.536
Hofs B, 2012, DESALINATION, V299, P28, DOI 10.1016/j.desal.2012.05.010
Kancherla R, 2021, COMPUT CHEM ENG, V148, DOI 10.1016/j.compchemeng.2021.107258
Kohli D, 2012, INDIAN CHEM ENG, V54, P210, DOI 10.1080/00194506.2012.751208
Lee J, 2023, J MEMBRANE SCI, V666, DOI 10.1016/j.memsci.2022.121142
Li F, 2014, DESALINATION, V344, P422, DOI 10.1016/j.desal.2014.04.011
Li FQ, 2022, MEMBRANES-BASEL, V12, DOI 10.3390/membranes12060610
Lin SS, 2021, DESALINATION, V498, DOI 10.1016/j.desal.2020.114728
Low JH, 2023, DESALINATION, V548, DOI 10.1016/j.desal.2022.116217
Mehta J., 2021, Open Chem. Eng. J, V15, P18
Mehta J., 2020, The Open Chemical Engineering Journal, V14, P71, DOI
[10.2174/1874123102014010071, DOI 10.2174/1874123102014010071]
Mehta J, 2022, MATER TODAY-PROC, V62, P6978, DOI 10.1016/j.matpr.2021.12.376
Metz SJ, 2002, DESALINATION, V148, P303, DOI 10.1016/S0011-9164(02)00721-X
Murthy ZVP, 2009, DESALINATION, V247, P610, DOI 10.1016/j.desal.2008.10.009
Murthy ZVR, 2009, CHEM ENG J, V150, P181, DOI 10.1016/j.cej.2008.12.023
Nair M, 2013, DESALIN WATER TREAT, V51, P2030, DOI 10.1080/19443994.2013.734483
Nataraj SK, 2009, DESALINATION, V249, P12, DOI 10.1016/j.desal.2009.06.008
Nezhad J. K., 2022, Journal of Applied Membrane Science Technology, V26, P107,
DOI [10.11113/amst.v26n1.237, DOI 10.11113/AMST.V26N1.237]
Pontié M, 2003, DESALINATION, V158, P277, DOI 10.1016/S0011-9164(03)00464-8
Qasem NAA, 2022, APPL ENERG, V323, DOI 10.1016/j.apenergy.2022.119572
Ren D, 2019, J MATER CHEM A, V7, P1849, DOI 10.1039/c8ta09242g
Saravanan R, 2023, Chemosphere, V337, P139336, DOI
10.1016/j.chemosphere.2023.139336
Sevimll MF, 2002, WATER SCI TECHNOL, V45, P279, DOI 10.2166/wst.2002.0436
Song JF, 2018, DESALINATION, V440, P18, DOI 10.1016/j.desal.2018.01.007
Subhedar DG, 2023, P I MECH ENG E-J PRO, DOI 10.1177/09544089231159994
TREFFRYGOATLEY K, 1983, DESALINATION, V47, P313, DOI 10.1016/0011-9164(83)87086-
6
WANG XL, 1995, J MEMBRANE SCI, V103, P117, DOI 10.1016/0376-7388(94)00317-R
Yang JY, 2019, DESALIN WATER TREAT, V138, P147, DOI 10.5004/dwt.2019.23315
Zaboon S, 2018, J COLLOID INTERF SCI, V523, P75, DOI 10.1016/j.jcis.2018.03.084
Zahmatkesh S, 2023, CHEMOSPHERE, V310, DOI 10.1016/j.chemosphere.2022.136837
Zhou H, 2023, J APPL ELECTROCHEM, V53, P963, DOI 10.1007/s10800-022-01821-8
NR 45
TC 0
Z9 0
U1 1
U2 3
PU TAYLOR & FRANCIS INC
PI PHILADELPHIA
PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA
SN 1556-7036
EI 1556-7230
J9 ENERG SOURCE PART A
JI Energy Sources Part A-Recovery Util. Environ. Eff.
PD OCT 2
PY 2023
VL 45
IS 4
BP 11586
EP 11603
DI 10.1080/15567036.2023.2259835
PG 18
WC Energy & Fuels; Engineering, Chemical; Environmental Sciences
WE Science Citation Index Expanded (SCI-EXPANDED)
SC Energy & Fuels; Engineering; Environmental Sciences & Ecology
GA S9LH7
UT WOS:001074303000001
DA 2024-07-09
ER

EF

You might also like