0% found this document useful (0 votes)
671 views174 pages

Gaiser Coorstek - Catalog

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
671 views174 pages

Gaiser Coorstek - Catalog

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 174

Gaiser® Precision Bonding Tools

Product Catalog
TECHNICAL CERAMICS EXPERTS

Leaders in Advanced Technical Ceramics


CoorsTek® is the world’s largest manufacturer of technical
ceramics and serves almost every industry in the global economy.
From advanced material design and production to our varied
forming and finishing operations, CoorsTek is vertically integrated
throughout.

Proven Supplier of Components for Front-End


Semiconductor Capital Equipment CoorsTek develops and produces
advanced ceramic materials for
CoorsTek has supplied advanced ceramic components for top-
industry-specific applications.
level semiconductor capital equipment for decades. We continue
to develop innovative materials and processes for:
• Etch
• Lithography
• Wafer inspection
• Implant
• High-temperature – RTP, EPI
• CVD, PVD, ECP

Superior Quality
Our signature OpX™ quality and manufacturing excellence system We supply premium, high-purity
combines best-practice methods including lean manufacturing, ceramic components for front-
CoorsTek exclusive six-sigma, and ISO-certification to ensure high-quality products, end semiconductor equipment.
OpX manufacturing
and quality system on-time delivery, and exceptional service.

Combined Resources for Superior Products


Established in 1962, Gaiser® originally collaborated with CoorsTek
(established 1910) to invent the industry-changing ceramic capil-
lary. Since then, both companies have served their segments of
the semiconductor industry with a number of technical innova-
tions leading to significant gains in quality and productivity.

In 2007, CoorsTek purchased Gaiser and continues to infuse its vast CoorsTek provides quick-turn
R&D, materials, and manufacturing experience to ensure the Gaiser prototyping to help shorten new
brand remains a symbol of innovative, high-quality bonding tools. product development cycle.

Serving Customers Where They Need Us Most!


CoorsTek has over 400,000 square meters (4 million square feet)
of manufacturing floor space in 50 manufacturing locations worldwide.

© 2015 CoorsTek, Inc.


PRECISION BONDING TOOLS

Superior Bonding Tools for Semiconductor

capillaries
For over four decades, we’ve served the semiconductor industry with
a variety of long-life, high-quality precision tools including:
• Fine-Pitch Ceramic Capillaries – We invented the ceramic capil-
lary
and continue to refine and improve our class-leading designs with
state-of-the-art process and material innovations.
We invented the first ceramic • Broad Selection of Wire Wedges
capillary and continue to lead the - Small Wire Wedges – Our next-generation MaxiBond™ small
high-precision capillary market. wire wedge design utilizes a unique raised pocket / dropped
foot architecture providing a complete back radius for optimal
1st bond heels and 2nd bond tailing, precise wire centering,
minimum “W” dimensions, and access into recessed bond pads.

wedges
- Large Wire Wedges
- Standard Wire Wedges
- Deep-Access Wedges
- Ribbon Wedges
• Single Point TAB Tools – Designed specifically for optimal com-
High-quality wire wedges ensure patibility with ultrasonic energy, our tape automated bonding
superior performance. tools are available in tungsten carbide or titanium carbide with
Cermet or diamond tips.
• Die Collets and Vacuum Pick-Up Tools – Our static-dissipative

tab tools
ceramic materials ensure superior performance.
• Parallel Gap Electrodes – Available for Unitek, Hughes, and cus-
tom designs.
• Custom Micro-components – We’re known for extensive micro-
molding and machining capabilities with exceptionally hard mate-
rials. Bring your design challenge to our team of ceramics experts!

CoorsTek offers custom high-pre- Expert Assistance


cision tools with extremely stable Call our precision bonding tool experts today for personal assistance
and durable ceramic materials. at +1.805.644 5583 or e-mail us at gaiser@coorstek.com.

die attach

Improve bonding performance CoorsTek Ventura Operations — dedicated to development and


with Gaiser brand precision production of Gaiser® brand precision bonding tools.
other

ceramic capillaries.

1
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Table of Contents
CoorsTek Technical Ceramics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inside Front Cover
Gaiser Precision Bonding Tools Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I. Capillaries
Capillary Wire Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23
How to Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Shank Styles & Cone Angles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Tip Modifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-27

Thermosonic Capillaries
1513 & 1513N Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1572 & 1572N Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1570 & 1570N Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1574 & 1574N Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1548 & 1548N Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1573 & 1573N Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1551, 1520, 1553, & 1554 Series (Customer Specified Dimensions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1590, 1591, 1592, & 1593 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36-37
1732 & 1733 Series (Ball Bumping Capillaries) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38-39
1521, 1522, 1523, & 1524 Series (Optional Radiused Inside Chamfers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Fine-Pitch Capillaries
Fine-Pitch Capillary Wire Bonding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41-54
1851, 1820, 1853 & 1854 Series (Customer Specified Dimensions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55-56
Troubleshooting Guide for Wire Bonding Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Ultra Fine Pitch Angle Bottleneck Capillaries (UFAB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58-59

II. Small Wire Wedges


Wedge Bonding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60-75
How to Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Shank Design & Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Tip Modifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78-79

MaxiBond™ Bonding Wedges


The MaxiBond Wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80-81
2130MB, 2138MB, & 2145MB Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82-83
2155MB & 2160MB Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84-85
4645MB & 4660MB Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86-87
4545MB & 4560MB Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88-89
4845MB, 4855MB, & 4860MB Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90-91
4155MB, 4160MB, & 4155VMB, 4160VMB Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92-93

MaxiGuide™ Bonding Wedges


2130, 2138, & 2145 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94-95
2155 & 2160 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96-97
2131 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98-99

Microwave Bonding Wedges


2M30, 2M38, 2M45 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101-102
2M55 & 2M60 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Gold Wire Bonding Wedges


2G30, 2G30K, & 2G38 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104-105
2G45, 2G55, & 2G60 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106-107

2
Table of Contents
Deep Access Bonding Wedges
Standard Shank & Close Guide Shank Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108-109
4445 & 4345 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110-111
4645 & 4545 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112-113
4660 & 4560 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114-115
4160, 4160V, 4760, & 4760V Series (for Palomar and Hesse & Knipps Bonder) . . . . . . . . . . . . . . . . . . . . . . 116-117

Ribbon Bonding Wedges


2530, 2545, & 2560 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4645R & 4660R Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4760VR Series (for Palomar and Hesse & Knipps Bonder). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Special Application Bonding Wedges


2100, 2100A, & 2100B Series (Customer Specified Dimensions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
2300, 2300A, & 2300C Series (Customer Specified Dimensions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

III. Large Wire Wedges


2830 Series & 2845 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124-125
8101A, 8301, 8401, 8501, & 8601 Series (for Shinkawa Bonders). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8301C & 8401C Series (for Shinkawa Bonders) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8236-UG Series & 8236-VE Series (for Ultrasonics (Cho-onpa) Bonders) . . . . . . . . . . . . . . . . . . . . . . . . . . 128-129
8245-VE Series (for Ultrasonics (Cho-onpa) Bonders). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8870 Series (for F&K Delvotec, Hesse & Knipps, & K&S Bonders). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Common Wedge Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

IV. Single-Point TAB Tools


Single-Point Tape Automated Bonding (TAB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133-134
Disk Drive Single-Point Bonding Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Tip Configurations & Shank Styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136-137
1183, 1184, & 1186 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138-140
1152 & 1552 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
2T01 & 2T02 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142-143
2T21 & 2T22 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144-145

V. Die Collets & Vacuum Pick-up Tools


Tip Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3800 & 3900 Series (Vacuum Pick-Up Tools). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3600& 3700 Series (Eutectic Die Collets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3300, 3300-ETE, & 3200-ETE (Surface/Perimeter Pick-up Tools). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
The #32A Shank & the #32 Shank (for the Palomar 3500, 6500, & LDA). . . . . . . . . . . . . . . . . . . . . . . . . . . 150-151
The #05 Shank & the #05P Pin Type Shank (for the Newport/MRSI 505, 5005, 605, & M5). . . . . . . . . . 152-153
3D00 Series (Daub Tools). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Shank Styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154-155

VI. Parallel Gap Electrodes


Gap Welding Electrodes for the Unitek Welder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156-158
Gap Welding Electrodes for the Hughes Welder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159-164

VII. Accessories
Accessories (Pull Force Hooks, Cut Tungsten Wire, & Unplugging Probes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Common Abbreviations & Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166


Common Conversions & Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inside Back Cover

3
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Advanced Materials and Components for Front-End Semiconductor Manufacturing
CoorsTek supports the semiconductor manufacturing industry by supplying ceramic materials and chamber-critical
components used in chip-processing equipment. From raw material design and production to finished and assembled
components, our vertically integrated manufacturing ensures quality for every step of the process.

Etch CVD, PVD, ECP


Components: Components:
• Shower heads • Gas distribution plates
• Windows • Chamber liners
• Focus Rings • Domes
• Domes • Plating insulators
• Shields • Cover rings
• Nozzles Materials:
Materials: • PlasmaPure Alumina
• PlasmaPure™ Alumina • PURE SiC™ CVD SiC
• PureSiC™ CVD SiC • Engineered arc-spray
• AD-995 Alumina coatings
• AD-995 Alumina

High-temperature – RTP, EPI Implant


Components: Components:
• Edge rings • RF shields
• Shields • Insulators
• Low-Mass lift pins Material:
• Thermal couple • PlasmaPure Alumina
sheaths • PURE SiC™ CVD SiC
• Susceptors • ESD Ceramics
Materials: • AD-995 Alumina
• PURE SiC™ CVD SiC
• SC-DS Sintered SiC
• PlasmaPure™ Alumina

Lithography, Wafer Inspection General Applications


Components: Components:
• Air-bearing • ESD end effectors
guideaways • Lift pins
• Air bearings • Wafer chucks
• Interferometer Materials:
reference mirrors • ESD Ceramics
• Scale mounts • PlasmaPure™ Alumina
Materials: • SC-DS Sintered SiC
• Fine-Grained Alumina • Brazed Ceramic
• SC-DS Sintered SiC Assemblies
• Dura-Z™ Zirconia • Dura-Z™ Zirconia
• Multi-layer Channeled
For expert assistance with your next project, please contact us at 800-455-4050 or Ceramic Substrates
send an e-mail to semi@coorstek.com. • AD-995 Alumina

4
Capillary Wire Bonding

The Ball Bonding Process

capillaries
A typical step by step overview of the wire bonding process showing the formation of the free air ball, ball bond,
stitch bond, and concluding with the reformation of the next free air ball.

1. The bonding process begins 2. Electrical Flame Off (EFO) 3. The capillary captures the
with a threaded capillary. forms the free air ball. Free Air Ball in the Chamfer

wedges
Diameter and descends to
the Bond Site.

4. Force and Ultrasonic Energy 5. The Looping Sequence 6. Force and Ultrasonic Energy
are applied over Time and are applied over Time to

tab tools
the Ball Bond is made. make the Stitch Bond.

Tail Length

Tail Length Tail Length


Tail Length Tail Length Tail Length

Tail Length Tail Tail Length


Length

3) Mid-Span Break

7. The capillary rises with the 8. The Wire Clamps


3) Mid-Span Break are Break
3) Mid-Span applied 9. The Tail Length after
Tail Length
Tail Length
Wire Clamps off for a specific and the wire breaks away
3) Mid-Span
3)Break
Mid-Span Break
3) Mid-Span Break breaking away from the 2nd

die attach
2) Neck Break
distance. from the 2nd Bond leaving a Bond.
2) Neck Break 2) Neck Break 5) Lifted Stitch
2) Neck Break specific
Position #1)3)
Lifted
2) Neck Break
tail
Ball Break
Mid-Span
2) length.
3) Mid-Span
3) Mid-Span
Neck Break Break
Break
2) Heel Break
Position #1) Lifted Ball 5) Lifted Stitch 5) Lifted Stitch
Position #1) Lifted Ball
2) Heel Break 2) Heel 5) Lifted Stitch
Break 5) Lifted Stitch
Position #1)Position
Lifted Ball Position #1) Lifted Ball 5) Lifted Stitch
#1) Lifted Ball 2) Heel Break
2) Neck Break 2) Neck2) Neck Break 2) Heel Break
2) Heel Break
3) Mid-Span Break Break
3) Mid-Span Break
Position #1) Lifted Ball 5) Lifted Stitch 5) Lifted
5) Lifted Stitch
Stitch
Position
Position #1) #1) Lifted
Lifted Ball Ball
2) Heel Break 2) Heel
2) Heel Break
Break
2) Neck Break
2) Neck Break

Position #1) Lifted Ball 5) Lifted Stitch


Position #1) Lifted Ball 2) Heel Break 5) Lifted Stitch
2) Heel Break

10. The EFO forms the next Free Preferred Failure Modes Undesireable Failure modes
Air Ball and the cycle begins • Mid-Span Break (Bond Strength • Lifted Stitch
other

again. exceeds Wire Tensile Strength) • Lifted Ball


• Neck Break at Heat Affected Zone
(HAZ)
• Heel Break

5
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
The Ball Bonding Capillary — Basic Requirements for Successful
A Brief History Ball Bonding
From the historical standpoint, Au-Al semiconductor Following are the basic requirements for successful ball
wire bonding was done only by heat and pressure bonding:
(thermo compression) using heat-drawn glass capillar-
ies which provided a metal-to-metal weld. This was an 1. A maintained ball bonder and a
acceptable process for some years but the 300ºC plus knowledge of its operation
temperatures and relatively high bonding forces became 2. An appropriate part number capillary
a problem with thinner chips, device sensitivity, lead in functional condition
frame oxidation, etc. 3. Quality wire property handled, correct
hardness, elongation, and tensile strength
Capillary material advancements, initially Tungsten Car- 4. Optimized tuning of the bonder (time,
bide, lead to more robust and dimensionally consistent force, and ultrasonic power)
capillaries. They also allowed the reduction of bonding 5. Heat - adequate stage temperature, paying
temperatures for sensitive devices by transferring the special attention to material properties
heat directly to the capillary. Capillary heaters were a [i.e Glass Transition Temperature (Tg)]
popular form of bonding heat sensitive devices. How- 6. Good metallization
ever, the heat transferred via the metal capillary created 7. Clean metallization
a new problem by exaggerating grain growth at the ball 8. A securely clamped and leveled workpiece
neck region. The end result was lower pull values as the
temperature of the capillary was increased to offset Factors such as bond pad size, bond pad pitch, wire
reductions in the stage temperature. diameter, bonding surfaces, metallization, loop height,
loop length, bonder speed and accuracy, and package
The early bonding process depended on Hydrogen- design will effect the capillary chosen for a wire-bonding
Oxygen based torches to form a free air ball. This torch application. CoorsTek offers a number of standard indus-
mechanism, if not set properly, exhibited a tendency to try capillary designs as well as the ability to customize
cause early oxidation of the WC (Tungsten Carbide) cap- part numbers for individual applications.
illaries. This prompted Gaiser to search for new solutions
which resulted in our invention of the ceramic capillary.
With the invention of the ultrasonic transducer, acoustic
energy was introduced into the equation, greatly improv-
ing bond strengths and bondability (Thermosonic and
Ultrasonic Bonding).

Around the late 1970’s, someone thought that adding


an ultrasonic vibration to the capillary along with the
usual parameters that the “scrubbing” action of the
metal surfaces would improve the bond reliability. As
luck would have it, it also lowered bonding temperature
requirements and created better Au-Al reactivity so the
Thermosonic process was born.

Typical processes were designed around 60 kHz for


many years and still remain so, even today. In the late
1980’s, a group of bonding scientists pioneered a revolu-
tionary improvement in the ball bond process by increas-
ing the transducer frequencies beyond the standard 60
kHz. Their work set the foundation for high-frequency
processes where transducer frequencies range from
90 to 250 kHz covering a wide field of applications.
Capillary materials had to be modified to better utilize
the necessary changes in process application as well as
being better tuned to the higher frequency transducers.

6
Capillary Wire Bonding
Basic Capillary Design Dimensions The industry standard cone angle is 30° with 20° and 15°
being optional. A 20° cone angle is becoming increasing
Capillaries have two basic sets of industry standard popular for an all purpose capillary with today’s shrink-

capillaries
dimensional characteristics: large geometry and small ing packages. Sharper cone angles provide additional
geometry. Large geometry dimensions generally refer clearance in tight packages. Use of a 15° cone angle
to the shank, back hole, and cone. Small geometry may result in some loss of ultrasonic energy transfer.
dimensions refer to the tip details.
For fine-pitch applications, an angle bottleneck tip
Virtually all capillaries in use today are 1/16 inch diameter design may be required. Most angle bottlenecks have
(0.0625 in./1.58mm). The most common capillary length a 10° or 5° angle and are normally 0.006 in./150μm to
is 0.437 in./11.1mm, followed by the 0.375 in./9.52mm 0.015 in./380μm high. The angle bottleneck height and
length. Also available for the longer lengths are 0.625 angle are driven mainly by the bond pad pitch and loop
in./15.88mm and 0.750 in./19.05mm. height of the application. See the fine pitch section for
more information.

wedges
Ø0.030
0.76mm

Ø0.0624
1.58mm

0.375 / 9.52mm

tab tools
OR
0.437 / 11.1mm
H FACE
0.470 / 11.94mm
IC ANGLE
0.625 / 15.88mm
0.750 / 19.05mm B
±0.005 / .13mm
IC ANGLE
T

Figure 2 – Small (tip) geometry dimensions

die attach
30°
(STANDARD)

20°
(OPTIONAL)
Industry standard small geometry dimensions:

1. Tip Diameter (T)


Figure 1 – Large geometry dimensions 2. Hole Diameter or Size (H)
3. Chamfer Diameter (CD or B)
4. Inside Chamfer (IC)
Industry standard large geometry dimensions: 5. Inside Chamfer Angle (IC Angle)
6. Face Angle (Note: may be flat, 0°)
1. Shank Diameter (SD) 7. Outside Radius (OR)
2. Tool Length (L)
3. Cone Angle or Main Taper Angle
other

4. Back Hole

7
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
The Tip Diameter
(“T” Dimension)
The capillary tip diameter should generally be as large as
the bonding application will allow (within reason – there
is a law of diminishing returns). A large tip diameter pro-
vides the maximum effective 2nd bond length, therefore
the maximum bonded surface area between
the wire and the bonding surface for the stitch bond.

Most “full size” capillaries for 0.0010 in./25μm to


0.0013 in./33μm wire have tip diameters ranging from
0.0055 in./140μm to 0.0090 in./229μm. For tighter
T
packages and smaller wire diameters, such as 0.0008
in./20μm, tip diameters as small as 0.0040 in./102μm
may be needed. With fine pitch applications, tip diam- Figure 4 – Standard capillary tip (T) dimension
eters smaller than 0.0030 in./76μm may be
necessary. See the fine-pitch wire bonding section for The tip diameter has the most direct effect on the size
more information. of the stitch bond. A larger tip diameter will produce a
larger and longer stitch bond with more bonded surface
The tip diameter selection is mostly affected by the ball area, and a generally higher peel strength.
bond pitch or other package-related constraints such as
clearance issues. There are many Gaiser brand capillary A smaller tip diameter will produce a smaller stitch bond
part numbers available with various tip sizes to suit most with less bonded surface area. Package or pitch con-
applications. straints may dictate the need for a smaller tip diameter.

T
T

Figure 3 – The tip (T) diameter


Figure 5 & 6 – The stitch bond on the left is made with
a T=0.0090 in./229μm and the stitch bond on the
Main aspects of the tip diameter: right is made with a T=0.0059 in./150μm. A larger T
dimension provides a longer bond length and therefore
a larger surface area for a superior intermetallic weld.
1. Provides the overall size of the bond
length, 2nd bond, or stitch bond
2. Contains all the capillary tip
features: Hole, Chamfer Diameter, A given tip diameter may produce a slightly different
Face Angle, & Outside Radius stitch bond width and length relative to the direction of
3. Fine pitch or other package constraints may the ultrasonic scrub. This condition is inherent in many
force the use of a smaller tip diameter wire bonders and ultrasonic transducers. The cosmetic
difference is generally of no consequence as adequate
bond strengths are able to be obtained on all axis.

8
Capillary Wire Bonding

capillaries
Scrub Direction

Figure 7 – Tools with the same capillary tip may render


stitch bonds with different widths depending on
scrub direction. A stitch bond made in the east-west Figure 9 – The polished finish specified as

wedges
direction will be wider than a stitch bond made in the “P” in the part number.
north-south direction. This is due to the ultrasonic
motion of the capillary scrubbing across the wire.
Stitch bonds made in the north-south direction will be
Main characteristics of a polished tip finish:
narrower because the ultrasonic motion scrubs in-line
with the wire. 1. The polished finish may provide longer
tool life in applications with
excellent bondability due to being less
Tip Finish prone to build-up than the GM finish
2. A polished finish does not provide
enhanced mechanical coupling
between the capillary and the wire

tab tools
For applications where bondability is very good, the
polished finish is recommended. If the bonding surface
metallizations and wire are easily bonded, the polished
finish may provide longer tool life than a matte finish
tool. Although the polished finish tool is less prone to
build-up on the tip but does not transmit ultrasonic
energy as aggressively as a GM finish.

die attach
The Hole Diameter
Figure 8 – The Gaiser Matte finish specified as (“H” Dimension)
“GM” in the part number.
The capillary hole diameter (H) is determined by the
wire diameter and the application. Manual bonder
Main characteristics of a matte tip finish: hybrid applications, ball bumping applications, and
fully-automated bonder fine pitch applications, require
1. The matte surface texture provides different capillary hole diameter to wire diameter re-
maximum mechanical coupling between lationships. For wire diameters of 0.0010 in./25μm to
the capillary tip and the wire 0.0013 in./33μm, the hole diameter is typically designed
2. A matte finish may be more prone to 0.0005 in./13μm to 0.0008 in./20μm larger than the wire
build-up than a polished tip finish diameter. This relationship can affect wire looping, wire
drag, and ball bond size and appearance.
other

The “GM” finish is recommended for the maximum ef-


fective transfer of ultrasonic energy from the tool to the
wire during the 2nd bond.

9
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
Manual and semi-automatic bonders in various hybrid
microelectronics applications may be operated in a wide
hole diameter to wire diameter relationship. Factors
such as bonder speed and accuracy, operator preference,
loop length, loop profile, pad size, ball size, wire hardness
and elongation, and package design all play a roll. A
general minimum/maximum relationship is shown below.

H Manual Bonder / Semi-automatic Bonder


Capillary Hole Diameter, General Guide
Wire Diameter Hole Diameter
in. / µm in. / µm
Figure 10 – Standard capillary hole (H) dimension 0.0008 / 20 0.0012 / 30 to 0.0015 / 38
0.0009 / 23 0.0013 / 33 to 0.0017 / 43
0.0010 / 25 0.0014 / 36 to 0.0018 / 46
0.0012 / 30 0.0016 / 41 to 0.0020 / 51
0.00125 / 32 0.0016 / 41 to 0.0020 / 51
0.0013 / 33 0.0017 / 43 to 0.0021 / 53

Fully automatic high-speed bonders are generally oper-


ated in a tighter wire-to-hole diameter relationship as
shown below.

Fully Automatic Bonder / High Speed Bonder


Capillary Hole Diameter, General Guide
Wire Diameter Hole Diameter
Figure 11 – Back-lit view of capillary hole diameter in. / µm in. / µm
0.0008 / 20 0.0012 / 30 to 0.0014 / 36
0.0009 / 23 0.0013 / 33 to 0.0015 / 38
0.0010 / 25 0.0014 / 36 to 0.0016 / 41
0.0012 / 30 0.0015 / 38 to 0.0017 / 43
0.00125 / 32 0.0015 / 38 to 0.0018 / 46
0.0013 / 33 0.0017 / 43 to 0.0020 / 51

Manual and semi-automatic bonders operating in fine-


pitch, small-ball, or ball-bumping applications often
require tighter wire-to-hole diameter relationships as
shown below.
HOLE DIA (H)
Semi-automatic Bonder
Fine-Pitch Capillary Hole Diameter Guide
Figure 12 – The hole (H) diameter
Wire Diameter Hole Diameter
in. / µm in. / µm
0.0008 / 20 0.0010 / 25 to 0.0013 / 33
The effects and influence of the capillary hole size 0.0009 / 23 0.0011 / 28 to 0.0014 / 36
(optimum vs. too small or too large): 0.0010 / 25 0.0013 / 33 to 0.0016 / 41
0.0011 / 28 0.0014 / 36 to 0.0016 / 41
1. Wire feed and drag, wire scratch 0.0012 / 30 0.0015 / 38 to 0.0017 / 43
2. Looping characteristics, 0.00125 / 32 0.0015 / 38 to 0.0018 / 46
profile, and kinking 0.0013 / 33 0.0017 / 43 to 0.0021 / 53
3. Ball size and shape
4. Hole plugging, swallowed ball

10
Capillary Wire Bonding
Fully automatic, high-speed, fine-pitch bonders are pad size, and the desired squashed ball diameter. Most
rapidly breaking new barriers in closer pitches, smaller squashed ball diameters range from 1.0 to 1.2 times the
wires, smaller pad openings, and ball sizes. These ap- chamfer diameter. The free air ball diameter and inside

capillaries
plications typically operate in a narrower hole diameter chamfer angle also affect the squashed ball diameter.
range as shown below.
Fully Automatic Bonder / High Speed Bonder
Fine Pitch Capillary Hole Diameter Guide
Wire Diameter Hole Diameter
in. / µm in. / µm
0.0006 / 15 0.00075 / 19 to 0.0009 / 23
0.0007 / 18 0.00085 / 22 to 0.0010 / 25
0.0008 / 20 0.00095 / 24 to 0.0011 / 28
B
CD/
0.0009 / 23 0.00105 / 27 to 0.0012 / 30
0.0010 / 25 0.00125 / 32 to 0.0014 / 36
0.0011 / 28 0.0013 / 33 to 0.0015 / 38

wedges
0.0012 / 30 0.0014 / 36 to 0.0016 / 41
0.00125 / 32 0.0015 / 38 to 0.0017 / 43

Figure 13 – Standard capillary chamfer diameter (CD or B)


Note: For more information on fine-pitch and ultra-fine-pitch wire
bonding, please refer to the fine-pitch bonding section.

Inside Chamfer Design

tab tools
(“IC” and “CD” or “B” Dimensions)

The inside chamfer has three major design parameters:


the chamfer diameter (CD or B dimension), inside cham-
fer angle (IC Angle), and the inside chamfer size (IC).
CHAMFER DIA
1. Chamfer Diameter (CD or B for “Ball”) (CD or B)
2. Inside Chamfer Angle (IC Angle)
• Single IC Figure 14 – The chamfer diameter (CD or B)
• Double IC

die attach
• Blended IC (BLIC) or Inside Radius (IR)
3. Inside Chamfer Size (IC)
Major functions of the chamfer diameter:
These design parameters generally affect the ball bond-
ing characteristics of the capillary, but can also have 1. Provides volume to capture the free air ball
an effect on the 2nd bond. As with other tool design 2. Provides both downward and lateral mechanical
dimensions, a change to one dimension may have an coupling with molten ball during bonding
effect on another bonding characteristic at a different 3. Ball size and shape
point in the wire bond process. 4. Contains wire extrusion in area
other than the hole and face
The chamfer diameter is the diameter of the chamfer
surrounding the capillary hole that allows the capillary to
capture the free air ball and form the ball bond. Factors
which usually determine the chamfer diameter are capil-
other

lary hole and wire diameter, free air ball diameter, bond

11
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
The previous section discussed the basics of the cham-
fer diameter (CD or B). This section covers the inside
chamfer angle (IC Angle) and the remaining component
in the equation, the inside chamfer (IC).
F1
Mathematically, the IC value is 1/2 the difference be-
tween the chamfer diameter and the hole diameter, or
the delta X component of the chamfer surrounding the
F2 capillary hole.

45°

F1 = F2 90°

Figure 15 – The downward and lateral forces of the 90°


IC angle are distributed evenly.

H B-H
IC=
IC 2
F1
B B=2xIC + H

Figure 17 – The Inside Chamfer (IC) dimension


F2

60°

F1 > F2 120° Larger capillaries for 0.00125 in./32μm wire hybrid


applications may have an inside chamfer size of up to
Figure 16 – The 120° IC angle produces more downward
0.0010 in./25μm. Medium to small ball capillaries have
force than the 90° IC angle. This increased force affects
IC sizes from 0.0006 in./15μm down to 0.0003 in./8μm.
both the ball and stitch bond.
Fine pitch capillaries have IC sizes from 0.0004 in./10μm
down to as small as 0.00015/4μm. New developments
Main effects of the IC angle:
for ultra-fine-pitch capillaries are pushing the envelope
to 0.0001 in./2.5μm and below.
1. 120° – Maximum downward force vector for
the ball bond and reduced cut stitch at the
2nd bond (preferred for many non-fine pitch,
hybrid, MCM, and thick-film applications).
2. 100° – Provides maximum free air ball
capture volume and controlled squashed
ball size; reduces cut stitch than smaller
IC angles. The relative higher downward
force increases intermetallic reaction
more than smaller IC angles.
3. 90° – Greater capture volume for a taller, more
compact ball bond (preferred in fine-pitch,
high-frequency transducer applications). IC
4. 70° – Provides maximum free air ball capture
volume and minimal squashed ball size; may
also contribute to cut stitch. The minimum
downward force vector may cause lower ball Figure 18 – Standard capillary inside chamfer (IC)
dimension
shear. Adequate ultrasonics are necessary
for good ball shear when using a 70° IC.

12
Capillary Wire Bonding
The most basic IC design is the single angle IC. This
was followed by the double IC angle which maintained
the individual advantages of the 90° and 120° designs,

capillaries
but improved looping and higher speed wire bonder
operation. A double IC is standard on Gaiser capillaries
unless otherwise specified. Fine-pitch capillaries may
require a single IC due to very small feature size. Further
to the double IC design is the radiused inside chamfer or
blended inside radius. Radiused inside chamfer designs
are helpful in low-loop, long-loop, long-wire, or high/low
bonding applications. 90°

wedges
50° 120°
90°
Figure 21. Radiused IC designs reduce wire drag. The

tab tools
120° design provides excellent looping characteristics
Figure 19. The 90° double IC consists of 90° and and wire control and is often preferred for high speed,
50° angles as shown above. The 50° angle allows for low-loop, long-loop, and spider-leg applications.
a smooth transition into the hole for good looping.
The 90° angle forms a taller, more compact ball and
provides good tailing.
IC Angle Impact on Bondability
Internal Chamfer Angle (ICA) on ball bond shape and in-
tegrity has long been known to bond process engineers.
The differences between a 90° ICA and a 120° ICA are

die attach
clear when the ball size and shape are compared. The
90° ICA provides less squash or deformation on the
finished bond as compared to the 120° ICA.

The push to control bonded ball size and shape to satisfy


increased demands for finer pitch bonds has forced the
use of steeper ICA (< 90°). The disadvantage that comes
80° with such steeper ICA is the negative impact they have
on shear strength, intermetallic formation, and in many
120° cases the potential for inducing subsurface damage to
the bond pads.
Figure 20. The 120° double IC consists of 120° and
80° angles as shown above. The 80° angle allows for The reason steeper angles tend to minimize ball bond de-
a smooth transition into the hole for improved looping. formation is because of the reduced compressive force
other

The 120° angle produces strong tail bonds and higher applied perpendicular (Fy) over the Internal Chamfer (IC)
ball shear strengths. surface. The smaller stress applied by this component
(Fy) minimizes the amount of material being pushed

13
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
out of the IC area, therefore allowing the material to be Px = P*Cosσ and Py = P*Sinσ
easily extruded inwards to fill the IC cavity. At the same
time that the compressive forces are reduced, another So if P = 0.0086 gm/μm² and σ = 90°/2
compressive force component (Fx) increases as the IC
meets the face angle. This component is the one respon- Then
sible for potential subsurface damage on bond pads. Px = 0.00608 gm/μm² and
Py = 0.00608 gm/μm²
In order to illustrate the impact of the IC-compressive
forces, a 90° ICA was used in the following calculation. From P = F/SA then

Where: Fx = Px*SA and


SA = Surface Area for IC Fy = Py*SA
F = Bond Force in grams
P = Pressure So,
m = IC²+h²
h = Tanσ * [(D-d)/2] Fx = 17.75 grams and
σ = ICA/2 Fy = 17.75 grams
D = B or CD diameter
d = Hole diameter As the calculation shows, the force components are in
IC = (D-d)/2 equilibrium when a 90° ICA is used. This equilibrium
can be shifted either way to satisfy process demands,
So SA = (Pi/2) * m * (D+d) small consistent bonded size or higher intermetallic
and P = F/SA formation, but not both.

When σ = 90°/2 and D = 355.6μm Small increments in the IC angle can provide the neces-
and d = 228.6 μm sary optimization for increased intermetallic formation
(higher shear strength) without affecting bond shape
then SA = 2919.96 μm² considerably. An example of such optimizations is
the Gaiser 100° ICA targeted to fine pitch applications
If F = 25 grams and SA = 2919.96 μm² with increased intermetallic formation and good bond
deformation.
then P = 0.0086 gm/μm²
The graph below illustrates a ball size ratio (X/Y) com-
To calculate the different pressure components the fol- parison study between 90°IC, 100°IC, and 110°IC capil-
lowing diagram is used: laries and intermetallic analysis.

 


Figure 22 – Pressure components of a 90° ICA

Figure 23 – Ball Consistency VS. IC Angle

14
Capillary Wire Bonding
Face Angle and Outside Radius (OR)
Current capillaries are normally designed with either a

capillaries
0°, 4°, 8°, or 11° face angle. The angle selected is usually
based on the package type being bonded.

90° IC 100° IC 110° IC

Figure 24 – Intermetallic Analysis

If the same procedure is used to calculate the force


components acting upon the IC surface of a 120° ICA, the
Fy increases as the Fx decreases.

wedges
FLAT FACE (0°)
The values for an ICA = 120° are
Fy = 21.65 grams and
Figure 26 – The flat (0°) face angle
Fx = 12.49 grams

If we now calculate the values for an ICA = 70° then


The 0° face angle provides the greatest downward force.
Fy = 14.34 grams and
This is beneficial in situations where the leadframe mate-
Fx = 20.48 grams
rial or planarity creates difficult conditions for a good
second bond. A potential disadvantage is the possibility
From this last example, it is obvious that the Fx is
of heel cracking problems as a result of the thin heel

tab tools
already approaching the original F value while the Fy
area of the second bond created. This problem can be
(perpendicular to the surface of the IC) is dropping in
reduced by including a large OR design with the 0° face
value – therefore less direct compression is applied over
angle. The normal OR is designed to be equal to the
the surface of the ball bond. This will potentially result
size of the wire being bonded.
in minimal, if any, intermetallic growth at the center of
the bonded ball as shown in the figure below.

die attach

Figure 27 – The 4° face angle

The 4° face angle was developed for situations where


Figure 25 – Intermetallic growth at the center of the the 0° face angle capillary caused heel crack problems
bonded ball
but additional force down on the second bond was still
required for good pull strengths.
other

15
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
The following generic diagram illustrates the stress dis-
tribution occurring during the second bond formation.

8° POTENTIAL
WELDMENT AREA

Figure 28 – The 8° face angle TAIL


STITCH BOND BOND

The 8° face angle was designed as the most suitable


compromise in providing adequate downward force and
good pull tests on the second bond. It also provides
a thicker heel area of the second bond to avoid heel CL
cracks. The majority of capillary designs today utilize
the 8° face angle.
LOCATION

Figure 30 – Compressive stress graph

11° Another way of illustrating stresses is shown in the


comparison below where a fixed-face-angle capillary is
compared with a CDR2B type capillary.

The standard face angle capillary shows a Vertical Force


Figure 29 – The 11° face angle component concentrated at the intersection of the IC
and Face Angle. If this component is excessive, the re-
sults are cut wires resulting in missing balls.
In recent years, the 11° face angle capillary has gained
popularity to deal with the advent of newer packages
with softer surfaces for the second bond. Downward
force for the second bond was increased in order to
improve the strength of the second bond. The 11° face
of the tool allowed the capillary to bond deeper in the
lead frame material without causing heel crack problems.
This design is used for some of the BGA packages.

Face Angle – Stress on the Second Bond


The impact of stresses during the second bond forma-
tion is an important subject in order to understand the
mechanism behind it. Stresses applied to the wire during
the formation of the second bond are responsible for
the integrity and strength of that bond. 11° 60°

Figure 31 – Standard capillary

16
Capillary Wire Bonding
The CDR2B design shows the same type of Vertical Force
component but distributed over a larger surface area,
resulting in smaller components that reduce the poten-

capillaries
tial of cutting the wire during the binding operation.

OR

Figure 34 – Standard capillary outside radius (OR)


dimension

wedges
Larger OR dimensions are generally used with flat-faced
capillaries. A large OR dimension is beneficial with
larger tip diameters and wire sizes because it is forgiv-
ing on surfaces with poor flatness or planarity. Smaller
11° 60° OR dimensions are used with face angles as less radius
is required because the face angle provides part of the
Figure 32 – CDR2B Capillary gradual transition. Generally, the steeper the face angle,
the smaller the OR needed.

tab tools
FACE BOND PARAMETER PLANARITY SURFACE
ANGLE STRENGTH SETTINGS SENSITIVITY CHARACTER

Rough, Thin,
0° Highest Highest Highest Thick and Clean
(Au)
Thin,
4° High High Lower Thick and Clean OR
(Au, Cu, Pd)
Soft, Rough,
8° Good Average Low Thin, Thick, Hard
(Ag, Au, Cu, Pd) FLAT FACE
Soft and Thick
11° Good Low Minimal

die attach
(Ag, Au)
Figure 35 – Flat face capillary with OR

Figure 33 – Face angle comparison table

The Outside Radius


(“OR” Dimension)
The outside radius (OR) of the capillary provides a
gradual transition from the face of the capillary to the
edge of the tip diameter. In combination with the face
angle, the outside radius allows the compressed and OR
bonded portion of the wire to transition gradually from FACE
a flattened, bonded condition back to the original round ANGLE
wire diameter. This gradual transition maintains strength
other

in the portion of the wire between the bonded area and Figure 36 – Capillary with face angle and OR
the wire diameter preventing both heel cracks and weak,
easily broken stitch bonds.

17
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
For surfaces with poor flatness and/or planarity, the XX70
features an “oversize” outside radius design which is
truncated by the tip diameter. This design provides a
gradual transition similar to a face angle but does not
become parallel to the bonding surface when the bond-
ing surface is not flat.

OR

GREATER
THAN TYPICAL
WIRE DIAMETER

Figure 37 – XX70 style OR capillary Figure 39 – Example of a non-sticking 2nd bond

The reasons for non sticking bonds are as follows:


In fine-pitch designs, both large OR’s with flat faces, and
small OR’s with steep face angles, are used due to the 1. Poor plating or metal type of the substrate
similar transition effects on the stitch bond caused by 2. Contamination on the substrate material
very short 2nd-bond bond lengths. For more informa- 3. Lead or package not clamped rigidly
tion about fine-pitch OR design, see the fine-pitch wire causing the lead to move resulting in
bonding section (see page 41). poor ultrasonic energy transfer from
the capillary to the wire and lead
4. Lead surface not planar to the capillary face
Bonding Problems 5. Improper frequencies, force, time,
or heat settings – higher frequency
transducer may be required for fine
and ultra-fine-pitch applications
6. Capillary T dimension may be too small
resulting in too short of a bond

Figure 38 – Example of a weak/ chopped-off or cut


bond.

The primary reasons for a weak/chopped-off or cut


bond are:

1. Capillary T dimension is too small


2. Inside chamfer area of the capillary is worn Figure 40 – Example of a weak transition from the
away resulting in a shorter bond length stitch bond to the wire
3. Excessive metals build up on the face and
chamfer diameter area of the capillary

18
Capillary Wire Bonding
Causes for a weak transition from the second bond to
the wire include the following:

capillaries
1. Face angle of the capillary too shallow
causing the heel area to be too thin
2. Outside radius (OR) dimension too
small in relationship to the wire size
– Outside radius should normally be
a minimum of the wire diameter
3. Excessive bonder force setting or frequency
causing the capillary to cut the wire
4. Improper lead or substrate clamping allowing
shifting of the capillary on the wire

wedges
Figure 42 – Ball bond not sticking to the pad

Non-sticking of the ball bond to the pad may be caused


by the following:

1. Excessive free air ball (FAB) size - normal


size is 2 to 2.5 times the wire diameter
2. Insufficient force, frequency, heat, or dwell time
3. Residual silicon oxide or contamination

tab tools
on the bonding pad
4. IC angle too steep
• 90° and 120° are standard
• 70° and 50° are steeper angles
for ultra-fine-pitch bonding
5. FAB size too small
6. Probe damage resulting in poor bonding surface
Figure 41 – Example of wavy or sagging wires

The following may cause the above wavy or sagging

die attach
wires:

1. Excessive wire drag due to the hole of the


capillary being too small in relationship
to the wire – the hole is normally 1.3
to 1.5 times the wire diameter
2. Excessive wire drag due to the chamfer
diameter being too small or metal
build-up in the chamfer diameter
3. Wire elongation too high (soft)
4. Wire diameter is too small for
the loop length required
other

Figure 43 – Example of a ball bond larger than desired

19
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
Common causes of the ball bond being larger than the
desired are:
1. IC angle is too shallow (120°)
2. Free air ball (FAB) size too large
3. Wire size too large
4. Excessive force or frequency
5. Chamfer diameter (B dimension) too large -
should be smaller than the pad opening

Figure 46 – Example of a golf club bond

Off-center or golf club shaped ball bonds may be caused


by the following:
1. IC is too small (less than 0.0003 in./ 8μm)
or IC angle is too steep (less than 90°)
2. Poor substrate metal for bonding
surface (Nickel, Palladium, Copper)
3. Contamination
4. Poor clamping
Figure 44 – Example of tailing problem normally 5. Wire is too hard
associated with TC bonding 6. Wire tension and drag not tight enough
7. Tail length setting is too long
Common causes of tailing are as follows:
1. Metal bonding surface provides for
excellent adhesion (gold or silver spot)
2. Shallow IC angle resulting in strong tail bond
3. Chamfer diameter too large
resulting in strong tail bond
4. Excessive wire elongation/softness
5. Wire may be too old

Figure 47 – Example of scratched wire

Wire scratches may be caused by the following:


1. Damaged chamfer diameter
2. Wire has existing scratches
3. Wire clamp surface is damaged
4. Wire clamp is not open
5. Excessive wire drag
6. Metal build-up in the chamfer diameter
7. Bonding condition is ball bond
higher than the second bond
8. Loop is too low causing the wire to
drag across the capillary face
Figure 45 – Example of an off-center FAB

20
Capillary Wire Bonding

capillaries
Figure 48 – Example of cratering of the bond pad

wedges
Cratering may result for the following reasons:
1. Bond heads dropping too fast Figure 50 – Resultant ball bond of capillary with too
large of a B (CD) dimension
in forming the ball bond
2. Excessive ultrasonic energy or power
When the capillary chamfer diameter (B or CD dimen-
3. Substrate movement during bonding
sion) is too large, or if the free air ball (FAB) size is too
4. Poor metal adhesion to the bond pad
small, the FAB can be “swallowed-up” into the chamfer
5. Bond time too long
and hole area. If this occurs, the ball may not have
6. Metal on bond pad is too hard, thin, or brittle
enough contact with the pad resulting in a weak bond
or “no-stick”. It is also possible for the capillary to

tab tools
“bottom-out” or actually contact the device on the first
bond, damaging the device and capillary.

die attach
Figure 49 – Example of necking above the ball bond
Necking above the ball bond can occur for several
reasons:
1. Insufficient downward force on the
capillary during the ball bond formation
allowing the ball to wobble
2. FAB is too small for capture in Figure 51 – Example of a ball bond made with a worn
the chamfer diameter capillary. Wear can be caused by EFO damage, physical
3. Incorrect percentage of wire elongation wear (high bond count), or metallization build-up inside
the chamfer of the capillary.
other

allowing the wire to work harder above the ball


4. Low-loop bonding (below 0.006 in./150μm)
causing stress above the ball bond
5. Ball bond is in higher location
compared to the second bond

21
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Wire Bonding
Bond Process Control As an example of the differences in ceramic material
properties, see the comparison below between the four
Stringent requirements are the norm today to be able different ceramic blends. An acoustical parameter has
to control ball size, bond strength and intermetallics been added to the other chemical and physical properties.
formation as well as achieving higher throughputs.

The focus of today’s semiconductor back-end assembly


is on supplier capabilities to meet the tight tolerances Average Grain Size = 1.3 μm
and controls necessary to assure repeatability of product Density = 3.96 g/cm3
delivery. As an example of such demands, the capabili- Bending Strength = 572 MPa
ties of wire bonders have gone from the relaxed 100 -200 Ultrasonic Efficiency = 81.2%
μm pad pitch bonding to meet the now common 50-60 Vickers Hardness = 2144 HV
μm pad pitch bonding and not too far into the future
the 30-40 μm pad pitch requirements.

It is here where systems controls become critical; ex- Figure 52 – Standard ceramic material
tremely accurate and repeatable hardware is necessary
(X-Y tables, Optics, Z axis mechanism, etc.) as well as
proper software algorithms, key to many of the propri-
etary features in a wire bonder. These are the features Average Grain Size = 0.5 μm
that differentiate wire bonders manufacturers because Density = 4.29 g/cm3
they allow the flexibility necessary to bond today’s Bending Strength = 1013 MPa
semiconductor packages and materials. Ultrasonic Efficiency = 85.2%
Vickers Hardness = 1716 HV
Although hardware and software are key differen-
tiators of wire bonder capabilities there are other
systems that, because of their crucial role in the qual-
ity of the finished product (wire interconnection), Figure 53 – CZ1 material
need to be highlighted with even higher emphasis.
They are the Capillary and the Ultrasonic system.

Because of expected higher performance, the capillary


Average Grain Size = 0.35 μm
design criteria has to evolve to achieve longer effective
Density = 4.38 g/cm3
life, create smaller geometrical features, produce custom
Bending Strength = 1120 MPa
designs, implement novel ideas to address emerging new
Ultrasonic Efficiency = 88.8%
or sometimes older bond-related problems, be capable
Vickers Hardness = 2658 HV
of rapid production ramp up and maintain competitive
pricing.

The old simple method of creating a new capillary design Figure 54 – CZ3 material
based on purely geometrical factors is no longer valid;
new packaging materials as well as the bonding process
requirements such as ball thickness, bond squash, shear
strength, intermetallics formation, pull strength, and Average Grain Size = 0.4 μm
other cosmetic attributes demand a full understanding Density = 4.27 g/cm3
of capillary material properties. These properties not Bending Strength = 1046 MPa
only cover the chemical but physical aspects as well Ultrasonic Efficiency = 84.4%
with special attention to acoustical behavior of the Vickers Hardness = 2000 HV
material and of the geometrical design. Understanding
why and how a particular geometrical shape will affect
performance is so important to provide the solutions
to many of the bonding problems found on new die or Figure 55 – CZ8 material
substrate materials, i.e.: copper lead frames, palladium
plated lead frames, organic substrates with low glass
transition temperature (Tg), etc.

22
Capillary Wire Bonding

capillaries
The chart below represents the capillary design in relationship to various packaging materials.

Soft Organic Substrate Hard Stacked


Others
Surfaces or Package Surfaces Dies

• Thick Gold • BGA • Pd • Stacked-Die • Ceramic


• Silver • BT resin • Cu • CSP • Alloy 42
• Glass epoxy film • Thin Au + Ni + Cu • MCP • Cu Alloy
• Polyimide film • SiP • Cu L/F
• FBGA
• MCSP
• (FR-4: Glass epoxy copper
clad laminate)
• Paper Phenol resin

wedges
• Paper epoxy resin
• Glass epoxy polyimide resin

• 8° • 8° • 4° • 8° • 0°
Face • 11° • 8° • 4°
Angle • 8°
• 11°

Outside • Larger OR • Large OR (LOR) or • Large OR (LOR) or • Large OR (LOR) or • Standard OR


Radius • Standard OR • Standard OR • Standard OR

• 15° • 30° • 20° • 38° • 15°

tab tools
Cone Angle • 20° • 38° • 30° • 20°
• 30° • 30°

• 60° • 100° • Double IC • Small Ball IC • 60°


IC Angle • 90° • 120° (SBIC) • 90°
• 120° • Small Ball IC (SBIC) • 120°

• Pitch • Short • Long • Short • Pitch


Bottleneck dependent dependent

• Any • GM finish • Rough Matte • Any • Any


Finish Finish

die attach
• Standard • CZ1 • CZ3 • CZ3 • Standard
Ceramic • CZ3 • CZ8 Ceramic
Material • CZ1 • CZ8 • CZ1
• CZ3 • CZ3
• CZ8 • CZ8

Ultrasonic
Excellent Poor Good Bad Good
Matching
other

23
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillary Part Number System
How to Order

Example Custom Part Number:


1551-18-437GM -50(4‑8D-10)20D-CZ1
A. Shank Style K. Optional Material
B. Capillary Series J. Optional Cone Angle
C. Hole Size
I. OR Dimension
D. Tool Length
E. Tip Finish H. Face Angle

F. Tip Diameter G. IC Dimension

Example Standard Part Number:


1513-18-437GM-20D-CZ1
A. Shank Style K. Optional Material

B. Capillary Series J. Optional Cone Angle

C. Hole Size E. Tip Finish

D. Tool Length

A. & B. Shank Style & Capillary Series: E. Tip Finish: F. Tip Diameter (T):
1800 (18XX): 1/16 inch diameter shank, standard
P = Polished -XX = 0.00XX
Alumina ceramic or specify optional “-CZ” series
GM = Gaiser Matte -50 = 0.0050 in./127μm
material for Zirconia Toughened Alumina ceramic,
Process 1800
G. Inside Chamfer Dimension (IC):
1500 (15XX): 1/16 inch diameter shank, standard
Alumina ceramic or specify optional “-CZ” series X = 0.000X
material for Zirconia Toughened Alumina ceramic 4 = 0.0004 in./10μm
1200 (12XX): 1/8 inch diameter shank, standard
Alumina ceramic H. Face Angle:
1100 (11XX): 1/16 inch diameter shank, Tungsten
-XD = X°
Carbide material
-8D = 8°
C. Hole Size (H):
Specify Based on Wire Size I. Outside Radius Dimension (OR):
-XX = 0.00XX
-18 = 0.0018 in./46μm -XX = 0.00XX
-10 = 0.0010 in./25μm
D. Tool Length:
-375 = 0.375 in./9.52mm
J. Optional Cone Angle: K. Optional Material:
-437 = 0.437 in./11.1mm -XXD = XX° -CZ1
-470 = 0.470 in./11.94mm -20D = 20° -CZ3
-625 = 0.625 in./15.88mm Cone angle is 30° unless -CZ8
-750 = 0.750 in./19.05mm otherwise specified
1200 series are 0.375 in./9.52mm only (do not
specify length in part number)

We reserve the right to change the design or specification of any catalog item without notice. Such changes will be in the interest of improving
design.

24
Capillaries
Shank Styles & Cone Angles

Ceramic Capillaries

capillaries
1/16 inch Diameter

Ceramic Capillaries
Ø0.030 / 0.76mm
±0.003 / 0.08mm 1/8 inch Diameter
Ø0.030 / 0.76mm
Tungsten Carbide
±0.003 / 0.08mm

Ø0.0624 / 1.58mm
Capillaries
Ø0.0624 / 1.58mm
+0.0001 / 0.003mm
-0.0002 / 0.005mm
1/16 inch
+0.0001 Diameter
/ 0.003mm
-0.0002 / 0.005mm
Ø0.030 Ø0.030 / 0.76mm
/ 0.76mm
Ø0.030 / 0.76mm
Ø0.030 / 0.76mm
±0.003 / 0.08mm
±0.003 / 0.08mm Ø0.1249
±0.003//3.17mm
±0.003 / 0.08mm
0.08mm
+0.0001 / 0.003mm
-0.0002 / 0.005mm
Ø0.0624 /Ø0.0624
1.58mm / 1.58mm Ø0.0624 /Ø0.0624
1.58mm / 1.58mm
+0.0001 / +0.0001
0.003mm/ 0.003mm +0.0001 / +0.0001
0.003mm/ 0.003mm

wedges
-0.0002 / 0.005mm
-0.0002 / 0.005mm -0.0002 / 0.005mm
-0.0002 / 0.005mm
Ø0.1249 /Ø0.1249
3.17mm / 3.17mm
+0.0001 / +0.0001
0.003mm/ 0.003mm
-0.0002 / 0.005mm
-0.0002 / 0.005mm

0.375 / 9.52mm 0.375 / 9.52mm


0.437 / 11.1mm 0.437 / 11.1mm
0.470 / 11.94mm 0.470 / 11.94mm
0.625 / 15.88mm 0.625 / 15.88mm
0.750 / 19.05mm 0.375 / 9.52mm 0.750 / 19.05mm
±0.005 / 0.13mm ±0.005 / 0.13mm ±0.005 / 0.13mm
0.375 / 9.52mm
0.375 / 9.52mm 0.375 / 9.52mm
0.375 / 9.52mm
0.437 / 11.1mm
0.437 / 11.1mm 0.437 / 11.1mm
0.437 / 11.1mm
0.470 / 11.94mm
0.470 / 11.94mm 0.470 / 11.94mm
0.470 / 11.94mm
0.625 / 15.88mm
0.625 / 15.88mm 0.625 / 15.88mm
0.625 / 15.88mm

tab tools
0.750 / 19.05mm
0.750 / 19.05mm 0.375 / 9.52mm
0.375 / 9.52mm 0.750 / 19.05mm
0.750 / 19.05mm
±0.005 / 0.13mm
±0.005 / 0.13mm ±0.005 / 0.13mm
±0.005 / 0.13mm ±0.005 / 0.13mm
±0.005 / 0.13mm

30° 30° 30°


STANDARD STANDARD
(20° & 15° OPTIONAL)
20°
(20° & 15° OPTIONAL)

30° 30° 30° 30° 30° 30°


STANDARD
STANDARD STANDARD STANDARD
(20° & 15°(20° & 15° OPTIONAL)

die attach
15° cone angle capillaries
20° 20° are avail-
OPTIONAL)

able in 0.437
(20°length
& 15°(20° &and longer only
15° OPTIONAL)
OPTIONAL)
- for 0.375 length tools, specify a 15°
1/8 inch diameter capillaries are
angle bottleneck
available at 0.375 length only
Tungsten Carbide capillaries lon-
ger than 0.828 may require two-
piece construction and a special
quotation

Non-standard lengths and tighter tolerances available at additional cost.


other

Non-standards lengths may alter the back hole size.


Some series are standard with tighter tolerances.
Dimensions in inches unless otherwise specified.

25
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillaries
Tip Modifications

HEIGHT
+0.005
-0.000
HEIGHT
HEIGHT HEIGHT +0.005
+0.005 +0.005 -0.000
-0.000 -0.000
D D
+0.0000 +0.0000
10° -0.0005 -0.0005
15°

Angle Bottleneck Option *Straight Bottleneck Option


Specified in part number Specified in part number

-AB“Angle”x“Height” -SB“D”x“Height”

Example: For an angle bottleneck 10°x0.012 Example: For a straight bottleneck 0.009 inch
inch high, specify “-AB10x12” diameter x 0.015 inch high, specify “-SB9x15”
Also available in 5°, 15°, and other angles. “D” must be at least 0.0010 inch greater than
the capillary “T” dimension.
*See bottleneck design table for design constraints.

STRAIGHT BOTTLENECK DESIGN TABLE


MAXIMUM MAXIMUM
SB
H H
D
DIMENSION DIMENSION
RADIUS DIMENSION
0.375 LENGTH 0.437 LENGTH
in. / µm
in. / µm in. / µm
10° 0.005 / 127 N/A N/A
0.006 / 152 0.007 / 178 0.007 / 178
0.007 / 178 0.010 / 254 0.010 / 254
0.012
0.008 / 203 0.015 / 381 0.015 / 381
0.009 / 229 0.020 / 508 0.020 / 508
0.010 / 254 0.025 / 635 0.025 / 635
0.011 / 279 0.032 / 813 0.032 / 813
0.012 / 305 0.038 / 965 0.038 / 965
0.013 / 330 0.044 / 1118 0.044 / 1118
0.014 / 356 0.044 / 1118 0.044 / 1118
Specifying an Angle Bottleneck 0.015 / 381 0.044 / 1118 0.048 / 1219
In part number: 0.016 / 406 0.050 / 1270 0.058 / 1473
-AB10x12 0.020 / 508 0.072 / 1829 0.120 / 3048
0.025 / 635 0.110 / 2794 0.180 / 4572
0.030 / 762 0.180 / 4572 0.220 / 5588

*Note: The table represents the extreme minimum material condi-


tions and combining the maximum height & minimum diameter is
not recommended. If a certain height is needed, use the maximum
Dimensions in inches unless otherwise specified. possible diameter; if a certain bottleneck diameter is needed, use the
shortest height possible.

26
Capillaries
Tip Modifications

capillaries
HEIGHT
+0.005
-0.000
HEIGHT HEIGHT
+0.005 +0.005
-0.000 -0.000

W W W
+0.0000 +0.0000 +0.0000
-0.0005 -0.0005 -0.0005

wedges
Single Side Relief Option Double Side Relief Option
Specified in part number Specified in part number
-SR“W”x“Height” -DR“W”x“Height”
Note: Relief may cut into capillary core. Note: Relief may cut into capillary core.

tab tools
See DR design table for design constraints.

DOUBLE SIDE RELIEF DESIGN TABLE

MAXIMUM MAXIMUM
DR OPTION
H H
W
DIMENSION DIMENSION
DIMENSION
0.375 LENGTH 0.437 LENGTH
Clearance is in. / µm
user preference
in. / µm in. / µm

die attach
0.0025 / 64 N/A N/A
0.0030 / 76 0.007 / 178 0.007 / 178
HEIGHT=0.065
0.0035 / 89 0.010 / 254 0.010 / 254
0.065
0.0040 / 102 0.015 / 381 0.015 / 381
0.0045 / 114 0.020 / 508 0.020 / 508
0.0050 / 127 0.025 / 635 0.025 / 635
0.015 W=0.010
0.0055 / 140 0.032 / 813 0.032 / 813
0.0060 / 152 0.038 / 965 0.038 / 965
0.0065 / 165 0.044 / 1118 0.044 / 1118
Specifying a Side Relief 0.0070 / 178 0.044 / 1118 0.044 / 1118
In part number: 0.0075 / 191 0.044 / 1118 0.048 / 1219
-SR10x65 0.0080 / 203 0.050 / 1270 0.058 / 1473
0.0100 / 254 0.072 / 1829 0.120 / 3048
0.0125 / 318 0.120 / 3048 0.190 / 4826
0.0150 / 381 0.190 / 4826 0.230 / 5842
other

Dimensions in inches unless otherwise specified.

27
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillaries
1513 & 1513N Series

The 1513 series is an excellent general purpose capillary 30°


suitable for a wide range of applications on a variety (STANDARD)
of metalizations. This series employs the 120° double
IC and 8° face angle architecture. The 120° IC provides
maximum downward force for a strong 1st bond with
high ball-shear strength and is not prone to cut-stitch
on the 2nd bond. The 8° face angle is the most versa-
1513
tile for handling a variety of stitch-bond metalizations.
Many different Hole and B and T size combinations are
available in the different dash numbers of the 1513 series.
OR
The 1513N may be specified for a 90° inside chamfer H

for improved 2nd bond tailing and a more compact ball IC
bond on materials with good bondability. B
120°
For 90° IC Angle, T
Specify 1513N Series
Specify: Series - Dash Number - Length+Finish - Options
Example: 1513-18-437GM-20D
Note: For Tungsten Carbide material, specify 1113 & 1113N series (1/16
in. diameter only). For 1/8 in. diameter ceramic, specify 1213 & 1213N
90° series.

T T
H* IC B OR SUGGESTED
SERIES & (30° CONE) (20° CONE)
in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
DASH NO. in. / µm in. / µm
±0.0001 / 2.5 (Ref) See Note** ±0.0003 / 8 in. / µm
±0.0003 / 8 ±0.0003 / 8
1513-10 0.0010 / 25 0.0007 / 18 0.0024 / 61 0.0012 / 30 0.0065 / 165 0.0067 / 170
0.0005 / 13 to 0.0008 / 20
1513-10S 0.0010 / 25 0.0004 / 10 0.0018 / 46 0.0012 / 30 0.0065 / 165 0.0067 / 170
1513-12 0.0012 / 30 0.0006 / 15 0.0024 / 61 0.0012 / 30 0.0065 / 165 0.0067 / 170 0.0007 / 18 to 0.0009 / 23
1513-15 0.0015 / 38 0.0007 / 18 0.0029 / 74 0.0015 / 38 0.0080 / 203 0.0082 / 208 0.0009 / 23 to 0.0011 / 28
1513-17 0.0017 / 43 0.0007 / 18 0.0031 / 79 0.0015 / 38 0.0080 / 203 0.0082 / 208
1513-17M 0.0017 / 43 0.0006 / 15 0.0029 / 74 0.0015 / 38 0.0090 / 229 0.0093 / 236
1513-18 0.0018 / 46 0.00085 / 22 0.0035 / 89 0.0015 / 38 0.0090 / 229 0.0093 / 236
0.0010 / 25 to 0.0013 / 33
1513-18A 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0015 / 38 0.0080 / 203 0.0082 / 208
1513-18M 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0015 / 38 0.0090 / 229 0.0093 / 236
1513-18S 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0012 / 30 0.0065 / 165 0.0067 / 170
1513-20A 0.0020 / 51 0.00045 / 11 0.0029 / 74 0.0015 / 38 0.0080 / 203 0.0082 / 208
1513-20B 0.0020 / 51 0.00075 / 19 0.0035 / 89 0.0015 / 38 0.0090 / 229 0.0093 / 236
1513-20M 0.0020 / 51 0.00045 / 11 0.0029 / 74 0.0015 / 38 0.0090 / 229 0.0093 / 236
1513-21 0.0021 / 51 0.00095 / 24 0.0040 / 102 0.0020 / 51 0.0100 / 254 0.0103 / 262 0.0013 / 33 to 0.0015 / 38
1513-22 0.0022 / 56 0.0009 / 23 0.0040 / 102 0.0020 / 51 0.0100 / 254 0.0103 / 262
1513-22A 0.0022 / 56 0.00065 / 17 0.0035 / 89 0.0015 / 38 0.0090 / 229 0.0093 / 236
1513-22M 0.0022 / 56 0.0004 / 10 0.0030 / 76 0.0015 / 38 0.0090 / 229 0.0093 / 236
1513-25 0.0025 / 64 0.00075 / 19 0.0040 / 102 0.0020 / 51 0.0100 / 254 0.0103 / 262 0.0015 / 38 to 0.0020 / 51
1513-27 0.0027 / 69 0.00115 / 29 0.0050 / 127 0.0025 / 64 0.0120 / 305 0.0124 / 315 0.0020 / 51
1513-33 0.0033 / 84 0.0011 / 28 0.0055 / 140 0.0030 / 76 0.0140 / 356 0.0145 / 368 0.0020 / 51 to 0.0025 / 64
1513-40 0.0040 / 102 0.0010 / 25 0.0060 / 152 0.0030 / 76 0.0160 / 406 0.0165 / 419 0.0030 / 76

* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is +0.0003/-
0.0002. Tighter tolerance available at additional charges.
** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002). Dimensions in inches unless otherwise specified.

28
Capillaries
1572 & 1572N Series

The 1572 series is an excellent general purpose capillary 30°


suitable for a wide range of applications on a variety of (STANDARD)
metalizations. This series employs the 120° double IC

capillaries
and 8° face angle architecture. The 120° IC provides
maximum downward force for a strong 1st bond with
high ball-shear strength and is not prone to cut-stitch
on the 2nd bond. The 8° face angle is the most versatile 1572
for handling a variety of stitch-bond metalizations. Many
different Hole and B and T size combinations are avail-
able in the different dash numbers of the 1572 series.
In general, the 1572 series will have smaller feature sizes
OR
for a given dash number.
H

The 1572N may be specified for a 90° inside chamfer IC
for improved 2nd bond tailing and a more compact B

wedges
ball bond on materials with good bondability. 120°

T
For 90° IC Angle,
Specify 1572N Series
Specify: Series - Dash Number - Length + Finish - Op-
tions
Example: 1572-18-437GM
Note: For Tungsten Carbide material, specify 1172 & 1172N series (1/16
90° in. diameter only). For 1/8 in. diameter ceramic, specify 1272 & 1272N
series.

tab tools
T T
H* IC B OR SUGGESTED
SERIES & (30° CONE) (20° CONE)
in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
DASH NO. in. / µm in. / µm
±0.0001 / 2.5 (Ref) See Note** ±0.0003 / 8 in. / µm
±0.0003 / 8 ±0.0003 / 8
1572-10 0.0010 / 25 0.0007 / 18 0.0024 / 61 0.0008 / 20 0.0055 / 140 0.0056 / 142
0.0005 / 13 to 0.0008 / 20
1572-10S 0.0010 / 25 0.0004 / 10 0.0018 / 46 0.0008 / 20 0.0055 / 140 0.0056 / 142
1572-12 0.0012 / 30 0.0006 / 15 0.0024 / 61 0.0008 / 20 0.0055 / 140 0.0056 / 142 0.0007 / 18 to 0.0009 / 23
1572-13 0.0013 / 33 0.0006 / 15 0.0025 / 64 0.0008 / 20 0.0055 / 140 0.0056 / 142
0.0008 / 20 to 0.0010 / 25
1572-13S 0.0013 / 33 0.0004 / 10 0.0021 / 53 0.0008 / 20 0.0055 / 140 0.0056 / 142
1572-15 0.0015 / 38 0.0007 / 18 0.0029 / 74 0.0010 / 25 0.0065 / 165 0.0067 / 170
0.0009 / 23 to 0.0011 / 28
1572-15S 0.0015 / 38 0.0006 / 15 0.0027 / 69 0.0008 / 20 0.0055 / 140 0.0056 / 142

die attach
1572-17 0.0017 / 43 0.0006 / 15 0.0029 / 74 0.0010 / 25 0.0090 / 229 0.0092 / 234
1572-17S 0.0017 / 43 0.0006 / 15 0.0029 / 74 0.0010 / 25 0.0065 / 165 0.0067 / 170 0.0010 / 25 to 0.0013 / 33
1572-18 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0010 / 25 0.0090 / 229 0.0092 / 234
1572-20 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0015 / 38 0.0090 / 229 0.0093 / 236
0.0013 / 33 to 0.0015 / 38
1572-22 0.0022 / 56 0.0009 / 23 0.0040 / 102 0.0015 / 38 0.0090 / 229 0.0093 / 236
1572-25 0.0025 / 64 0.0013 / 33 0.0051 / 130 0.0020 / 51 0.0115 / 292 0.0118 / 300 0.0015 / 38 to 0.0020 / 51
1572-30 0.0030 / 76 0.0013 / 33 0.0056 / 142 0.0025 / 64 0.0130 / 330 0.0134 / 340 0.0020 / 51
1572-35 0.0035 / 89 0.0010 / 25 0.0055 / 140 0.0030 / 76 0.0140 / 356 0.0145 / 368 0.0020 / 51 to 0.0025 / 64
1572-40 0.0040 / 102 0.0010 / 25 0.0060 / 152 0.0030 / 76 0.0140 / 356 0.0145 / 368 0.0030 / 76
1572-50 0.0050 / 127 0.0013 / 33 0.0076 / 193 0.0030 / 76 0.0160 / 406 0.0165 / 419 0.0040 / 102
1572-70 0.0070 / 178 0.0015 / 38 0.0100 / 254 0.0050 / 127 0.0280 / 711 0.0288 / 732 0.0050 / 127
1572-100 0.0100 / 254 0.0020 / 51 0.0140 / 356 0.0070 / 178 0.0380 / 965 0.0391 / 993 0.0060 / 152

* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is +0.0003/-
other

0.0002. Tighter tolerance available at additional charges.


** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002). Dimensions in inches unless otherwise specified.

29
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillaries
1570 & 1570N Series

The 1570 series features a very large value outside radius 30°
(OR) and 90° double IC architecture. The oversize OR (STANDARD)
performs well with uneven metalizations or in applica-
tions where the 2nd bond or stitch-bond surface has
problems with flatness or planarity. The 90° IC allows
for a taller, more compact ball bond. An optional 120° 1570
IC may be specified for increased downward force on
the ball bond.

The 1570N may be specified for a 120° inside chamfer


OR
for applications with poor 1st bond bondability.
H
IC
B
For 120° IC Angle,
Specify 1570N Series 90°

Specify: Series - Dash Number - Length+Finish - Options


Example: 1570-18-437GM-20D
120°

Note: For Tungsten Carbide material, specify 1170 & 1170N series
(1/16 in. diameter only). For 1/8 in. diameter ceramic, specify 1270 &
1270N series.

T T
H* IC B OR*** SUGGESTED
SERIES & (30° CONE) (20° CONE)
in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
DASH NO. in. / µm in. / µm
±0.0001 / 2.5 (Ref) See Note** ±0.0003 / 8 in. / µm
±0.0003 / 8 ±0.0003 / 8
1570-10 0.0010 / 25 0.0003 / 8 0.0016 / 41 0.0020 / 51 0.0050 / 127 0.0051 / 130 0.0005 / 13 to 0.0008 / 20
1570-12 0.0012 / 30 0.0003 / 8 0.0018 / 46 0.0020 / 51 0.0050 / 127 0.0051 / 130 0.0007 / 18 to 0.0009 / 23
1570-13 0.0013 / 33 0.0004 / 10 0.0021 / 53 0.0025 / 64 0.0060 / 152 0.0062 / 157 0.0008 / 20 to 0.0010 / 25
1570-15 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0030 / 76 0.0070 / 178 0.0072 / 183 0.0009 / 23 to 0.0011 / 28
1570-17 0.0017 / 43 0.0006 / 15 0.0029 / 74 0.0035 / 89 0.0080 / 203 0.0083 / 211
0.0010 / 25 to 0.0013 / 33
1570-18 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0035 / 89 0.0080 / 203 0.0083 / 211
1570-20 0.0020 / 51 0.0007 / 18 0.0034 / 86 0.0040 / 102 0.0090 / 229 0.0093 / 236
0.0013 / 33 to 0.0015 / 38
1570-22 0.0022 / 56 0.0007 / 18 0.0036 / 91 0.0040 / 102 0.0090 / 229 0.0093 / 236
1570-25 0.0025 / 64 0.0008 / 20 0.0041 / 104 0.0050 / 127 0.0115 / 292 0.0119 / 302 0.0015 / 38 to 0.0020 / 51
1570-30 0.0030 / 76 0.0009 / 23 0.0048 / 122 0.0060 / 152 0.0140 / 356 0.0144 / 366
0.0020 / 51
1570-35 0.0035 / 89 0.0011 / 28 0.0057 / 145 0.0070 / 178 0.0165 / 419 0.0170 / 432
1570-40 0.0040 / 102 0.0013 / 33 0.0066 / 168 0.0080 / 203 0.0190 / 483 0.0196 / 498
0.0030 / 76
1570-45 0.0045 / 114 0.0014 / 36 0.0073 / 185 0.0090 / 229 0.0211 / 536 0.0218 / 554
1570-50 0.0050 / 127 0.0015 / 38 0.0080 / 203 0.0100 / 254 0.0240 / 610 0.0247 / 627 0.0040 / 102
1570-60 0.0060 / 152 0.0018 / 46 0.0096 / 244 0.0120 / 305 0.0290 / 737 0.0299 / 759
0.0050 / 127
1570-70 0.0070 / 178 0.0021 / 53 0.0112 / 284 0.0140 / 356 0.0350 / 889 0.0360 / 914

* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is +0.0003/-
0.0002.
** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002).
***OR tolerance ±0.0003 for OR less than or equal to 0.0030; for OR greater than 0.0030, tolerance is ±10%.
Tighter tolerance available at additional charges.
Dimensions in inches unless otherwise specified.

30
Capillaries
1574 & 1574N Series

The 1574 series utilizes a flat-face design combined with 30°


90° double IC architecture. This series can be configured (STANDARD)
for making relatively smaller ball bonds by specifying

capillaries
the dash numbers with the smaller IC sizes and adjusting
the free-air ball accordingly. This series is designed for
applications with good overall bondability, equivalent
to the old 40470 series. 1574

The 1574N may be specified for a 120° inside chamfer


for surfaces with poor 1st bond bondability.
OR

H
IC
For 120° IC Angle, B
Specify 1574N Series

wedges
90°
T

Specify: Series - Dash Number - Length+Finish - Options


120° Example: 1574-18-437GM-20D

Note: For Tungsten Carbide material, specify 1174 & 1174N series (1/16
in. diameter only). For 1/8 in. diameter ceramic, specify 1274 & 1274N
series.

tab tools
T T
H* IC B OR*** SUGGESTED
SERIES & (30° CONE) (20° CONE)
in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
DASH NO. in. / µm in. / µm
±0.0001 / 2.5 (Ref) See Note** ±0.0003/8 in. / µm
±0.0003 / 8 ±0.0003 / 8
1574-10 0.0010 / 25 0.0002 / 5 0.0014 / 36 0.0025 / 64 0.0065 / 165 0.0068 / 174 0.0005 / 13 to 0.0008 / 20
1574-12 0.0012 / 30 0.0002 / 5 0.0016 / 41 0.0025 / 64 0.0065 / 165 0.0068 / 174 0.0007 / 18 to 0.0009 / 23
1574-13 0.0013 / 33 0.0003 / 8 0.0019 / 48 0.0025 / 64 0.0065 / 165 0.0068 / 174 0.0008 / 20 to 0.0010 / 25
1574-15S 0.0015 / 38 0.0003 / 8 0.0021 / 53 0.0035 / 89 0.0080 / 203 0.0085 / 216 0.0009 / 23 to 0.0011 / 28
1574-17 0.0017 / 43 0.0007 / 18 0.0031 / 79 0.0024 / 61 0.0080 / 203 0.0083 / 211
1574-17S 0.0017 / 43 0.0002 / 5 0.0021 / 53 0.0035 / 89 0.0080 /203 0.0085 / 216
1574-18 0.0018 / 46 0.0008 / 20 0.0034 / 86 0.0024 / 61 0.0080 / 203 0.0083 / 211 0.0010 / 25 to .00013 / 33

die attach
1574-18M 0.0018 / 46 0.00055 / 14 0.0029 / 74 0.0024 / 61 0.0080 / 203 0.0083 / 211
1574-18S 0.0018 / 46 0.0002 / 5 0.0022 / 56 0.0035 / 89 0.0080 / 203 0.0085 / 216
1574-20 0.0020 / 51 0.0007 / 18 0.0034 / 86 0.0024 / 61 0.0080 / 203 0.0083 / 211
1574-20M 0.0020 / 51 0.00045 / 11 0.0029 / 74 0.0024 / 61 0.0080 / 203 0.0083 / 211
0.0013 / 33 to 0.0015 / 38
1574-22 0.0022 / 56 0.0006 / 15 0.0034 / 86 0.0024 / 61 0.0080 / 203 0.0083 / 211
1574-22M 0.0022 / 56 0.00035 / 9 0.0029 / 74 0.0024 / 61 0.0080 / 203 0.0083 / 211
1574-25 0.0025 / 64 0.0005 / 13 0.0035 / 89 0.0024 / 61 0.0080 / 203 0.0083 / 211 0.0015 / 38 to 0.0020 / 51
1574-30 0.0030 / 76 0.0010 / 25 0.0050 / 127 0.0055 / 140 0.0165 / 419 0.0172 / 437 0.0020 / 51
1574-35 0.0035 / 89 0.0008 / 20 0.0051 / 130 0.0065 / 165 0.0165 / 419 0.0174 / 442
0.0020 / 51 to 0.0025 / 64
1574-35S 0.0035 / 89 0.0008 / 20 0.0051 / 130 0.0055 / 140 0.0165 / 419 0.0172 / 437
1574-40 0.0040 / 102 0.0010 / 25 0.0060 / 152 0.0065 / 165 0.0165 / 419 0.0174 / 442 0.0030 / 76
1574-50 0.0050 / 127 0.0012 / 30 0.0074 / 188 0.0070 / 178 0.0190 / 483 0.0200 / 508 0.0040 / 102

* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is +0.0003/-
other

0.0002.
** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002).
***OR tolerance ±0.0003 for OR less than or equal to 0.0030; for OR greater than 0.0030, tolerance is ±10%.
Tighter tolerance available at additional charges. Dimensions in inches unless otherwise specified.

31
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillaries
1548 & 1548N Series

The 1548 series utilizes a flat-face design combined with


90° double IC architecture. This series is the equivalent to
the old 41480 series and is suitable for applications with 30°
(STANDARD)
good bondability. An optional 120° IC may be specified
for increased downward force on the ball bond.

1548
The 1548N may be specified for a 120° inside chamfer
for applications with poor 1st bond bondability.

OR
H
IC
B

90°
For 120° IC Angle,
T
Specify 1548N Series

Specify: Series - Dash Number - Length+Finish - Options


120° Example: 1548-18-437P

Note: For Tungsten Carbide material, specify 1148 & 1148N series
(1/16 in. diameter only). For 1/8 in. diameter ceramic, specify 1248 &
1248N series.

T T
H* IC B OR*** SUGGESTED
SERIES & (30° CONE) (20° CONE)
in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
DASH NO. in. / µm in. / µm
±0.0001 / 2.5 (Ref) See Note** ±0.0003 / 8 in. / µm
±0.0003 / 8 ±0.0003 / 8
1548-10 0.0010 / 25 0.0004 / 10 0.0018 / 46 0.0018 / 46 0.0050 / 127 0.0052 / 132 0.0005 / 13 to 0.0008 / 20
1548-12 0.0012 / 30 0.00035 / 9 0.0019 / 48 0.0018 / 46 0.0050 / 127 0.0052 / 132 0.0007 / 18 to 0.0009 / 23
1548-13 0.0013 / 33 0.0004 / 10 0.0021 / 53 0.0021 / 53 0.0060 / 152 0.0063 / 160 0.0008 / 20 to 0.0010 / 25
1548-15 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0025 / 64 0.0070 / 178 0.0073 / 185 0.0009 / 23 to 0.0011 / 28
1548-17 0.0017 / 43 0.0006 / 15 0.0029 / 74 0.0029 / 74 0.0080 / 203 0.0084 / 213
0.0010 / 25 to 0.0013 / 33
1548-18 0.0018 / 46 0.00065 / 17 0.0031 / 79 0.0029 / 74 0.0080 / 203 0.0084 / 213
1548-20 0.0020 / 51 0.0007 / 18 0.0034 / 86 0.0032 / 81 0.0090 / 229 0.0094 / 239
0.0013 / 33 to 0.0015 / 38
1548-22 0.0022 / 56 0.0007 / 18 0.0036 / 91 0.0032 / 81 0.0090 / 229 0.0094 / 239
1548-30 0.0030 / 76 0.0009 / 23 0.0048 / 122 0.0048 / 122 0.0140 / 356 0.0147 / 373 0.0020 / 51
1548-35 0.0035 / 89 0.0009 / 23 0.0053 / 135 0.0065 / 165 0.0165 / 419 0.0174 / 442 0.0020 / 51 to 0.0025 / 64
1548-40 0.0040 / 102 0.00125 / 32 0.0065 / 165 0.0065 / 165 0.0185 / 470 0.0194 / 493 0.0030 / 76

* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is +0.0003/-
0.0002.
** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002).
***OR tolerance ±0.0003 for OR less than or equal to 0.0030; for OR greater than 0.0030, tolerance is ±10%.
Tighter tolerance available at additional charges. Dimensions in inches unless otherwise specified.

32
Capillaries
1573 & 1573N Series

The 1573 series is the original “fine-pitch”, small-T


capillary, designed before the 100μm barrier had been
broken and before the angle bottleneck feature became 30°

capillaries
commonplace for fine-pitch bonds. This series is typi- (STANDARD)
cally equipped with a 15° or 20° cone and is designed
for pitches above 100μm. The IC size is configured for
making a small ball bond as well as having a radiused
inside chamfer design for good looping characteristics 1573
in an automatic bonder. For bond pad pitches below
100um, refer to the fine pitch section of the catalog.

The 1573N may be specified for a 90° radiused inside IR


chamfer for a more compact ball bond on materials with OR
good bondability. H

IC

wedges
B
For 90° radiused
inside chamfer, 120°
Specify 1573N Series T

Specify: Series - Dash Number - Length+Finish - Options


90°
Example: 1573-18-437GM-20D

Note: For Tungsten Carbide material, specify 1173 & 1173N series (1/16

tab tools
in. diameter only). For 1/8 in. diameter ceramic, specify 1273 & 1273N
series.

T T
H* IR B OR*** SUGGESTED
SERIES & (30° CONE) (20° CONE)
in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
DASH NO. in. / µm in. / µm
±0.0001 / 2.5 (Ref) See Note** ±0.0003 / 8 in. / µm
±0.0003 / 8 ±0.0003 / 8
1573-11 0.0011 / 28 0.0004 / 10 0.0019 / 48 0.0008 / 20 0.0054 / 137 0.0055 / 140 0.0005 / 13 to 0.0008 / 20

die attach
1573-12 0.0012 / 30 0.0004 / 10 0.0020 / 51 0.0008 / 20 0.0054 / 137 0.0055 / 140 0.0007 / 18 to 0.0009 / 23
1573-13 0.0013 / 33 0.0004 / 10 0.0021 / 53 0.0008 / 20 0.0054 / 137 0.0055 / 140
0.0008 / 20 to 0.0010 / 25
1573-14 0.0014 / 36 0.0004 / 10 0.0022 / 56 0.0008 / 20 0.0054 / 137 0.0055 / 140
1573-15 0.0015 / 38 0.0004 / 10 0.0023 / 58 0.0008 / 20 0.0054 / 137 0.0055 / 140 0.0009 / 23 to 0.0011 / 28
1573-17 0.0017 / 43 0.0004 / 10 0.0025 / 64 0.0008 / 20 0.0058 / 147 0.0059 / 150
0.0010 / 25 to 0.0013 / 33
1573-18 0.0018 / 46 0.0004 / 10 0.0026 / 66 0.0008 / 20 0.0058 / 147 0.0059 / 150
1573-19 0.0019 / 48 0.0006 / 15 0.0031 / 79 0.0010 / 25 0.0063 / 160 0.0065 / 165 0.0011 / 28 to 0.0013 / 33
1573-21 0.0021 / 53 0.0006 / 15 0.0033 / 83 0.0010 / 25 0.0063 / 160 0.0065 / 165
0.0013 / 33 to 0.0015 / 38
1573-22 0.0022 / 56 0.0006 / 15 0.0034 / 86 0.0010 / 25 0.0063 / 160 0.0065 / 165

* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is +0.0003/-
0.0002.
** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002).
***OR tolerance ±0.0003 for OR less than or equal to 0.0030; for OR greater than 0.0030, tolerance is ±10%.
other

Tighter tolerance available at additional charges. Dimensions in inches unless otherwise specified.

33
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Custom User-Specified Dimensions Series
1551, 1520, 1553, & 1554 Series

The 1551 series allows the user to specify all dimensions 30°
of the capillary within the part number and should be (STANDARD)
used when an existing catalog series will not meet
the requirements of an application. This series comes
standard with a 90° double inside chamfer, but may be
specified with a 120° or other chamfer angles. 1551

For 120° IC angle, specify


“x120D” in part number.
Other angle options also ap-
OR
ply.
H FACE
IC ANGLE
For single IC angle, specify
120°
as 1553 series. Standard B
angle is 90° unless otherwise
90°
specified.
T
Example:
1551-15-437GM-60(3x120D-8D-10)
1551-18-437GM-80(3x70D-8D-15)
1553-17-375GM-55(4x100D-4D-12)

The 1520 series also allows the user to specify all dimen- 30°
sions of the capillary but is designed with a standard 120° (STANDARD)
full radiused inside chamfer. This design is optimized
for use in high-speed, automated bonders and provides
improved looping and wire control. The 1520 series helps
to reduce sagging and wavy-wire problems making the 1520
1520 ideal for long-loop and low-loop bonding.

For smaller IC sizes, consider the 1553 and 1554 single


IC series.
IR
OR
Specify:
Series - H - Length+Finish - T(IC - Face Angle - OR) H FACE
Options IC ANGLE

B
Example:
120°
1551-18-437GM-60(3-8D-10)20D
1520-18-437GM-60(3-8D-10) T
1551-18-437GM-60(3-F-10)20D-AB10x12-BLIC

Note: A flat face 1551 or 1520 may be specified by a “-F” or by the actual numerical value in the part number.
A mathematical relationship exists between the various dimensions at the capillary tip. When designing a part number or when simply
changing the cone angle, you may wish to contact a Gaiser Sales Engineer.
If a radiused inside chamfer is desired in a 90° IC 1551, specify “-BLIC” at the end of the part number.
If a radiused inside chamfer is desired in a 120° IC 1551, use the 1520 series.
For the 1553 series, a radiused inside chamfer is not available.

34
Custom User-Specified Dimensions Series
1551, 1520, 1553, & 1554 Series

SERIES 90° ARCHITECTURE 120° ARCHITECTURE DEFINITIONS

capillaries
90°/50° Standard 120°/80° and
other IC angles optional

1551
1551 Series utilizes the Gaiser
Double IC Double IC architecture.
90°/50° Double IC is standard
Architecture
unless otherwise specified.
50° 80°

90° 120°

1551 with BLIC


90° unless otherwise specified

1551

wedges
RADIUSED BLIC adds a Radiused/Blended
With BLIC
INSIDE N/A Inside Chamfer to 90° Double IC
CHAMFER
(see 1520) and other 1551 capillaries.
(Blended Inside
For 120° BLIC, use 1520 Series.
Chamfer)

90°

120° Double IC
architecture with BLIC

tab tools
1520 1520 Series utilizes the 120°
RADIUSED Gaiser Double IC architecture with
Full Radius Series N/A INSIDE Radiused/Blended Inside Chamfer.
(120° Blended (see 1551 with BLIC) CHAMFER
For angle other than 120°, use
Inside Chamfer) BLIC.

120°

die attach
1553 1553 Series utilizes the basic
Single IC angle design.
Single IC Consider specifying when IC size is
Architecture too small for Double IC.

90° 120°

1554 BLEND BLEND


1554 Series is the same as the
EDGE EDGE 1553 Single IC Series except that a
Single IC very tiny edge break is applied to
Architecture the transition from IC angle to the
with Blend Edge Hole.
90° 120°
other

35
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillaries
1590 & 1591 Series

The 1590 and 1591 series are designed for pitches of


100μm and above. The angle bottleneck design provides 1590
clearance for adjacent loops and the IC is configured for
making a small ball bond. The 1590 and 1591 series utilize
120° full radius architecture for maximum downward IR
force on the ball bond for the highest ball shear and for OR

good looping. For a taller more compact ball bond, the H



IR
1592 & 1593 series utilize 90° radiused inside chamfer B
architecture. Both 8° and 4° face angles are available. 120°
T

30°
1591

IR
R0.010 OR
254µm H

IR
B
120°
T
10°
30° 0.012 Specify: Series - Dash Number - Length+Finish - Options
305µm Example: 1590-18E-437GM-20D
*Optional
20° Cone Note: A 10° by 0.012 in. (305μm) high angle bottleneck is standard
Available in the 1590/1591 series. Other angle bottleneck configurations may
be specified at the end of the part number.

T T
H* IR B OR SUGGESTED
SERIES & (30° CONE) (10° ABTNK)
in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
DASH NO. in. / µm in. / µm
±0.0001 / 2.5 (Ref) See Note** ±0.0003 / 8 in. / µm
±0.0003 / 8 ±0.0003 / 8
159X-15C 0.0015 / 38 0.0004 / 10 0.0023 / 58 0.0012 / 30 0.0050 / 127 0.0054 / 137
159X-15D 0.0015 / 38 0.0004 / 10 0.0023 / 58 0.0012 / 30 0.0055 / 140 0.0059 / 150
159X-15E 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0015 / 38 0.0060 / 152 0.0065 / 165 0.0009 / 23 to 0.0011 / 28
159X-15F 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0015 / 38 0.0065 / 165 0.0070 / 178
159X-15G 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0015 / 38 0.0070 / 178 0.0075 / 191
159X-17C 0.0017 / 43 0.0004 / 10 0.0025 / 64 0.0012 / 30 0.0050 / 127 0.0054 / 137
159X-17D 0.0017 / 43 0.0004 / 10 0.0025 / 64 0.0012 / 30 0.0055 / 140 0.0059 / 150
159X-17E 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0060 / 152 0.0065 / 165
159X-17F 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0065 / 165 0.0070 / 178
159X-17G 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0070 / 178 0.0075 / 191
159X-17H 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0075 / 191 0.0080 / 203
159X-17J 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0080 / 203 0.0085 / 216 0.0010 / 25 to 0.0013 / 33
159X-18D 0.0018 / 46 0.0005 / 13 0.0028 / 71 0.0012 / 30 0.0055 / 140 0.0059 / 150
159X-18E 0.0018 / 46 0.0005 / 13 0.0028 / 71 0.0015 / 38 0.0060 / 152 0.0065 / 165
159X-18F 0.0018 / 46 0.0005 / 13 0.0028 / 71 0.0015 / 38 0.0065 / 165 0.0070 / 178
159X-18G 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0015 / 38 0.0070 / 178 0.0075 / 191
159X-18H 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0015 / 38 0.0075 / 191 0.0080 / 203
159X-18J 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0015 / 38 0.0080 / 203 0.0085 / 216

* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is +0.0003/-
0.0002. Tighter tolerance available at additional charges.
** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002). Dimensions in inches unless otherwise specified.

36
Capillaries
1592 & 1593 Series

The 1592 and 1593 series are designed for pitches of


90μm and above. The angle-bottleneck design provides 1592
clearance for adjacent loops and the IC is configured

capillaries
for making a small ball bond. The 1592 and 1593 series
utilize 90° radiused inside chamfer architecture for small IR
ball bond size and improved looping. Both 8° and 4° OR

face angles are available. For bond pad pitches less than H

IR
90μm, see the Process 1800 series. B
90°
30°
T

1593

R0.010
254µm
IR

wedges
OR
H

IR
B
10°
90°
30° 0.012
305µm T

*Optional
Specify: Series - Dash Number - Length+Finish - Options
20° Cone
Available Example: 1592-18E-437GM-20D
Note: A 10° by 0.012 in. (305μm) high angle bottleneck is standard
in the 1592/1593 series. Other angle bottleneck configurations may
be specified at the end of the part number.

tab tools
T T
H* IR B OR SUGGESTED
SERIES & (30° CONE) (10° ABTNK)
in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
DASH NO. in. / µm in. / µm
±0.0001/2.5 (Ref) See Note** ±0.0003/8 in. / µm
±0.0003 / 8 ±0.0003 / 8
159X-15A 0.0015 / 38 0.0003 / 8 0.0021 / 53 0.0010 / 25 0.0040 / 102 0.0043 / 109
159X-15B 0.0015 / 38 0.0003 / 8 0.0021 / 53 0.0010 / 25 0.0045 / 114 0.0048 / 122
159X-15C 0.0015 / 38 0.0004 / 10 0.0023 / 58 0.0012 / 30 0.0050 / 127 0.0054 / 137
159X-15D 0.0015 / 38 0.0004 / 10 0.0023 / 58 0.0012 / 30 0.0055 / 140 0.0059 / 150 0.0009 / 23 to 0.0011 / 28
159X-15E 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0015 / 38 0.0060 / 152 0.0065 / 165
159X-15F 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0015 / 38 0.0065 / 165 0.0070 / 178
159X-15G 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0015 / 38 0.0070 / 178 0.0075 / 191

die attach
159X-17C 0.0017 / 43 0.0004 / 10 0.0025 / 64 0.0012 / 30 0.0050 / 127 0.0054 / 137
159X-17D 0.0017 / 43 0.0004 / 10 0.0025 / 64 0.0012 / 30 0.0055 / 140 0.0059 / 150
159X-17E 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0060 / 152 0.0065 / 165
159X-17F 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0065 / 165 0.0070 / 178
159X-17G 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0070 / 178 0.0075 / 191
159X-17H 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0075 / 191 0.0080 / 203
159X-17J 0.0017 / 43 0.0005 / 13 0.0027 / 69 0.0015 / 38 0.0080 / 203 0.0085 / 216 0.0010 / 25 to 0.0013 / 33
159X-18D 0.0018 / 46 0.0005 / 13 0.0028 / 71 0.0012 / 30 0.0055 / 140 0.0059 / 150
159X-18E 0.0018 / 46 0.0005 / 13 0.0028 / 71 0.0015 / 38 0.0060 / 152 0.0065 / 165
159X-18F 0.0018 / 46 0.0005 / 13 0.0028 / 71 0.0015 / 38 0.0065 / 165 0.0070 / 178
159X-18G 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0015 / 38 0.0070 / 178 0.0075 / 191
159X-18H 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0015 / 38 0.0075 / 191 0.0080 / 203
159X-18J 0.0018 / 46 0.0006 / 15 0.0030 / 76 0.0015 / 38 0.0080 / 203 0.0085 / 216

* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is
other

+0.0003/-0.0002. Tighter tolerance available at additional charges.


** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002). Dimensions in inches unless otherwise specified.

37
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Ball Bumping Capillaries
1732 & 1733 Series

The 1732 and 1733 series capillaries are designed for


applications where only a ball bond is required. The CLEARANCE TABLE
user-friendly part number allows the hole and the “B”
dimensions to be specified for various wire diameters, MAXIMUM RECOMMENDED
bond pad sizes, and bond pad pitches. BALL BOND PITCH "B" DIMENSION
in. / µm in. / µm
See Note*
The “T” dimension is automatically minimized for fine
pitch applications unless otherwise specified. A flat and 0.00350 / 89 0.0022 / 56
polished tool face is standard. Both the 1732 and 1733 0.00375 / 95 0.0024 / 61
are made of ceramic material unless otherwise specified 0.00400 / 102 0.0026 / 66
as Tungsten Carbide (“-WC” in the part number).
0.00425 / 108 0.0028 / 71
0.00450 / 114 0.0030 / 76
0.00475 / 121 0.0031 / 79
0.00500 / 127 0.0033 / 84
0.00525 / 133 0.0035 / 89
0.00550 / 140 0.0037 / 94
0.00575 / 146 0.0039 / 99
0.00600 / 152 0.0041 / 104
0.00650 / 165 0.0044 / 112
0.00700 / 178 0.0048 / 122
Note: 0.00750 / 190 0.0052 / 132
For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-
0.00800 / 203 0.0056 / 142
0.0001. For hole sizes greater than 0.0049, the tolerance is
+0.0003/-0.0002. Tighter tolerance available at additional charges. 0.00850 / 216 0.0059 / 150
* If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, 0.00900 / 229 0.0063 / 160
otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002). Dimensions in inches unless otherwise speci- 0.01000 / 254 0.0070 / 178
fied.

0.0005 / 13µm (REF)


BOND PAD
CALCULATED IN
PITCH
CLEARANCE TABLE

38
Ball Bumping Capillaries
1732 & 1733 Series

1732 Series Features: 30°


(STANDARD)

capillaries
The 90° double inside chamfer forms a tall, compact
ball bond on surfaces with good to fair bondability.

Specify:
Series - H - B - Tool Length - Options
1732

Example:
1732-18-36-437
1732-20-38-375-20D-WC
1732-17-35-437-T=90
RADIUS EDGE *H
(REF)
Note: Optional T dimension must be greater than 1.5 x B dimension **B

wedges
90°

T = 1.5 x B

1733 Series Features: 30°


(STANDARD)

tab tools
The 120° double inside provides maximum downward
force on the ball bond for use on surfaces with dif-
ficult bondability. The 1733 series tool will form a
shorter, wider ball bond than the 1732.
1733
Specify:
Series - H - B - Tool Length - Options

Example:
1733-15-25-437 RADIUS EDGE *H
1733-17-31-437-AB10x12

die attach
(REF)
**B

Note: Optional T dimension must be greater than 1.5 x B dimension


120°
T = 1.5 x B

Dimensions are specified as follows:


-XX = 0.00XX inch
-18 = 0.0018 inch
* For hole sizes 0.0025 through 0.0049, the tolerance is +0.0002/-0.0001. For hole sizes greater than 0.0049, the tolerance is +0.0003/-
0.0002. Tighter tolerance available at additional charges.
other

** If IC < 0.0005 and/or T < 0.0050, the B tolerance is +/-0.0001, otherwise B tolerance is +/-0.0002 (if B > 0.0040, B tolerance is
+0.0003/-0.0002). Dimensions in inches unless otherwise specified.

39
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Capillaries
Optional Radiused Inside Chamfers

The standard 90° and 120° double inside chamfer capil- The inside radius also helps to alleviate sagging and wavy
laries are also available with an optional radiused inside wires in long-loop, low-loop, high-speed-automated,
chamfer at a moderate additional cost. The inside radius and fine-pitch bonding applications. This is the same
enhances wire control and looping characteristics. radiused inside chamfer design featured in the 1520 and
1590 fine-pitch series.

STANDARD 90° 90° RADIUSED


DOUBLE INSIDE CHAMFER INSIDE CHAMFER

IR
OR OR
STANDARD INSIDE
H H
RADIUS (IR)
SERIES
IC EQUIVALENTS IR
B 1513N 1523N B
1572N 1522N
90° 90°
1574 1524
1570 1521

STANDARD 120° 120° RADIUSED


DOUBLE INSIDE CHAMFER INSIDE CHAMFER

IR

OR OR
H STANDARD INSIDE H
SERIES RADIUS (IR)
IC EQUIVALENTS IR
B 1513 1523 B
1572 1522
120° 120°
1574N 1524N
1570N 1521N

40
Fine-Pitch Capillary
Wire Bonding

Fine-Pitch Capillary Basic MAIN


Design Dimensions CONE
ANGLE
TAPER ANGLE
(MTA)

capillaries
Fine-pitch capillaries have two basic sets of indus-
try standard dimensional characteristics: large R

geometry and small geometry. Large geometry dimen- ABTNK ABTNK


sions generally refer to the shank, back hole, and cone. ANGLE ANGLE
ANGLE ANGLE
Small geometry dimensions refer to the tip and angle BOTTLENECK BOTTLENECK
bottleneck details. HEIGHT HEIGHT

As with standard capillaries, fine-pitch capillaries share


the basic common dimensions such as shank diameter T T
and overall tool length. The major dimensional differences
exist at the tip details of the tool and in the specialized
Figure 58 – Angle bottleneck (ABTNK or AB) geometry
“angle bottleneck” construction.

wedges
dimensions

Ø0.030 / 0.76mm
±0.003 / 0.08mm
CONE
Ø0.0624 / 1.58mm ANGLE
+0.0001 / 0.003mm
-0.0002 / 0.005mm

ABTNK

tab tools
ANGLE

0.375 / 9.52mm
0.437 / 11.1mm OR
0.470 / 11.94mm H FACE
0.625 / 15.88mm ANGLE
0.750 / 19.05mm IC
±0.005 / 0.13mm B

IC
ANGLE

die attach
T

Figure 59 – Small (tip) geometry dimensions


20°

30° Industry standard fine-pitch small geometry dimensions:

Figure 57 – Large geometry dimensions 1. Tip Diameter (T)


2. Hole Diameter or Size (H)
3. Chamfer Diameter (CD or B)
Industry standard large geometry dimensions: 4. Inside Chamfer (IC)
5. Inside Chamfer Angle (IC Angle)
1. Shank Diameter (SD) 6. Face Angle (Note: may be flat, 0°)
7. Outside Radius (OR)
other

2. Tool Length (L)


3. Cone Angle or Main Taper Angle 8. Angle Bottleneck Angle (AB or ABTNK Angle)
4. Back Hole 9. Angle Bottleneck Height (AB or ABTNK Height)

41
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Capillary
Wire Bonding

Fine-Pitch Process Requirements 2. Chamfer Diameter (CD or B): The contribution


of the CD is to control the bonded ball size.
The following is a generic set of recommendations to aid With the bond pad opening (BPO) as a limiting
those looking to implement finer-pitch bond processes: factor, the selection of the proper CD is very
important. Typically, the IC size for 0.0009
1. Select gold wire based on process application; in./23μm to 0 ​ .0010 in./25μm wire is 0.0002
(i.e. low loops, molding stresses) in./5μm to 0.00025 in./6μm. When using a
2. Select state-of-the-art wire bonder with high 0.0012 in./30μm wire, the typical IC size can
level of flexibility with special attention to the range from 0.00025 in./6μm to 0.0003 in./8μm.
ultrasonic control capabilities (i.e. finer ultrasonic 3. Inside Chamfer Angle (IC Angle): The most
control resolution) common angle for fine-pitch bonding is
3. Make sure substrate material and die are 90°. For some ultra-fine-pitch applications,
properly matched for fine-pitch process an angle of 40° to 70° is selected to reduce
4. Select proper capillary material and geometric the bonded ball size. Poor ball shear results
design to fit your bonding requirements may stem from these steeper angles.
(i.e bonded ball size and thickness) 4. Angle Bottleneck Angle: This angle is critical
5. Molding and mold compound suitability for the capillary to avoid contact with adjoining
loops during wire bonding. Generally, 10°
is recommended but 5° may be required
Fine-Pitch Process for some ultra-fine-pitch applications.
Although the ball-bond process depends on the interac- 5. Angle Bottleneck Height: The height
tion of multiple variables, a few generic recommenda- required depends on the critical loop heights
tions can be made: immediately adjacent to the capillary or those
wires which the capillary must pass between
1. Use Design of Experiments (DOE) whenever when bonding to staggered bond pads.
unknown variables could be present A standard height is 0.010 in./254μm.
2. Process window as large as possible 6. Tip Diameter (T): Optimal tip diameter
3. Be ready to maximize reliability selection is determined by the BPP and the
(i.e. highest shear and pull values possible) desired loop height to be cleared. Loop
4. Select proper capillary material and geometric configuration must also be considered when
design to fit your bonding requirements bonding in the corners of some devices.
(i.e bonded ball size and thickness)
5. Optimize bonded ball size to fit Fine-Pitch Wire Bonding
bond pad opening (BPO)
Bond pad pitch spacing of 60μm is common in wafer
processing. New technologies to improve die perfor-
mance and reduce cost of manufacturing are pushing
Capillary Design Considerations
the implementation of even tighter pad spacing. It is
The bond pad opening (BPO) restricts the size of the common to see now 55μm pitch and 50μm pitch as
bonded ball and the bond pad pitch (BPP) controls the normal production processes.
optimum size of the capillary tip diameter that can be
used. It is essential that the bonded ball be placed com- The introduction of smaller than 50μm pitch is slower
pletely within the BPO. The capillary tip diameter must than anticipated due to the numerous challenges facing
be large enough to provide a strong second bond but the assembly houses. Some of these challenges include
also clear any adjacent wires during the bonding process. looping strength capable of resisting the mold flow
stresses without damaging the wires or creating shorts
1. Hole Diameter (H): For fine-pitch applications, between wires, and finding the optimum substrate and
a hole to wire clearance can be 0.0003 molding material to minimize stress to the already finer
in./7.6μm for 70μm-90μm pitch, 0.0002 gold wire diameters. The gold wire is challenged not
in./5μm for 60μm pitch, and 0.00015 in./3.5μm only to meet higher mechanical properties but dimen-
for 50μm pitch bonding. This is critical to sional and chemical as well. Any chemical changes to
insure good wire movement with the hole the wire to improve mechanical properties can affect
during looping without causing wire drag, its reactivity to the bonding surface where it must be
resulting in sagging, wavy, or tight loops. attached. These same changes can also affect the free

42
Fine-Pitch Capillary
Wire Bonding

air ball formation sometimes ignored or blamed on the Fully Automatic Bonder / High Speed Bonder
capillary geometrical design. Fine Pitch Capillary Hole Diameter Guide
Selection of the ideal wire is a balancing act where the Wire Diameter Hole Diameter

capillaries
process engineer must weigh all the consequences and in. / µm in. / µm
decide which ones will impact the reliability and process 0.0006 / 15 0.00075 / 19 to 0.0009 / 23
performance. 0.0007 / 18 0.00085 / 22 to 0.0010 / 25
0.0008 / 20 0.00095 / 24 to 0.0011 / 28
The finer-pitch capillary is a challenge by itself. Not only 0.0009 / 23 0.00105 / 27 to 0.0012 / 30
0.0010 / 25 0.00125 / 32 to 0.0014 / 36
must it provide good mechanical tolerances, it must also
0.0011 / 28 0.0013 / 33 to 0.0015 / 38
provide higher performance in terms of bond quality.
0.0012 / 30 0.0014 / 36 to 0.0016 / 41
Bond quality is measured based on Shear force, Pull 0.00125 / 32 0.0015 / 38 to 0.0017 / 43
strength, and Intermetallic reaction. The only way these
properties can be enhanced is by clever geometrical
design and optimized ceramic materials that can transfer
Strength Test Data
ultrasonic energy with higher efficiency.

wedges
Standard Manufacturing Process 1800
of 99.9% Al2O3 Al2O3
Process 1800 Capillary ABTNK 10° ABTNK 10° ABTNK
Manufacturing Method Standard Grinding Process 1800
As the semiconductor industry moved to finer and
Capillary Material 99.9% Al2O3 99.9% Al2O3
finer pitches, the demand for smaller angle bottleneck
Tip Diameter 0.0036in. / 90µm 0.0036in. / 90µm
tip diameters and tighter dimensional tolerances grew.
Gaiser recognized this need and developed the Process ABTNK Height 0.010in. / 254µm 0.010in. / 254µm

1800 manufacturing process. Core Angle 10° 10°


Lot No. L7A L7A

Process 1800 eliminated the previously standard grind- No. of Tools Tested 25 25
Mean ABTNK Break
ing operation now leaving the angle bottleneck portion 142 gm 272 gm

tab tools
Strength
with a mirror smooth finish.
• The newest bottleneck manufacturing technology The Chamfer Diameter Radius (CDR)
providing superior bottleneck strength
• Increased shear strength and rigidity of ABTNK The Chamfer Diameter Radius (CDR) was developed to
• Superior ultrasonic energy transmission and a eliminate cut tail problems on new fine-pitch devices.
wider tuning window This design is a blending where the IC meets the face
• Substantially tighter dimensional tolerances of the capillary:
• Reduced standard deviations
• Sub-micron average grain size, near-zero porosity • Blending of IC and tool face
of the ceramic, and zirconia toughened ceramic • Minimizes cut tail problems

die attach
materials • Reduces effects of flame-off error
• Ideal for high-frequency transducers

CDR
other

Figure 60 – Process 1800 style angle bottleneck Figure 61 – Example of the chamfer diameter radius
(CDR)

43
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Capillary
Wire Bonding

CDR2B, Chamfer Diameter Radius Design It is these increased stresses that Gaiser Precision Bond-
ing Tools addresses with the new CDR2B feature which
The transition between the Inside Chamfer (IC) and the is now available on capillaries for 50μm pitch or less.
Face Angle (FA) is the surface area responsible for flat-
tening and weakening the bonding wire during the bond The CDR2B provides significant stress relief at the IC-FA
termination process. At this time, the wire diameter is transition reducing and/or eliminating the premature
reduced to a few fractions of a micron in thickness al- termination of the wire, also known as cut wires or
lowing the bonder’s wire clamping mechanism to break missing tails.
it free so that a straight piece of wire is left exiting the
capillary tip. The photographs below details surface features be-
tween a standard IC-FA capillary and a capillary with
The small amount of gold wire protruding from the the CDR2B finish.
capillary tip is then melted into a ball by the action of
an electrical discharge produced by the EFO system.

The melted ball is used to start a new bond cycle where


the ball is welded to the die-pad openings. The wire is
strung across forming a loop that connects to the car-
rier or substrate lead points and where the wire will be
connected and a new termination cycle will begin.

The wire termination cycle is a process that depends on Standard Capillary CDR2B Capillary
the accurate control of geometrical capillary features as
Figure 63 – A standard IC-FA capillary vs. a capillary
well as mechanical and software features embedded in with the CDR2B finish
the bonding equipment.
SBIC - Small Ball Inside Chamfer
As the bonder applies various control parameters (Force,
The proliferation of smaller geometries in the semicon-
Time, Contact Velocity, Ultrasonic Energy, etc.) over
ductor back-end assembly industry means smaller bond
the wire area to be terminated, compressive and shear
pads with tighter spacing among each other. These
stresses experience an increase at the IC-FA transition.
requirements have created a demand for smaller, more
tightly controlled capillary geometries to produce a
The degree of stress varies depending on the IC and
bonded ball of uniform shape and form, and of similar
FA configuration (see Figure 62). The relationship be-
quality found in those of larger and older semiconduc-
tween stress and capillary tip dimensions is considered
tor devices.
inversely proportional. As the tip diameter gets smaller,
to fit finer pad spacing (Pitch), the stress per area unit
However, the function of the capillary is no longer simply
area increases.
to provide form and shape but to assist in the creation of a
reliable bond. New capillary design rules must now
FORCE include other processing factors such as pad metalliza-
tion and structure (low K, etc.), packaging design and
materials, and processing factors (temperature, ultra-
sonic frequency, etc.). Standard IC capillary designs can
provide shape and form but fall short in providing higher
11°
60° reliability in terms of shear strength and/or intermetallic
formation as well as the pad reliability (cratering, pad
FORCE peeling, etc.).

Gaiser Precision Bonding Tools’ new SBIC de-


s i g n a d d re s s e s f o r m , s h a p e , a n d re l i a b i l i -
ty all at once by means of a unique design that
11°
120° controls and distributes the stresses responsible for the
Figure 62 – Stress diagrams bond formation. Proper manipulation of such stresses
helps to control the intermetallic formation, bond de-
formation, and minimizes bond pad sub-layer damage
such as cratering and pad peeling.

44
Fine-Pitch Capillary
Wire Bonding

capillaries
Standard SBIC Standard Ceramic CZ1
limited intermetallics more complete intermetallics

Figure 64 – Intermetallic reactions of a Standard IC


capillary and a SBIC capillary compared

wedges
CZ3 CZ8

Figure 66 – Common materials used and manufactured


by Gaiser

Technical Specifications
Std. Ceramic CZ1 CZ3 CZ8
Avg Grain Size 1.3µm 0.5µm 0.35µm 0.4µm

tab tools
Density 3.96g / cm3 4.29g / cm3 4.38g / cm3 4.27g / cm3
Bending Strenth 572MPa 1013MPa 1120MPa 1046MPa
Ultrasonic
81.2% 85.2% 88.8% 84.4%
Efficiency
Vickers
Figure 65 – Standard IC capillary vs. SBIC capillary Hardness
2144HV 1716HV 2658HV 2000HV
Color White Light Pink Dark Pink White

Ceramic Material Choices Figure 67 – Technical specifications of common


materials
Gaiser ceramic materials are blended to achieve higher
mechanical and ultrasonic performance qualities. Each of New Package Development
the various blends is optimized to give the best performance

die attach
for the intended application. The multiplicity of package The semiconductor industry is a dynamic one, always
materials, die pad metallization, and ultrasonic fre- changing and evolving to fit the needs of the con-
quencies used on today’s processes necessitates that sumer. The drive to meet and fill customer’s needs is
a capillary not only meets geometrical parameters but the main reason a multiplicity of package configurations
acoustical ones as well. exist. Every package is designed to maximize perfor-
mance and product requirements. This effort to meet
The spread of fine-pitch products requires finer and design requirements is the most challenging one as it
tighter controls and resolution to transfer the bonding pushes the materials and processes to the limit. Use of
energy without detriment to ball shape and quality. This Polyimide-based substrates has increased significantly.
is only possible by customizing the ceramic powders Fast and low temperature curing die attach material is
to produce a capillary that is acoustically efficient to more popular in order to minimize die stresses. Multi-die
maximize bonding energy usage. structures where die are stacked vertically are common
in order to meet performance requirements. Multi-die
other

The following are the most common materials used and modules within a single package are also becoming
manufactured by Gaiser Precision Bonding Tools. For popular because of multi-tasking requirements from
details on their application, please contact your nearest new consumer products.
sales representative or our sales department.

45
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Capillary
Wire Bonding

Micro-Leadframe / QFN Packages Reasons for the previous problems are as follows:

• Too much induced lateral movement and vibration


of the already bonded units within the strip of
devices during the bonding process
• Resonance effect of the units of the strip under the
work stage during bonding
• High elasticity of the laminated film absorbs too
much of the bonding energy resulting in significant
second bond weakening and failure

The following efforts are being pursued in order to refine


and optimize the QFN package:

• Selection of the polyimide film of the pre-tape


leadframe
• Selection of the mold compound for lead-bleed
prevention
Figure 68 – Example of a QFN package • A suitable solution to the various CTE (coefficient
of thermal expansion) effects to the overall
The QFN (Quad Flat Non-leaded) is at the top of the list of package integrity
rapidly growing popular devices in the IC industry today.
Comprised of a CSP plastic encapsulated package with a Some package engineers have resorted to ball bumping
copper leadframe substrate, its small size and low profile on the lead side to reduce the vibration and create a more
make it ideal for high-density PCB’s used in small scale rigid base for the second bond. For a 70μm pitch QFN
electronic applications such as cellular phones, pag- package, Gaiser has developed a T=0.0035 in./89μm
ers, and PDA’s. It is becoming part of the lower cost, with an 8° face angle capillary (1851-13-437P-35(2-8D-
low pin count SOIC, TSSOP, Mini-BGA, DIP, and QUAD 8)20D-AB10x10-CZ1). This capillary has achieved a mid-
configurations. span pull strength of 4.5 grams, maximum pull strength
of 7.4 grams, and an average pull strength of 6.0 grams.
The two common types of leadframes are silver spot
plated leads or nickel-palladium preplated. These lead-
frames are pre-taped with film at the bottom and ready
to use for production. Success for bonding this package
requires the following:

• Lead frame design


• Mold compound selection
• Polyimide film selection
• Window clamp design
• Choice of bonder
• Bonding parameter optimization

Failure to optimize the above selections may result in


the following:

• Broken ball neck


• Weak and stressed ball neck line
• Poor stitch/crescent bond formation
Figure 69 – Ball bond for a 70μm QFN package made
• Weak pull strength
with part number: 1851-13-437P-35(2-8D-8)20D-
AB10x10-CZ1

46
Fine-Pitch Capillary
Wire Bonding

Chip Scale Packages (CSP)


The two most popular types of CSP’s use either flex

capillaries
(polyimide base) or rigid laminate. Both require low
temperature bonding. Most CSP’s have very shortwire
loops so the second bond is as close as possible to the
die edge. This design requirement demands the use of a
bottleneck capillary that in many cases needs to be taller
than usual in order to avoid contact with the die edge.

Because of the lack of rigidity in these type of subtrates,


ultrasonic energy is easily absorbed or attenuated. So
special attention to geometrical designs as well as material
properties is of an utmost importance. A capillary with less
attenuation properties such as a 30° as opposed to a 20°

wedges
Figure 70 & 71 – Stitch bonds for a 70μm QFN package
cone angle and CZ8 or CZ3 material would be ideal for
[in X(above) and Y(below) directional scrubs] made applications like those mentioned here. Higher frequen-
with part number: 1851-13-437P-35(2-8D-8)20D- cies are strongly recommended since they reduce exag-
AB10X10-CZ1 gerated mechanical vibration amplitude and increase
velocity of vibration, which increases energy applied at
the interface of the bond.

Patterned Cu Overmold Die Attach


Interposer-Stiffener Compound Adhesive

tab tools
Die

Vias in
Polyimide
Circuit
Dielectric Adhesive
Layer

Figure 73 – Cavity-up enhanced ball grid array


(CUEBGA) package that incorporates a stiffer laminated
with adhesive to the polyimide flex circuit

die attach
Stacked Die Packages
The trend of the semiconductor technology is to achieve
higher package performance (electrical, mechanical, ther-
mal, etc.). One way to get closer to those goals is the verti-
cal stacking of dies. These dies share a common package
giving them a performance advantage that a multi-chip
package does not have. The performance advantage is
in the form of communication speed, a parameter that
has become of greater importance as multi-task systems
are becoming more and more popular.

Figure 72 – Side view of stitch bond showing exhibiting


other

good transition from the wire to the bond

47
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Capillary
Wire Bonding

The performance advantage is not without its sacrifices. Copper Wire Ball Bonding
These sacrifices are usually related to the assembly pro-
cess. The main concern is the lack of rigidity exhibited Copper wire bonding has always had a special appeal
by this type of package. The use of multiple layers of die because of the comparative price against gold wire. The
attach adhesive further reduces its mechanical rigidity cost factor is mainly the driving force behind the prefer-
making the entire package sensitive to energy losses ence to implement copper as a substitute for the most
due to absorption or attenuation. The mechanical expensive material, gold, in most of the semiconductor
rigidity is reduced even more when dies are offset from products.
each other creating a mechanical cantilever effect that
absorbs bonding energy.

The solutions for such an unstable package are found in


our 38° cone angle, specifically designed for this type of
application. Complementing the cone angle design is the
new ceramic material CZ3 which provides amongst the
highest ultrasonic transmissivity of any capillary mate-
rial in the industry today. Again high frequencies are
a necessity when processing these types of packages.
The higher the energy the better in order to substitute
the predominant mechanical vibration for purer form of
energy, Phonon generation.

Wire bond to cantilevered


edge of thin die

Figure 76 – A consistently shaped free air copper ball

The one aspect that is usually ignored is the less publicized


material differences that exist between the well known
gold wire and the copper wire. These differences are
Hardness, Cyclic Fatigue Resistance, Heat Affected Zone,
and Oxidation.

Hardness – This is one of the main culprits for bondability


issues. These issues range from poor welding of the first
bond and second bond to sub-layer damage (cratering,
Figure 74 – Example of a 3-die stack package
chip-out) of the bond pad structure. The limiting
welding performance is associated with the reduced
intermetallic formation when the copper ball bond gets
in contact with the aluminum bond pad. The effect of
Reverse wire bonds hardness on the second bond impacts most the tool life
as the need for higher bonding parameters increases in
order to maximize welding area.

Cyclic Fatigue – In order to minimize the impact of


hardness, high-purity copper must be used. This
means no dopants or impurities should be aloud. A
high-purity copper material can also be highly sus-
ceptible to work hardening due to cyclic phenom-
ena. The work hardening effect can be detrimental
to product life performance as brittle neck failure
Figure 75 – Example of a quad stack package could appear during device temperature cycling.

48
Fine-Pitch Capillary
Wire Bonding

50μm and Below


Pad Pitch Bonding

capillaries
The constant trend of the semiconductor industry to
increase die performance while maintaining the cost of
manufacturing has pushed front-end foundries to shrink
silicon dies even further. The impact of this shrinkage
is most obvious in the spacing (Pitch) between bond
pads and the reduction in size. This, in turn, exerts
higher demands on chip assembly bond processes and
associated materials.

Figure 77 – Typical brittle neck failure that occurred The impact on the bond process comes in many forms
during temperature cycling tests. The results of high in order to maintain current quality standards which are
expansion mold compound and work hardening easily achieved with larger pad pitches. The bond pro-

wedges
phenomena at the ball neck. cess for interconnections under 50μm demands better
and more repeatable shear and pull values, exceptional
Oxidation – Copper is a highly reactive material in the
control of Free Air Ball (FAB), higher resolution hardware
presence Oxygen forming CuO 2, a hard and dif-
responsible for Bond Forces, Bond Head Velocities, and
ficult to remove oxide that hinders the welding
Ultrasonic Power.
process between Copper and Aluminum, Copper
to Silver, or Copper to Copper surfaces. This is
The FAB requires a state of the art Electronic Flame Off (EFO)
the reason an inert atmosphere must be used μ to
system capable of controlling Current and Breakdown
protect the Copper from reacting with Oxygen. Any
Voltage with a higher resolution than older systems in
amount of Oxygen, either during the process of ball
order to produce consistent and repeatable ball sizes.
formation or during the actual bond process cycle, can

tab tools
create serious bonding issues that range from ball shape
The Bond Force applied during the bonding cycle must
to bond integrity. Presence of Oxygen during the ball
be equally important and with even higher resolution
formation has been associated with mis-shapened ball
(grams/bit) in order to maximize bond information with
bonds, blow holes, and voids on the surface of the cop-
higher shear values but without excessive deformation.
per balls as well.
At the same time, one must not forget the equally im-
portant Contact Velocity and Search Height parameters
The Process – Once the proper inert gas, wire purity,
which can also affect the overall bonded shape.
package, and machine hardware are selected, the next step
is to select the proper capillary design that will provide a
The Ultrasonic Power parameter is one of the most
consistent and reliable bond process. Such a process
significant but the least understood. It must be con-

die attach
will consist of minimum bonding parameter levels, with
trolled in such a way that higher resolution, capable of
an extended tool life, and maximum bond quality and
allowing minute adjustments, is possible so bonds are
integrity. Gaiser’s materials CZ3 and CZ8 can provide
consistent and repeatable. Variations in power deliv-
the best alternative with a selected set of geometrical
ered either because of hardware variations (capillary
features to maximize bondability.
clamping method impedance, frequency) or because of
poorly designed control systems (phase angle control,
Coppper Wire Bonding frequency range, etc.) can cause significant process
Part Numbers Currently Used variations. Eventually it can affect short and long term
Wire Diameter product quality and reliability such as lifted bonds, low
Part Number
in. / µm shear values, missing tails, opens (no ball), intermetallic
0.0010 / 25 1854-12-437GM-38(2-F-10)20D-AB10x10-CZ3 formation, and many more.
0.0013 / 33 1551-18-437GM-65(4-8D-15)20D
1520-25-437GM-82(5-8D-15)20D-CDR The Ultrasonic Frequency is also important, since higher
frequencies provide less mechanical excursion but higher
other

0.0020 / 51 1551-22-437GM-100(7.5-8D-20)20D-CZ1
1551-22-437GM-93(6.5-8D-20)20D-CZ1 acoustical energy. They are ideal to provide minimum
0.0030 / 76 1551-35-437GM-120(7.5x120D-8D-25)20D bond deformation but with higher bond strength. The
0.0040 / 102 1551-45-437GM-165(10-8D-30)20D suggested frequencies for pad pitches of 50μm or less is

49
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Capillary
Wire Bonding

one greater than 100kHz. Lower frequencies are not rec-


ommended because of its mechanical aggressiveness.

For materials, the capillary and gold wires play an


important role in allowing trouble free and repeatable
bond process.

Capillary Tip Geometry is key in achieving consistent


ball centering and shape and, most important, the
robustness of the second bond or stitch bond. The
biggest issue in fine-pitch bonding is the second
bond consistency. Gaiser has developed the ideal
combination between geometric features and ceramic
material. This combination helps control and ma-
nipulate the various stresses (compressive, radial, and
tangential) occurring during the bonding cycle so that a
trouble free and repeatable wire termination process is Figure 79 – 50μm pitch ball bonds
possible.

It is also important not to ignore the effect of gold wire.


As the pitch becomes smaller, the wire diameter becomes
smaller and more sensitive to stresses during the loop
formation and other bending stresses that might take
place during bond cycle. The gold alloy must be tailored
to minimize ball neck cracking, maintain loop shape, pro-
vide a strong welded area on the stitch, and a repeatable,
straight-tail length for consistent free air ball (FAB) size.

Figure 80 – 50μm pitch stitch bond

Figure 78 – 50μm pitch capillary

Figure 81 – 50μm pitch package using


0.0009 in./23μm gold wire

50
Fine-Pitch Capillary
Wire Bonding

capillaries
wedges
Figure 82 – Ball bonds in a 50μm pitch package using Figure 85 – Ball bonds made with 0.0012 in./30μm
0.0009 in./23μm gold wire gold wire for 80μm pitch package

tab tools
Figure 83 – Package with complex looping profile Figure 86 – Stitch bond width is equal to
incorporating a two-tier lead design twice the wire diameter

die attach
other

Figure 84 – Ball bond made with 0.0012 in./30μm


gold wire for 100μm pitch package Figure 87 – Stich bonds made with
Smashed ball = 0.0027 in./68μm 0.0012 in./30μm gold wire

51
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Capillary
Wire Bonding

Future Fine-Pitch Packages


Current users are beginning to make internal studies of
50μm pitch capablities in efforts to stabilize and opti-
mize processes for mass production. As the challenge
to reach the finer pitches of 45μm and 40μm begins,
bonder manufacturers are looking ahead and developing
equipment for 35μm pitch using 0.0006 in./15μm wire,
and 30μm pitch with 0.0005 in./13μm wire.

The Gaiser Products group of CoorsTek is working in


partnership with several bonder and wire manufacturers
by providing the necessary capillary designs to meet
these new challenges.

Figure 88 – A 45μm pitch ball bond made with


0.0007 in./18μm wire. Squashed ball = 0.00125
in./32μm

Figure 89 – A 45μm pitch stitch bond made with Figure 91 – Ball bonds made at 35μm pitch with
0.0007 in./18μm wire. ultra-fine-pitch capillary

Figure 90 – Ball bonds in a 45μm pitch package Figure 92 – Stitch bonds made with a 35μm
using 0.0007 in./18μm wire. ultra-fine-pitch capillary

52
Fine-Pitch Capillary
Wire Bonding

capillaries
wedges
Figure 93 & 94 – Ultra-fine-pitch (35μm) capillary vs. standard pitch (175μm-225μm) capillary.
The tip diameter (0.0018in./46μm) of the ultra fine pitch tool (left) will fit into the same hole
diameter as that of the standard capillary (right).

tab tools
die attach

Figure 95 – Gaiser 30μm ultra-fine-pitch capillary


T = 0.00165 in./42μm
H = 0.00075 in./19μm
other

53
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Capillaries
Important Elements for Fine-Pitch Applications

CRITICAL
CLEARANCE TYPICAL MAXIMUM
LOOP HEIGHT

EFFECTIVE CRITICAL
LOOP HEIGHT
ADJACENT TO
CAPILLARY

PAD PAD
PITCH SIZE

FRONT VIEW SIDE VIEW

Important Elements for Determining the Proper Tools in Fine-Pitch Wire Bonding
Applications
Bond Pad Pitch: The distance between the centers of the bond pads.

Bond Pad Size: May be square, rectangular, or round. The most important dimension is the size along the pad
pitch, as shown above.

Loop Height: The most important aspect of wire loop height is the effective critical loop height directly adjacent
to the capillary. If the capillary is designed to clear only the maximum loop height, which occurs away from the
capillary, then the “T” dimension will be less than required, resulting in a less than ideal second bond.

Critical Clearance: The design clearance between the capillary angle bottleneck, capillary manufacturing toler-
ances, loop control, and desired quality standards all influence the designed clearance.

54
Fine-Pitch Capillaries
1851, 1820, 1853, & 1854 Series

The 1851 angle bottleneck capillary represents Gaiser’s


answer to fine-pitch and ultra­‑fine-pitch wire bonding
tool design. Our proprietary Process 1800 imparts a

capillaries
mirror smooth finish to the angle bottleneck portion of the
capillary. This increases the shear strength and rigidity which
results in superior ultrasonic energy transmission and a
wider tuning window – ideal for high frequency trans-
ducers.

Process 1800 also provides substantially improved di-


mensional tolerances and improved CPKs.

wedges
30°

30°
CONE
(STANDARD)

10°
10°

tab tools
ABTNK
ANGLE
BOTTLENECK
HEIGHT

OR
FACE
H
ANGLE
IC

B
Specify:
Series - H - Length+Finish - T(IC - Face Angle - OR) 90°

die attach
Options T

Example:
For 120° IC angle, specify “x120D” in part number. Other
1851-18-437GM-40(3-8D-10)20D-AB10x12
angles may be specified.
1851-18-437GM-50(4x120D-8D-12)AB10x12
1820-18-437GM-36(4-11D-8)AB10x10
For single IC angle, specify as “1853” series. Standard
1853-15-375P-32(2-8D-5)20D-AB5x8-CZ1
angle is 90° unless otherwise specified. See page 56
for more about the “1853” and “1854” series.

Note: For T dimensions less than or equal to 0.0035/89μm, must specify CZ series material.
For T dimensions less than or equal to 0.0029/74μm, contact Gaiser or your representative for part number.
For IC dimensions equal to 0.00015/3.8μm, do not specify with radiused inside chamfer.
other

For IC dimensions equal to 0.0001/2.5μm, do not specify with radiused inside chamfer and must have polished tip finish.
If a radiused inside chamfer is desired in a 120° IC, use the 1820 series.
For the 1853 series, a radiused inside chamfer is not available, see page 56.

55
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Custom User-Specified Dimensions Series
1851, 1820, 1853, & 1854 Series

SERIES 90° ARCHITECTURE 120° ARCHITECTURE DEFINITIONS

90°/50° Standard 120°/80° and


other IC angles optional

1851
The 1851 Series utilizes the Gaiser
Double IC Double IC architecture.
The 90°/50° Double IC is standard
Architecture
unless otherwise specified.
50° 80°
90° 120°

1851 with BLIC


90° unless otherwise specified

1851 RADIUSED The BLIC adds a Radiused/Blended


INSIDE
With BLIC N/A Inside Chamfer to 90° Double IC
CHAMFER
(see 1820) and other 1851 capillaries.
(Blended Inside
For 120° BLIC, use the 1820 Series.
Chamfer)

90°

120° Double IC
architecture with BLIC

1820
The 1820 Series utilizes the 120°
Full Radius RADIUSED Gaiser Double IC architecture with
N/A INSIDE Radiused/Blended Inside Chamfer.
Series (see 1851 with BLIC) CHAMFER For angle other than 120°, use
(120° Blended
the BLIC.
Inside Chamfer)

120°

1853 The 1853 Series utilizes the basic


Single IC angle design.
Single IC Consider specifying when IC size is
Architecture too small for Double IC.
90° 120°

1854 The 1854 Series is the same as the


BLEND BLEND
1853 Single IC Series except that a
Single IC EDGE EDGE
very tiny edge break is applied to
Architecture the transition from IC angle to the
with Blend Edge Hole.
90° 120°

56
Fine-Pitch Capillary
Troubleshooting Guide

Tr o u b l e s h o o t i n g G u i d e
for Fine-Pitch Applications and Bonding Problems Related to Capillary Wire Bonding

capillaries
Symptom Possible Cause Possible Remedy
Increase loop parameters in order to increase
Insufficient wire for loop height
loop length
Broken wire above ball
Increase ball security height, kink height, or
Ball security height too low
reverse motion

Decrease loop factor


Too much wire in loops causing loops to sag
Increase reverse length
downward

Sagging Loops Check/clean wire tensioner

Wedge bond placement too close "Re-teach" wedge position to increase the

wedges
to the tip of the lead surface level of the wedge bond

Bond height incorrectly set "Re-teach" bond height

Poor or contaminated pad materials may have


Check if the non-stick detector timing
caused bond to fail after non-stick detector
and current signals are correct
sampling

Non-sticking ball Bond force too low Increase bond force

Ultrasonic power too low Increase ultrasonic power

Free air ball size too small Increase EFO time or current

tab tools
EFO solenoid malfunction Replace EFO solenoid
No ball size
Free air ball size too small Increase EFO time or current

Finger not clamped Adjust work holder clamp and improve set-up

Non-sticking wedge Change bond parameters


Leadframe contaminated or
Inspect material and check quality
poor plating on leadframe
of incoming leadframe

Wire feed problem Adjust wire feed sensor

Dirty wire clamp Clean wire clamp jaws

die attach
Wire open
Excessive force on wedge Reduce force on wedge

Excessive power on wedge Reduce ultrasonic power on wedge

Carry out wire clamp force check


Tail too long
and adjustment
Wire short
Electrode to wire distance is too small Carry out EFO height check and adjustment

Excessive ultrasonic power Reduce ultrasonic power

Malformed ball Inconsistent FAB Check floating lead

Excessive power/force with poor set-up Reduce bond lead

Gold wire contacts the torch electrode Reduce the torch level or the tail length
other

Golf club bond Torch electrode is dirty Clean electrode with alchohol

Torch electrode wiring is broken Repair or replace with new torch electrode

57
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Ultra-Fine-Pitch Angle Bottleneck
UFAB Series Capillaries

Gaiser’s UFAB (Ultra-Fine-Pitch Angle Bottleneck) series The UFAB-series is equipped with inside chamfer ge-
is designed for ultra-fine-pitch ball bonding. The UFAB se- ometries that provide consistent small squashed ball
ries utilizes our exclusive Process 1800 method of manufac- formation size with high shear strengths and excellent
turing combined with high-strength CZ-series materials. wire looping characteristics. Tip sizes are available for
Process 1800 produces a maximum strength angle 55μm, 50μm, 45μm, and 35μm pitch as indicated in the
bottleneck geometry that is neither ground nor injec- tables. Part numbers proven in the Gaiser Applications
tion molded. Technology Lab are indicated on the adjacent page.

Key Elements of Ultra-Fine-Pitch Ball Bonding Face Angle Table


Basic Application Requirements: Series Face Angle
1. Wire diameter
180FX 0°, Flat Face
2. Bond pad pitch (BPP)
3. Pad size or pad opening 1804X 4°
4. Desired squashed ball diameter 1808X 8°
5. Desired ball height* 1811X 11°
Resultant Dimensions:
6. Capillary “T” dimension
7. Clearance
IC Type Table

Series IC Type

18XXB 70°
18XXH 90°
1. Wire Diameter
18XXL 100°
18XXS 120°
7. Clearance
18XXC 70°, w/ Blend Edge
4. Desired Squashed 18XXJ 90°, w/ Blend Edge
Ball Diameter
18XXM 100°, w/ Blend Edge
5. Desired
18XXT 120°, w/ Blend Edge
Ball 2. Bond Pad Pitch
Height* (BPP) 18XXY SBIC

3. Pad Size 18XXZ SPECIAL


(or Pad Opening)
6. Capillary "T"
Dimension

*Ball Height Typically = 1/3 Wire Diameter

58
Ultra-Fine-Pitch Angle Bottleneck
UFAB Series Capillaries

Pitch Wire Dia.


*Series *Dash H B IC T OR AB AB
(BPP) (mils) Number in. / µm in. / µm in. / µm in. / µm in. / µm 30° Cone 20° Cone

capillaries
50µ 0.9 180FH - 10WRE 0.0010 / 25 0.0014 / 36 0.0002 / 5.1 0.0025 / 64 0.0003 / 7.6 AB10x8 AB10x8
50µ 0.8 180FH - 9.5XRE 0.00095 / 24 0.0014 / 36 0.000225 / 5.7 0.0025 / 64 0.0003 / 7.6 AB10x8 AB10x8
45µ 0.7 180FH - 8.5WME 0.00085 / 22 0.00125 / 32 0.0002 / 5.1 0.0023 / 58 0.0003 / 7.6 AB10x8 AB10x8
40µ 0.7 180FH - 8.5SIE 0.00085 / 22 0.00115 / 29 0.00015 / 3.8 0.0021 / 53 0.0003 / 7.6 AB5x8 AB5x8
35µ 0.6 180FH - 7.5LDD 0.00075 / 19 0.00095 / 24 0.0001 / 2.5 0.00185 / 47 0.0002 / 5.1 AB5x6 AB5x6

*The above series and dash numbers were validated in the Gaiser Applications Technology Lab and employ flat face, 90° single IC design.
Other configurations are available using the UFAB series part number system.

Example Part Number: 1808H -10PSE-437P-20D-AB5x8-CZ3


Part Number Format Explained: 18 XX X - XXX XX - XXXX - XXX...

wedges
Gaiser Process 1800
Face Angle (see Face Angle Table)
IC Type (see IC Type Table)
Hole Size & IC Size (see Hole & IC Size Tables)
T Size & OR Size (see T Size & OR Size Tables)
Length & Finish
Options (20° cone, angle bottleneck configuration, material, etc)

Hole Size Table T Size Table OR Size Table

tab tools
Hole Size T Size OR Size
Dash No. Designation Designation
in. / µm in. / µm in. / µm
- 7.5 0.00075 / 19 D 0.00185 / 47 D 0.0002 / 5
-8 0.0008 / 20 E 0.0019 / 48 E 0.0003 / 8
- 8.5 0.00085 / 22 F 0.00195 / 50 F 0.0004 / 10
-9 0.0009 / 23 G 0.0020 / 51 G 0.0005 / 13
- 9.5 0.00095 / 24 H 0.00205 / 52 H 0.0006 / 15
- 10 0.0010 / 25 I 0.0021 / 53 Z SPECIAL
- 10.5 0.00105 / 27 J 0.00215 / 55

die attach
- 11 0.0011 / 28 K 0.0022 / 56 Available Angle Bottlenecks
- 11.5 0.00115 / 29 L 0.00225 / 57
- 12 0.0012 / 30 M 0.0023 / 58 30° Cone 20° Cone
N 0.00235 / 60
IC Size Table AB5x6 AB5x6
P 0.0024 / 61
AB5x8 AB5x8
IC Size Q 0.00245 / 62
Designation
in. / µm AB5x10 AB5x10
R 0.0025 / 64
F 0.000075 / 1.9 AB10x6 AB10x6
S 0.00255 / 65
L 0.0001 / 2.5 AB10x8 AB10x8
T 0.0026 / 66
P 0.000125 / 3.2 AB10x10 AB10x10
S 0.00015 / 3.8
U 0.00265 / 67

V 0.000175 / 4.4 V 0.0027 / 69

W 0.0002 / 5.1 W 0.00275 / 70


other

X 0.000225 / 5.7 X 0.0028 / 71


Y 0.00025 / 6.4 Y 0.0029 / 74
Z SPECIAL Z SPECIAL

59
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedge Bonding
Wedge-Wedge Ultrasonic Bonding Higher frequencies have lower vibratory amplitude, but
a much higher speed of vibration that allows a great deal
Wedge-wedge wire bonding is the oldest semiconductor of energy to concentrate at the interface of the bond.
assembly process dependent solely on acoustic energy. The lower mechanical amplitude as reported by the
There are a few exceptions where thermal energy (heat) Japanese researcher and confirmed by the Texas-based
is combined to further improve the welding action. researchers, produce lower deformation of the weld with
reduced stresses providing a much larger cross-section
The dominant ultrasonic frequency has been for many area that reduces heal cracks, and improves bond pull
years 60kHz. It is even lower on some applications values and overall weld strength.
where larger diameter wire (>38μm) is used. This was
until the early 1990’s when Japanese researchers, follow-
ing the development and publications of Texas-based
researchers, learned about the process improvements
when higher ultrasonic frequencies (>60kHz) are used
to bond gold wire to aluminum bond pads. Their inves-
tigation confirmed the improvements in weld reactivity
(less open bond) and faster bond cycles. The major
discovery was the fact that welding begins as soon as
the wire contacts the surface to be bonded, creating a
new welding pattern characterized by a series of parallel
welding lines.

The new welding pattern does not fol-


low the traditional low frequency pattern where
the center of the bond is voided and surround-
ed by a welded ring. It has been published that Figure 3 – High-frequency bond
during the welding process, lower ultrasonic frequencies
begin utilizing some of the energy on wire deformation,
followed by the actual welding process therefore the
voided center.

Figure 4 – Low-frequency bond

Gaiser Products Group has taken this knowledge


Figure 1 – After C. Figure 2 – After V.H. a step further by improving its materials and geo-
Alfaro 1992 – High Winchell IEEE Proceedings
metrical design to maximize acoustical efficiency
Frequency Weld Pattern 1978 – Low Frequency Weld
Pattern
so that any of our tools can either be used by
standard low ultrasonic frequencies or by higher fre-
quencies. We recommend you contact the factory for
suggested information that might help improve tool set-
up for those dealing with higher ultrasonic frequencies
for the first time.

60
Wedge Bonding
Small Wire Wedge Bonding Wedge Design
In wedge bonding, both aluminum and gold wire may be Wedge tip designs for many years have been limited

capillaries
bonded. Historically, the disadvantages of wedge bond- to two types, the V-notch and the Maxiguide(or pocket
ing vs. ball bonding have been speed (wires per second) type). The V-notch was developed first and had largely
and the need to rotate the work due to wedge bonders been obsoleted by the Maxiguide, which provides supe-
being unidirectional. Modern wedge bonders have made rior wire centering. The V-notch however, allows for a
significant improvements in both areas. Semi-automatic minimum “W” dimension for access into small recessed
and fully automatic wedge bonders have substantially pads and a complete back radius (BR) which provides
increased the speed and versatility of the bonders. The good 1st bond heels and 2nd bond tailing. Gaiser’s new
“rotating head” wedge bonder has enabled 360° omni- patent pending MaxiBond™ design actually provides the
directional bonding, similar to ball bonding. positive aspects of both the V-notch and the Maxiguide
in one new architecture, the MaxiBond.
With capillary ball bonding, time, force, ultrasonic ener-
gy, and heat are the primary components used to form a

wedges
wire bond. With wedge bonding, however, both gold and
aluminum wire may be bonded and no electronic flame
off (EFO) is employed. The minimum requirement
H WIRE FEED
for gold wire wedge bonding is force to make a ANGLE
compression bond. For aluminum wire, both force
and ultrasonic energy are necessary. Addition-
ally, the component of heat may be available in the C
FR
form of a heated stage or tool heat. Wedge bond- BL
BR
ing is generally referred to as Ultrasonic Bonding. FL
T
Ultrasonic Bonding: Ultrasonic energy is applied to the

tab tools
Figure 5 – Cross-sectional view of a V-notch wedge
wedge tool through an ultrasonic transducer. The ul- with standard dimensions identified
trasonic energy provides a mechanical scrubbing action
which breaks through the surface oxide film and also
generates frictional heat. Heat in the form of a heated
tool or device may or may not be available.
H WIRE FEED
Wedge bonding is commonly used for aluminum wire ANGLE
chip-on-board (COB) applications, and gold wire for
microwave and hybrid devices. In addition to gold wire, C
gold ribbon is becoming increasingly more popular for

die attach
FR BR
high frequency devices. BL
FL
Aluminum wire wedge bonding offers better cost ben- T
efits than that of gold wire. In general, wedge bonding Figure 6 – Cross-sectional view of a Maxiguide wedge
allows bonds to be placed on small, narrow pads at fine with standard dimensions identified
pitches in a cost-effective manner.

For microwave devices, wedge bonding offers a low,


flat, short loop for maximum high-frequency electrical
performance. Additionally, the wire loop shape may be H WIRE FEED
controlled to a specific profile to “tune” a microwave ANGLE
device. Ribbon bonding makes use of the “skin-effect”
observed in high- frequency telecommunications, mi- C
croelectronics, and antenna technology.
other

FR BR
BL
FL
T
Figure 7 – Cross-sectional view of a MaxiBond wedge
with standard dimensions identified

61
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedge Bonding
The wedge shank is generally 1/16 inch diameter The Bond Foot (comprised of FR, BL, & BR)
(1.58mm) with a shank flat secured by a set screw.
Lengths are available in industry standard sizes up to The “bond foot” is the portion of the wedge that makes
1.078 in./27.38mm and longer (by special order). the impression in the bonded wire. The entire feature
is comprised of the front radius (FR), the bond length
In addition to being longer than a capillary, a significant (BL), and the back radius (BR). These indiviual features
advancement in wedge design has been the vertical feed, have tolerances and therefore potential tolerance stack.
deep access wedge. Most wedge bonders feed wire into
the tool at 30°, 38°, 45°, or 60° wire feed angles (rela- To prevent the individual FR, BL, & BR tolerances from
tive to the horizon). Deep access, vertical feed wedge accumulating to form a too small or too large overall
bonders are able to initially feed the wire vertically, like condition, Gaiser employs a control dimension called the
a capillary. The wire either passes vertically through a foot length (FL) dimesion. The FL has an individual toler-
hollow (tubular construction) wedge, or through the ance that prevents tolerance stack of the FR, BL, & BR.
transducer via a double shank flat design. Such verti-
cal feed designs allow access into packages where a
conventional 30° or 45° wire feed angle may have an
interference problem.
FLAT FACE TOOL

25% of FR 25% of BR

60°
VERTICAL
FEED TOOL WIRE FR
CLAMP BL BR

FL

60°
PAD
CONCAVE FACE TOOL

25% of BR
PACKAGE

CAVITY
DEPTH 60°

WIRE
CLAMP FR BR
BL
FL

Figure 10 & 11 – Bond foot dimensions of a flat face and


VERTICAL concave wedge
FEED TOOL

The FL dimension is measured from the FR to the theo-


PAD
retical intersection of the back radius angle and the
plane of the bond foot, as shown above. The bond flat
(BF) is the flat portion of the bond foot. On a flat face
tool, the BF is the distance between the FR and the BR.
PACKAGE

Figure 8 & 9 – Conventional and deep access bonding

62
Wedge Bonding
Bond Length (BL)
The bond length (BL) for a flat-face wedge (see Figure

capillaries
10) includes 25% of the BR, 25% of the FR, and the BF. For
a concave wedge (see Figure 11), the BL begins where the
concavity depth truncates the FR in the center of the BF
and includes 25% of the BR.

Choosing the BL is driven by the wire diameter and


the size of the bond pad. Typical bond lengths
are 1.5 to 2.5 times the wire diameter. Occasion-
ally, the bond pad may be so small that it forces
the use of a very small bond length. Bond lengths
as small as 0.0010 in./25μm to 0.0007 in./18μm Figure 13 – Gold wire lead bond formed with a wedge
or 0.0005 in./13μm are used on small components and having a 0.0004 in./10μm FR

wedges
microwave devices.

Bond Pad Size Bond Length Gaiser has specified the appropriate front radius values
in. / µm in. / µm for various aluminum and gold wire wedge series that are
0.0030 / 76 0.0020 / 51 available in our catalog for numerous applications. Modi-
0.0035 / 89 0.0020 / 51 to 0.0022 / 56 fications to the existing FR values is seldom necessary.
0.0040 / 102 0.0025 / 64
0.0050 / 127 0.0030 / 76
Back Radius (BR)
Front Radius (FR)
The back radius (BR) has two functions:

tab tools
The front radius (FR) provides the transition from
the wire to the second bond. This transition, com- 1. To provide the transition between the
monly referred to as the toe of the second bond, wire and the first bond or die bond
varies in size depending on the size of the FR. Most 2. To provide the area on the wedge where
of the standard series of wedges, designed for the wire will terminate on the lead bond
aluminum wire, have an FR of 0.0010 in./25μm or
larger to minimize second bond toe cracks. Gaiser
designs the aluminum wire wedge FR to be the same size
or larger than the wire diameter to be bonded.

die attach
For gold wire applications, particularly when the wire diam-
eters are 0.0010 in./25μm or smaller, the FR can be smaller
than the wire diameter. A 0.0004 in./10μm FR is available
in the microwave wedge series.

Figure 14 – Die bond made with part number 2130-


2525-L with a standard BR. The length of wire not
bonded on the left side is referred to as the tail. The
tail length should not extend beyond the pad due to
other

shorting problems. The standard BR helps provide for


very consistent tailing.
Figure 12 – 2nd bond formed from wedge with an FR
of 0.0010 in./25μm

63
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedge Bonding
Heel crack problems are more commonly associated with
aluminum wire than with gold. They are also more frequent
with 30° wire feed angle bonding than with steeper wire
feed angles. This is due to the wire being worked more
during looping. The wire starts out at a 30° angle, is flexed
to 90° during the beginning of the loop, and is then returned
to approximately 30° after the lead bond is made.

Figure 17 – Bond made with part number


2130-2525-L-CBR, a maxiguide style wedge with a
chamfered back radius

A chamfer back radius (CBR) produces an angled transi-


tion as opposed to a radiused BR and helps to reduce
heel cracks. As with the ELBR, the CBR is generally used
with aluminum wire and may cause inconsistent tailing
due to the stronger heel area.
Figure 15 – Example of a minor heel crack

The amount of heel cracking allowed depends on the qual-


ity standards of the end customer. In some cases, minor
heel cracking is acceptable. BR shape and size may help
to eliminate or reduce heel cracking.

Figure 18 – Example of die bond made by the wedge


part number 2160-2525-L-PBR-PFR, a polished front
and back radius wedge

The polished back radius (PBR) and polished front radius


Figure 16 – Bond made with part number 2131-2525-L, (PFR) help reduce the amount of aluminum build-up on
standard with elliptical back radius the bond foot but may reduce the ultrasonic energy trans-
mission from the tool to the wire. These options produce
a smooth appearance at the heel of the first bond and the
The elliptical back radius (ELBR) provides a stronger toe of the second bond. The PBR may also help to
bond by increasing the amount of cross-sectional area of reduce heel cracks.
the heel but may cause inconsistent tailing as it creates a
stronger heel area. This helps to reduce heel cracks often
associated with standard wedges. The ELBR, generally
used for aluminum wire, is standard for the 2131 series
and available as an option on other Gaiser wedges.

64
Wedge Bonding

capillaries
Figure 19 – Typical wedge lead bond. Tail length is
minimal because the wire is terminated at this bond.

wedges
Figure 21 – Example of a scratched wire

Possible causes for a scratched wire:

1. Wire is being fed into the hole of the

tab tools
wedge at an incorrect angle
2. Wire is already scratched as
it comes off the spool
3. Wire clamp system not adjusted correctly
Figure 20 – Example of a smashed wedge bond 4. Foreign material is present inside the
wedge due to the bonding conditions
5. Wedge has wire build-up and
A smashed bond may occur if there is insufficient tail needs to be replaced
length under the bond. This is often caused when the BR 6. Rough edge exists in the hole
does not break the wire correctly. There must be enough 7. Hole is too small for the wire diameter

die attach
wire under the FR and the BR to equalize the extrusion
Gaiser polishes the wedge wire feed hole as a standard
forces during bonding or overbonding and/or a weak
manufacturing operation on all wedges.
heel may result.

Hole Diameter (H)


The general design rule for the wedge hole diameter Polish
(H) is that the hole size should be 1.5-2 times the wire
diameter. A tighter wire to hole size relationship will
improve bond placement accuracy. If the hole is too
small, wire scratch may result.
other

Polish

Figure 22 – Hole polish detail of a 30° wire feed


angle wedge

65
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedge Bonding
Table-Tear & Clamp-Tear

Polish

Figure 25 – Table-tear bond - The clamp is closed


Exit Hole shortly after the second bond. The tool then moves
Polish upward and back to break the tail. Note: Nick in wire
caused by BR during termination.
Figure 23 – Hole polish and exit hole relief of 60° wire
feed angle wedge
There are two methods used to terminate the wire after
the second bond. These methods are bonding machine
Also available, and primarily used in fine pitch applications, dependent and are commonly called, “table-tear” and
is an oval hole design. The oval hole provides the lateral “clamp-tear.” Most deep access bonders and some con-
(side to side) bond placement accuracy of a smaller ventional bonders utilize the table-tear method.
hole relative to the wire diameter while maintaining
the wire feed and looping characteristics of a larger The clamp-tear method is the standard method of
hole diameter. termination for conventional bonding. In this method,
the clamp remains open during completion of the lead
bond. While the wedge is still on the wire, the clamp
closes and pulls back away from the wedge. This motion
Hole
causes the wire to terminate at the BR. The wedge then
Width rises and the clamp system moves down. This forces
the wire to feed out leaving the tail under the bond foot
for the next bond.
Hole
Height One benefit of the clamp-tear method is that the bond
is not stressed (lifted) when terminating the wire. An-
other benefit is that there is no nick in the wire above
the heel which may be present when using the table-tear
method. The biggest disadvantage of the clamp-tear
Figure 24 – Oval Hole design method is that the clamp system can interfere with the
package wall or other devices thereby restricting deep-
access use.

66
Wedges
Wedge Bonding Process

capillaries
1. The bonding process begins 2. Force and Ultrasonic
with a threaded wedge. Energy are applied to
form the 1st Bond.

wedges
3. The Looping Sequence 4. Force and Ultrasonic Energy are
applied to form the 2nd Bond.

tab tools
Tail Length

5. The wedge rises before the


tear method is engaged. 6. The Clamp-Tear or Table-Tear
methods are used to break the
wire and the cycle begins again.

die attach
3) Mid-Span Break (Ideal)

2) Heel Break 4) 2nd Bond Break


(Influenced By BR) (Influenced By FR)
1) Lifted Bond
5) Lifted Bond

Preferred Failure Modes Undesirable Failure Modes


• Mid-Span Break (Bond Strength • Low-Strength Heel Breaks
other

exceeds Wire Tensile Strength) • Lifted Bond


• 2nd Bond Break
• Heel Break

67
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedge Bonding
Materials & Tip Configurations The cross groove feature also provides a mechanical
coupling for ultrasonic energy transmission between the
The wire material (gold or aluminum) being bonded gen- wedge and the wire. As the wire is extruded up into the cross
erally determines the material specified for the wedge groove, it is “gripped” during bonding. A bond length of
and the bond foot configuration. Tungsten Carbide (WC) at least 0.0015 in./38μm is necessary to allow for enough
combined with a concave bond foot is the industry stan- space for a cross groove. The cross groove and cermet
dard for small aluminum wire. For gold wire, Titanium combination have proven to be highly effective for gold
Carbide (TiC) or a “Cermet” material combined with a wire bonding.
flat face and possibly a cross groove, are the standards.
In addition to the traditional gold color cermet (CER),
Gaiser has introduced black cermet. Black cermet (BKC-
ER) exhibits improved dimensional stability and smoother
holes for reduced wire scratch while still providing a rough,
aggressive finish on the bond foot. When compared to a
F competitor’s standard gold cermet, Gaiser black cermet
INWARD has demonstrated improved pull strengths. Additionally,
the visual contrast between the black cermet and gold
FORCE wire is helpful to operators during set-up and operation.

F1 F2

F1 < F2

Figure 26 – Inward force created by concave foot

Figure 28 – Cermet-tipped, cross groove wedge

F1 F2
The photos above and below are the same wedge part
number. The top is a cermet material and the bottom
F1 = F2 is a tungsten carbide material.

Figure 27 – Outward bond extrusion with flat face

Cermet is a ceramic-metal alloy that exhibits a very


rough and aggressive surface finish. This rough finish
provides a mechanical coupling with the wire and effec-
tively transmits ultrasonic energy at reduced power set-
tings. Additionally, cermet material generally provides
a longer tool life than carbide materials.

Figure 29 – Tungsten carbide (WC), cross groove wedge

68
Wedge Bonding

capillaries
Figure 30 – Bond formed with a cermet-tipped wedge
Figure 35 – Typical IC wedge bonded aluminum wire
Gaiser wedges typically default to tungsten carbide
(WC) material and a concave face which is best suited for
aluminum wire. Titanium carbide (TiC), cermet (CER), a

wedges
flat face (F), and a cross groove (CG) are all options that
must be specified in the part number and are generally
affiliated with gold wire bonding. The 2MXX and 2GXX
series wedges are standard with flat faces (both) and
cross grooves (2GXX only) as they are designed for small
geometry microwave and/or gold wire applications.

tab tools
Figure 36, 37, & 38 – Comparison of the wire being
guided through V-notch (left) and Maxiguide (middle)
and MaxiBond (right) style wedges.

Chip On Board Bonding (COB)

Figure 31 & 32 – Gaiser cermet wedges (left) exhibit a The majority of chip on board (COB) products require a
near-zero thickness material junction. The competitor’s 30° wire feed. Gaiser 2130 series wedge has gained

die attach
wedge (right) exhibits a large braze/solder joint. the most acceptance in the industry for these applica-
tions by offering low cost, accurate wire placement, and
consistently small tails.

For standard applications using 0.0010 in./25μm to


0.00125 in./32μm diameter aluminum wire, Gaiser part
number 2130-2025-L has proven to be an effective, easy
to tune, and long lasting wedge. At 100μm pitch, the
2130-2020-L-W=003 has become a commonly used
part number. For below 100μm pitch, the 2130-2020-L-
DSR(004x010)-ELBR-W=003 has gained popularity.
This wedge features the double side relief (DSR) and a
narrower foot width (W) for the close bond pad pitch
requirements. The elliptical back radius (ELBR) feature
other

is also added to this wedge to aid in directing the wire


Figure 33 & 34 – Gaiser cermet wedges (left) are
polished at the countersink exit. The competitor’s
to the center of the bond pad for superior wire place-
cermet wedge (right) exhibits an “as EDM’ed” finish and ment.
coarse grinding marks.

69
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Wedge Bonding
Important Elements for Fine-Pitch Applications

FRONT VIEW SIDE VIEW

WIRE DIA.

DSR WIDTH
LOOP HEIGHT
MAXIMUM
CRITICAL
CLEARANCE LOOP HEIGHT
ADJACENT TO
WEDGE

PAD PAD PAD


WIDTH PITCH LENGTH

Important Elements for Determining the Proper Tools in Fine-Pitch Wedge Bonding
Applications
Bond Pad Pitch: The distance between the centers of the bond pads.

Bond Pad Width: Affects the selection of the tool “W” dimension.

Bond Pad Length: Affects the selection of the tool Bond Length (BL).

Loop Height: The most important height is the critical loop height directly adjacent to the side of the wedge.

Clearance: This is determined by bonder accuracy, pad pitch, tool selection, and customer preference. The most
common minimum clearance is 0.0005 in./13μm.

CLEARANCE = PITCH - DSR WIDTH - WIRE DIAMETER


2

70
Fine-Pitch Wedge Bonding
Fine-Pitch Wedge Bonding Fine-Pitch Wedge -
Bond Length (BL)
The key to achieving fine-pitch wedge bonding is to

capillaries
provide clearance between the already bonded wire’s The general design rule for bond length (BL) is 2 times the
adjacent critical loop height and the wedge itself as it wire diameter. Fine-pitch wedges, however, may require
performs the next bond. Reducing the tip width (the 1.5-1.8 times the wire diameter due to reduced bond pad
“W” dimension) will allow bonding at a smaller pitch openings. The expected deformed bonded wire width is
with a given part number. However, to truly achieve very 1.3-1.8 times the original wire diameter. Longer bond
fine pitch wedge bonding, a double side relief (DSR) is lengths tend to produce more narrow bond widths.
necessary.

General Fine-Pitch Wedge Bonding Guide Fine-Pitch Wedge -


30° to 45° Wire Feed Angles
Part Number Guide
Pitch Wire Diameter
DSR W
µm in. / µm

wedges
150 0.00125 / 32 N/A 0.004+ General Fine-Pitch Wedge Part Number Guide
125 0.00125 / 32 N/A 0.004 2130, 2131, 2138, 2145-(H & BL)-"Options"
N/A to
100 0.00125 / 32 0.003 Pitch
(0.005x0.010) Part Number Guide
µm
80 0.00125 / 32 (0.004x0.010) 0.003
150 21XX-(H & BL)
60 0.00125 / 32 (0.003x0.008) 0.0025
125 21XX-(H & BL)
50 0.0010 / 25 Special Design
21XX-(H & BL), W=003,
100
Possible DSR(005x010)
N/A = not applicable, unnecessary 80 21XX-(H & BL), DSR(004x010), W=003
60 21XX-(H & BL), DSR(003x008), W=0025
The previous page shows the relationship between the

tab tools
50 and
bond pad pitch, the bond pad size (sometimes called Special Design, Consult Factory
below
the bond pad opening), the wedge tool with a DSR,
the wire (both the critical adjacent and maximum loop
heights), and the clearance. The necessary clearance is
somewhat arbitrary with the bonder accuracy playing a FRONT VIEW SIDE VIEW
large role in how small the clearance may be – minimal
clearance is desirable because then a maximum DSR
width can be used. A maximum DSR width provides
the strongest wedge tool and maintains better ultrasonic
APEX OF
energy transmission characteristics as well as a larger LOOP

die attach
countersink for easier threading.

Fine-Pitch Wedge -
Hole Size (H) Figure 39 – Typical wire loop profile after the first wire
is bonded. Note that the already bonded wire does not
As stated earlier in the wedge bonding section of this collide with the side of the wedge because the apex
catalog, the general design rule is that the hole size of the loop is behind the wedge. Since the majority
should be 1.5-2 times the wire diameter. Fine-pitch of the looping profiles are at a low angle, the primary
wedges may require a tighter hole to wire relationship, fine-pitch problem is clearing the adjacent bond and
the critical loop height (see adjacent page for critical
such as 1.4-1.8 times the wire diameter. Additionally, the
loop height).
oval hole option may be beneficial in fine-pitch bonding
for a very tight lateral (side to side) relationship for
bond placement while still maintaining low wire drag
for looping and bonder speed (wires per second).
other

71
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Fine-Pitch Wedge Bonding

Figure 42 – Drawing showing the advantage of a 45°


Figure 40 – Drawing showing the double side relief side chamfer
(DSR)

The double side relief (DSR) option is designed The 45° side chamfer modification is beneficial in fine pitch
to provide the clearance necessary when bond- bonding because it allows the wedge to maintain most of
ing down inside a cavity, between an obstruction, its mass resulting in efficient transfer of ultrasonic energy.
package wall, or other device. The DSR modi- It allows the use of a larger “W” dimension while still
fication must be specified in the part number maintaining clearance to the adjacent bond. The 45° side
as “DSR (Width x Height).” chamfer can be added to the maxiguide style wedge
without weakening the guiding slot walls. Specify this
option in the part number as “45SC(W=specify)”.

Figure 41 – Photo of tool with a double side relief


Note: Tool also has a 45° side chamfer modification Figure 43 – Photo of a 45° side chamfer modification

Also see MaxiBond™ Series pages 80 and 81

72
Large Wire Bonding
Large Wire Wedge Bonding

capillaries
“Large wire” wedge bonding generally refers to wire
diameters of 0.004 in./100μm to 0.030 in./760μm
with 0.005/127μm to 0.015 in./380μm being the most
common. Because the range for “small wire” is usually
defined from 0.0007 in./18μm to 0.002 in./50μm, this
leaves 0.003 in./76μm wire in the middle. This is most
likely the reason for so few 0.003 in./76μm wire applica-
tions. Virtually all large wire wedge applications utilize Figure 46 – Drawing shows a typical U-groove style
aluminum wire for cost reasons with the exception of wedge
certain “exotic” applications.

Most large wire wedge bonders use a single groove


wedge tool and a separate cutter blade while some

wedges
bonders utilize a wire feed hole at the tip with the same
configuration as a small wire wedge. A patented design
by Orthodyne Electronics incorporates a cutter blade at
the tip in a groove parallel to the groove used for making
the wire bond (see Figure 45).

Figure 47 – Bonds made with a U­­­­­­­‑groove wedge

tab tools
may exhibit surrounding wire smash‑out. Also called
“wings” or “ears”

Figure 44 – Wire feed hole style large wire wedge

die attach
Figure 48 – Drawing shows a typical V-groove style
wedge

other

Figure 45 – Patented Orthodyne cut-off ridge design Figure 49 – Bonds made with a V-groove wedge exhibit
minimum smash-out

73
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedge Bonding
Ribbon Wedge Bonding Wedge Finish
Ribbon bonding is accomplished using a wedge-style tool All of the Gaiser wedges come standard with an EDM
that is designed essentially the same as a small wire wedge matte finish. The standard EDM matte finish is commonly
except the wire feed hole is a horizontal slot, not a round used for both aluminum and gold wire.
hole. This is needed to facilitate the feeding of a flat ribbon
as opposed to conventional wire. Many high-frequency
devices utilize ribbon bonding due to the “skin affect” of
a high-frequency signal.

Gaiser offers ribbon bonding version of wedge tools for


virtually all wire bonders, both standard and deep
access.

Ribbon wedges are available in all standard wedge


materials for both gold and aluminum ribbon (WC, TiC,
and cermet).

Figure 52 – Standard EDM matte finish

In some cases, the entire bond foot is polished (PBF) in


an attempt to minimize build-up on the wedge. As the
polishing of the bond foot inhibits good transfer of ultra-
sonic energy, the polished bond foot is not recommended,
unless other options fail to provide the desired results.
The PBF may also be called out if having shiny bonds
instead of matte finish bonds is required.

Figure 50 – Example of aluminum ribbon bonds.


Note the cross groove impressions in the bonds.

Figure 53 – Example of a polished bond foot

Figure 51 – Device bonded with gold ribbon

74
Wedge Bonding
Aluminum Wedge Cleaning ULTRASONIC
CLEANER

20% NaOH

capillaries
Aluminum build-up occurs on the bonding foot of the SOLUTION
wedge after a period of usage. Polishing the FR and BR, BEAKER
using a fine matte finish (FMF), or changing styles of
wedge can aid in reducing the quickness of this build-up. WEDGES

PLASTIC BLOCK
Eventually, the aluminum deposits left on the surfaces WITH HOLES
of the wedge will require the wedge to be cleaned or
replaced.
Figure 56 – Aluminum cleaning set-up
Aluminum can be etched away from the bond foot of
the wedge by using a 20% by weight solution of sodium
hydroxide (NaOH). An ultrasonic cleaner should be used,

wedges
if available, to speed up the etching process. Using an
ultrasonic cleaner, the process takes about 10 minutes.
Without the aid of an ultrasonic cleaner, the process
may take up to two hours. A plastic block with holes
drilled to hold the wedges is necessary to keep the tool
tips from vibrating together in the ultrasonic cleaner as
shown above.

After the wedges are removed from the solution of


NaOH, they should be rinsed in deionized water and
Figure 54 – MaxiGuide™ wedge with aluminum build-up

tab tools
blown dry for at least two cycles. Each wedge cleaned
accumulated after 100,000 bonds.
should then be inspected for cleanliness and wear. For
stubborn aluminum deposits, this process can be re-
peated. In addition to the above cleaning procedure, if
the wedge has aluminum build-up in the hole, a piece
of tungsten wire or an unplugging probe can be used.
If a wire or probe is used, the NaOH cleaning procedure
should be repeated. This will assure that no flakes of
metal are lodged in the hole, countersink, or maxiguide
slot area that could cause wire feeding problems or
device contamination.

die attach

Figure 55 – Slightly deformed bond surface caused


by using a wedge with aluminum build-up. A similar
appearance may be caused by a worn wedge.
other

Figure 57 – The same MaxiGuide wedge as seen in


Figure 54 after the sodium hydroxide cleaning. Note
the small amount of wear.

75
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedge Part Number System
How To Order

Example part Number: Example Part Number:


Aluminum Wire Gold Wire

2130-2025-L 2130-2025-L-CG-F-TiC
A. Series
F. Optional Cross Groove
B. Wire Feed Angle*
Optional Flat Face
C. Hole Size (standard on some series)
D. Bond Length
E. Tool Length G. Optional Material

A. & B. Series & Wire Feed Angle:


See the following catalog pages for various styles of wedges for aluminum and gold wire.
*Except the 2131 series where the 31 designates a 38° wire feed angle wedge with an elliptical back radius.

C. Hole Size: D. Bond Length:


Specify based on wire size and wire feed angle. Specify based on bond pad size and wire diameter.
See the tables for each series for recommended wire diameters. XX = 0.00XX
XX = 0.00XX 15 = 0.0015 in./38μm
20 = 0.0020 in./51μm

E. Tool Length:
Specify based on bonder requirement. See following page for industry standard lengths.

F. Options:
Specify in alphabetical order in part number after the length designation.
“-F” = Flat Face “-10DBA” = 10° Back Angle
“-CG-F” = Cross Groove & Flat Face “-20DBA” = 20° Back Angle
“-CC-CG” = Concave Face & Cross Groove “-CSF” = Concave Side Flats
“-LG” = Longitudinal Groove “-45SC(W=Specify)” = 45° Side Chamfers
“-PBR” = Polished Back Radius** “-ELBR” = Elliptical Back Radius
“-PFR” = Polished Front Radius** “-CBR(Specify)” = Chamfered Back Radius
“-PBF” = Polished Front & Back Radius & Bond Length** “-MOD C” = Maximized C Clearance
“-PCS” = Polished Countersink “-180 REV” = 180° Reverse Shank
“-V” = Vertical Back Grind

**Not available with Cermet material option


See the Modifications page for illustrations and more options.
Some of the above features are standard on some series and do not need to be specified.

G. Material:
Tungsten Carbide: Recommended for Aluminum wire. Standard, do not specify in part number.
Titanium Carbide: Recommended for Gold wire. Specify “-TiC” at the end of the part number.
Cermet-Tipped: Recommended for Gold wire. Specify “-BKCER” at the end of the part number.

We reserve the right to change the design or specification of any catalog item without notice. Such changes will be in the interest of improving design.

76
Wedges
Shank Design & Lengths

Standard 1/16 inch Diameter Shank Designs

capillaries
SD = Shank Diameter
SDF = Shank Diameter Flat
Ø0.0624/1.58mm
0.0460/1.17mm
+0.0001/0.003mm
±0.0005/0.013mm
-0.0002/0.005mm

wedges
Length Specified
in Part Number
10°
0.437/11.1mm = "-S"
0.625/15.88mm = "-625"
0.750/19.05mm = "-3/4"

tab tools
0.828/21.03mm = "-L"
1.000/25.4mm = "-1.0"
1.078/27.38mm = "-1.078"
20° ±0.005/0.13mm

10°

10°

0.040/1.02mm

die attach
±0.005/0.13mm

W Dimension T Dimension

Standard Optional 180° Reverse Shank*


10° Back Grind Vertical Grind (Not available
Shank Shank Vertical Feed Style Tools)

Note: Small wire wedge shank styles vary slightly based on intended use and wire bonder design.
For other shank characteristics, if any, see the catalog page for each series.
other

*Dias Bonder Models US1800A & US1900A and K&S Bonder Models #8060 & #8090

Dimensions in inches unless otherwise specified.

77
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedges
Tip Modifications

Hole
RADIUS Width

Hole
DSR H
Height

TOOL W
DSR W

Optional Double Side Relief Optional Oval Hole


Specified in part number Specified in part number

-DSR(“W”x“H”) Width x Height

Example: Example:
For a double side relief 0.004 inch wide x 0.010 inch high, For an oval hole 0.0015 inch wide x 0.0020 inch high,
specify “-DSR(004x010)” specify “15x20” for hole size in part number
(e.g. 2145-15x2015-L-F-CER)

30°
(Optional)

20°
(Standard)
R0.0005 R0.0005

StandardStandard
W 0.0010 0.0010 Back AngleBack Angle
(If Any) (If Any)

Optional 30° W Angle Optional Cross Groove Optional Vertical Back Grind
Specified in part number Specified in part number Specified in part number

-30DG -CG -V

Standard in some series Standard in some series


Enhances the transfer of ultrasonic energy The vertical back grind is 0.040 inch high
in situations of poor bondability
Recommended for flat face gold wire tools

78
Wedges
Tip Modifications

capillaries
45° 45°

0.0003 0.0003 Chamfered W Chamfered W


Optional T
W W Original W Original W
Standard T

wedges
Optional Concave Side Optional 45° Side Chamfers Optional T Size
Flats Specified in part number Specified in part number
Specified in part number
-45SC(W=“Chamfered W”) -T=“Optional T”
-CSF
For fine-pitch wire bonding For a T=0.010 inch,
Example part number: specify “-T=010”
2145-2020-3/4-F-45SC(W=003)-TiC

tab tools
DETAIL A

Maximized C 15°

die attach
Standard C

0.001
DETAIL A

Optional Modified C Dimension Optional Chamfered Back Radius


Specified in part number Specified in part number

-MOD C -CBR

For maximum rear clearance Note: The CBR option defaults to 0.0010 in./25μm,
CBR(001), unless otherwise specified. For other CBR sizes,
specify CBR(0008), CBR(0012), etc.
other

79
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
MaxiBond™ Wedges
V-notch vs. MaxiGuide™/Pocket-type vs. MaxiBond

The patent pending MaxiBond represents the next step in The MaxiBond design overcomes the limitations of the
the design evolution of small wire wedges. As package MaxiGuide with none of the disadvantages of the V-notch
features and pad sizes become increasingly smaller, the – the advantages of both, the disadvantages of neither in
limitations of the venerable MaxiGuide or pocket-type one patent pending design architecture, the MaxiBond.
design become evident, forcing the return to the use of
the old V-notch style wedge.

V-Notch MaxiGuide or Pocket Type The MaxiBond


Circa 1960’s Circa 1979 Patent Pending 2005

V-Notch MaxiGuide MaxiBond


Gives access into small recessed pad Possible interference problem with Gives access into small recessed pad
without damage to surrounding recessed pad with surrounding without damage to surrounding
passivation or protective overcoat passivation or protective overcoat passivation or protective overcoat

V-Notch MaxiGuide MaxiBond


Possible missing wire under bond foot Contains wire, guides wire under bond foot Contains wire, guides wire under bond foot

80
MaxiBond™ Wedges
V-notch vs. MaxiGuide™/Pocket-type vs. MaxiBond

Maxiguide MaxiBond
Problem with smaller “W” dimension Allows smaller “W”

capillaries
Solution

REDUCED "W" REDUCED "W"


FULL SIZE REDUCED
and and
W W
45° SC 45° SC

ADEQUATE THIN WALLS TOO ADEQUATE


WALLS WALLS THIN WALLS

wedges
MaxiBond
Advanced Architecture
The MaxiBond
Eliminates bond smash-out
• Small “W” capability
Superior 1st bond heel and 2nd bond termination
• Access into small recessed pads without cracking
surrounding passivation or protective overcoat
• Complete BR provides best 1st bond heel and 2nd

tab tools
bond termination
• Maintains wire guiding and centering on pad
• Eliminates bond smash-out
• Ideal for fine pitch
1st bond smash-out 2nd bond smash-out
possible with MaxiGuide possible with MaxiGuide

die attach
MaxiBond, no smash-out MaxiBond, no smash-out
excellent 1st bond heel excellent 2nd bond termina-
Raised Pocket, Swept Back Design tion
• Centers wire on pad like
Maxiguide MaxiGuide
• Provides thick side walls for incomplete compromised BR
minimized “W” and no sharp and adjacent pocket walls
edges in wire path create area for smash-out

Dropped Bond Foot Architecture MaxiBond


• Provides complete back radius geometry for complete BR and raised pock-
other

access into small pads, best 1st bond, heel et, dropped-foot architecture
and 2nd bond tailing, and no smash-out eliminate smash-out

81
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
MaxiBond™ Wedges
2130MB, 2138MB, & 2145MB Series

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD
2130MB &
RECOMMENDED
FOR GOLD WIRE
RECOMMENDED
FOR ALUMINUM WIRE
2138MB
45°

20° 20°
H

30°/ 38°

FR BR
W W BL 10°

Ø0.0624
+0.0001 0.0460
-0.0002 ±0.0005
Ø1.585mm
+0.003mm
1.168mm
±0.013mm
2145MB 45°
-0.005mm

H
10°
45°

LENGTH
SPECIFIED
IN PART NO. FR BR
20° BL 10°

Specify:
Series/Wire Feed Angle-Hole Size/Bond Length-Length-Options

Example:
2130MB-2020-S
2145MB-1510-3/4-F-TiC
2145MB-1520-3/4-CG-F-BKCER

Material:
Tungsten Carbide Standard
Titanium Carbide Optional
(Specify “-TiC” in part no.)
Cermet Tip Optional
(Specify “-BKCER” in part no.)
Patent Pending

82
MaxiBond™ Wedges
2130MB, 2138MB & 2145MB Series

T T
H BL W FR BR SUGGESTED
DASH 30° & 38° 45°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm

capillaries
±0.0005 / 13 ±0.0005 / 13
0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0100 / 254 0.0080 / 203
*1507 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0090 / 229
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0090 / 229 0.0007 / 18 to 0.0010 / 25
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0090 / 229
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0100 / 254
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0100 / 254
0.0017 hole uses the same specifications as the 0.0015 hole except for the hole dimension
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330 0.0110 / 279
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0140 / 356 0.0120 / 305
0.0010 / 25 to 0.0013 / 33
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0140 / 356 0.0120 / 305

wedges
2022 0.0020 / 51 0.0022 / 56 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0140 / 356 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0130 / 330
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0130 / 330
0.0023 hole uses the same specifications as the 0.0025 hole except for the hole dimension
2515 0.0025 / 64 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0140 / 356 0.0130 / 330
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0130 / 330
2522 0.0025 / 64 0.0022 / 56 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0130 / 330 0.0010 / 25 to 0.0015 / 38
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0140 / 356
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0140 / 356
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0160 / 406 0.0150 / 381
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432 0.0170 / 432

tab tools
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0180 / 457
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0180 / 457 0.0015 / 38 to 0.0020 / 51
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0190 / 483
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0190 / 483

*Flat Face Only. Other part numbers are available. Dimensions in inches unless otherwise specified.

CLEARANCE

Fine-Pitch MaxiBond Solutions


Special DSR & W Designs 1.0 mil
DSR W DSR W DSR W

Wire

die attach
TOOL W TOOL W TOOL W
WIRE
DIAMETER 0.0031 0.0028 0.0024
80um 70um 60um

80μ Pitch 70μ Pitch 60μ Pitch


LOOP
HEIGHT CLEARANCE

DSR W DSR W DSR W


PAD SIZE OR
PAD OPENING
0.8 mil
Wire
PITCH
other

TOOL W TOOL W TOOL W

Fine Pitch 0.0028


70um
0.0024
60um
0.0020
50um

Wedge-Bonding Criteria 70μ Pitch 60μ Pitch 50μ Pitch

83
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
MaxiBond™ Wedges
2155MB & 2160MB Series

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD

RECOMMENDED RECOMMENDED
FOR GOLD WIRE FOR ALUMINUM WIRE

2155MB 30°
20° 20°

55°
W W

FR BR
Ø0.0624 BL
+0.0001 0.0460 T
-0.0002 ±0.0005
Ø1.585mm 1.168mm
+0.003mm ±0.013mm
-0.005mm

10° 30°

2160MB

LENGTH
SPECIFIED
H
IN PART NO.

20° 60°

0.040
±0.005 FR BR
BL
T

Specify:
Series/Wire Feed Angle-Hole Size/Bond Length-Length-Options

Example:
2160MB-2020-S
2155MB-1510-3/4-F-TiC
2160MB-1520-3/4-CG-F-BKCER

Material:
Tungsten Carbide Standard
Titanium Carbide Optional
(Specify “-TiC” in part no.)
Cermet Tip Optional
(Specify “-BKCER” in part no.) Patent Pending

84
MaxiBond™ Wedges
2155MB & 2160MB Series

T
H BL W FR BR SUGGESTED
DASH 55° & 60°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm

capillaries
±0.0005 / 13
0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0005 / 13 0.0005 / 13 0.0080 / 203
*1507 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0005 / 13 0.0005 / 13 0.0080 / 203
*1508 0.0015 / 38 0.0008 / 20 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
0.0007 / 18 to 0.0010 / 25
*1510 0.0015 / 38 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203
1515 0.0015 / 38 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203
1520 0.0015 / 38 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
1525 0.0015 / 38 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
0.0017 hole uses the same specifications as the 0.0015 hole except for the hole dimension
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0110 / 279

wedges
0.0010 / 25 to 0.0013 / 33
2018 0.0020 / 51 0.0018 / 46 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2515 0.0025 / 64 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0110 / 279
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2522 0.0025 / 64 0.0022 / 56 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305 0.0010 / 25 to 0.0015 / 38
2527 0.0025 / 64 0.0027 / 69 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0130 / 330
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0130 / 330

tab tools
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0130 / 330
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
0.0015 / 38 to 0.0020 / 51
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381

*Flat Face Only. Other part numbers are available. Dimensions in inches unless otherwise specified.
CLEARANCE

Fine-Pitch MaxiBond Solutions


Special DSR & W Designs 1.0 mil
DSR W DSR W DSR W

die attach
Wire

WIRE
DIAMETER TOOL W TOOL W TOOL W

0.0031 0.0028 0.0024


80um 70um 60um

80μ Pitch 70μ Pitch 60μ Pitch


LOOP
HEIGHT
CLEARANCE

DSR W DSR W DSR W


PAD SIZE OR
PAD OPENING 0.8 mil
Wire
PITCH
other

TOOL W TOOL W TOOL W

Fine-Pitch 0.0028
70um
0.0024
60um
0.0020
50um

Wedge Bonding Criteria 70μ Pitch 60μ Pitch 50μ Pitch

85
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep Access MaxiBond™ Wedges
Vertical Feed, Standard Shank
4645MB & 4660MB Series

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD

RECOMMENDED RECOMMENDED
4645MB
FOR GOLD WIRE FOR ALUMINUM WIRE 45°

H
20° 20°
45°

FR
BR
W W BL 10°

Ø0.0624
+0.0001 0.0590 0.0590 30°
-0.0002 ±0.0005 ±0.0005
Ø1.585mm 1.50mm 1.50mm 4660MB
+0.003mm ±0.013mm ±0.013mm
-0.005mm

10°
10° H
60°

LENGTH
SPECIFIED
IN PART NO.
FR
BR
BL

20° T

0.040
±0.005

4645MB 4660MB
Standard Standard
Shank Design Shank Design
Specify: *Specify “-V” when ordering with Cermet
Series/Wire Feed Angle-Hole Size/Bond Length- tip if 45°
Length-Options Material:
Tungsten Carbide Standard
Example: Titanium Carbide Optional
4645MB-2020­-L (Specify “-TiC” in part number)
4660MB-1510-3/4-F-BKCER Cermet Tip Optional
4645MB-2020-3/4-CG-F-V-BKCER (Specify “-BKCER” in part no.)
Patent Pending

86
Deep Access MaxiBond™ Wedges
Vertical Feed, Standard Shank
4645MB & 4660MB Series

T T
H BL W FR BR SUGGESTED
DASH 45° 55° & 60°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm in. / µm

capillaries
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13 ±0.0005 / 13
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203 0.0090 / 229
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0090 / 229
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0100 / 254 0.0007 / 18 to 0.0010 / 25
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0100 / 254
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0110 / 279
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0120 / 305
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0120 / 305
0.0010 / 25 to 0.0013 / 33
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0120 / 305

wedges
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0120 / 305
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330 0.0120 / 305
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0140 / 356 0.0120 / 305
0.0010 / 25 to 0.0015 / 38
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 **0.0015 / 38 0.0006 / 15 0.0140 / 356 0.0120 / 305
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0150 / 381 0.0130 / 330
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432 0.0140 / 356
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0140 / 356
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0150 / 381 0.0015 / 38 to 0.0020 / 51
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0150 / 381
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0150 / 381

tab tools
*Flat Face Only
** for 45° FR=0.0010; for 55° & 60° FR=0.0015
Other part numbers are available.
Dimensions in inches unless otherwise specified.

CLEARANCE

Fine-Pitch MaxiBond Solutions


Special DSR & W Designs 1.0 mil
DSR W DSR W DSR W

die attach
Wire

WIRE
TOOL W TOOL W TOOL W
DIAMETER
0.0031 0.0028 0.0024
80um 70um 60um

80μ Pitch 70μ Pitch 60μ Pitch


LOOP
HEIGHT
CLEARANCE

DSR W DSR W DSR W


PAD SIZE OR
PAD OPENING 0.8 mil
Wire
PITCH
other

TOOL W TOOL W TOOL W

Fine-Pitch 0.0028
70um
0.0024
60um
0.0020
50um

Wedge Bonding Criteria 70μ Pitch 60μ Pitch 50μ Pitch

87
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep Access MaxiBond™ Wedges
Vertical Feed, Close Guide Shank
4545MB & 4560MB Series

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD

RECOMMENDED RECOMMENDED
4545MB
FOR GOLD WIRE FOR ALUMINUM WIRE 45°

20° 20°
H
45°

FR
BR
W W BL 10°

Ø0.0624 30°
+0.0001
-0.0002 *SDF *SDF 4560MB
Ø1.585mm VARIES WITH VARIES WITH
+0.003mm T SIZE T SIZE
-0.005mm

H
10° 60°

10°

LENGTH
SPECIFIED FR
IN PART NO. BR
BL

T
20°

0.040
±0.005

4545MB Close 4560MB Close


Guide Shank Guide Shank
Design Design
Specify: *Specify “-V” when ordering with Cermet
Series/Wire Feed Angle-Hole Size/Bond Length-Length- tip if 45°
Options Material:
Tungsten Carbide Standard
Example: Titanium Carbide Optional
4545MB-2020­-L (Specify “-TiC” in part number)
4560MB-1510-3/4-F-BKCER Cermet Tip Optional
4545MB-2020-3/4-CG-F-V-BKCER (Specify “-BKCER” in part no.)
Patent Pending

88
Deep Access MaxiBond™ Wedges
Vertical Feed, Close Guide Shank
4545MB & 4560MB Series

T T
H BL W FR BR SUGGESTED
DASH 45° 55° & 60°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm in. / µm

capillaries
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13 ±0.0005 / 13
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203 0.0090 / 229
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0090 / 229
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0100 / 254 0.0007 / 18 to 0.0010 / 25
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0100 / 254
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0110 / 279
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0120 / 305
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0120 / 305
0.0010 / 25 to 0.0013 / 33
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0120 / 305

wedges
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0120 / 305
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330 0.0120 / 305
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0140 / 356 0.0120 / 305
0.0010 / 25 to 0.0015 / 38
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 **0.0015 / 38 0.0006 / 15 0.0140 / 356 0.0120 / 305
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0150 / 381 0.0130 / 330
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432 0.0140 / 356
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0140 / 356
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0150 / 381 0.0015 / 38 to 0.0020 / 51
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0150 / 381
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0150 / 381

tab tools
*Flat Face Only
** for 45° FR=0.0010; for 55° & 60° FR=0.0015
Other part numbers are available.
Dimensions in inches unless otherwise specified.

CLEARANCE

Fine-Pitch MaxiBond Solutions


Special DSR & W Designs 1.0 mil
DSR W DSR W DSR W

Wire

die attach
WIRE TOOL W TOOL W TOOL W
DIAMETER
0.0031 0.0028 0.0024
80um 70um 60um

80μ Pitch 70μ Pitch 60μ Pitch


LOOP
HEIGHT
CLEARANCE

0.8 mil
DSR W DSR W DSR W
PAD SIZE OR
PAD OPENING

Wire
PITCH
other

TOOL W TOOL W TOOL W

Fine-Pitch 0.0028
70um
0.0024
60um
0.0020
50um

Wedge Bonding Criteria 70μ Pitch 60μ Pitch 50μ Pitch

89
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep Access MaxiBond™ Wedges
Vertical Feed Series for Westbond
4845MB, 4855MB, & 4860MB

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD

RECOMMENDED RECOMMENDED
4845MB
FOR GOLD WIRE FOR ALUMINUM WIRE 45°

H
20° 20°
45°

FR
BR
W W BL

Ø0.017 Ø0.017

Ø0.0624
+0.0001 0.0590 0.0590 30°
-0.0002 ±0.0005 ±0.0005
Ø1.585mm 1.50mm 1.50mm 4855MB &
+0.003mm ±0.013mm ±0.013mm
-0.005mm 4860MB

H
55°/ 60°

LENGTH
SPECIFIED
IN PART NO.
FR
BR
0.400 0.400 BL
20°
T
10° 10°
Features:
Designed for the Westbond
Vertical Feed, Deep Access
Wire Bonders
45° 55°/ 60°

4845MB 4855MB Length:


Shank Design 4860MB -625=0.625 inch (most common)
Shank Design -3/4=0.750 inch
-L=0.828 inch
4860MB-1510-3/4-CG-F-BKCER
Specify:
Series/Wire Feed Angle-Hole Size/Bond Length-Length- Material:
Options Tungsten Carbide Standard
Titanium Carbide Optional
Example: (Specify “-TiC” in part no.)
4845MB-2020-625 Cermet Tip Optional
(Specify “-BKCER” in part no.) Patent Pending

90
Deep Access MaxiBond™ Wedges
Vertical Feed Series for Westbond
4845MB, 4855MB, & 4860MB

T T
H BL W FR BR SUGGESTED
DASH 45° 55° & 60°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm in. / µm

capillaries
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13 ±0.0005 / 13
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203 0.0090 / 229
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0090 / 229
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0100 / 254 0.0007 / 18 to 0.0010 / 25
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0100 / 254
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0110 / 279
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0120 / 305
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0120 / 305
0.0010 / 25 to 0.0013 / 33
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0120 / 305

wedges
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0120 / 305
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330 0.0120 / 305
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0140 / 356 0.0120 / 305
0.0010 / 25 to 0.0015 / 38
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 **0.0015 / 38 0.0006 / 15 0.0140 / 356 0.0120 / 305
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0150 / 381 0.0130 / 330
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432 0.0140 / 356
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0140 / 356
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0150 / 381 0.0015 / 38 to 0.0020 / 51
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0150 / 381
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0150 / 381

tab tools
*Flat Face Only
** for 45° FR=0.0010; for 55° & 60° FR=0.0015
Other part numbers are available.
Dimensions in inches unless otherwise specified.

CLEARANCE

Fine-Pitch MaxiBond Solutions


Special DSR & W Designs 1.0 mil
DSR W DSR W DSR W

Wire

die attach
TOOL W TOOL W TOOL W
WIRE
DIAMETER 0.0031 0.0028 0.0024
80um 70um 60um

80μ Pitch 70μ Pitch 60μ Pitch


LOOP
HEIGHT
CLEARANCE

0.8 mil
DSR W DSR W DSR W
PAD SIZE OR
PAD OPENING

Wire
PITCH
other

TOOL W TOOL W TOOL W

Fine-Pitch 0.0028
70um
0.0024
60um
0.0020
50um

Wedge Bonding Criteria 70μ Pitch 60μ Pitch 50μ Pitch

91
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep Access MaxiBond™ Wedges
Vertical Feed Series, Double Flat Shank
4155MB, 4160MB & 4155VMB, 4160VMB

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD
4155MB &
30°
RECOMMENDED
FOR GOLD WIRE
RECOMMENDED
FOR ALUMINUM WIRE 4160MB

20° 20°

20°
H
55°/ 60°

FR
BR
BL
W W
T

0.018
±0.002

Ø0.0624
0.0510
4155VMB &
+0.0001 30°
-0.0002
±0.0005 4160VMB

0.140
±.005
H
55°/ 60°

Modified Shank Option FR


BR
LENGTH Acts as Wire Guide BL
SPECIFIED
IN PART NO. T
Add “-MS1” to the
10°
Part Number.

Features:
Designed for the Palomar 2470
20° and the Hesse & Knipps
Deep Access Wire Bonders
20° 0.040
±0.005 Length:
-3/4=0.750 inch (most common)
-1.0=1.000 inch
4160MB Style 4160VMB Style -1.078=1.078 inch
Standard Vertical Grind
Shank Shank Material:
Specify: Tungsten Carbide Standard
Series/Wire Feed Angle-Hole Size/Bond Length-Length- Titanium Carbide Optional
Options (Specify “-TiC” in part no.)
Cermet Tip Optional
Example: (Specify “-BKCER” in part no.)
4160MB-2020-3/4 Patent Pending
4160VMB-1510-3/4-CG-F-BKCER

92
Deep Access MaxiBond™ Wedges
Vertical Feed Series, Double Flat Shank
4155MB, 4160MB & 4155VMB, 4160VMB

H BL W FR BR T SUGGESTED
DASH
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER

capillaries
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 in. / µm

0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
0.0007 / 18 to 0.0010 / 25
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229
0.0017 hole uses the same specifications as the 0.0015 hole except for the hole dimension
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0010 / 25 to 0.0013 / 33
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254

wedges
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279
2515 0.0025 / 64 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0010 / 25 to 0.0015 / 38
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0130 / 330
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0130 / 330
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381 0.0015 / 38 to 0.0020 / 51

tab tools
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406

*Flat Face Only


Other part numbers are available.
Dimensions in inches unless otherwise specified

CLEARANCE

Fine-Pitch MaxiBond Solutions


Special DSR & W Designs 1.0 mil
DSR W DSR W DSR W

Wire

die attach
WIRE TOOL W TOOL W TOOL W
DIAMETER
0.0031 0.0028 0.0024
80um 70um 60um

80μ Pitch 70μ Pitch 60μ Pitch


LOOP
HEIGHT
CLEARANCE

DSR W DSR W DSR W


0.8 mil
PAD SIZE OR
PAD OPENING

Wire
PITCH
other

TOOL W TOOL W TOOL W

Fine-Pitch 0.0028
70um
0.0024
60um
0.0020
50um

Wedge Bonding Criteria 70μ Pitch 60μ Pitch 50μ Pitch

93
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
MaxiGuide™ Wedges
2130, 2138, & 2145 Series

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD

RECOMMENDED RECOMMENDED
2130
FOR GOLD WIRE FOR ALUMINUM WIRE 45°

H
20° 20°

30°

FR BR 10° 8°
W W BL

Ø0.0624
+0.0001 0.0460
-0.0002
Ø1.585mm
±0.0005 2138 &
1.168mm
+0.003mm ±0.013mm 2145
-0.005mm 45°

H
10°
38°/ 45°

15°
LENGTH
SPECIFIED FR BR 10°
IN PART NO. BL
20°
T

Specify:
Series/Wire Feed Angle-Hole Size/Bond Length-Length-
Options

Example:
2145-2020-S
2130-1510-3/4-F-TiC
Features:
Material: The MaxiGuide design encloses and guides the
Tungsten Carbide Standard wire to the bond foot, thereby enhancing wire
Titanium Carbide Optional control and bond centering.
(Specify “-TiC” in part no.)
Cermet Tip Optional
(Specify “-BKCER” in part no.)

94
MaxiGuide™ Wedges
2130, 2138, & 2145 Series

T T
H BL W FR BR SUGGESTED
DASH 30° 38° & 45°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm

capillaries
±0.0005 / 13 ±0.0005 / 13
0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0100 / 254 0.0080 / 203
*1507 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0090 / 229
*1507A 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0100 / 254 0.0090 / 229
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0090 / 229
0.0007 / 18 to 0.0008 / 20
*1510A 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0110 / 279 0.0090 / 229
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0090 / 229
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0100 / 254
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0100 / 254
1530 0.0015 / 38 0.0030 / 76 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0130 / 330 0.0110 / 279
0.0017 hole uses the same specifications as the 0.0015 hole except for the hole dimension
0.0008 / 20 to 0.0010 / 25

wedges
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2005 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0005 / 13 0.0005 / 13 0.0120 / 305 0.0100 / 254
*2007 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0005 / 13 0.0005 / 13 0.0120 / 305 0.0110 / 279
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330 0.0110 / 279
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0140 / 356 0.0120 / 305
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0140 / 356 0.0120 / 305 0.0010 / 25
2022 0.0020 / 51 0.0022 / 56 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0140 / 356 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0130 / 330
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0130 / 330
2040 0.0020 / 51 0.0040 / 102 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0160 / 406 0.0140 / 356
0.0023 hole uses the same specifications as the 0.0025 hole except for the hole dimension

tab tools
*2510 0.0025 / 64 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0140 / 356 0.0120 / 305
2515 0.0025 / 64 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0140 / 356 0.0130 / 330
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0130 / 330
2522 0.0025 / 64 0.0022 / 56 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0130 / 330 0.0010 / 25 to 0.0013 / 33
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0140 / 356
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0140 / 356
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0160 / 406 0.0150 / 381
2540 0.0025 / 64 0.0040 / 102 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0160 / 406 0.0150 / 381
3015 0.0030 / 76 0.0015 / 38 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432 0.0170 / 432
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432 0.0170 / 432

die attach
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0180 / 457
0.0015 / 38 to 0.0018 / 46
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457 0.0180 / 457
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0190 / 483
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0190 / 483
3525 0.0035 / 89 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0210 / 533 0.0180 / 457
3530 0.0035 / 89 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0210 / 533 0.0190 / 483
3535 0.0035 / 89 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0220 / 559 0.0190 / 483
0.0020 / 51
3540 0.0035 / 89 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0220 / 559 0.0200 / 508
3545 0.0035 / 89 0.0045 / 114 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0230 / 584 0.0200 / 508
3550 0.0035 / 89 0.0050 / 127 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0230 / 584 0.0210 / 533
4040 0.0040 / 102 0.0040 / 102 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0250 / 635 0.0210 / 533
0.0020 / 51 to 0.0025 / 64
4050 0.0040 / 102 0.0050 / 127 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0260 / 660 0.0220 / 559
4540 0.0045 / 114 0.0040 / 102 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0270 / 686 0.0250 / 635
0.0030 / 76
other

4545 0.0045 / 114 0.0045 / 114 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0270 / 686 0.0250 / 635
5050 0.0050 / 127 0.0050 / 127 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0300 / 762 0.0280 / 711 0.0030 / 76 to 0.0035 / 89

*Flat Face Only. Other part numbers are available. Dimensions in inches unless otherwise specified.

95
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
MaxiGuide™ Wedges
2155 & 2160 Series

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD

RECOMMENDED RECOMMENDED
FOR GOLD WIRE FOR ALUMINUM WIRE

2155 30°
20° 20°

W W 55°

20°

FR BR
BL
Ø0.0624
+0.0001 0.0460 T
-0.0002 ±0.0005
Ø1.585mm 1.168mm
+0.003mm ±0.013mm
-0.005mm

30°
10°

2160

LENGTH
SPECIFIED H
IN PART NO. 60°
20°

20°

0.040 FR BR
±0.005 BL

Specify:
Series/Wire Feed Angle-Hole Size/Bond Length-Length-
Options

Example:
2160-2020-S
2155-1510-3/4-F-TiC
Features:
Material: The MaxiGuide design encloses and guides the
Tungsten Carbide Standard wire to the bond foot, thereby enhancing wire
Titanium Carbide Optional control and bond centering.
(Specify “-TiC” in part no.)
Cermet Tip Optional
(Specify “-BKCER” in part no.)

96
MaxiGuide™ Wedges
2155 & 2160 Series

T
H BL W FR BR SUGGESTED
DASH 55° & 60°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm

capillaries
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13
0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0005 / 13 0.0005 / 13 0.0080 / 203
*1507 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0005 / 13 0.0005 / 13 0.0080 / 203
*1508 0.0015 / 38 0.0008 / 20 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
*1508A 0.0015 / 38 0.0008 / 20 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0080 / 203
*1510 0.0015 / 38 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203 0.0007 / 18 to 0.0008 / 20
1515 0.0015 / 38 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203
1520 0.0015 / 38 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
1525 0.0015 / 38 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
1527 0.0015 / 38 0.0027 / 69 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
1530 0.0015 / 38 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254

wedges
0.0017 hole uses the same specifications as the 0.0015 hole except for the hole dimension
0.0008 / 20 to 0.0010 / 25
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2007 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0110 / 279
2018 0.0020 / 51 0.0018 / 46 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305 0.0010 / 25
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2035 0.0020 / 51 0.0035 / 89 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0130 / 330

tab tools
2040 0.0020 / 51 0.0040 / 102 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0130 / 330
2515 0.0025 / 64 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0110 / 279
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2522 0.0025 / 64 0.0022 / 56 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0120 / 305
2527 0.0025 / 64 0.0027 / 69 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0130 / 330 0.0010 / 25 to 0.0013 / 33
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0130 / 330
2530A 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0120 / 305
2535 0.0025 / 64 0.0035 / 89 0.0040/102 0.0010 / 25 0.0010 / 25 0.0130 / 330
2540 0.0025 / 64 0.0040 / 102 0.0040/102 0.0010 / 25 0.0010 / 25 0.0140 / 356
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356

die attach
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3030A 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0000 / 0 0.0140 / 356 0.0015 / 38 to 0.0018 / 46
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3520 0.0035 / 89 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356
3525 0.0035 / 89 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3530 0.0035 / 89 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
0.0020 / 51
3535 0.0035 / 89 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406
3540 0.0035 / 89 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406
3550 0.0035 / 89 0.0050 / 127 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432
4040 0.0040 / 102 0.0040 / 102 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0180 / 457
0.0020 / 51 to 0.0025 / 64
4050 0.0040 / 102 0.0050 / 127 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0190 / 483
4540 0.0045 / 114 0.0040 / 102 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0200 / 508
other

4545 0.0045 / 114 0.0045 / 114 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0200 / 508 0.0030 / 76
4560 0.0045 / 114 0.0060 / 152 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0220 / 559

*Flat Face Only. Other part numbers are available. Dimensions in inches unless otherwise specified.v

97
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
MaxiGuide™ Wedges
2131 Series

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD

RECOMMENDED RECOMMENDED 2131


FOR GOLD WIRE FOR ALUMINUM WIRE

20° 20° 45°

H
38°

15°

FR BR
W W BL 10°

Ø0.0624
+0.0001 0.0460
-0.0002 ±0.0005
Ø1.585mm 1.168mm
+0.003mm ±0.013mm
-0.005mm

10°

LENGTH
SPECIFIED
IN PART NO.

20°

Specify:
Series/Wire Feed Angle-Hole Size/Bond Length-Length-
Options

Example:
2131-2020-S
2131-1510-3/4-F-TiC
Features:
Material: The elliptical back radius design reduces heel
Tungsten Carbide Standard cracks.
Titanium Carbide Optional
(Specify “-TiC” in part no.)
Cermet Tip Optional
(Specify “-BKCER” in part no.)

98
MaxiGuide™ Wedges
2131 Series

H BL W FR BR T SUGGESTED
DASH
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER
±0.0002/5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 in. / µm

capillaries
0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
0.0014 hole uses the same specifications as the 0.0015 hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0005 / 13 0.0005 / 13 0.0110 / 279
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279
*1510A 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0110 / 279 0.0007 / 18 to 0.0008 / 20
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305
1530C 0.0015 / 38 0.0030 / 76 0.0030 / 76 0.0010 / 25 0.0004 / 10 0.0150 / 381
*1810 0.0018 / 46 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
*1810A 0.0018 / 46 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0150 / 381
1815 0.0018 / 46 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381

wedges
0.0008 / 20 to 0.0010 / 25
1820 0.0018 / 46 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
1825 0.0018 / 46 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
1830C 0.0018 / 46 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0004 / 10 0.0150 / 381
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
2017 0.0020 / 51 0.0017 / 43 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381 0.0010 / 25
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
2025C 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0004 / 10 0.0150 / 381
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381

tab tools
*2510 0.0025 / 64 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
2515 0.0025 / 64 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0010 / 25 0.0150 / 381
0.0010 / 25 to 0.0013 / 33
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0015 / 38 0.0010 / 25 0.0150 / 381
2530C 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0004 / 10 0.0150 / 381
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0015 / 38 0.0010 / 25 0.0200 / 508
2540 0.0025 / 64 0.0040 / 102 0.0040 / 102 0.0015 / 38 0.0010 / 25 0.0200 / 508
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0200 / 508
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0200 / 508
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0200 / 508

die attach
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635 0.0015 / 38 to 0.0018 / 46
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635
3045 0.0030 / 76 0.0045 / 114 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635
3050 0.0030 / 76 0.0050 / 127 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635
3525 0.0035 / 89 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0200 / 508
3530 0.0035 / 89 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635
3535 0.0035 / 89 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635
0.0020 / 51
3540 0.0035 / 89 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635
3545 0.0035 / 89 0.0045 / 114 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635
3550 0.0035 / 89 0.0050 / 127 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0250 / 635
4030 0.0040 / 102 0.0030 / 76 0.0060 /152 0.0015 / 38 0.0010 / 25 0.0220 / 559
4035 0.0040 / 102 0.0035 / 89 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0230 / 584 0.0020 / 51 to 0.0025 / 64
4040 0.0040 / 102 0.0040 / 102 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0230 / 584
4540 0.0045 / 114 0.0040 / 102 0.0060 / 152 0.0020 / 51 0.0010 / 25 0.0350 / 889
other

4545 0.0045 / 114 0.0045 / 114 0.0060 / 152 0.0020 / 51 0.0010 / 25 0.0350 / 889 0.0030 / 76
4550 0.0045 / 114 0.0050 /127 0.0060 / 152 0.0020 / 51 0.0010 / 25 0.0350 / 889
*Flat Face Only. Other part numbers are available. Dimensions in inches unless otherwise specified.

99
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedges
V-Notch vs. MaxiGuide™ vs. MaxiBond™

Open V-Notch Construction

WIRE

MaxiGuide Construction

WIRE

MaxiBond Construction

WIRE

100
Gold Wire Microwave Wedges
2M30 & 2M38 Series

FLAT FACE
STANDARD

RECOMMENDED
2M30 2M38 45°
FOR GOLD WIRE

capillaries
45°
20° H
H
38°
30°

10° 10°
FR FR
BR BR
W BL BL
T T

Features:
Flat face, small geometry, vertical back grind for tight
access small pad bonding applications. Material:
Tungsten Carbide Standard
Specify: Titanium Carbide Optional
Series/Wire Feed Angle - Hole Size/Bond Length - Length - Options (Specify “-TiC” in part no.)

wedges
Example: Cermet Tip Optional
2M30-2020-S (Specify “-BKCER” in part no.)
2M38-1510-3/4-TiC

T
H BL W FR BR SUGGESTED
DASH 30° & 38°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13
0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
1505 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254

tab tools
1507 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254
1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254
1513 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.0007 / 18 to 0.0008 / 20
1505B 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0090 / 229
1507B 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0090 / 229
1510B 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0090 / 229
1513B 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0100 / 254
1515B 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0100 / 254

die attach
1520B 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0100 / 254
2005 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254
2007 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254
2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254
2013 0.0020 / 51 0.0013 / 33 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330 0.0010 / 25
2005B 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0100 / 254
2007B 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0100 / 254
2010B 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0100 / 254
2013B 0.0020 / 51 0.0013 / 33 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0120 / 305
other

2015B 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0120 / 305


2020B 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0120 / 305

Other part numbers are available. Dimensions in inches unless otherwise specified.

101
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Gold Wire Microwave Wedges
2M45 Series

FLAT FACE
STANDARD 2M45
RECOMMENDED
FOR GOLD WIRE 45°
Features:
20° Flat face, small geometry, vertical back
H grind for tight access small pad bond-
45°
ing applications.

10°
FR
BR
W BL
T
Specify: Material:
Series/Wire Feed Angle - Hole Size/Bond Length - Length - Options Tungsten Carbide Standard
Titanium Carbide Optional
Example: (Specify “-TiC” in part no.)
2M45-2020-S Cermet Tip Optional
2M45-1510-3/4-TiC (Specify “-BKCER” in part no.)

T
H BL W FR BR SUGGESTED
DASH 45°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13
0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
1505 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1507 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1513 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0007 / 18 to 0.0008 / 20
1505B 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1507B 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1510B 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1513B 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1515B 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1520B 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
2005 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203
2007 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203
2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
2013 0.0020 / 51 0.0013 / 33 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254
0.0010 / 25
2005B 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203
2007B 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203
2010B 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203
2013B 0.0020 / 51 0.0013 / 33 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203
2015B 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0090 / 229
2020B 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0090 / 229

Other part numbers are available. Dimensions in inches unless otherwise specified.

102
Gold Wire Microwave Wedges
2M55 & 2M60 Series

2M55
2M60 30°

capillaries
FLAT FACE
STANDARD 30°

RECOMMENDED
FOR GOLD WIRE

20° 60°
H
H 55°

10° 10°

FR FR
BR BR
W BL BL
T T

Specify: Material:

wedges
Series/Wire Feed Angle - Hole Size/Bond Length - Length - Options Tungsten Carbide Standard
Titanium Carbide Optional
Example: Features: (Specify “-TiC” in part no.)
2M55-2020-S Flat face, small geometry, vertical back grind for Cermet Tip Optional
2M60-1510-3/4-TiC tight access small pad bonding applications. (Specify “-BKCER” in part no.)

T
H BL W FR BR SUGGESTED
DASH 55° & 60°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13
0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension

tab tools
1505 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1507 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1513 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203 0.0007 / 18 to 0.0008 / 20
1505B 0.0015 / 38 0.0005 / 13 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1507B 0.0015 / 38 0.0007 / 18 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1510B 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1513B 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203

die attach
1515B 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
1520B 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
2005 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203
2007 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203
2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203
2013 0.0020 / 51 0.0013 / 33 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229
0.0010 / 25
2005B 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203
2007B 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203
2010B 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203
2013B 0.0020 / 51 0.0013 / 33 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203
other

2015B 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203


2020B 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0004 / 10 0.0004 / 10 0.0080 / 203

Other part numbers are available. Dimensions in inches unless otherwise specified.

103
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Gold Wire Wedges
2G30, 2G30K, & 2G38 Series

A cross groove is standard on


FLAT FACE
STANDARD
the 2G30, 2G30K, & 2G38 series
centered on the bond length.
RECOMMENDED
FOR GOLD WIRE 2G30 & 2G30K

20°

CGR=0.0005

45°

CGD=0.0005 H
W
30°

15°

FR
Ø0.0624 BR 10°
+0.0001 0.0460 BL
-0.0002 ±0.0005
Ø1.585mm T
1.168mm
+0.003mm ±0.013mm
-0.005mm

2G38
10°

45°

LENGTH
SPECIFIED
IN PART NO.
H
20°
38°

15°

FR
BR 10°
BL

Specify: Material:
Series/Wire Feed Angle ‑ Hole Size/Bond Length - Length ‑ Options Tungsten Carbide Standard
Titanium Carbide Optional
Example: (Specify “-TiC” in part no.)
2G30-2020-S Cermet Tip Optional
2G30K-2015-3/4-TiC (Specify “-BKCER” in part no.)

104
Gold Wire Wedges
2G30, 2G30K, & 2G38 Series

SERIES: 2G30 & 2G38


T
H BL W FR BR SUGGESTED

capillaries
DASH 30° & 38°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±.00002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13
1515 0.0015 / 38 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0005 / 13 0.0110 / 279 0.0007 / 18 to 0.0008 / 20
1815 0.0018 / 46 0.0015 / 38 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0140 / 356
1820 0.0018 / 46 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0150 / 381
0.0008 / 20 to 0.0010 / 25
1825 0.0018 / 46 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0150 / 381
1830 0.0018 / 46 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0160 / 406
2015 0.0020 / 51 0.0015 / 38 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0140 / 356
2020 0.0020 / 51 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0150 / 381
2025 0.0020 / 51 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0150 / 381 0.0010 / 25
2030 0.0020 / 51 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0160 / 406

wedges
2040 0.0020 / 51 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0170 / 432
2520 0.0025 / 64 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0170 / 432
2525 0.0025 / 64 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0170 / 432
2530 0.0025 / 64 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0180 / 457 0.0010 / 25 to 0.0013 / 33
2535 0.0025 / 64 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0180 / 457
2540 0.0025 / 64 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0190 / 483
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0180 / 457
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0190 / 483
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0190 / 483 0.0015 / 38 to 0.0018 / 46
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0200 / 508

tab tools
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0200 / 508
3530 0.0035 / 89 0.0030 / 76 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0220 / 559
3535 0.0035 / 89 0.0035 / 89 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0230 / 584
3540 0.0035 / 89 0.0040 / 102 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0230 / 584 0.0020 / 51
3545 0.0035 / 89 0.0045 / 114 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0240 / 610
3550 0.0035 / 89 0.0050 / 127 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0240 / 610

SERIES: 2G30K
T
H BL W FR BR SUGGESTED
DASH 30°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0001 / 2.5 ±0.0001 / 2.5 in. / µm
±0.0005 / 13

die attach
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0003 / 8 0.0002 / 5 0.0150 / 381
0.0010 / 25
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0003 / 8 0.0002 / 5 0.0150 / 381
2520 0.0025 / 64 0.0020 / 51 0.0050 / 127 0.0005 / 13 0.0003 / 8 0.0150 / 381
2525 0.0025 / 64 0.0025 / 64 0.0050 / 127 0.0005 / 13 0.0003 / 8 0.0150 / 381
2525B 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0005 / 13 0.0003 / 8 0.0150 / 381
0.0010 / 25 to 0.0013 / 33
2530 0.0025 / 64 0.0030 / 76 0.0050 / 127 0.0005 / 13 0.0003 / 8 0.0150 / 381
2540 0.0025 / 64 0.0040 / 102 0.0050 / 127 0.0005 / 13 0.0003 / 8 0.0180 / 457
2560 0.0025 / 64 0.0060 / 152 0.0050 / 127 0.0005 / 13 0.0003 / 8 0.0200 / 508
T
H BL W FR BR SUGGESTED
DASH 30°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0001 / 2.5 in. / µm
±0.0005 / 13
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0008 / 20 0.0005 / 13 0.0200 / 508 0.0015 / 38 to 0.0018 / 46
4530 0.0045 / 114 0.0030 / 76 0.0100 / 254 0.0010 / 25 0.0006 / 15 0.0260 / 660
other

0.0030 / 76
4535 0.0045 / 114 0.0035 / 89 0.0100 / 254 0.0010 / 25 0.0006 / 15 0.0260 / 660

Other part numbers are available. Dimensions in inches unless otherwise specified.

105
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Gold Wire Wedges
2G45, 2G55, & 2G60 Series

A cross groove is standard on


FLAT FACE
STANDARD the 2G45, 2G55, & 2G60 series,
centered on the bond length.
RECOMMENDED 2G45
FOR GOLD WIRE

20° 45°
CGR=0.0005

H
CGD=0.0005 45°
W

15°

FR
BR
Ø0.0624 10°
BL
+0.0001 0.0460
-0.0002 ±0.0005 T
Ø1.585mm 1.168mm
+0.003mm ±0.013mm
-0.005mm

30°
2G55 &
2G60
10°

H
LENGTH
SPECIFIED
IN PART NO. 55°/ 60°

20°

15°

FR
10°
BR
BL

Specify: Material:
Series/Wire Feed Angle ‑ Hole Size/Bond Length - Length ‑ Options Tungsten Carbide Standard
Titanium Carbide Optional
Example: (Specify “-TiC” in part no.)
2G45-2020-S Cermet Tip Optional
2G60-2015-3/4-TiC (Specify “-BKCER” in part no.)

106
Gold Wire Wedges
2G45, 2G55, & 2G60 Series

SERIES: 2G45
T
H BL W FR BR SUGGESTED
DASH 45°

capillaries
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13
1820 0.0018 / 46 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0120 / 305
1825 0.0018 / 46 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0120 / 305 0.0008 / 20 to 0.0010 / 25
1830 0.0018 / 46 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0130 / 330
2020 0.0020 / 51 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0120 / 305 0.0010 / 25
2030 0.0020 / 51 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0130 / 330
2520 0.0025 / 64 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0130 / 330
2525 0.0025 / 64 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0140 / 356
2530 0.0025 / 64 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0140 / 356 0.0010 / 25 to 0.0013 / 33
2535 0.0025 / 64 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0150 / 381
2540 0.0025 / 64 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0150 / 381
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0150 / 381

wedges
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0150 / 381
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0160 / 406 0.0015 / 38 to 0.0018 / 46
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0160 / 406
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0005 / 13 0.0170 / 432
3525 0.0035 / 89 0.0025 / 64 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0170 / 432
3530 0.0035 / 89 0.0030 / 76 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0180 / 457
3535 0.0035 / 89 0.0035 / 89 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0180 / 457
0.0020 / 51
3540 0.0035 / 89 0.0040 / 102 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0190 / 483
3545 0.0035 / 89 0.0045 / 114 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0190 / 483
3550 0.0035 / 89 0.0050 / 127 0.0060 / 152 0.0015 / 38 0.0005 / 13 0.0200 / 508
4530 0.0045 / 114 0.0030 / 76 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0210 / 533 0.0030 / 76
SERIES: 2G55 & 2G60

tab tools
T
H BL W FR BR SUGGESTED
DASH 55° & 60°
in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 in. / µm
±0.0005 / 13
1815 0.0018 / 46 0.0015 / 38 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0100 / 254
1820 0.0018 / 46 0.0020 / 51 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0100 / 254
1825 0.0018 / 46 0.0025 / 64 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0110 / 279 0.0008 / 20 to 0.0010 / 25
1830 0.0018 / 46 0.0030 / 76 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0110 / 279
1835 0.0018 / 46 0.0035 / 89 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0120 / 305
2015 0.0020 / 51 0.0015 / 38 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0100 / 254
2020 0.0020 / 51 0.0020 / 51 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0100 / 254
2025 0.0020 / 51 0.0025 / 64 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0110 / 279 0.0010 / 25

die attach
2030 0.0020 / 51 0.0030 / 76 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0110 / 279
2035 0.0020 / 51 0.0035 / 89 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0120 / 305
2520 0.0025 / 64 0.0020 / 51 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0110 / 279
2525 0.0025 / 64 0.0025 / 64 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0120 / 305
2530 0.0025 / 64 0.0030 / 76 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0120 / 305 0.0010 / 25 to 0.0013 / 33
2535 0.0025 / 64 0.0035 / 89 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0130 / 330
2540 0.0025 / 64 0.0040 / 102 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0130 / 330
3020 0.0030 / 76 0.0020 / 51 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0120 / 305
3025 0.0030 / 76 0.0025 / 64 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0130 / 330
3030 0.0030 / 76 0.0030 / 76 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0130 / 330 0.0015 / 38 to 0.0018 / 46
3035 0.0030 / 76 0.0035 / 89 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0140 / 356
3040 0.0030 / 76 0.0040 / 102 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0140 / 356
3530 0.0035 / 89 0.0030 / 76 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0150 / 381
3535 0.0035 / 89 0.0035 / 89 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0160 / 406
3540 0.0035 / 89 0.0040 / 102 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0160 / 406 0.0020 / 51
other

3545 0.0035 / 89 0.0045 / 114 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0170 / 432
3550 0.0035 / 89 0.0050 / 127 0.0065 / 165 0.0015 / 38 0.0005 / 13 0.0170 / 432

Other part numbers are available. Dimensions in inches unless otherwise specified.

107
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep-Access Wedges
Standard Shank Designs

The deep access wedge design was created in order to


meet the challenge of bonding into deep-cavity pack-
ages. The high walls of these packages make access
WIRE
with conventional 30°, 45°, and 60° wedge bonders very CLAMP
difficult. With a conventional bonder, the position of the
wire clamps behind the bonding wedge limits access
into deep packages. Also, the wire may be impeded
between the wire clamps and the wedge by these walls. SHANK HOLE (TYP)
Ø0.009 FOR WIRE
Ø0.009 OR LARGER
Deep-access wedge bonders feed the wire vertically FOR RIBBON
down the center of the tool. The wire clamp is located
above the wedge instead of behind the wedge. This VERTICAL LOOP
clamp position allows the wedge to penetrate deep- FEED TOOL
cavity packages.

The deep access bonding wedge is a combination of both PAD


a wedge and a capillary. The wire travels through the cen-
PACKAGE
ter of the wedge shank, exits down toward the bottom, out
the back of the shank, and re-enters through the wire
feed hole at either a 45° or 60° angle. This innovation in Standard Shank for
wedge bonding has provided the opportunity for small 4445, 4645, 4660, 4645R, & 4660R
bond lengths into deep cavity packages.

WIRE FEED
COUNTERSINK Ø0.0624/1.585mm
+0.0001/+0.003mm
-0.0002/-0.005mm
0.0590
±0.0005
1.50mm
±0.013mm

10° 10° 10°


4445 4645 4660
4645R
4660R

LENGTH LENGTH
SPECIFIED SPECIFIED
IN PART NO. IN PART NO.

20° 20° 0.040


±0.005

Standard Shank V-Notch Design Standard Shank MaxiGuide™ Design

108
Deep-Access Wedges
Close Guide Shank Designs

The close guide shank design locates the shank hole close
to the wedge hole for optimum tail length control.

capillaries
WIRE
CLAMP The following bonding machines use the deep access
tool:

Hybond Model
SHANK HOLE
K&S Model 4129
Ø0.006 (TYP) Mech El Model 990
West Bond Model 4600 & 7400A-46

VERTICAL LOOP
FEED TOOL

wedges
PAD

PACKAGE

Close Guide Shank for


4345, 4545, & 4560

WIRE FEED
COUNTERSINK Ø0.0624/1.585mm

tab tools
+.0001/+.003mm
-.0002/-.005mm

*SDF
(VARIES WITH T SIZE)

10° 10° 10°


4345 4545 4560

die attach
LENGTH LENGTH
SPECIFIED SPECIFIED
IN PART NO. IN PART NO.

20° 20° 0.040


±.005
other

Close Guide V-Notch Design Close Guide MaxiGuide™ Design

109
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep-Access V-Notch Wedges
4445 & 4345 Series

FLAT FACE CONCAVE FACE 45°


OPTIONAL STANDARD 4445 &
RECOMMENDED RECOMMENDED 4345
FOR GOLD WIRE FOR ALUMINUM WIRE

20° 20° H 45°

15°

FR
BR
W W BL 10°

Ø0.0624/1.585mm
+0.0001/+0.003mm
-0.0002/-0.005mm
0.0590
±0.0005 *SDF
1.50mm (VARIES WITH T SIZE)
±0.013mm

10°
10°

LENGTH
SPECIFIED
IN PART NO.

4445 Standard 4345 Close Guide


Shank Design Shank Design
Specify: Material:
Series/Wire Feed Angle - Hole Size/Bond Length - Length - Options Tungsten Carbide Standard
Titanium Carbide Optional
Example: (Specify “-TiC” in part no.)
4445-2020­-S Cermet Tip Optional
4345­-1510-3/4-F-V-BKCER (Specify “-BKCER” in part no.)
*Specify “-V” when ordering with Cermet tip

110
Deep-Access V-Notch Wedges
4445 & 4345 Series

H BL W FR BR T SUGGESTED
DASH
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 in. / µm

capillaries
*1305 0.0013 / 33 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203
*1307 0.0013 / 33 0.0007 / 18 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203
1315 0.0013 / 33 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203
*1305A 0.0013 / 33 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0000 / 0 0.0080 / 203
*1307A 0.0013 / 33 0.0007 / 18 0.0025 / 64 0.0005 / 13 0.0000 / 0 0.0080 / 203
1310A 0.0013 / 33 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0080 / 203
1315A 0.0013 / 33 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0090 / 229
1320A 0.0013 / 33 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0090 / 229
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0120 / 305
*1507 0.0015 / 38 0.0007 / 18 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0120 / 305
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305
*1513 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0007 / 18 to 0.0008 / 20
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305

wedges
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305
1540 0.0015 / 38 0.0040 / 102 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305
*1505A 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0000 / 0 0.0120 / 305
*1507A 0.0015 / 38 0.0007 / 18 0.0025 / 64 0.0005 / 13 0.0000 / 0 0.0120 / 305
*1510A 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0120 / 305
1515A 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0120 / 305
1519A 0.0015 / 38 0.0019 / 48 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0120 / 305
1520A 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0120 / 305
*1510B 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0004 / 10 0.0004 / 10 0.0080 / 203
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305

tab tools
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
0.0010 / 25
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2015A 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0120 / 305
2020A 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0120 / 305
2025A 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0120 / 305
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0140 / 356 0.0010 / 25 to 0.0013 / 33
2540 0.0025 / 64 0.0040 / 102 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0150 / 381
2525A 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0130 / 330
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406

die attach
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432
0.0015 / 38 to 0.0018 / 46
3045 0.0030 / 76 0.0045 / 114 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457
3050 0.0030 / 76 0.0050 / 127 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457
3035A 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0000 / 0 0.0170 / 432
3045A 0.0030 / 76 0.0045 / 114 0.0050 / 127 0.0015 / 38 0.0000 / 0 0.0180 / 457
3535 0.0035 / 89 0.0035 / 89 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0180 / 457
3540 0.0035 / 89 0.0040 / 102 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0190 / 483 0.0020 / 51
3535A 0.0035 / 89 0.0035 / 89 0.0060 / 152 0.0015 / 38 0.0000 / 0 0.0180 / 457
4035 0.0040 / 102 0.0035 / 89 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0190 / 483
4045 0.0040 / 102 0.0045 / 114 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0200 / 508 0.0020 / 51 to 0.0025 / 64
4040A 0.0040 / 102 0.0040 / 102 0.0060 / 152 0.0015 / 38 0.0000 / 0 0.0200 / 508
4540 0.0045 / 114 0.0040 / 102 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0220 / 559
4550 0.0045 / 114 0.0050 / 127 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0230 / 584
4555 0.0045 / 114 0.0055 / 140 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0230 / 584 0.0030 / 76
other

4560 0.0045 / 114 0.0060 / 152 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0240 / 610
4545A 0.0045 / 114 0.0045 / 114 0.0070 / 178 0.0020 / 51 0.0000 / 0 0.0220 / 559

*Flat Face Only. Other part numbers are available. Dimensions in inches unless otherwise specified.

111
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep-Access MaxiGuide™ Wedges
4645 & 4545 Series

FLAT FACE
OPTIONAL
CONCAVE FACE
STANDARD
4645 & 45°
RECOMMENDED RECOMMENDED
4545
FOR GOLD WIRE FOR ALUMINUM WIRE

H
20° 20°
45°

15°
FR
BR
W W BL 10°

Ø0.0624/1.585mm
+0.0001/+0.003mm
-0.0002/-0.005mm
0.0590
±0.0005 *SDF
1.50mm (VARIES WITH T SIZE)
±0.013mm

10° 10°

LENGTH
SPECIFIED
IN PART NO.

4645 Standard 4545 Close Guide


Shank Design Shank Design
Specify: Material:
Series/Wire Feed Angle - Hole Size/Bond Length - Length - Options Tungsten Carbide Standard
Titanium Carbide Optional
Example: (Specify “-TiC” in part no.)
4645-2020­-S Cermet Tip Optional
4545­-1510-3/4-F-V-BKCER (Specify “-BKCER” in part no.)
*Specify “-V” when ordering with Cermet tip

112
Deep-Access MaxiGuide™ Wedges
4645 & 4545 Series

capillaries
H BL W FR BR T SUGGESTED
DASH
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER
±0.0002 /5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 in. / µm

0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
0.0014 hole uses the same specifications as the 0.0015 hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203
*1507 0.0015 / 38 0.0007 / 18 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229
*1513 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.0007 / 18 to 0.0008 / 20
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254

wedges
*1510A 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0090 / 229
1515A 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0090 / 229
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension 0.0008 / 20 to 0.0010 / 25
*2007 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0005 / 13 0.0005 / 13 0.0100 / 254
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.0010 / 25
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305

tab tools
2035 0.0020 / 51 0.0035 / 89 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330
2040 0.0020 / 51 0.0040 / 102 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330
2050 0.0020 / 51 0.0050 / 127 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0140 / 356
0.0022 hole uses the same specifications as the 0.0025 hole except for the hole dimension
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0130 / 330
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0140 / 356
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0140 / 356 0.0010 / 25 to 0.0013 / 33
2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0150 / 381
2540 0.0025 / 64 0.0040 / 102 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0150 / 381
2525A 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0130 / 330

die attach
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0180 / 457
0.0015 / 38 to 0.0018 / 46
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0190 / 483
3050 0.0030 / 76 0.0050 / 127 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0200 / 508
4545 0.0045 / 114 0.0045 / 114 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0240 / 610
0.0030 / 76
4560 0.0045 / 114 0.0060 / 152 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0270 / 686

*Flat Face Only.


Other part numbers are available.
Dimensions in inches unless otherwise specified.
other

113
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep-Access MaxiGuide™ Wedges
4660 & 4560 Series

30°
FLAT FACE CONCAVE FACE
STANDARD
4660 &
OPTIONAL

RECOMMENDED
4560
RECOMMENDED
FOR GOLD WIRE FOR ALUMINUM WIRE

20° 20°
H 60°

20°

FR
BR
W W
BL

Ø0.0624/1.585mm
+0.0001/+0.003mm
-0.0002/-0.005mm
0.0590
±0.0005 *SDF
1.50mm (VARIES WITH T SIZE)
±0.013mm

10° 10°

Specify:
LENGTH Series/Wire Feed Angle - Hole Size/Bond Length - Length -
SPECIFIED
IN PART NO. Options

Example:
4660-2020-S
4560-1510-3/4-F-BKCER

Material:
Tungsten Carbide Standard
Titanium Carbide Optional
(Specify “-TiC” in part no.)Cermet Tip Optional
0.040 (Specify “-BKCER” in part no.)
±0.005

4660 Standard 4560 Close Guide


Shank Design Shank Design

114
Deep-Access MaxiGuide™ Wedges
4660 & 4560 Series

H BL W FR BR T SUGGESTED
DASH
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 in. / µm

capillaries
0.0013 hole uses the same specifications as the 0.0015 Hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0090 / 229
*1507 0.0015 / 38 0.0007 / 18 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0090 / 229
*1508 0.0015 / 38 0.0008 / 20 0.0025 / 64 0.0010 / 25 0.0006 / 15 0.0090 / 229
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229
*1513 0.0015 / 38 0.0013 / 33 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254
1518 0.0015 / 38 0.0018 / 46 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.0007 / 18 to 0.0008 / 20
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0100 / 254
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279
1530 0.0015 / 38 0.0030 / 76 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0110 / 279
1535 0.0015 / 38 0.0035 / 89 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0120 / 305

wedges
*1508A 0.0015 / 38 0.0008 / 20 0.0025 / 64 0.0010 / 25 0.0000 / 0 0.0090 / 229
*1510A 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0090 / 229
1515A 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0000 / 0 0.0100 / 254
0.0017 hole uses the same specifications as the 0.0015 hole except for the hole dimension
0.0008 / 20 to 0.0010 / 25
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension
*2005 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
*2007 0.0020 / 51 0.0007 / 18 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
*2012 0.0020 / 51 0.0012 / 30 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
0.0010 / 25
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305

tab tools
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2515 0.0025 / 64 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305
0.0010 / 25 to 0.0013 / 33
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0120 / 305
2520A 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0110 / 279
2525A 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0000 / 0 0.0120 / 305
0.0027 hole uses the same specifications as the 0.0025 hole except for the hole dimension 0.0013 / 33 to 0.0015 / 38
*3010 0.0030 / 76 0.0010 / 25 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0130 / 330

die attach
3015 0.0030 / 76 0.0015 / 38 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0130 / 330
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356 0.0015 / 38 to 0.0018 / 46
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3525 0.0035 / 89 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3530 0.0035 / 89 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381
3535 0.0035 / 89 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406 0.0020 / 51
3540 0.0035 / 89 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406
3550 0.0035 / 89 0.0050 / 127 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432
4030 0.0040 / 102 0.0030 / 76 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0170 / 432
0.0020 / 51 to 0.0025 / 64
4040 0.0040 / 102 0.0040 / 102 0.0060 / 152 0.0015 / 38 0.0010 / 25 0.0180 / 457
other

4540 0.0045 / 114 0.0040 / 102 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0200 / 508
0.0030 / 76
4545 0.0045 / 114 0.0045 / 114 0.0070 / 178 0.0020 / 51 0.0010 / 25 0.0200 / 508

*Flat Face Only. Other part numbers are available. Dimensions in inches unless otherwise specified.

115
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Deep-Access MaxiGuide™ Wedges
4160, 4160V, 4760, & 4760V Series

FLAT FACE CONCAVE FACE


OPTIONAL STANDARD
4160
RECOMMENDED RECOMMENDED 30°
FOR GOLD WIRE FOR ALUMINUM WIRE

20° 20°

20°
H 60°

20°

FR
BR
W W
BL
T
0.018
±0.002
Ø0.0624
+0.0001
-0.0002

0.0510
±0.0005 4760

30°

0.140
±0.005

20°

H 60°

C
Modified Shank Option
Acts as Wire Guide FR
BR
BL
Add “-MS1” to the T
10° 10° Part Number.

Features:
Designed for the Palomar 2470 Deep
Access Wire Bonder.

20° 20° Material:


0.040
±0.005
0.040 Tungsten Carbide Standard
±0.005
Titanium Carbide Optional
(Specify “-TiC” in part no.)
4160 Style 4160V Style 4760 Style 4760V Style Cermet Tip Optional
Standard Vertical Standard Vertical (Specify “-BKCER” in part no.)
Shank Grind Shank Shank Grind Shank

Specify: Series/Wire Feed Angle - Hole Size/Bond Length - Length - Options

Example:
4160-2020-S
4760V-1510-3/4-F-BKCER

116
Deep-Access MaxiGuide™ Wedges
4160, 4160V, 4760, & 4760V Series

capillaries
C
H BL W FR BR T SUGGESTED
DASH in. / µm
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm WIRE DIAMETER
NUMBER (ref)
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 in. / µm
(4760 only)

0.0013 hole uses the same specifications as the 0.0015 hole except for the hole dimension
*1505 0.0015 / 38 0.0005 / 13 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203 0.002 / 51
*1507 0.0015 / 38 0.0007 / 18 0.0025 / 64 0.0005 / 13 0.0005 / 13 0.0080 / 203 0.002 / 51 0.0005 / 13
*1510 0.0015 / 38 0.0010 / 25 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203 0.002 / 51 to
1515 0.0015 / 38 0.0015 / 38 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203 0.002 / 51 0.0008 / 20
1520 0.0015 / 38 0.0020 / 51 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0080 / 203 0.002 / 51
1525 0.0015 / 38 0.0025 / 64 0.0030 / 76 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.002 / 51
0.0017 hole uses the same specifications as the 0.0015 hole except for the hole dimension 0.0008 / 20 to

wedges
0.0018 hole uses the same specifications as the 0.0020 hole except for the hole dimension 0.0010 / 25
*2005 0.0020 / 51 0.0005 / 13 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0080 / 203 0.003 / 76
*2010 0.0020 / 51 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.003 / 76
2015 0.0020 / 51 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0090 / 229 0.003 / 76 0.0010 / 25
2020 0.0020 / 51 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.003 / 76 to
2025 0.0020 / 51 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.003 / 76 0.0015 / 38
2030 0.0020 / 51 0.0030 / 76 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.003 / 76
2035 0.0020 / 51 0.0035 / 89 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.003 / 76
*2510 0.0025 / 64 0.0010 / 25 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0100 / 254 0.003 / 76
2515 0.0025 / 64 0.0015 / 38 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.003 / 76

tab tools
2520 0.0025 / 64 0.0020 / 51 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0110 / 279 0.003 / 76 0.0012 / 30
2525 0.0025 / 64 0.0025 / 64 0.0040 / 102 0.0010 / 25 0.0006 / 15 0.0120 / 305 0.003 / 76 to
2530 0.0025 / 64 0.0030 / 76 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0130 / 330 0.003 / 76 0.0015 / 38

2535 0.0025 / 64 0.0035 / 89 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0130 / 330 0.003 / 76
2540 0.0025 / 64 0.0040 / 102 0.0040 / 102 0.0015 / 38 0.0006 / 15 0.0140 / 356 0.003 / 76
3020 0.0030 / 76 0.0020 / 51 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356 0.004 / 102
3025 0.0030 / 76 0.0025 / 64 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0140 / 356 0.004 / 102
3030 0.0030 / 76 0.0030 / 76 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381 0.004 / 102 0.0015 / 38
3035 0.0030 / 76 0.0035 / 89 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0150 / 381 0.004 / 102 to
0.0020 / 51

die attach
3040 0.0030 / 76 0.0040 / 102 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406 0.004 / 102
3045 0.0030 / 76 0.0045 / 114 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0160 / 406 0.004 / 102
3050 0.0030 / 76 0.0050 / 127 0.0050 / 127 0.0015 / 38 0.0010 / 25 0.0170 / 432 0.004 / 102

*Flat Face Only.


Other part numbers are available.
Dimensions in inches unless otherwise specified. other

117
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Ribbon Bonding
Ribbon Wedges vs. Wire Wedge

Ribbon Bonding Wedge

Ribbon
Thickness
Slot
Thickness

Slot Width

Ribbon Width

Wire Bonding Wedge

Wire

Wire Feed
Hole

118
Ribbon Wedges
2530, 2545, & 2560 Series

2530 2530 2545 2545 2560 2560

capillaries
30° 30°

45° 45°

45° 45°

ST ST ST ST ST
ST
60° 60°

30° 45° 45°


30°

FR FR FR FR FR FR
BR BR 10° BR 10° BR 10° BR BR
10°
BL BL BL BL BL BL

T T T T T T

wedges
Simply specify the ribbon thickness, width, Material: OPTIONAL
OPTIONAL CROSS CROSS GROOVE
GROOVE

and bond length and Gaiser calculates the Tungsten Carbide Standard
ribbon feed slot dimensions for optimum Titanium Carbide Optional
CGR=0.0005CGR=0.0005
performance. (Specify “-TiC” in part no.)
Cermet Tip Optional
Deep access vertical feed ribbon tools are (Specify “-BKCER” in part no.)
also available - see series 4645R and 4660R. CGD=0.0005CGD=0.0005

Specify: Series/Ribbon Feed Angle - Ribbon Thickness - Ribbon Width - Bond Length - Tool Length - Options

Example:
2530-.5-4-2.0-L (RT=“0.5”=0.0005 in., RW=“4”=0.0040 in., BL or BF=“2.0”=0.0020 in.)

tab tools
2545-1-5-3.0-3/4-CG-TiC (RT=“1”=0.0010 in., RW=“5”=0.0050 in., BL or BF=“3.0”=0.0030 in.)
BR T T T
BL (BF) FR SW W RIBBON RIBBON
in. / µm 30° 45° 60°
in. / µm in. / µm in./µm in./µm THICKNESS WIDTH
+0.0002 / 5 in. / µm in. / µm in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 ±0.0003 / 8 in. / µm in. / µm
-0.0001 / 2.5 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13
0.0005 / 13 0.0010 / 25 0.0003 / 8 0.0035 / 89 0.005 / 127 0.012 / 305 0.008 / 203 0.008 / 203
0.00025 / 6
0.0010 / 25 0.0010 / 25 0.0003 / 8 0.0035 / 89 0.005 / 127 0.012 / 305 0.009 / 229 0.008 / 203
to 0.002 / 51
0.0015 / 38 0.0010 / 25 0.0003 / 8 0.0035 / 89 0.005 / 127 0.013 / 330 0.009 / 229 0.008 / 203 0.0005 / 13
0.0020 / 51 0.0010 / 25 0.0003 / 8 0.0035 / 89 0.005 / 127 0.013 / 330 0.010 / 254 0.009 / 229
0.0020 / 51 0.0010 / 25 0.0003 / 8 0.0050 / 127 0.007 / 178 0.013 / 330 0.010 / 254 0.009 / 229
0.0005 / 13

die attach
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0050 / 127 0.007 / 178 0.014 / 356 0.010 / 254 0.009 / 229
to 0.003 / 76
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0050 / 127 0.007 / 178 0.014 / 356 0.011 / 279 0.010 / 254 0.001 / 25
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0050 / 127 0.007 / 178 0.015 / 381 0.012 / 305 0.011 / 279
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0060 / 152 0.008 / 203 0.014 / 356 0.010 / 254 0.009 / 229
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0060 / 152 0.008 / 203 0.014 / 356 0.011 / 279 0.010 / 254 0.004 / 102
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0060 / 152 0.008 / 203 0.015 / 381 0.012 / 305 0.011 / 279
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0070 / 178 0.009 / 229 0.014 / 356 0.010 / 254 0.009 / 229
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0070 / 178 0.009 / 229 0.014 / 356 0.011 / 279 0.010 / 254 0.005 / 127
0.0005 / 13
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0070 / 178 0.009 / 229 0.015 / 381 0.012 / 305 0.011 / 279
to
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0110 / 279 0.013 / 330 0.014 / 356 0.011 / 279 0.010 / 254
0.002 / 51
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0110 / 279 0.013 / 330 0.015 / 381 0.012 / 305 0.011 / 279 0.008 / 203
0.0050 / 127 0.0010 / 25 0.0003 / 8 0.0110 / 279 0.013 / 330 0.016 / 406 0.013 / 330 0.012 / 305
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0130 / 330 0.016 / 406 0.014 / 356 0.011 / 279 0.010 / 254
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0130 / 330 0.016 / 406 0.015 / 381 0.012 / 305 0.011 / 279 0.010 / 254
0.0050 / 127 0.0010 / 25 0.0003 / 8 0.0130 / 330 0.016 / 406 0.016 / 406 0.013 / 330 0.012 / 305
other

Chart contains typical configurations. T dimension varies with ribbon size - consult factory for exact T dimension.
Other configurations available based on ribbon size. Standard 1/16 inch diameter shank.
Dimensions in inches unless otherwise specified.

119
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Ribbon Wedges
4645R & 4660R Series

Ø0.0624/1.585mm
Ø0.0624/1.585mm Ø0.0624/1.585mm
20° 20°
+0.0001/+0.003mm
+0.0001/+0.003mm +0.0001/+0.003mm 20° 4645R
4645R 4645R 4660R
4660R 4660R
-0.0002/-0.005mm
-0.0002/-0.005mm -0.0002/-0.005mm
0.0590 0.0590 0.0590
±0.0005±0.0005 ±0.0005
1.50mm1.50mm 1.50mm 30° 30°
45° 45° 30°
±0.013mm
±0.013mm ±0.013mm 45°

ST ST ST ST ST
ST
10° 10° 10° 45° 45° 60° 60°
45° 60°

FR FR FR FR FR FR
BR BR BR BR BR BR
SW SW SW BL BL BL BL BL BL
LENGTHLENGTH W
LENGTH W W T T T T
SPECIFIED
SPECIFIED SPECIFIED T T
IN PARTINNO.
PART NO. IN PART NO.

Vertical feed, deep Material: Tungsten Carbide Standard


OPTIONAL
OPTIONAL
CROSSCROSS
GROOVE
GROOVEOPTIONAL CROSS GROOVE
access, tubular shank Cermet Tip Optional
construction. (Specify “-BKCER” in part no.)
CGR=0.0005
CGR=0.0005 CGR=0.0005

Simply specify the ribbon thickness, width, and bond length.


0.040 0.040 Gaiser
0.040
calculates the ribbon feed slot dimensions for opti-
±0.005 ±0.005
mum
±0.005 performance. CGD=0.0005
CGD=0.0005 CGD=0.0005

Specify: Series/Ribbon Feed Angle - Ribbon Thickness - Ribbon Width - Bond Length - Tool Length - Options
Example:
4645R-.5-4-2.0-L-CG (RT=“.5”=0.0005 in., RW=“4”=0.0040 in., BL or BF=“2.0”=0.0020 in.)
4660R-1-5-3.0-3/4-BKCER (RT=“1”=0.0010 in., RW=“5”=0.0050 in., BL or BF=“3.0”=0.0030 in.)
BR T T
BL (BF) FR SW W RIBBON RIBBON
in./µm 45° 60°
in. / µm in. / µm in. / µm in. / µm THICKNESS WIDTH
+0.0002 / 5 in. / µm in. / µm
±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 ±0.0003 / 8 in. / µm in. / µm
-0.0001 / 2.5 ±0.0005 / 13 ±0.0005 / 13
0.0010 / 25 0.0010 / 25 0.0003 / 8 0.0035 / 89 0.005 / 127 0.009 / 229 0.008 / 203
0.00025 / 6
0.0015 / 38 0.0010 / 25 0.0003 / 8 0.0035 / 89 0.005 / 127 0.009 / 229 0.008 / 203
to 0.002 / 51
0.0020 / 51 0.0010 / 25 0.0003 / 8 0.0035 / 89 0.005 / 127 0.010 / 254 0.009 / 229
0.0005 / 13
0.0020 / 51 0.0010 / 25 0.0003 / 8 0.0050 / 127 0.007 / 178 0.010 / 254 0.009 / 229
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0050 / 127 0.007 / 178 0.010 / 254 0.009 / 229
0.0005 / 13
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0050 / 127 0.007 / 178 0.011 / 279 0.010 / 254
to 0.003 / 76
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0050 / 127 0.007 / 178 0.012 / 305 0.011 / 279
0.001 / 25
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0060 / 152 0.008 / 203 0.010 / 254 0.009 / 229
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0060 / 152 0.008 / 203 0.011 / 279 0.010 / 254
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0060 / 152 0.008 / 203 0.012 / 305 0.011 / 279 0.004 / 102
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0070 / 178 0.009 / 229 0.010 / 254 0.009 / 229
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0070 / 178 0.009 / 229 0.011 / 279 0.010 / 254
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0070 / 178 0.009 / 229 0.012 / 305 0.011 / 279 0.0005 / 13 0.005 / 127
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0110 / 279 0.013 / 330 0.011 / 279 0.010 / 254 to
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0110 / 279 0.013 / 330 0.012 / 305 0.011 / 279 0.002 / 51
0.0050 / 127 0.0010 / 25 0.0003 / 8 0.0110 / 279 0.013 / 330 0.013 / 330 0.012 / 305 0.008 / 203
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0130 / 330 0.016 / 406 0.011 / 279 0.010 / 254
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0130 / 330 0.016 / 406 0.012 / 305 0.011 / 279
0.010 / 254
0.0050 / 127 0.0010 / 25 0.0003 / 8 0.0130 / 330 0.016 / 406 0.013 / 330 0.012 / 305

Chart contains typical configurations. T dimension varies with ribbon size – consult factory for exact T dimension.
Other configurations available based on ribbon size.
Dimensions in inches unless otherwise specified.

120
Ribbon Wedges
4760VR Series
0.018
±0.002
Ø0.0624
+0.0001
-0.0002 20° 4760VR

capillaries
0.0510
±0.0005
30°

0.140
±0.005

ST
60°

LENGTH
SPECIFIED
IN PART NO. Modified Shank Option FR
BR
SW
Acts as Wire Guide BL
W
10°
Add “-MS1” to the T

Part Number Material: Tungsten Carbide Standard


Titanium Carbide Optional

wedges
(Specify “-TiC” in part no.)
0.040 Features: Designed for the Palomar 2470
±0.005 Cermet Tip Optional
Deep Access Wire Bonder
(Specify “-BKCER” in part no.)

Specify: Series/Ribbon Feed Angle - Ribbon Thickness - Ribbon Width - Bond Length - Tool Length - Options

Example:
4760VR-.5-4-2.0-3/4 (RT=“0.5”=0.0005 in., RW=“4”=0.0040 in., BL or BF=“2.0”=0.0020 in.)
4760VR-1-5-3.0-3/4-CG-TiC (RT=“1”=0.0010 in., RW=“5”=0.0050 in., BL or BF=“3.0”=0.0030 in.)

tab tools
BR
BL (BF) FR ST SW W *T RIBBON RIBBON
in. / µm
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm THICKNESS WIDTH
+0.0002 / 5
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0005 / 13 ±0.0003 / 8 ±0.0005 / 13 in. / µm in. / µm
-0.0001 / 2.5
0.0005 / 13 0.0010 / 25 0.0003 / 8 0.0015 / 38 0.0035 / 89 0.005 / 127 0.008 / 203
0.00025 / 6
0.0010 / 25 0.0010 / 25 0.0003 / 8 0.0015 / 38 0.0035 / 89 0.005 / 127 0.008 / 203
to 0.002 / 51
0.0015 / 38 0.0010 / 25 0.0003 / 8 0.0015 / 38 0.0035 / 89 0.005 / 127 0.008 / 203
0.0009 / 23
0.0020 / 51 0.0010 / 25 0.0003 / 8 0.0015 / 38 0.0035 / 89 0.005 / 127 0.009 / 229
0.0020 / 51 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0050 / 127 0.007 / 178 0.009 / 229
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0050 / 127 0.007 / 178 0.009 / 229
0.003 / 76
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0050 / 127 0.007 / 178 0.010 / 254

die attach
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0050 / 127 0.007 / 178 0.011 / 279
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0060 / 152 0.008 / 203 0.009 / 229
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0060 / 152 0.008 / 203 0.010 / 254 0.004 / 102
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0060 / 152 0.008 / 203 0.011 / 279
0.0010 / 25
0.0025 / 64 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0070 / 178 0.009 / 229 0.009 / 229
to
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0070 / 178 0.009 / 229 0.010 / 254 0.005 / 127
0.0019 / 48
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0070 / 178 0.009 / 229 0.011 / 279
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0110 / 279 0.013 / 330 0.010 / 254
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0110 / 279 0.013 / 330 0.011 / 279 0.008 / 203
0.0050 / 127 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0110 / 279 0.013 / 330 0.012 / 305
0.0030 / 76 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0130 / 330 0.016 / 406 0.010 / 254
0.0040 / 102 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0130 / 330 0.016 / 406 0.011 / 279 0.010 / 254
0.0050 / 127 0.0010 / 25 0.0003 / 8 0.0025 / 64 0.0130 / 330 0.016 / 406 0.012 / 305
other

Chart contains typical configurations. T dimension varies with ribbon size – consult factory for exact T dimension.
Other configurations available based on ribbon size.
Dimensions in inches unless otherwise specified.

121
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Special Application Wedges
2100, 2100A, & 2100B Series

2100 Series 2100A Series


20° 20°
10°
10°
20° 20°
10°
10°

FR BR LR RR
W F F T
FR BR LR RR
W F F T

Specify: 2100(W-FR-F-BR)-Length-Shank Dia. Specify: 2100A(T-LR-F-RR)-Length-Shank Dia.

Example: 2100B Series


2100(40-10-20-5)-S-1/16
Series
W(“40”=0.0040 inch) 20°
FR(“10”=0.0010 inch) 10°
20°
F(“20”=0.0020 inch)
10°
BR(“5”=0.0005 inch)
Shank Length(“S”=0.437 inch) LR RR FR BR
Shank(“1/16”=see table) F BF
LR RR FR BR
F BF

Specify: 2100B(F-BF-FR-BR-LR-RR)-Length-Shank Dia.

SD SDF

SHANK TABLE
SHANK DIAMETER (SD) SHANK DIAMETER
in. / mm FLAT (SDF)
SHANK
10° +0.0001 / 0.003 in. / mm
-0.0002 / 0.005 ±0.0005 / 0.013
LENGTH
SPECIFIED 1/16 0.0624 / 1.585 0.0460 / 1.168
IN PART NO.
inch/mm
1/16A 0.0624 / 1.585 0.0590 / 1.500
2mm 0.0786 / 2.000 0.0630 / 1.600
S=0.437/11.1mm
3/4=0.750/19.05mm 3/32 0.0936 / 2.377 0.0880 / 2.235
L=0.828/21.03mm 3mm 0.1179 / 2.995 0.0900 / 2.290
1.0=1.000/25.4mm
20° ±0.005/0.13mm 1/8 0.1249 / 3.172 0.1180 / 3.000

122
Special Application Wedges
2300, 2300A, & 2300C Series

2300 Series 2300A Series


30°

capillaries
30°
30° 30°
GR GR
GD 20° GD 20°
GR GR
GD 20° GD 20°

FR BR
W F LR W T
FR BR RR
W F LR W T
RR

Specify: 2300(W-FR-F-BR-GD-GR)-Length-Shank Dia. Specify: 2300A(W-LR-T-RR-GD-GR)-Length-Shank Dia.

wedges
Example: 2300C Series
2300(40-10-50-10-5-10)-S-1/16
Series 30°
W (“40”=0.0040 inch) 30°
60° GR
FR (“10”=0.0010 inch) 60° GR
GD 20°
F (“50”=0.0050 inch)
GD 20°
BR (“5”=0.0005 inch)
GD (“10”=0.0010 inch FR BR

tab tools
GW F
GR (“10”=0.0010 inch FR BR
GW W F
Shank Length (“S=0.437 inch)
W
Shank (1/16=see table) Specify: 2300C(W-FR-F-BR-GD-GR-GW)-Length-Shank Dia.

SD SDF

die attach
SHANK TABLE
SHANK DIAMETER (SD) SHANK DIAMETER
in. / mm FLAT (SDF)
SHANK
+0.0001 / 0.003 in. / mm
-0.0002 / 0.005 ±0.0005 / 0.013
LENGTH 1/16 0.0624 / 1.585 0.0460 / 1.168
SPECIFIED
1/16A 0.0624 / 1.585 0.0590 / 1.500
IN PART NO.
inch/mm 2mm 0.0786 / 2.000 0.0630 / 1.600
S=0.437/11.1mm 3/32 0.0936 / 2.377 0.0880 / 2.235
3/4=0.750/19.05mm 3mm 0.1179 / 2.995 0.0900 / 2.290
L=0.828/21.03mm
1.0=1.000/25.4mm 1/8 0.1249 / 3.172 0.1180 / 3.000
±0.005/0.13mm

30°
other

20°

123
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Large Wire Wedges
2830 Series

20°
2830
SD SDF

45°

30°

LENGTH FR C
SPECIFIED
IN PART NO. BR
CD W BL
T
20°

SHANK TABLE
SHANK DIAMETER (SD) SHANK DIAMETER
in. / mm FLAT (SDF)
SHANK
Material: +0.0001 / 0.003 in. / mm
Tungsten Carbide -0.0002 / 0.005 ±0.0005 / 0.013
1/16A 0.0624 / 1.585 0.0590 / 1.500
2mm 0.0786 / 2.000 0.0630 / 1.600
3/32 0.0936 / 2.377 0.0880 / 2.235
3mm 0.1179 / 2.995 0.0900 / 2.290
1/8 0.1249 / 3.172 0.1180 / 3.000

Specify:
Series/Wire Feed Angle - Wire Diameter - Shank (See Table) - Length

Example:
2830­-5­­­-­1/16A­­­-L
2830­-12­-1/8­-1.0­
2830 SUGGESTED
H BL W C FR BR T MINIMUM CD
SERIES WIRE
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / mm SHANK in. / µm
PART DIAMETER
±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.001 / .025 DIAMETER ±0.0005 / 13
NUMBER in. / µm
2830-3 0.0045 / 114 0.0070 / 178 0.0100 / 254 0.0050 / 127 0.0060 / 152 0.0040 / 102 0.059 / 1.50 0.0008 / 20 0.003 / 76
2830-4 0.0060 / 152 0.0100 / 254 0.0120 / 305 0.0070 / 178 0.0080 / 203 0.0050 / 127 0.059 / 1.50 0.0010 / 25 0.004 / 102
2830-5 0.0075 / 191 0.0120 / 305 0.0150 / 381 0.0080 / 203 0.0090 / 229 0.0050 / 127 0.059 / 1.50 0.0013 / 33 0.005 / 127
1/16A
2830-6 0.0090 / 229 0.0120 / 305 0.0180 / 457 0.0090 / 229 0.0090 / 229 0.0060 / 152 0.059 / 1.50 0.0016 / 41 0.006 / 152
2830-7 0.0105 / 267 0.0120 / 305 0.0210 / 533 0.0090 / 229 0.0090 / 229 0.0060 / 152 0.059 / 1.50 0.0018 / 46 0.007 / 178
2830-8 0.0120 / 305 0.0120 / 305 0.0240 / 610 0.0050 / 127 0.0090 / 229 0.0060 / 152 0.059 / 1.50 0.0020 / 51 0.008 / 203
2830-10 0.0140 / 356 0.0150 / 381 0.0300 / 762 0.0100 / 254 0.0100 / 254 0.0060 / 152 0.077 / 1.96 3/32 0.0025 / 64 0.010 / 254
2830-12 0.0160 / 406 0.0180 / 457 0.0360 / 914 0.0100 / 254 0.0110 / 279 0.0070 / 178 0.110 / 2.80 0.0030 / 76 0.012 / 305
2830-15 0.0200 / 508 0.0200 / 508 0.0450 / 1143 0.0100 / 254 0.0120 / 305 0.0080 / 203 0.110 / 2.80 1/8 0.0038 / 97 0.015 / 381
2830-20 0.0250 / 635 0.0250 / 635 0.0600 / 1524 0.0100 / 254 0.0120 / 305 0.0080 / 203 0.118 / 3.00 0.0050 / 127 0.020 / 508

Dimensions in inches unless otherwise specified.

124
Large Wire Wedges
2845 Series

capillaries
20°
2845
SD SDF 45°

H
45°

LENGTH FR C
SPECIFIED
IN PART NO. BR

wedges
CD W BL
T
20°

SHANK TABLE
SHANK DIAMETER (SD) SHANK DIAMETER
in. / mm FLAT (SDF)
SHANK
+0.0001 / 0.003 in. / mm
Material: -0.0002 / 0.005 ±0.0005 / 0.013
Tungsten Carbide 1/16 0.0624 / 1.585 0.0460 / 1.168

tab tools
1/16A 0.0624 / 1.585 0.0590 / 1.500
2mm 0.0786 / 2.000 0.0630 / 1.600
3/32 0.0936 / 2.377 0.0880 / 2.235
3mm 0.1179 / 2.995 0.0900 / 2.290
1/8 0.1249 / 3.172 0.1180 / 3.000

Specify:
Series/Wire Feed Angle - Wire Diameter - Shank(See Table) - Length

Example:
2845-5-1/16A-L

die attach
2845-12-1/8-1.0
2845 SUGGESTED
H BL W C FR BR T MINIMUM CD
SERIES WIRE
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / mm SHANK in. / µm
PART DIAMETER
±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.001 / .025 DIAMETER ±0.0005 / 13
NUMBER in. / µm
2845-3 0.0045 / 114 0.0070 / 178 0.0100 / 254 0.0050 / 127 0.0060 / 152 0.0040 / 102 0.045 / 1.14 1/16 0.0008 / 20 0.003 / 76
2845-4 0.0060 / 152 0.0100 / 254 0.0120 / 305 0.0070 / 178 0.0080 / 203 0.0050 / 127 0.059 / 1.50 0.0010 / 25 0.004 / 102
2845-5 0.0075 / 191 0.0120 / 305 0.0150 / 381 0.0080 / 203 0.0090 / 229 0.0050 / 127 0.059 / 1.50 0.0013 / 33 0.005 / 127
2845-6 0.0090 / 229 0.0120 / 305 0.0180 / 457 0.0090 / 229 0.0090 / 229 0.0060 / 152 0.059 / 1.50 1/16A 0.0016 / 41 0.006 / 152
2845-7 0.0105 / 267 0.0120 / 305 0.0210 / 533 0.0090 / 229 0.0090 / 229 0.0060 / 152 0.059 / 1.50 0.0018 / 46 0.007 / 178
2845-8 0.0120 / 305 0.0120 / 305 0.0240 / 610 0.0050 / 127 0.0090 / 229 0.0060 / 152 0.059 / 1.50 0.0020 / 51 0.008 / 203
2845-10 0.0140 / 356 0.0150 / 381 0.0300 / 762 0.0100 / 254 0.0100 / 254 0.0060 / 152 0.088 / 2.23 0.0025 / 64 0.010 / 254
2845-12 0.0160 / 406 0.0180 / 457 0.0360 / 914 0.0100 / 254 0.0110 / 279 0.0070 / 178 0.088 / 2.23 3/32 0.0030 / 76 0.012 / 305
other

2845-15 0.0200 / 508 0.0200 / 508 0.0450 / 1143 0.0100 / 254 0.0120 / 305 0.0080 / 203 0.088 / 2.23 0.0038 / 97 0.015 / 381
2845-20 0.0250 / 635 0.0250 / 635 0.0600 / 1524 0.0100 / 254 0.0120 / 305 0.0080 / 203 0.118 / 3.00 1/8 0.0050 / 127 0.020 / 508

Dimensions in inches unless otherwise specified.

125
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Large Wire U-Groove Wedges
8101A, 8301, 8401, 8501, & 8601 Series

8301 8101A 45°


20° 8401
8501
8601
45°
H

H 45°
45°
GR

15°

FR BR FR BR
GD W FL FL
10° 10°
T T

0.0985
Ø0.1180/3mm
±0.0005
+0.0000/0.000mm
-0.0003/0.008mm
2.5mm Features: Designed for the Shinkawa Bonder
±0.013mm

Material: Tungsten Carbide


10°
1.000
25.4mm Example Part Number (Standard Shank & Length):
20°
8301-5

Example Part Number (Optional Shank & Length):


Standard Shank & Length 8301-5-1/16-L

FL FR BR H W GR GD T WIRE
PART
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm DIAMETER
NUMBER
±0.0010 / 25 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.0010 / 25 ±0.0002 / 5 ±0.0002 / 5 ±0.0020 / 51 in. / µm
8301-1 0.0080 / 203 0.0020 / 51 0.0027 / 69 0.0060 / 152 0.0100 / 254 0.0020 / 51 0.0013 / 33 0.0360 / 914
0.0040 / 102
8301-4 0.0120 / 305 0.0020 / 51 0.0027 / 69 0.0060 / 152 0.0100 / 254 0.0020 / 51 0.0013 / 33 0.0400 / 1016
8301-2 0.0100 / 254 0.0025 / 64 0.0033 / 84 0.0075 / 190 0.0120 / 305 0.0025 / 64 0.0017 / 43 0.0400 / 1016
8301-5 0.0150 / 381 0.0025 / 64 0.0033 / 84 0.0075 / 190 0.0120 / 305 0.0025 / 64 0.0017 / 43 0.0450 / 1143
0.0050 / 127
8501-1 0.0150 / 381 0.0040 / 102 0.0080 / 203 0.0090 / 229 0.0200 / 508 0.0030 / 76 0.0025 / 64 0.0650 / 1651
8601-1 0.0175 / 445 0.0040 / 102 0.0080 / 203 0.0090 / 229 0.0200 / 508 0.0030 / 76 0.0025 / 64 0.0650 / 1651
8301-3 0.0120 / 305 0.0030 / 76 0.0040 / 102 0.0090 / 229 0.0150 / 381 0.0030 / 76 0.0020 / 51 0.0440 / 1118
0.0060 / 152
8301-6 0.0180 / 457 0.0030 / 76 0.0040 / 102 0.0090 / 229 0.0150 / 381 0.0030 / 76 0.0020 / 51 0.0500 / 1270
8101A-3 0.0140 / 356 0.0040 / 102 0.0100 / 254 0.0110 / 279 0.0240 / 610 0.0040 / 102 0.0030 / 76 0.0650 / 1651
8401-3 0.0176 / 447 0.0040 / 102 0.0100 / 254 0.0110 / 279 0.0240 / 610 0.0040 / 102 0.0030 / 76 0.0690 / 1753 0.0080 / 203
8501-3 0.0263 / 600 0.0040 / 102 0.0100 / 254 0.0145 / 368 0.0240 / 610 0.0040 / 102 0.0030 / 76 0.0820 / 2083
8101A-4 0.0180 / 457 0.0050 / 127 0.0120 / 305 0.0140 / 356 0.0300 / 762 0.0050 / 127 0.0040 / 102 0.0710 / 1803
8401-4 0.0220 / 560 0.0050 / 127 0.0120 / 305 0.0140 / 356 0.0300 / 762 0.0050 / 127 0.0040 / 102 0.0750 / 1905 0.0100 / 254
8501-4 0.0300 / 762 0.0050 / 127 0.0120 / 305 0.0180 / 457 0.0300 / 762 0.0050 / 127 0.0040 /102 0.0900 / 2286
8101A-5 0.0210 / 533 0.0060 / 152 0.0140 / 356 0.0170 / 432 0.0300 / 762 0.0060 / 152 0.0050 / 127 0.0790 / 2006
8401-5 0.0264 / 671 0.0060 / 152 0.0140 / 356 0.0170 / 432 0.0300 / 762 0.0060 / 152 0.0050 / 127 0.0840 / 2134 0.0120 / 305
*8501-5 0.0360 / 914 0.0060 / 152 0.0140 / 356 0.0216 / 549 0.0300 / 762 0.0060 / 152 0.0050 / 127 0.1100 / 2794
8101A-6 0.0250 / 635 0.0070 / 178 0.0160 / 406 0.0190 / 483 0.0300 / 762 0.0070 / 178 0.0060 / 152 0.0820 / 2082
8401-6 0.0300 / 762 0.0070 / 178 0.0160 / 406 0.0190 / 483 0.0300 / 762 0.0070 / 178 0.0060 / 152 0.0870 / 2210 0.0138 / 351
*8501-6 0.0414 / 1052 0.0070 / 178 0.0160 / 406 0.0290 / 737 0.0300 / 762 0.0070 / 178 0.0060 / 152 0.1100 / 2794
8101A-7 0.0280 / 711 0.0080 / 203 0.0170 / 432 0.0235 / 597 0.0350 / 889 0.0080 / 203 0.0065 / 165 0.0880 / 2235
8401-7 0.0346 / 879 0.0080 / 203 0.0170 / 432 0.0235 / 597 0.0350 / 889 0.0080 / 203 0.0065 / 165 0.0950 / 2413
0.0157 / 399
8401-7A 0.0460 / 1168 0.0080 / 203 0.0170 / 432 0.0235 / 597 0.0350 / 889 0.0080 / 203 0.0065 / 165 0.0950 / 2413
*8801-7 0.0470 / 1194 0.0080 / 203 0.0170 / 432 0.0280 / 711 0.0500 / 1270 0.0080 / 203 0.0065 / 165 0.1500 / 3810
*8101A-8 0.0360 / 914 0.0100 / 254 0.0180 / 457 0.0300 / 762 0.0350 / 889 0.0100 / 254 0.0087 / 220 0.1100 / 2794
*8401-8 0.0440 / 1118 0.0100 / 254 0.0180 / 457 0.0300 / 762 0.0350 / 889 0.0100 / 254 0.0087 / 220 0.1060 / 2692 0.0200 / 508
*8801-8 0.0500 / 1270 0.0100 / 254 0.0180 / 457 0.0360 / 914 0.0500 / 1270 0.0100 / 254 0.0087 / 220 0.1500 / 3810

*SDF = 0.110/2.79mm. Dimensions in inches unless otherwise specified.

126
Large Wire V-Groove Wedges
8301C & 8401C Series

8301C 8401C
45° 45°

capillaries
20°

H H
60° 45° 45°
GR

15°

FR FR
BR BR 10°
GD W FL 10° FL
T T

0.0985
Ø0.1180/3mm
+0.0000/0.000mm
±0.0005
2.5mm
Features: Designed for the Shinkawa Bonder
-0.0003/0.008mm
±0.013mm

Material: Tungsten Carbide

wedges
1.000 10°
25.4mm Example Part Number (Standard Shank & Length):
20°
8301C-5

Example Part Number (Optional Shank & Length):


Standard Shank & Length 8301C-5-1/16-L

BL FL FR BR H W GR GD T WIRE
PART
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm DIAMETER
NUMBER
±0.0010 / 25 ±0.0010 / 25 ±0.0005 / 13 ±0.0005 / 13 ±0.0005 / 13 ±0.0010 / 25 ±0.0002 / 5 ±0.0002 / 5 ±0.0020 / 51 in. / µm

tab tools
8301C-19 0.0040 / 102 0.0080 / 203 0.0020 / 51 0.0048 / 122 0.0060 / 152 0.0150 / 381 0.0014 / 36 0.0022 / 56 0.0290 / 737
8301C-10 0.0060 / 152 0.0100 / 254 0.0020 / 51 0.0048 / 122 0.0060 / 152 0.0150 / 381 0.0014 / 36 0.0022 / 56 0.0310 / 787 0.0040 / 102
8301C-1 0.0088 / 224 0.0130 / 330 0.0020 / 51 0.0048 / 122 0.0060 / 152 0.0150 / 381 0.0014 / 36 0.0022 / 56 0.0340 / 864
8301C-20 0.0050 / 127 0.0090 / 229 0.0020 / 51 0.0060 / 152 0.0075 / 190 0.0150 / 381 0.0018 / 46 0.0028 / 71 0.0380 / 965
8301C-11 0.0075 / 190 0.0120 / 305 0.0020 / 51 0.0060 / 152 0.0075 / 190 0.0150 / 381 0.0018 / 46 0.0028 / 71 0.0400 / 1020 0.0050 / 127
8301C-2 0.0110 / 279 0.0150 / 381 0.0020 / 51 0.0060 / 152 0.0075 / 190 0.0150 / 381 0.0018 / 46 0.0028 / 71 0.0430 / 1090
8301C-21 0.0060 / 152 0.0110 / 279 0.0030 / 76 0.0072 / 183 0.0090 / 229 0.0150 / 381 0.0021 / 53 0.0033 / 84 0.0460 / 1168
8301C-12 0.0090 / 229 0.0140 / 356 0.0030 / 76 0.0072 / 183 0.0090 / 229 0.0150 / 381 0.0021 / 53 0.0033 / 84 0.0490 / 1245 0.0060 / 152
8301C-3 0.0132 / 335 0.0180 / 457 0.0030 / 76 0.0072 / 183 0.0090 / 229 0.0150 / 381 0.0021 / 53 0.0033 / 84 0.0530 / 1346
8301C-22 0.0080 / 203 0.0140 / 356 0.0030 / 76 0.0096 / 244 0.0110 / 279 0.0250 / 635 0.0028 / 71 0.0044 / 112 0.0570 / 1448

die attach
8301C-13 0.0120 / 305 0.0180 / 457 0.0030 / 76 0.0096 / 244 0.0110 / 279 0.0250 / 635 0.0028 / 71 0.0044 / 112 0.0610 / 1550 0.0080 / 203
8301C-4 0.0176 / 447 0.0230 / 584 0.0030 / 76 0.0096 / 244 0.0110 / 279 0.0250 / 635 0.0028 / 71 0.0044 / 112 0.0670 / 1701
8301C-23 0.0100 / 254 0.0160 / 406 0.0030 / 76 0.0120 / 305 0.0140 / 356 0.0250 / 635 0.0035 / 89 0.0055 / 140 0.0730 / 1854
8301C-14 0.0150 / 381 0.0210 / 533 0.0030 / 76 0.0120 / 305 0.0140 / 356 0.0250 / 635 0.0035 / 89 0.0055 / 140 0.0780 / 1981
8301C-5 0.0220 / 559 0.0280 / 711 0.0030 / 76 0.0120 / 305 0.0140 / 356 0.0250 / 635 0.0035 / 89 0.0055 / 140 0.0850 / 2159 0.0100 / 254
8401C-4 0.0100 / 254 0.0160 / 406 0.0030 / 76 0.0120 / 305 0.0140 / 356 0.0300 / 762 0.0035 / 89 0.0055 / 140 0.0750 / 1905
8401C-14 0.0150 / 381 0.0210 / 533 0.0030 / 76 0.0120 / 305 0.0140 / 356 0.0300 / 762 0.0035 / 89 0.0055 / 140 0.0880 / 2235
8401C-5 0.0120 / 305 0.0180 / 457 0.0030 / 76 0.0140 / 356 0.0170 / 432 0.0300 / 762 0.0042 / 107 0.0066 / 168 0.0840 / 2134
0.0120 / 305
8401C-15 0.0180 / 457 0.0240 / 610 0.0030 / 76 0.0140 / 356 0.0170 / 432 0.0300 / 762 0.0042 / 107 0.0066 / 168 0.0950 / 2413
8401C-6 0.0140 / 356 0.0200 / 508 0.0030 / 76 0.0160 / 406 0.0190 / 483 0.0300 / 762 0.0049 / 125 0.0077 / 196 0.0870 / 2210
0.0140 / 360
*8401C-16 0.0210 / 533 0.0270 / 686 0.0030 / 76 0.0160 / 406 0.0190 / 483 0.0300 / 762 0.0049 / 125 0.0077 / 196 0.1100 / 2794
8401C-7 0.0160 / 406 0.0230 / 584 0.0040 / 102 0.0170 / 432 0.0240 / 610 0.0350 / 889 0.0056 / 142 0.0088 / 224 0.0950 / 2413
0.0160 / 406
*8401C-17 0.0240 / 610 0.0310 / 787 0.0040 / 102 0.0170 / 432 0.0240 / 610 0.0350 / 889 0.0056 / 142 0.0088 / 224 0.1100 / 2794
other

*8401C-8 0.0200 / 508 0.0270 / 686 0.0040 / 102 0.0180 / 457 0.0300 / 762 0.0350 / 889 0.0070 / 178 0.0110 / 279 0.1100 / 2794
0.0200 / 508
*8401C-18 0.0300 / 762 0.0370 / 940 0.0040 / 102 0.0180 / 457 0.0300 / 762 0.0350 / 889 0.0070 / 178 0.0110 / 279 0.1100 / 2794

*SDF = 0.110/2.79mm Dimensions in inches unless otherwise specified.

127
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Large Wire U-Groove Wedges
8236-UG Series

20°

Ø0.0786 0.063
2mm 1.6mm UGR

FR BR

UGD F
W T

10°

LENGTH
SPECIFIED
IN PART NO.

20°

Features:
Designed for large wire applications in

Ultrasonic (Cho-onpa) bonders
Special polished FR & BR

Material: Tungsten Carbide


VGH

Lengths:
-K = 1.142 inch/29mm
Front Shank Style Shank Style -M = 1.339 inch/34mm
View -B -A Other = Specify

Specify: Series (no-hole design) - U-Groove - Wire Size(μm) - Designation - Shank Style - Tool Length

Example: 8236-UG-200-1-A-K

DASH T F FR & BR UGR UGD W VGH


NUMBER in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm

-100-1 0.0098 / 250 0.0051 / 130 0.0024 / 60 0.0024 / 60 0.0014 / 36 0.0098 / 250 0.0400 / 1016
-125-1 0.0118 / 300 0.0059 / 150 0.0030 / 76 0.0030 / 76 0.0017 / 43 0.0118 / 300 0.0400 / 1016
-125-2 0.0128 / 325 0.0068 / 173 0.0030 / 76 0.0030 / 76 0.0017 / 43 0.0118 / 300 0.0400 / 1016
-125-3 0.0138 / 350 0.0078 / 198 0.0030 / 76 0.0030 / 76 0.0017 / 43 0.0118 / 300 0.0400 / 1016
-125-4 0.0148 / 375 0.0088 / 224 0.0030 / 76 0.0030 / 76 0.0017 / 43 0.0118 / 300 0.0400 / 1016
-150-1 0.0138 / 350 0.0068 / 173 0.0035 / 88 0.0035 / 88 0.0021 / 53 0.0138 / 350 0.0400 / 1016
-175-1 0.0157 / 400 0.0075 / 190 0.0041 / 104 0.0041 / 104 0.0024 / 60 0.0157 / 400 0.0400 / 1016
-200-1 0.0177 / 450 0.0083 / 210 0.0047 / 120 0.0047 / 120 0.0028 / 71 0.0197 / 500 0.0400 / 1016
-250-1 0.0217 / 550 0.0098 / 250 0.0059 / 150 0.0059 / 150 0.0035 / 88 0.0217 / 550 0.0600 / 1524
-300-1 0.0256 / 650 0.0114 / 290 0.0071 / 180 0.0071 / 180 0.0047 / 120 0.0236 / 600 0.0600 / 1524
-350-1 0.0299 / 760 0.0134 / 340 0.0083 / 210 0.0083 / 210 0.0055 / 140 0.0276 / 700 0.0600 / 1524
-400-1 0.0339 / 860 0.0150 / 380 0.0094 / 240 0.0094 / 240 0.0063 / 160 0.0315 / 800 0.0600 / 1524
-450-1 0.0390 / 990 0.0177 / 450 0.0106 / 270 0.0106 / 270 0.0071 / 180 0.0354 / 900 0.0600 / 1524
-500-1 0.0433 / 1100 0.0197 / 500 0.0118 / 300 0.0118 / 300 0.0079 / 200 0.0394 / 1000 0.0600 / 1524

Dimensions in inches unless otherwise specified.

128
Large Wire V-Groove Wedges
8236-VE Series

20°

capillaries
70°
Ø0.0786 0.063
2mm 1.6mm

FR BR
VGD

VGW F
W T

10°

LENGTH

wedges
SPECIFIED
IN PART NO.

20°
Features:
Designed for large wire applications in
Ultrasonic (Cho-onpa) bonders

Special polished FR & BR

Material: Tungsten Carbide


VGH
Lengths:

tab tools
-K = 1.142 inch/29mm
Front Shank Style Shank Style -M = 1.339 inch/34mm
View -B -A Other = Specify

Specify: Series (no-hole design) - V-Groove - Wire Size(μm) - FR/BR Ratio (% of wire dia.) - Shank Style - Tool
Length

Example: 8236-VE-200-30-A-K
DASH T F FR & BR VGW W VGH
NUMBER in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm

die attach
-100-30 0.0098 / 250 0.0074 / 188 0.0012 / 30 0.0043 / 110 0.0079 / 200 0.0400 / 1016
-100-50 0.0098 / 250 0.0058 / 147 0.0020 / 51 0.0043 / 110 0.0079 / 200 0.0400 / 1016
-125-30 0.0118 / 300 0.0088 / 224 0.0015 / 38 0.0054 / 138 0.0098 / 250 0.0400 / 1016
-125-50 0.0118 / 300 0.0068 / 173 0.0025 / 64 0.0054 / 138 0.0098 / 250 0.0400 / 1016
-150-30 0.0138 / 350 0.0102 / 260 0.0018 / 45 0.0065 / 165 0.0118 / 300 0.0400 / 1016
-150-50 0.0138 / 350 0.0078 / 198 0.0030 / 76 0.0065 / 165 0.0118 / 300 0.0400 / 1016
-200-30 0.0177 / 450 0.0129 / 330 0.0024 / 60 0.0087 / 220 0.0157 / 400 0.0400 / 1016
-200-50 0.0177 / 450 0.0099 / 252 0.0039 / 100 0.0087 / 220 0.0157 / 400 0.0400 / 1016
-250-50 0.0217 / 550 0.0119 / 302 0.0049 / 125 0.0108 / 275 0.0197 / 500 0.0600 / 1524
-300-50 0.0256 / 650 0.0138 / 350 0.0059 / 150 0.0130 / 330 0.0236 / 600 0.0600 / 1524
-350-50 0.0299 / 760 0.0161 / 410 0.0069 / 175 0.0152 / 385 0.0276 / 700 0.0600 / 1524
-380-50 0.0323 / 820 0.0173 / 440 0.0075 / 191 0.0165 / 418 0.0299 / 760 0.0600 / 1524
-400-50 0.0343 / 870 0.0185 / 470 0.0079 / 200 0.0173 / 440 0.0315 / 800 0.0600 / 1524
other

-450-50 0.0390 / 990 0.0212 / 540 0.0089 / 225 0.0195 / 495 0.0354 / 900 0.0600 / 1524
-500-50 0.0433 / 1100 0.0237 / 600 0.0098 / 250 0.0217 / 550 0.0394 / 1000 0.0600 / 1524

Dimensions in inches unless otherwise specified.

129
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Large Wire V-Groove Wedges
8245-VE Series

Ø0.0786 0.063
2mm 1.6mm 45°

20°

70° 45°

LENGTH
15°
SPECIFIED
VGD FR
IN PART NO.
BR
VGW BL
W T
20°

SW

Features:
Designed for large wire applications in
Ultrasonic (Cho-onpa) bonders
Special polished FR & BR
Special heavy hole polish

Material: Tungsten Carbide

Lengths:
-K = 1.142 inch / 29mm
-M = 1.339 inch / 34mm
Other = Specify

Specify: Series (45° wire feed angle) - V-Groove - Wire Size(μm)/Designation - FR/BR Ratio (% of wire dia.) -
Tool Length

Example: 8245-VE-150N-50-K

DASH T FL BL FR & BR H W VGW


NUMBER in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm

-100N-50 0.0290 / 737 0.0098 / 250 0.0058 / 150 0.0020 / 51 0.0059 / 150 0.0079 / 200 0.0043 / 109
-125N-50 0.0360 / 914 0.0118 / 300 0.0068 / 174 0.0025 / 64 0.0074 / 188 0.0098 / 250 0.0054 / 137
-150N-50 0.0400 / 1016 0.0138 / 350 0.0078 / 198 0.0030 / 76 0.0088 / 224 0.0118 / 300 0.0065 / 165
-200N-50 0.0540 / 1372 0.0157 / 400 0.0079 / 200 0.0039 / 100 0.0118 / 300 0.0157 / 400 0.0087 / 221
-250N-50 0.0630 / 1600 0.0197 / 500 0.0099 / 252 0.0049 / 125 0.0148 / 375 0.0197 / 500 0.0108 / 274
-300N-50 0.0630 / 1600 0.0236 / 600 0.0118 / 300 0.0059 / 150 0.0177 / 450 0.0236 / 600 0.0130 / 330

Dimensions in inches unless otherwise specified.

130
Large Wire V-Groove Wedges
8870 Series

30° 10°

capillaries
70°

Ø0.1249 0.1100
3.17mm 2.79mm

FR BR
VGD

VGW
W T

Applications:
Designed for large aluminum wire applications in
F&K Delvotec bonders

wedges
LENGTH
Hesse & Knipps bonders
SPECIFIED K&S large wire bonders
IN PART NO. 5°

Material: Tungsten Carbide


30°

Lengths:
-2.000= 2.000 in. / 51mm

-1.500 = 1.500 in. / 38mm
-1.968 = 1.968 in. / 50mm

tab tools
Specify:
Series - Dash No. - Tool Length

Example:
8870-005-0-1.500
8870-016-1-1.968

DASH T FR BR VGW VGD W


NUMBER in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm
-004-0 0.0114 / 290 0.0027 / 69 0.0054 / 137 0.0046 / 117 0.0027 / 69 0.0080 / 203
-005-0 0.0142 / 361 0.0034 / 86 0.0068 / 173 0.0057 / 145 0.0034 / 86 0.0100 / 254

die attach
-006-0 0.0170 / 432 0.0041 / 104 0.0082 / 208 0.0068 / 173 0.0040 / 102 0.0120 / 305
-006-1 0.0148 / 376 0.0041 / 104 0.0082 / 208 0.0068 / 173 0.0040 / 102 0.0120 / 305
-007-0 0.0175 / 444 0.0048 / 122 0.0096 / 244 0.0080 / 203 0.0048 / 122 0.0140 / 356
-008-0 0.0226 / 574 0.0054 / 137 0.0109 / 277 0.0091 / 231 0.0055 / 140 0.0160 / 400
-008-1 0.0195 / 495 0.0054 / 137 0.0109 / 277 0.0091 / 231 0.0055 / 140 0.0160 / 400
-010-0 0.0250 / 635 0.0068 / 173 0.0136 / 345 0.0122 / 310 0.0075 / 191 0.0200 / 500
-012-0 0.0340 / 864 0.0082 / 208 0.0163 / 371 0.0146 / 371 0.0090 / 229 0.0240 / 610
-012-3 0.0294 / 747 0.0082 / 208 0.0163 / 371 0.0146 / 371 0.0090 / 229 0.0240 / 610
-014-0 0.0345 / 876 0.0110 / 279 0.0140 / 356 0.0171 / 434 0.0105 / 267 0.0270 / 686
-015-0 0.0375 / 952 0.0102 / 259 0.0204 / 516 0.0183 / 465 0.0113 / 287 0.0300 / 762
-016-0 0.0440 / 1118 0.0106 / 269 0.0211 / 536 0.0195 / 495 0.0118 / 300 0.0320 / 813
-016-1 0.0390 / 990 0.0106 / 269 0.0211 / 536 0.0195 / 495 0.0118 / 300 0.0320 / 813
-016-2 0.0335 / 851 0.0106 / 269 0.0211 / 536 0.0195 / 495 0.0118 / 300 0.0320 / 813
other

-018-0 0.0360 / 914 0.0122 / 310 0.0245 / 622 0.0220 / 559 0.0140 / 356 0.0360 / 914
-020-0 0.0487 / 1237 0.0136 / 345 0.0272 / 691 0.0244 / 620 0.0150 / 381 0.0400 / 1016

Dimensions in inches unless otherwise specified.

131
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Wedge Abbreviations
BF Bond Foot
BKCER Black Cermet
BL Bond Length
BR Back Radius
C Clearance dimension
CBR Chamferred Back Radius
CC Concave
CC-CG Concave w/ Cross Groove
CER Cermet
CG Cross Groove
CGD Cross Groove Depth
CG-F Cross Groove w/ Flat Face
CGR Cross Groove Radius
CGW Cross Groove Width
CSF Concave Side Flats
DSR Double Side Relief
ELBR Elliptical Back Radius
F Flat Face
FL Foot Length
FMF Fine Matte Finish
H Hole
HHP Heavy Hole Polish
L Length
LG Longitudinal Groove
MOD. C Modified C dimension
MS1 Modified Shank #1
PBR Polished Back Radius
PCS Polished Countersink
PFR Polished Front Radius
RMF Rough Matte Finish
SD Shank Diameter
SDF Shank Diameter Flat
T Tip dimension
TiC Titanium Carbide
V Vertical (grind)
VGD V-Groove Depth
VGH Vertical Grind Height
VGR V-Groove Radius
VGW V-Groove Width
W Width dimension
WC Tungsten Carbide
WFA Wire Feed Angle
10DBA 10° Back Angle
180REV 180° Reverse (shank)
20DBA 20° Back Angle
30DG 30° (W angle)
45SC 45° Side Chamfers

132
Single-Point TAB Tools
Single-Point In these circumstances it was determined that when
bonding east and west leads, the single CG tool did not
Tape Automated Bonding (TAB) produce adequate bond strengths. In order to improve

capillaries
the coupling of the east and west bonds, the double CG
The acronym TAB stands for “tape automated bonding.” design was created.
Very often, even when tape is not present, the term
“single-point TAB bonding” is commonly used when
referring to bonding a lead, trace, ribbon, or wire that
is already in place, and requires the application of force
and ultrasonic energy.

By definition, TAB bonding utilizes the die being mount-


ed onto a roll of tape where the leads are connected to
the die. After this process of connecting the inner lead
bonds (ILB) is complete, the reel of tape containing the
die is fed to a station that cuts the die and connected

wedges
leads in preparation for connecting the outer lead bonds
(OLB) to the package. In the past, the ILB and OLB were
bonded all at once. This was accomplished with the use
of a tool called a thermode. The disadvantage of this
method is the problem of maintaining equal force and
therefore equal strength on each lead. A method for
the bonding of each lead separately was developed to Figure 2 – Single-point TAB tool incorporating a
address this problem – Single-Point TAB. double cross groove

tab tools
With the increase in interest of using a ball bonder to do
TAB, Gaiser developed three new series of tools. The first
design, 1183 series, was similar to the double CG wedge.
It was available with or without a flat ground on the
shank. Having no flat on the shank offered flexibility in
how the tool was positioned in the transducer horn. For
either the “x” or “+” pattern, the tool needed simply to
be rotated. Once the bonding pattern was determined
the optional flat (“SDF” for the “+” and “SDFA” for the
“x”) could be called out. Customers have experienced
that the ultrasonics transfer more efficiently with the

die attach
grooves in these patterns.

Figure 1 – Single point TAB tool incorporating a


single cross groove

The initial Gaiser single point TAB tools were wedges that
incorporated a single-cross groove. The wedge design
was used because of the bonding machine’s ability to
reposition the bonding head or work surface so that the
wedge would be in-line with the lead. This assured that
the cross groove always stayed perpendicular to the lead.
other

As customers began using the single CG wedge, a need


arose to use the tool without having to rotate the pack-
age or the bonding head. Figure 3 – 1183 series single point TAB tool

133
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Single-Point TAB Tools
More recent designs having considerable success are Gaiser has developed several tool series for ball bump-
the protruding radius (1184 series) and the protruding ing. These include the 1732 and 1733 series (see Capillary
“V” (1186 series) tools. These designs help grip the lead section of catalog pages 38 and 39). Since the wire is
better during bonding than the cross groove designs. terminated above the ball, there is no need for an outside
The disadvantage of the protruding tools is that they radius or a face on the capillary to make the lead bond.
have a shorter life span than the cross groove style. They
are available in WC, TiC, polycrystalline diamond (PCD), Tamping tools are used for tamping wafer balls or to
and cermet materials. flatten out rough metallizations in pre-bonding. The
1152 and 1552 series in this section are designed for
these purposes.

Figure 4 – 1186 series protruding “V” TAB tool

The benefit of the single-point TAB approach is that


each lead is bonded separately, thus assuring the qual-
Figure 6 – Example of ball bump that has been tamped
ity of each lead.

Figure 5 – Device with TAB bonded leads and impression

Figure 7 – Device that has had ball bumps placed


The most common methods for wafer bumping utilize and tamped in preparation for the ILB
the same techniques used in making standard die metal-
lizations. Other methods of wafer bumping involve the
process of putting a ball bond down on the die pad,
terminating the wire just above the ball, then flattening
the ball to become the new raised die “pad.”

134
Single-Point TAB Tools
Disk Drive Industry Related

Wire bonding in the disk drive industry is used in both With the waffle tool, the patterns of grooves and mesas
head gimbal assembly (HGA) and head stack assembly create an aggressive footprint that grips the trace or lead
(HSA). Wire bonding technology is used to bond wires and effectively transmit ultrasonic energy.

capillaries
or traces at the MR or GMR head and at the pre-amp.
Additionally, wires or flexible traces may be ultrasoni-
cally bonded at some location between the head and
the pre-amp.

The wire size in the disk drive industry is typically ex-


pressed in gauge, with 48 gauge to 52 gauge being the
most common. These wires are usually insulated, gold-
plated copper, and bonded at ambient temperature.

Size (AWG) Nominal Diameter


in. / µm

wedges
46 0.00157 / 40
47 0.00140 / 36
48 0.00124 / 32
49 0.00111 / 28
50 0.00099 / 25
51 0.00088 / 22
52 0.00078 / 20
Figure 9 – Example of a waffle tool

tab tools
Another wire bonding technology used in the disk drive
industry is the “ball-in-the-corner” bond made at the
junction between the head and the trace.

die attach
Figure 8 – Typical 48 gauge disk drive bond tool

Flexible traces, such as FOS (flex on suspension) and TSA


(trace suspension assembly), are rapidly replacing wires Figure 10 – Example of a ball-in-the-corner application
in the disk drive industry. These traces can be bonded
with an 1186 style protruding “V” single point TAB tool,
or with a “waffle” style tool. Wire bonding technology
other

has all but replaced solder reflow technology in disk


drive manufacturing.

135
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Single-Point TAB Tools
Tip Configurations

1183 Series 1184 Series


Double Cross Groove Design Protruding Radius Design

1186 Series 1152 & 1552 Series


Protruding “V” Design Tamping Tool

2T01 & 2T02 Series 2T21 & 2T22 Series


Single Cross Groove Design Double Cross Groove Design

136
Single-Point TAB Tools
Shank Styles

Series: 1183, 1184 Series: 2T01, 2T02


1186, 1152 2T21, 2T22

capillaries
CENTER OF OF OF
CENTER
CENTER
MASS LINE
MASS LINELINE
MASS

0.0590 0.0590
0.0590
Ø0.0624Ø0.0624
Ø0.0624 1.5mm
1.5mm 1.5mm 0.0460 0.0460
0.0460
Ø0.0624Ø0.0624
Ø0.0624
1.58mm 1.58mm
1.58mm OPTIONALOPTIONAL
OPTIONAL 1.17mm 1.17mm
1.17mm
1.58mm 1.58mm
1.58mm
FLATFLATFLAT FLATFLATFLAT

wedges
30° 30° 30° 10° 10° 10°

tab tools
10° 10° 10°
20° 20° 20°

10° 10° 10°

die attach
The standard coni- The “-SDF” The “-SDFA” The 2T01 & 2T21 The 2T02 & 2T22
cal grind TAB tool Shank Diameter Shank Diameter have tip geometries series employ
has a round shank Flat option Flat option similar to small wire Center of Mass
and a 30° cone. produces a produces an bonding wedges, except design to provide
“+” pattern “x” pattern without wire feed holes. optimum transfer
20° & 15° cone relative to the relative to the This allows for ease of ultrasonic energy.
angles may be flat. flat. of use in a typical
specified as wedge bonder for a
“-20D” & “-15D” TAB bonding application.

Bottlenecks may
be designed.
other

See the Capillary


Modifications on
pages 26 & 27
Dimensions in inches unless otherwise specified.

137
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
1183 Series
Double Cross Groove Single-Point TAB Tool

30°
(STANDARD)

CGR

OR
CGD
F

Specify:
Series - Face/Outside Radius/Cross Groove Spec. - Length - Options

Example:
1183-06010B-750-TiC-SDF-20D
1183-02008D-437

Material:
Tungsten Carbide Standard FACE OR T 30° CGR CGD
DASH
in. / µm in. / µm in. / µm in. / µm in. / µm
-TiC = Titanium Carbide NUMBER
±0.0002 / 5 ±0.0002 / 5 ±0.0003 / 8 ±0.0001 / 3 ±0.0001 / 3
-BKCER = Cermet Tip
-DT = Diamond Tip 01705D 0.0017 / 43 0.0005 / 13 0.0024 / 61 0.0003 / 8 0.0003 / 8
02008D 0.0020 / 51 0.0008 / 20 0.0032 / 81 0.0003 / 8 0.0003 / 8
Options: 02010B 0.0020 / 51 0.0010 / 25 0.0035 / 89 0.0005 / 13 0.0005 / 13
-SDF = Tool makes a “+” pattern 02205D 0.0022 / 56 0.0005 / 13 0.0030 / 76 0.0003 / 8 0.0003 / 8
-SDFA = Tool makes a “x” pattern 03010B 0.0030 / 76 0.0010 / 25 0.0045 / 114 0.0005 / 13 0.0005 / 13
-20D = 20° Cone Angle (30° standard) 03510B 0.0035 / 89 0.0010 / 25 0.0050 / 127 0.0005 / 13 0.0005 / 13
Bottlenecks may be designed 04010B 0.0040 / 102 0.0010 / 25 0.0055 / 140 0.0005 / 13 0.0005 / 13
04510B 0.0045 / 114 0.0010 / 25 0.0060 / 152 0.0005 / 13 0.0005 / 13
Lengths:
05010B 0.0050 / 127 0.0010 / 25 0.0065 / 165 0.0005 / 13 0.0005 / 13
-375 = 0.375 in./9.52mm
06010B 0.0060 / 152 0.0010 / 25 0.0075 / 191 0.0005 / 13 0.0005 / 13
-437 = 0.437 in./11.1mm
-625 = 0.625 in./15.88mm 08010B 0.0080 / 203 0.0010 / 25 0.0095 / 241 0.0005 / 13 0.0005 / 13
-750 = 0.750 in./19.05mm 08010C 0.0080 / 203 0.0010 / 25 0.0095 / 241 0.0010 / 25 0.0010 / 25
-828 = 0.828 in./21.03mm 09020C 0.0090 / 229 0.0020 / 51 0.0121 / 307 0.0010 / 25 0.0010 / 25
-1.0 = 1.000 in./25.4mm 12020C 0.0120 / 305 0.0020 / 51 0.0151 / 384 0.0010 / 25 0.0010 / 25
Other = Specify Dimensions in inches unless otherwise specified.

138
1184 Series
Protruding Radius Single-Point TAB Tool

30°
(STANDARD)

capillaries
OR
PRH PRR
F

wedges
Specify:

tab tools
Series - Face/Outside Radius/Protruding Radius Spec. - Length - Options

Example:
1184-06010B-750-TiC-SDF-20D
1184-02008D-437

Material:
Tungsten Carbide Standard FACE OR T 30° PRR PRH
DASH
in. / µm in. / µm in. / µm in. / µm in. / µm
-TiC = Titanium Carbide NUMBER
±0.0002 / 5 ±0.0002 / 5 ±0.0003 / 8 ±0.0001 / 3 ±0.0001 / 3
-BKCER = Cermet Tip

die attach
-DT = Diamond Tip 01705D 0.0017 / 43 0.0005 / 13 0.0024 / 61 0.0003 / 8 0.0003 / 8
02008D 0.0020 / 51 0.0008 / 20 0.0032 / 81 0.0003 / 8 0.0003 / 8
Options: 02205D 0.0022 / 56 0.0005 / 13 0.0030 / 76 0.0003 / 8 0.0003 / 8
-SDF = Tool makes a “+” pattern 03008D 0.0030 / 76 0.0008 / 20 0.0042 / 107 0.0003 / 8 0.0003 / 8
-SDFA = Tool makes a “x” pattern
03510B 0.0035 / 89 0.0010 / 25 0.0050 / 127 0.0005 / 13 0.0005 / 13
-20D = 20° Cone Angle (30° standard)
04510B 0.0045 / 114 0.0010 / 25 0.0060 / 152 0.0005 / 13 0.0005 / 13
Bottlenecks may be designed
05010B 0.0050 / 127 0.0010 / 25 0.0065 / 165 0.0005 / 13 0.0005 / 13

Lengths: 06010B 0.0060 / 152 0.0010 / 25 0.0075 / 191 0.0005 / 13 0.0005 / 13


-375 = 0.375 in./9.52mm 07010B 0.0070 / 178 0.0010 / 25 0.0085 / 216 0.0005 / 13 0.0005 / 13
-437 = 0.437 in./11.1mm 08010B 0.0080 / 203 0.0010 / 25 0.0095 / 241 0.0005 / 13 0.0005 / 13
-625 = 0.625 in./15.88mm 08010C 0.0080 / 203 0.0010 / 25 0.0095 / 241 0.0010 / 25 0.0010 / 25
-750 = 0.750 in./19.05mm 09020C 0.0090 / 229 0.0020 / 51 0.0121 / 307 0.0010 / 25 0.0010 / 25
other

-828 = 0.828 in./21.03mm 12020C 0.0120 / 305 0.0020 / 51 0.0151 / 384 0.0010 / 25 0.0010 / 25
-1.0 = 1.000 in./25.4mm
Dimensions in inches unless otherwise specified.
Other = Specify

139
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
1186 Series
Protruding “V” Single-Point TAB Tool

30°
(STANDARD)

60°

PVH PVR
T

Specify:
Series - Tip Dia./Protruding “V” Height & Radius - Length - Options

Example:
1186-060052-437-TiC-SDF
1186-095052-750-SDFA-20D

Material:
Tungsten Carbide Standard
-TiC = Titanium Carbide
-BKCER = Cermet Tip
-DT = Diamond Tip T 30° PVH PVR
DASH
in. / µm in. / µm in. / µm
NUMBER
±0.0003 / 8 ±0.0001 / 3 ±0.0001 / 3
Options:
-SDF = Tool makes a “+” pattern 020020 0.0020 / 51 0.0002 / 5 0.0000 / 0
-SDFA = Tool makes a “x” pattern 032030 0.0032 / 81 0.0003 / 8 0.0000 / 0
-20D = 20° Cone Angle (30° standard) 050030 0.0050 / 127 0.0003 / 8 0.0000 / 0
Bottlenecks may be designed 050032 0.0050 / 127 0.0003 / 8 0.0002 / 5
050052 0.0050 / 127 0.0005 / 13 0.0002 / 5
Lengths:
060052 0.0060 / 152 0.0005 / 13 0.0002 / 5
-375 = 0.375 in./9.52mm
075052 0.0075 / 191 0.0005 / 13 0.0002 / 5
-437 = 0.437 in./11.1mm
-625 = 0.625 in./15.88mm 095052 0.0095 / 241 0.0005 / 13 0.0002 / 5
-750 = 0.750 in./19.05mm 095104 0.0095 / 241 0.0010 / 25 0.0004 / 10
-828 = 0.828 in./21.03mm 120104 0.0120 / 305 0.0010 / 25 0.0004 / 10
-1.0 = 1.000 in./25.4mm 150104 0.0150 / 381 0.0010 / 25 0.0004 / 10
Other = Specify Dimensions in inches unless otherwise specified.

140
1152 & 1552 Series
Tamping Tools

30°
(STANDARD)

capillaries
OR
F

wedges
Specify:
Series - Face/Outside Radius - Length - Finish - Options

Example:
1552-090040-750P-20D
1152-050020-437P-TiC
For -TiC, -BKCER, or -DT use 1152 series

Material:

tab tools
FACE OR T 30° T 20°
1552 = Standard Ceramic 1552 1152
in. / µm in. / µm in. / µm in. / µm
1152 = Tungsten Carbide CERAMIC CARBIDE
(ref) ±0.0003 / 8 ±0.0003 / 8 ±0.0003 / 8
-TiC = Titanium Carbide
-BKCER = Cermet Tip N/A -005003 0.0005 / 13 0.0003 / 8 0.0010 / 25 0.0010 / 25
-DT = Diamond Tip N/A -010003 0.0010 / 25 0.0003 / 8 0.0015 / 38 0.0015 / 38
Note: Polished Finish not available N/A -014003 0.0014 / 36 0.0003 / 8 0.0018 / 46 0.0019 / 48
on DT, as EDM’ed only -030003 -030003 0.0030 / 76 0.0003 / 8 0.0034 / 86 0.0035 / 89
-040020 -040020 0.0040 / 102 0.0020 / 51 0.0070 / 178 0.0074 / 186
Options: N/A -050000 0.0050 / 127 0.0000 / 0 0.0050 / 127 0.0050 / 127
-20D = 20° Cone Angle (30° stan-

die attach
-050003 -050003 0.0050 / 127 0.0003 / 8 0.0054 / 137 0.0055 / 140
dard)
-050020 -050020 0.0050 / 127 0.0020 / 51 0.0081 / 206 0.0084 / 214
-15D = 15° Cone Angle
-052005 -052005 0.0052 / 132 0.0005 / 13 0.0060 / 152 0.0060 / 152
Bottlenecks may be designed
P = Polished Finish -055003 -055003 0.0055 / 140 0.0003 / 8 0.0060 / 152 0.0060 / 152
GM = Gaiser Matte Finish -080040 -080040 0.0080 / 203 0.0040 / 102 0.0140 / 356 0.0147 / 373
RF = Rough Matte Finish -090040 -090040 0.0090 / 229 0.0040 / 102 0.0150 / 381 0.0157 / 399
-093025 -093025 0.0093 / 236 0.0025 / 64 0.0130 / 330 0.0135 / 343
Lengths: N/A -100000 0.0100 / 254 0.0000 / 0 0.0100 / 254 0.0100 / 254
-375 = 0.375 in./9.52mm -100003 -100003 0.0100 / 254 0.0003 / 8 0.0105 / 267 0.0105 / 267
-437 = 0.437 in./11.1mm -100010 -100010 0.0100 / 254 0.0010 / 25 0.0115 / 292 0.0117 / 297
-625 = 0.625 in./15.88mm -100040 -100040 0.0100 / 254 0.0040 / 102 0.0160 / 406 0.0167 / 424
-750 = 0.750 in./19.05mm -120040 -120040 0.0120 / 305 0.0040 / 102 0.0180 / 457 0.0187 / 475
-1.0 = 1.000 in./25.4mm -130025 -130025 0.0130 / 330 0.0025 / 64 0.0167 / 424 0.0172 / 437
Other = Specify
other

-130040 -130040 0.0130 / 330 0.0040 / 102 0.0190 / 483 0.0197 / 500
-150040 -150040 0.0150 / 381 0.0040 / 102 0.0210 / 533 0.0217 / 551
N/A = Not available in ceramic. Dimensions in inches unless otherwise specified.

141
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
2T01 & 2T02 Series
Single Cross Groove Single-Point TAB Tool

20°
10°

GR
GD

W BL
FR BR

CENTER OF
MASS LINE

Ø0.0624 0.0460
1.58mm 1.17mm

Material:
Tungsten Carbide Standard
-TiC = Titanium Carbide
-BKCER = Cermet Tip
-DT = Diamond Tip 10°

Options:
10°
see Wedge Modifications
20°

Lengths: 10°
-375 = 0.375 in./9.52mm
-S = 0.437 in./11.1mm
-625 = 0.625 in./15.88mm
-3/4 = 0.750 in./19.05mm
-L = 0.828 in./21.03mm
-1.0 = 1.000 in./25.4mm
Other = Specify 2T01 2T02
Specify:
Series - Bond Length/Bond Foot Width/Radius & Groove Spec. - Shank Length -
Options

Example:
2T01-35070C-S-TiC
2T02-45075C-3/4-20D

142
2T01 & 2T02 Series
Single Cross Groove Single-Point TAB Tool

BL W FR = BR GR GD
DASH
in. / µm in. / µm in. / µm in. / µm in. / µm
NUMBER
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0001 / 3 ±0.0001 / 3

capillaries
15025A 0.0015 / 38 0.0025 / 64 0.0005 / 13 0.0003 / 8 0.0003 / 8
15035A 0.0015 / 38 0.0035 / 89 0.0005 / 13 0.0003 / 8 0.0003 / 8
15040A 0.0015 / 38 0.0040 / 102 0.0005 / 13 0.0003 / 8 0.0003 / 8
20020B 0.0020 / 51 0.0020 / 51 0.0005 / 13 0.0004 / 10 0.0004 / 10
20025B 0.0020 / 51 0.0025 / 64 0.0005 / 13 0.0004 / 10 0.0004 / 10
20030B 0.0020 / 51 0.0030 / 76 0.0005 / 13 0.0004 / 10 0.0004 / 10
20035B 0.0020 / 51 0.0035 / 89 0.0005 / 13 0.0004 / 10 0.0004 / 10
20040B 0.0020 / 51 0.0040 / 102 0.0005 / 13 0.0004 / 10 0.0004 / 10
20050B 0.0020 / 51 0.0050 / 127 0.0005 / 13 0.0004 / 10 0.0004 / 10
20080B 0.0020 / 51 0.0080 / 203 0.0005 / 13 0.0004 / 10 0.0004 / 10
25020B 0.0025 / 64 0.0020 / 51 0.0005 / 13 0.0004 / 10 0.0004 / 10
25030B 0.0025 / 64 0.0030 / 76 0.0005 / 13 0.0004 / 10 0.0004 / 10
25040B 0.0025 / 64 0.0040 / 102 0.0005 / 13 0.0004 / 10 0.0004 / 10

wedges
25050B 0.0025 / 64 0.0050 / 127 0.0005 / 13 0.0004 / 10 0.0004 / 10
25067B 0.0025 / 64 0.0067 / 170 0.0005 / 13 0.0004 / 10 0.0004 / 10
25080B 0.0025 / 64 0.0080 / 203 0.0005 / 13 0.0004 / 10 0.0004 / 10
25100B 0.0025 / 64 0.0100 / 254 0.0005 / 13 0.0004 / 10 0.0004 / 10
30030B 0.0030 / 76 0.0030 / 76 0.0005 / 13 0.0004 / 10 0.0004 / 10
30040B 0.0030 / 76 0.0040 / 102 0.0005 / 13 0.0004 / 10 0.0004 / 10
30060B 0.0030 / 76 0.0060 / 152 0.0005 / 13 0.0004 / 10 0.0004 / 10
30080B 0.0030 / 76 0.0080 / 203 0.0005 / 13 0.0004 / 10 0.0004 / 10
35060B 0.0035 / 89 0.0060 / 152 0.0005 / 13 0.0004 / 10 0.0004 / 10
35100B 0.0035 / 89 0.0100 / 254 0.0005 / 13 0.0004 / 10 0.0004 / 10
40060B 0.0040 / 102 0.0060 / 152 0.0005 / 13 0.0004 / 10 0.0004 / 10

tab tools
57067B 0.0057 / 145 0.0067 / 170 0.0005 / 13 0.0004 / 10 0.0004 / 10
70070B 0.0070 / 178 0.0070 / 178 0.0005 / 13 0.0004 / 10 0.0004 / 10
80080B 0.0080 / 203 0.0080 / 203 0.0005 / 13 0.0004 / 10 0.0004 / 10
25120C 0.0025 / 64 0.0120 / 305 0.0010 / 25 0.0008 / 20 0.0007 / 18
30120C 0.0030 / 76 0.0120 / 305 0.0010 / 25 0.0008 / 20 0.0007 / 18
35060C 0.0035 / 89 0.0060 / 152 0.0010 / 25 0.0008 / 20 0.0007 / 18
35070C 0.0035 / 89 0.0070 / 178 0.0010 / 25 0.0008 / 20 0.0007 / 18
35080C 0.0035 / 89 0.0080 / 203 0.0010 / 25 0.0008 / 20 0.0007 / 18
35100C 0.0035 / 89 0.0100 / 254 0.0010 / 25 0.0008 / 20 0.0007 / 18
35120C 0.0035 / 89 0.0120 / 305 0.0010 / 25 0.0008 / 20 0.0007 / 18
40040C 0.0040 / 102 0.0040 / 102 0.0010 / 25 0.0008 / 20 0.0007 / 18

die attach
40050C 0.0040 / 102 0.0050 / 127 0.0010 / 25 0.0008 / 20 0.0007 / 18
40060C 0.0040 / 102 0.0060 / 152 0.0010 / 25 0.0008 / 20 0.0007 / 18
40080C 0.0040 / 102 0.0080 / 203 0.0010 / 25 0.0008 / 20 0.0007 / 18
40100C 0.0040 / 102 0.0100 / 254 0.0010 / 25 0.0008 / 20 0.0007 / 18
40120C 0.0040 / 102 0.0120 / 305 0.0010 / 25 0.0008 / 20 0.0007 / 18
40210C 0.0040 / 102 0.0210 / 533 0.0010 / 25 0.0008 / 20 0.0007 / 18
45075C 0.0045 / 114 0.0075 / 191 0.0010 / 25 0.0008 / 20 0.0007 / 18
45100C 0.0045 / 114 0.0100 / 254 0.0010 / 25 0.0008 / 20 0.0007 / 18
45120C 0.0045 / 114 0.0120 / 305 0.0010 / 25 0.0008 / 20 0.0007 / 18
50025C 0.0050 / 127 0.0025 / 64 0.0010 / 25 0.0008 / 20 0.0007 / 18
50050C 0.0050 / 127 0.0050 / 127 0.0010 / 25 0.0008 / 20 0.0007 / 18
50120C 0.0050 / 127 0.0120 / 305 0.0010 / 25 0.0008 / 20 0.0007 / 18
55060C 0.0055 / 140 0.0060 / 152 0.0010 / 25 0.0008 / 20 0.0007 / 18
55080C 0.0055 / 140 0.0080 / 203 0.0010 / 25 0.0008 / 20 0.0007 / 18
other

55120C 0.0055 / 140 0.0120 / 305 0.0010 / 25 0.0008 / 20 0.0007 / 18


60220C 0.0060 / 152 0.0220 / 559 0.0010 / 25 0.0008 / 20 0.0007 / 18
90060C 0.0090 / 229 0.0060 / 152 0.0010 / 25 0.0008 / 20 0.0007 / 18

Dimensions in inches unless otherwise specified.

143
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
2T21 & 2T22 Series
Double Cross Groove Single-Point TAB Tool

20°

10°

LGR CGR

LGD

LR BR
CGD
BW BL
RR FR
W T

CENTER OF
MASS LINE

Ø0.0624 0.0460
1.58mm 1.17mm

Material:
Tungsten Carbide Standard
-TiC = Titanium Carbide
-BKCER = Cermet Tip
-DT = Diamond Tip 10°

Options:
10°
see Wedge Modifications 20°

Lengths: 10°
-375 = 0.375 in./9.52mm
-S = 0.437 in./11.1mm
-625 = 0.625 in./15.88mm
-3/4 = 0.750 in./19.05mm
-L = 0.828 in./21.03mm
-1.0 = 1.000 in./25.4mm
Other = Specify 2T21 2T22
Specify:
Series - Bond Length/BW/Radius & Groove Spec. - Shank Length - Options

Example:
2T21-35050C-S-TiC
2T22-45075C-3/4-20D

144
2T21 & 2T22 Series
Double Cross Groove Single-Point TAB Tool

BL BW FR=BR=LR=RR W CGR=LGR CGD=LGD


DASH
in. / µm in. / µm in. / µm in. / µm in. / µm in. / µm
NUMBER
±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0002 / 5 ±0.0001 / 3 ±0.0001 / 3

capillaries
15015B 0.0015 / 38 0.0015 / 38 0.0005 / 13 0.0023 / 58 0.0004 / 10 0.0004 / 10
20020B 0.0020 / 51 0.0020 / 51 0.0005 / 13 0.0028 / 71 0.0004 / 10 0.0004 / 10
20032 0.0020 / 51 0.0032 / 81 0.0005 / 13 0.0040 / 102 0.0004 / 10 0.0004 / 10
20040B 0.0020 / 51 0.0040 / 102 0.0005 / 13 0.0048 / 122 0.0004 / 10 0.0004 / 10
25025B 0.0025 / 64 0.0025 / 64 0.0005 / 13 0.0033 / 84 0.0004 / 10 0.0004 / 10
25050B 0.0025 / 64 0.0050 / 127 0.0005 / 13 0.0058 / 147 0.0004 / 10 0.0004 / 10
30030B 0.0030 / 76 0.0030 / 76 0.0005 / 13 0.0038 / 97 0.0004 / 10 0.0004 / 10
30060B 0.0030 / 76 0.0060 / 152 0.0005 / 13 0.0068 / 173 0.0004 / 10 0.0004 / 10
35040B 0.0035 / 89 0.0040 / 102 0.0005 / 13 0.0048 / 122 0.0004 / 10 0.0004 / 10

wedges
40040B 0.0040 / 102 0.0040 / 102 0.0005 / 13 0.0048 / 122 0.0004 / 10 0.0004 / 10
40060B 0.0040 / 102 0.0060 / 152 0.0005 / 13 0.0068 / 173 0.0004 / 10 0.0004 / 10
45040B 0.0045 / 114 0.0040 / 102 0.0005 / 13 0.0048 / 122 0.0004 / 10 0.0004 / 10
45045B 0.0045 / 114 0.0045 / 114 0.0005 / 13 0.0053 / 135 0.0004 / 10 0.0004 / 10
50050 0.0050 / 127 0.0050 / 127 0.0005 / 13 0.0058 / 147 0.0004 / 10 0.0004 / 10
55040B 0.0055 / 140 0.0040 / 102 0.0005 / 13 0.0048 / 122 0.0004 / 10 0.0004 / 10
30030C 0.0030 / 76 0.0030 / 76 0.0010 / 25 0.0047 / 119 0.0008 / 20 0.0007 / 18
30050C 0.0030 / 76 0.0050 / 127 0.0010 / 25 0.0067 / 170 0.0008 / 20 0.0007 / 18

tab tools
30120C 0.0030 / 76 0.0120 / 305 0.0010 / 25 0.0137 / 348 0.0008 / 20 0.0007 / 18
35050C 0.0030 / 76 0.0050 / 127 0.0010 / 25 0.0067 / 170 0.0008 / 20 0.0007 / 18
40040C 0.0040 / 102 0.0040 / 102 0.0010 / 25 0.0057 / 145 0.0008 / 20 0.0007 / 18
40060C 0.0040 / 102 0.0060 / 152 0.0010 / 25 0.0077 / 196 0.0008 / 20 0.0007 / 18
40090C 0.0040 / 102 0.0090 / 229 0.0010 / 25 0.0107 / 272 0.0008 / 20 0.0007 / 18
45045C 0.0045 / 114 0.0045 / 114 0.0010 / 25 0.0062 / 158 0.0008 / 20 0.0007 / 18
50050C 0.0050 / 127 0.0050 / 127 0.0010 / 25 0.0067 / 170 0.0008 / 20 0.0007 / 18
55070C 0.0055 / 140 0.0070 / 178 0.0010 / 25 0.0087 / 221 0.0008 / 20 0.0007 / 18

die attach
55080 0.0055 / 140 0.0080 / 203 0.0010 / 25 0.0097 / 246 0.0008 / 20 0.0007 / 18
60060C 0.0060 / 152 0.0060 / 152 0.0010 / 25 0.0077 / 196 0.0008 / 20 0.0007 / 18
60080C 0.0060 / 152 0.0080 / 203 0.0010 / 25 0.0097 / 246 0.0008 / 20 0.0007 / 18
80080C 0.0080 / 203 0.0080 / 203 0.0010 / 25 0.0097 / 246 0.0008 / 20 0.0007 / 18

*Flat Face Only.


Other part numbers are available.
Dimensions in inches unless otherwise specified.
other

145
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Die Collets & Pick-up Tools
Tip Geometries

3600 Series 3700 Series 3800 Series


Four-sided Die Collet Two-sided Die Collet Square/Rectangle, Flat Face
Vacuum Pick-up Tool

3900 Series 3300 & 3300-ETE Series 3200-ETE Series


Conical/Round, Flat Face Surface/Perimeter Pick-up Collet Two-sided Surface Pick-up
Vacuum Pick-up Tool Collet

Custom Configuration Custom Configuration


Modified Collet, for MEMS Device
Special Reliefs Added

146
Vacuum Pick-up Tools
3800 & 3900 Series

Conical vacuum pickup tools are typically used for die Delrin Vespel ESD01
pick-and-place into epoxy. The plastic materials are Continuous Service 300 (ideal)
most commonly specified as opposed to metal as they 180 420
Temp (ºF) 500 (max NR)

capillaries
are less likely to damage die or sensitive devices. Max Temp (ºF)
(Excursions/Brief 250 900 N/A
Peaks)
The lowest cost material is Delrin . Delrin has a limited
® ®
Does not melt
temperature service range and can hold a static charge. Melting Temp (ºF) 327-335 (decomposes
Approximately
584
Vespel® has a higher service temperature and is “anti-stat- at >500 in O2 )

ic”. Gaiser’s ESD01 material is truly static dissipative. Other Rockwell Hardness
94 69-79 87
(M)
useful physical properties are shown on the adjacent
ESD Rated
table. Insulator
Insulator
Static Dissipative
Electric Property Non-conductive
Non-conductive 106-109
"Anti-Static"
Volume Resistivity

3900 Series - Conical, Flat Face Tip

wedges
Ø0.0624 Ø0.1249 Ø0.0624
TYPICAL TIP
30° CONFIGURATIONS
HOLE TIP
DIAMETER DIAMETER
SS
in. / µ in. / µ
0.005 / 127 0.010 / 254
0.006 / 152 0.012 / 305
LENGTH
HOLE AS SPECIFIED 0.008 / 203 0.016 / 406
IN PART NO.
0.008 / 203 0.020 / 508
TIP
30°
0.010 / 254 0.020 / 508
0.010 / 254 0.025 / 635

tab tools
30°
30°
0.015 / 381 0.030 / 762
VES
DEL 0.020 / 508 0.040 / 1016
WC
Other = Specify
3901 3902 3901C
(Plastic Tips Only
for #01C Shank)
Specify:
Series/Shank Style - Hole Size - Tip Size - *Shank Length - Material

Example:
3901-006-012-625-DEL
*Specify length for 01, 02, & 60 shanks only

die attach
VES, DEL, ESD01, or WC material. Polish face standard for WC
material

3800 Series - Square/Rectangle, Flat Face Tip 30°

Specify:
Series/Shank Style - Hole - Tip Length - Tip Width - *Length -
Material

Example: HOLE

3802-010-025-035-750-VES TIP
*Specify length for 01, 02, & 60 shanks only LENGTH

VES or WC only. Polish face standard for WC material


other

TIP
WIDTH

147
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Eutectic Die Collets
3600 & 3700 Series

Two and four sided collets are used to attach die to a Both collets are manufactured so 50% of the die thick-
substrate using eutectic or epoxy attach methods. Die ness is engaged and 50% is exposed (of the die thickness
collets are designed to pick up the die by the edges, not specified in the part number). Under some conditions,
the face. The inside of the collets have slanted sides, either the eutectic or epoxy material may extrude up
usually 90° but can be user specified as needed. This onto the collet face and contaminate it. To eliminate
insures accurate placement using Scrub or simple Pick this problem, the collet should be ordered by calling
and Place. out a thinner die size than is actually being used. The
collet will be made smaller and allow for more of the die
The four-sided “inverted pyramid” collet has the advan- to be exposed away from the face.
tage of absolute control of positioning of the die because
it is contained on all four sides. All die collets are available with Ø0.0625in./1.58mm or
Ø0.125in./3.18mm shanks or as shown on pages 154 and
The two-sided “channel” design allows for the die to 155. Tungsten carbide die collets can be heated to 450°
extend beyond the collet opening. This type of collet C. For best eutectic resuts, a closed loop rapid heat up
is used to place die close to walls, another die, or laser cycle is best. If a particular shank is not listed, Gaiser
diodes with sensitive facets on two sides of the die. can manufacture it per customer specifications.
30° Corner
1/2 DT
3600 Series Reliefs
0.003
Four-Sided Die Collets 0.005
0.001
0.003
(TYP) (TYP)

DT θ 0.001
DIE 0.003
DL
(TYP)

*Internal Corner Reliefs *External Corner Reliefs


Standard for Small Collets Standard for Large Collets (0.060
DW x 0.060 or larger die size)

*corner relief feature automatically optimized by Gaiser based on


die size and dimesional aspect ratios
0.001
0.003
(TYP)
On the 3700 two-sided die collet, the DW
is contacted, (touched) by the collet.
30°
The DL is not contacted by the collet.
1/2 DT 3700 Series The vacuum leaks at the DL side.
Two-Sided Die Collets

DT θ DIE
DL

DL
5% OF DW DW
EACH SIDE

DW
The DL is specified first in the
part number.
The DW is specified second.
0.001
0.003
(TYP)

Specify: Series/Shank Style - Shank Length - Inside Wall Angle - Die Length - Die Width - Die Thickness - Options

Example: 3602-750-90-055-065-005 Material: WC (Tungsten Carbide only)


3702-500-90-055-095-010
Dimensions in inches unless otherwise specified. Note: See page 154 for optional outside Vertical Walls

148
Surface/Perimeter Pick-up Collets
3300, 3300-ETE, & 3200-ETE Series

SMALL
GEOMETRY
LARGE
GEOMETRY 3300 Series
Surface/Perimeter Pick-up
Tool

capillaries
30° 0.005
Cavity Dimensions Specified
30° 0.015 Specify:
Series/Shank Style-*Shank length-Cavity Length-Cavity Width-Wall
CW
Thickness
POLISH
FINISH
STANDARD Example: 3302-1.0-050-040-003
CL *Specify length for 01, 02, & 60 shanks only
Polish finish Standard, GM=Gaiser Matte optional finish
WC only
WT
(TYP)
For the 3300 Series, the inside cavity dimensions are
specified in the part number.

wedges
SMALL
GEOMETRY
LARGE
GEOMETRY 3300-ETE Series
Surface/Perimeter Pick-up Tool
Outer Edge-to-Edge Dimensions Specified
30°
0.005
30° 0.015 Specify:
Series/Shank Style-*Shank length-Tip Length-Tip Width-Wall Thickness
TW
POLISH Example: 3302-ETE-1.0-050-040-003

tab tools
FINISH
STANDARD *Specify length for 01, 02, & 60 shanks only
Polish finish Standard, GM=Gaiser Matte optional finish
TL
WC only

WT
For the 3300-ETE Series, the outer edge-to edge dimensions are
(TYP) specified in the part number.

SMALL
GEOMETRY
LARGE
GEOMETRY 3200-ETE Series

die attach
Surface, Two-Sided, Perimeter Pick-up Tool
Outer Edge-to-Edge Dimensions Specified
30°
0.005
30° 0.010 Specify:
Series/Shank Style-*Shank length-Tip Length-Tip Width-Wall Thickness
TW
POLISH Example: 3202-ETE-1.0-050-040-003
FINISH
STANDARD *Specify length for 01, 02, & 60 shanks only
Polish finish Standard, GM=Gaiser Matte optional finish
TL
WC only

WT
For the 3200-ETE Series, the outer edge-to edge dimensions are
(TYP) specified in the part number.
other

Notes: See page 154 for optional outside Vertical Walls


For special cavity depth, specify CD=XXX

149
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
The #32A Shank
For the Palomar 3500, 6500, & LDA

(3) COPLANARITY
LEVELING
0.500 TOOL DROP 0.600 TOOL DROP SET SCREWS

0.385
9.8mm
*
0.635
16.1mm
0.500
12.7mm 0.600
15.2mm

LARGE SMALL
GEOMETRY GEOMETRY
LARGE SMALL
GEOMETRY GEOMETRY TOOL DROP
(SEE TABLE)

FULCRUM
0.700 TOOL DROP 0.750 TOOL DROP

0.585 ** 0.635
14.9mm
16.1mm

0.700 0.750
17.8mm 19.1mm
TOOL DROP
TOOL DROP
DIMENSION
DESIGNATION
in. / mm
-750TD 0.750 / 19.05
-700TD 0.700 / 17.8
LARGE SMALL
GEOMETRY GEOMETRY LARGE SMALL -600TD 0.600 / 15.2
GEOMETRY GEOMETRY
-500TD 0.500 / 12.7

Above Configurations for the 3632A, 3732A, 3332A, 3332A-ETE, & 3232A-ETE Series
*different shank body used for the 3900 Series
**different shank body used for the 3800 & 3900 Series

Specify:
3632A - Tool Drop - Inside Wall Angle - Die Length - Die Width - Die Thickness
3732A - Tool Drop - Inside Wall Angle - Die Length - Die Width - Die Thickness
3832A - Tool Drop - Hole Diameter - Tip Length - Tip Width - Tip Material
3932A - Tool Drop - Hole Diameter - Tip Diameter - Tip Material
3332A - Tool Drop - Cavity Length - Cavity Width - Wall Thickness
3332A - ETE - Tool Drop - Tip Length - Tip Width - Wall Thickness
3232A - ETE - Tool Drop - Tip Length - Tip Width - Wall Thickness

Example:
3632A-750TD-90-040-060-005
3732A-750TD-90-050-120-004
3832A-500TD-010-040-050-VES
3932A-600TD-015-030-DEL
3332A-700TD-050-040-003
3332A-ETE-750TD-056-046-003
3232A-ETE-750TD-056-046-003

150
The #32 Shank
For the Palomar 3500, 6500, & LDA

#32 Shank #32 Deep Reach

capillaries
0.465 0.465
11.8mm 11.8mm

0.665
Ø0.125 16.9mm Ø0.125
3.18mm 3.18mm
0.500
12.7mm 0.915
23.2mm
0.750
19.0mm

TYPICAL TIP
CONFIGURATIONS

wedges
HOLE TIP
DIAMETER DIAMETER
in. / µm in. / µm
0.005 / 127 0.010 / 254
Specify: 0.006 / 152 0.012 / 305
Series/Shank Style - Hole Diameter - Tip Diameter - Material 0.008 / 203 0.016 / 406
0.010 / 254 0.020 / 508
0.012 / 305 0.024 / 610
Example: 3932-006-012-VES
0.015 / 381 0.030 / 762
0.020 / 508 0.040 / 1016
0.025 / 635 0.050 / 1270
Epoxy Daub Tools 0.030 / 762 0.060 / 1524

tab tools
#32 Shank
(For the Palomar Machines)

TYPICAL TIP
CONFIGURATIONS

TIP
HEIGHT
DIAMETER
in. / mm
in. / mm
0.665 0.005 / 0.13 0.015 / 0.38

die attach
16.9mm
60° 0.010 / 0.25 0.050 / 1.27
0.015 / 0.38 0.070 / 1.78
0.020 / 0.51 0.080 / 2.03
0.025 / 0.64 0.100 / 2.54
TIP DIAMETER
HEIGHT
0.030 / 0.76 0.120 / 3.05

SPHERICAL TIP
0.035 / 0.89 0.140 / 3.56
0.040 / 1.02
Specify: 0.045 / 1.14
Series/Shank Style - Tip Diameter - Height of Diameter - *Shank Length - **Material 0.050 / 1.27
0.055 / 1.40
Example: 3D32-030-120-SS
0.060 / 1.52 0.200 / 5.1
0.065 / 1.65
*Specify length for 01, 02, & 60 shanks only
**Material is standard as Stainless Steel (“-SS”) 0.070 / 1.78
other

Note: For tip diameters less than 0.010 in./0.25mm, the tip height 0.075 / 1.90
should not exceed three times the tip diameter. 0.080 / 2.03
Dimensions in inches unless otherwise specified.

151
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
The #05 Shank
For Conical Vacuum Pick-up Tools
For the Newport/MRSI 505, 5005, 605, & M5

Ø0.1249 Ø0.1249
3.17mm 3.17mm

TYPICAL TIP
CONFIGURATIONS

HOLE TIP
DIAMETER DIAMETER
in. / µm in. / µm
0.530
13.5mm 0.005 / 127 0.008 / 203
0.685 0.005 / 127 0.010 / 254
17.4mm
0.006 / 152 0.010 / 254
Ø0.1249 0.875 Ø0.1249 0.006 / 152 0.012 / 305
3.17mm 22.2mm 3.17mm 0.008 / 203 0.013 / 330
0.008 / 203 0.016 / 406
0.010 / 254 0.020 / 508
30° 0.500 0.015 / 381 0.030 / 762
Ø0.050
1.3mm 12.7mm
0.020 / 508 0.040 / 1016
0.350
8.9mm 0.030 / 762 0.040 / 1016
30°
#05 Shank 0.040 / 1016 0.050 / 1270
0.060 / 1524 0.080 / 2032
0.070 / 1778 0.100 / 2540

#05 Shank Deep Reach

Specify:
Series/Shank Style - Hole Diameter - Tip Diameter - Material

Example: 3905-010-020-VES

Material:
VES = Vespel
DEL = Delrin
WC = Tungsten Carbide
ESD01 = Static Dissipative ESD Material

152
The #05P Pin Type Shank
For Rectangular/Square Tip Geometries
For the Newport/MRSI 505, 5005, 605, & M5

Ø0.065

capillaries
Ø0.2492
6.3mm

Ø0.1249
3.17mm

#05P Shank

wedges
SS PIN

Ø0.0625
1.59mm
0.688
17.5mm

Ø0.1249
3.17mm

0.125
3.18mm

tab tools
LARGE SMALL
GEOMETRY GEOMETRY

die attach
Specify:
3605P - Inside Wall Angle - Die Length - Die Width - Die Thickness
3705P - Inside Wall Angle - Die Length - Die Width - Die Thickness
3805P - Hole Diameter - Tip Length - Tip Width - Tip Material
3905P - Hole Diameter - Tip Diameter - Tip Material
3305P - Cavity Length - Cavity Width - Wall Thickness
3305P - ETE - Tip Length - Tip Width - Wall Thickness
3205P - ETE - Tip Length - Tip Width - Wall Thickness
other

Custom configurations available - Contact factory


Note: Pin orientation is on same side as smaller tip side as shown
(on same axis as longer tip side as shown)
Not recommended for 3900 series, for 3900 series see adjacent page

153
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Shank Styles
Die Collets & Vacuum Pick-Up Tools

#01, #02 Shank SHANK DIAMETER D


MACHINE
SHANK LENGTH
NUMBER in. / mm NUMBER in. / mm
Diameter D
01 0.0625 / 1.58 Esec 01 0.3150 / 08.00
02 0.125 / 3.18 West Bond 7300 01 Specify
K&S 642 02 0.750 / 19.05
Mech El 703 02 0.750 / 19.05
Small Large Mullen 8-140 02 0.750 / 19.05
Geometry Geometry
Length
SEC 4000 02 1.00 / 25.4
Specified in
Part Number

0.125
Note: Vertical wall height is 0.100 inch for
3.18mm small geometry - for very small die this
dimension is reduced for structural integrity
*0.100
2.54mm

Small Large
Geometry Geometry Optional Outside Vertical Walls

#03 Shank #04 Shank #12 Shank


Ø0.125 Ø0.1180
3.18mm 3mm

1°30’±2°
Ø0.125 Ø0.110
2.79mm 2.79mm

15/32
0.312
0.984
7.9mm
0.750 25mm 0.4375
19.05mm 11.1mm
30° 0.125
3.18mm
1/16 Vacuum
Hole

Small Large
Small Large Geometry Geometry
Geometry Geometry
for AMI Automatic die bonders
for K&S 643 and 648 die bonders for Tresky bonder
Daub Tools-3DXX Series
Ø0.1249
3.17mm

#32 & #32A Shank #05 & #05P Shank

LENGTH
AS SPECIFIED
60°
IN PART NO.

TIP DIAMETER
HEIGHT

for Newport/MRSI Machines SPHERICAL TIP


see pages 152 & 153
(3D02 shown above - available to all
for Palomar Machines shank styles) see page 151 for typical
see pages 150 & 151 Daub Tool tip configurations

154
Shank Styles
Die Collets & Vacuum Pick-Up Tools

Ø0.125 Ø0.1250
SHANK DIAMETER D 3.18mm
SHANK DIAMETER D +.0000
NUMBER in. / mm NUMBER in. / mm -.0005
0.526 3.18mm
21 0.125 / 3.18 29 0.125 / 3.18

capillaries
13.4mm
22 0.187 / 4.75 62 0.312 / 7.92 Dia. D
Dia. D
23 0.234 / 5.94
24 0.312 / 7.92 Vacuum
Vacuum Hole 0.190
Hole 4.8mm
2.000
0.090 51mm
1.812
46.02mm 2.29mm

#21, #22, # 23, 1.312 #29 & #62 Shank


& #24 Shank
33.3mm
for Mullen/Unitek
0.860
for Mullen/Unitek die bonders 21.8mm
0.650
die bonders 16.5mm 0.500 Model 8-140 heated
12.7mm
Model 8-157 heated

wedges
SHANK DIAMETER D Ø0.125
NUMBER in. / mm 3.18mm
Ø0.125
25 0.125 / 3.18 3.18mm

26 0.187 / 4.75 #45 Shank 10°

27 0.234 / 5.94 Dia. D 0.060


Combination for
28 0.312 / 7.92 Mech El 703

tab tools
63 0.500 / 12.7 and K&S 643 0.455
1.531 11.6mm
38.9mm Vacuum
die bonders
Ø0.100
#25, #26, # 27, Hole 0.090
2.29mm
0.750
19.05mm
(REF)
0.875
#28, & #63 Shank 22.2mm
0.080
for Mullen/Unitek 0.330
±.020

die bonders 8.38mm

Model 8-140 heated 0.100 Ø0.030


(REF)

die attach
Ø0.0625
Ø0.060 1.58mm
1.52mm
#60 Shank Ø0.125
3.18mm #61 Shank* SS
Shank
for the for Westbond
K&S 6300 bonder pick-and-place
bonders 0.625
Length 15.88mm
Specified in
Part Number
*Note: For other lengths or materials, 1/8

1/8
use 3901C shank
other

Delrin
Tip

155
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Parallel Gap Electrodes
Styles & Applications

PGE-Dash Number-60D
Used in Unitek Welders as an
equivalent to the UTM-C series

PGE-Dash Number-15D
Used in Unitek Welders as an
equivalent to the UTM-L series

PGE-Dash Number-DUS
Used in Hughes Welders as an
equivalent to the DUS series

PGE-Dash Number-ESQ
Used in Hughes Welders as an
equivalent to the ESQ series

PGE-Dash Number-ESQA
Used in Hughes Welders as a fixed-gap op-
tioned equivalent to the ESQ series

PGE-Dash Number-ESQ-20D
Used in Hughes Welders as an
equivalent to the angled ESQ series

PGE-Dash Number-ESQA-20D
Used in Hughes Welders as a fixed-gap optioned
equivalent to the angled ESQ series

PGE-Dash Number-DUO
Used in Hughes Welders as an
equivalent to the DUO series

156
PGE-Dash Number-60D
For The Unitek Welder

capillaries
Ø0.125
3.18mm

REQUIRED FOR
ASSEMBLY

C
+0.002
-0.005

wedges
G
+0.0005
-0.0004
W±0.002

1.250 DETAIL A
31.8mm

0.020

tab tools
0.51mm 30°

C
+0.002
-0.005

0.375
9.53mm
T±0.001

60° DETAIL B

die attach
DETAIL A DETAIL B

DASH Specify:
W T G C Parallel Gap Electrode - Dash Number - Style
NUMBER
-09101 0.009 0.010 0.0010 0.020
-10051 0.010 0.005 0.0010 0.015
Example:
PGE-09101-60D
-10052 0.010 0.005 0.0020 0.015
-10102 0.010 0.010 0.0020 0.020
Material:
-15152 0.015 0.015 0.0020 0.050
Molybdenum
-18202 0.018 0.020 0.0020 0.050
-20204 0.020 0.020 0.0040 0.050
other

-20307 0.020 0.030 0.0070 0.050

Dimensions in inches unless otherwise specified.

157
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
PGE-Dash Number-15D
For The Unitek Welder

Ø0.125
3.18mm

REQUIRED FOR
ASSEMBLY

C
+0.002
-0.005

G
+0.0005
-0.0004
W±.002
1.250
31.8mm DETAIL A

0.020
0.51mm
30°

C
+0.002
-0.005

0.375
9.53mm T±0.001
15°

DETAIL B

DETAIL A DETAIL B

DASH Specify:
W T G C Parallel Gap Electrode - Dash Number - Style
NUMBER
-09101 0.009 0.010 0.0010 0.020
-10051 0.010 0.005 0.0010 0.015
Example:
PGE-09101-15D
-10052 0.010 0.005 0.0020 0.015
-10102 0.010 0.010 0.0020 0.020
Material:
-15152 0.015 0.015 0.0020 0.050
Molybdenum
-18202 0.018 0.020 0.0020 0.050
-20204 0.020 0.020 0.0040 0.050
-20307 0.020 0.030 0.0070 0.050

Dimensions in inches unless otherwise specified.

158
PGE-Dash Number-DUS
For The Hughes Welder

0.240 0.120
6.10mm 3.05mm

capillaries
REQUIRED FOR
ASSEMBLY

C
+0.002
-0.005

wedges
G
+0.0005
-0.0004
1.530 W±0.002
38.9mm
DETAIL A

15°

tab tools
C
0.510 +0.002
12.95mm -0.005

30°
T±0.001

DETAIL B
0.120
DETAIL A

die attach
DETAIL B 3.05mm

DASH
Specify:
W T G C Parallel Gap Electrode - Dash Number - Style
NUMBER
-07052 0.007 0.005 0.0020 0.012
Example:
-10102 0.010 0.010 0.0020 0.020
PGE-07052-DUS
-15203 0.015 0.020 0.0030 0.040
-20203 0.020 0.020 0.0030 0.040
Material:
Molybdenum
other

Dimensions in inches unless otherwise specified.

159
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
PGE-Dash Number-ESQ
For The Hughes Welder

0.125
3.18mm

0.125
3.18mm

1.500
38.1mm

0.100
+0.002
20°
-0.005
(SYM)
2.54mm

A±0.001

B±0.001
20°

Note: Part is a mirror image pair as shown

Specify:
Parallel Gap Electrode - Dash Number - Style - Optional Material DASH
A B
NUMBER
Example: -0815 0.008 0.015
PGE-1015-ESQ
-1015 0.010 0.015
PGE-2545-ESQ-W
-1525 0.015 0.025
-1825 0.018 0.025
Material:
Molybdenum Standard -2323 0.023 0.023
RWMA Class 2 Optional (Specify “-CU2” in part number) -2545 0.025 0.045
Tungsten Optional (Specify “-W” in part number)

Dimensions in inches unless otherwise specified.

160
PGE-Dash Number-ESQA
For The Hughes Welder

Features:
The PGE-Dash Number-ESQA series is a fixed-gap, as-
sembled version of the conventional two piece design. The

capillaries
0.125 gap may be specified at 0.002 inch or 0.004 inch.
3.18mm Gaiser exclusive long life insulator is used to separate the
electrodes.
0.252
6.40mm Specify:
Parallel Gap Electrode - Dash Number - Style

Example:
PGE-32252-ESQA

Material:
Molybdenum

wedges
1.500
38.1mm C
+0.002
-0.005

TIP DETAIL

tab tools
G

W±0.002 T±0.001

20°

die attach
20°

DASH DASH
W T G C W T G C
NUMBER NUMBER
-18152 0.018 0.015 0.002 0.100 -20154 0.020 0.015 0.004 0.100
-22152 0.022 0.015 0.002 0.100 -24154 0.024 0.015 0.004 0.100
-32252 0.032 0.025 0.002 0.100 -34254 0.034 0.025 0.004 0.100
-38252 0.038 0.025 0.002 0.100 -40254 0.040 0.025 0.004 0.100
-48252 0.048 0.025 0.002 0.100 -50254 0.050 0.025 0.004 0.100
-52452 0.052 0.045 0.002 0.100 -54454 0.054 0.045 0.004 0.100
other

Dimensions in inches unless otherwise specified.

161
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
PGE-Dash Number-ESQ-20D
For the Hughes Welder

0.124
3.15mm

0.079
2.0mm

0.255
6.48mm

0.125
3.18mm

0.046 1.000 C
1.17mm 38.1mm +0.002
-0.005

TIP DETAIL
A±0.001

B±0.001

20°

20°

20°

Note: Part is a mirror image pair as shown

Specify:
Parallel Gap Electrode - Dash Number - Style - Optional Material

Example: DASH
A B C
PGE-0610-ESQ-20D NUMBER
PGE-1019-ESQ-20D-W -0205 0.0025 0.005 0.017
-0408 0.004 0.008 0.022
Material: -0610 0.006 0.010 0.026
Molybdenum Standard -0815 0.008 0.015 0.033
RWMA Class 2 Optional (Specify “-CU2” in part number) -1019 0.010 0.019 0.039
Tungsten Optional (Specify “-W” in part number)

Dimensions in inches unless otherwise specified.

162
PGE-Dash Number-ESQA-20D
For The Hughes Welder

Features:
The PGE-Dash Number-ESQA-20D series is a fixed-
gap, assembled version of the conventional two piece

capillaries
design.
The gap may be specified at 0.001 inch or 0.002 inch.
0.124 Gaiser Tool Company’s exclusive long life insulator is
3.15mm
used to separate the electrodes.
0.159
2.0mm Specify:
Parallel Gap Electrode - Dash Number - Style

Example:
0.255
6.48mm
PGE-14102-ESQA-20D

Material:

wedges
Molybdenum
0.125
3.18mm

0.046 1.000 C
1.17mm 38.1mm +0.002
-0.005

TIP DETAIL
G

tab tools
W±0.002 T±0.001

20°

20°

die attach
20°

DASH DASH
W T G C W T G C
NUMBER NUMBER
-06051 0.006 0.005 0.001 0.017 -07052 0.007 0.005 0.002 0.017
-09081 0.009 0.008 0.001 0.022 -10082 0.010 0.008 0.002 0.022
-13101 0.013 0.010 0.001 0.026 -14102 0.014 0.010 0.002 0.026
-17151 0.017 0.015 0.001 0.033 -18152 0.018 0.015 0.002 0.033
-21191 0.021 0.019 0.001 0.039 -22192 0.022 0.019 0.002 0.039
other

Dimensions in inches unless otherwise specified.

163
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
PGE-Dash Number-DUO
For The Hughes Welder

0.240 0.120
6.10mm 3.04mm
0.060
1.52mm

30° 60°

REQUIRED FOR
ASSEMBLY
C
+0.002
-0.005

G
+0.0005
-0.0004
W±0.002

DETAIL A
1.500
38.1mm

C
+0.002
-0.005

0.215
30° T±0.001
5.46mm
(TYP) 60°
DETAIL B
DETAIL A DETAIL B

Specify: DASH
Parallel Gap Electrode - Dash Number - Style W T G C
NUMBER
-07052 0.007 0.005 0.0020 0.012
Example:
-10102 0.010 0.010 0.0020 0.020
PGE-10102-DUO
-15203 0.015 0.020 0.0030 0.040
-33153 0.033 0.015 0.0030 0.060
Material:
Molybdenum

Dimensions in inches unless otherwise specified.

164
Accessories

West Bond Pull Force Hooks

capillaries
DIAMETER DIAMETER A LENGTH
PART NUMBER
in. / µm in. / µm in. / mm
B-3958-1 0.003 / 76 0.010 / 254 1.25 / 31.8
B-3958-2 0.003 / 76 0.015 / 381 1.25 / 31.8
B-3958-3 0.003 / 76 0.020 / 508 1.25 / 31.8

West Bond B-3958-4 0.003 / 76 0.025 / 635 1.25 / 31.8


B-3958-5 0.004 / 102 0.010 / 254 1.25 / 31.8
LENGTH Pull Force Hooks
B-3958-6 0.004 / 102 0.015 / 381 1.25 / 31.8
B-3958-7 0.004 / 102 0.020 / 508 1.25 / 31.8
B-3958-8 0.004 / 102 0.025 / 635 1.25 / 31.8
B-3958-9 0.003 / 76 0.006 / 152 1.25 / 31.8

wedges
B-3958-10 0.002 / 51 0.0045 / 114 1.25 / 31.8
A DIMENSION B-3958-11 0.009 / 229 0.033 / 838 1.156 / 29.4
B-3958-12 0.005 / 127 0.015 / 381 1.25 / 31.8

Tungsten Wire
Suggested Wire Diameter
Capillary Hole Diameter
for Unplugging
in. / µm
in. / µm

tab tools
0.0010 / 25 0.0009 / 23
3" 0.0013 / 33 0.0011 / 28
0.0015 / 38 0.0013 / 33
0.0017 / 43 0.0015 / 38
0.0020 / 51 0.0017 / 43
SPECIFY 0.0025 / 64 0.0022 / 56
DIAMETER
0.0030 / 76 0.0027 / 69
0.0035 / 89 0.0029 / 74
Cut Tungsten Wire 0.0040 / 102 0.0035 / 89
100 Pieces Per Set

die attach
0.0045 / 114 0.0041 / 104
0.0050 / 127 0.0044 / 112

Contact the factory for available sizes, sizes subject to change

3/4"
1204 Unplugging Probe
25 Pieces Per Set
Ø0.010 Ø0.0006
other

Dimensions in inches unless otherwise specified.

165
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Common Abbreviations & Acronyms
Packages:

BGA Ball Grid Array


CUEBGA Copper via Metallization for Ball Grid Array De-
vices
DIP Dual In-line Package
mBGA Micro Ball Grid Array
MBGA Metal Ball Grid Array
PGA Pin Grid Array
PLCC Plastic Leaded Chip Carrier
QFN Quad Flat Non-leaded
QFP Quad Flat Pack
SIP Single In-line Package
SOIC Small Outline Integrated Circuit
SOJ Small Outline J-bend
SOP Small Outline Package
TSOP Thin Small Outline Package

Other:

ASIC Application Specific Integrated Circuit


BPO Bond Pad Opening
BPP Bond Pad Pitch
COB Chip on Board
CSP Chip Scale Package
EFO Electronic Flame Off
FAB Free Air Ball
HDI High Density Interconnects
I/O Input/Output
IC Integrated Circuit
LED Light Emitting Diode
LTCC Low-Temperature Co-fired Ceramics
MCM Multi Chip Module
MCP Multi Chip Packaging
MEMS Micro Electro Mechanical Systems
MMS Micro Module System(s)
PCB Printed Circuit Board
SEM Scanning Electron Microscope
SMT Surface Mount Technology
SOC System on Chip
Tg Temperature of Glassification
VLSI Very Large Scale Integrated Circuit

166
Common Conversions & Terms

Common English/Metric Unit Conversions

capillaries
Known Units Factor Desired Units Examples

0.0018 inch x 25,400 = 45.72 microns


Therefore: 0.0018 in. = 46µm = 1.8 mil
Inches Multiply by Microns
(in.) or (”) 25,400 (µ) or (µm) 0.0059 inch x 25,400 = 149.86 microns
Therefore: 0.0059 in. = 150µm = 5.9 mil

0.437 inch x 25.4 = 11.0998 mm


Inches Multiply by Millimeters Therefore: 0.437 in. = 11.1 mm
(in.) or (”) 25.4 (mm) 0.010 inch x 25.4 = 0.254 mm
Therefore: 0.010 in. = 0.25 mm = 10 mil

wedges
100 microns ÷ 25,400 = 0.003937 inch
Microns Divide by Inches Therefore: 100µm = 0.0039 in. = 3.9 mil
(µ) or (µm) 25,400 (in.) or (”)
25 microns ÷ 25,400 = 0.000984 inch
Therefore: 25µm = 0.0010 in. = 1 mil

0.05 mm ÷ 25.4 = 0.001968 inch


Millimeters Divide by Inches Therefore: 0.05 mm = 0.002 in. = 2 mil
(mm) 25.4 (in.) or (”)
1 mm ÷ 25.4 = 0.03937 inch
Therefore: 1 mm = 0.039 in.

tab tools
English/Metric Equivalencies & Special Terms

Equivalencies Special Terms

1 inch = 25,400 microns 1 mil = 1/1,000 in. = 0.001 in. = 1 thou = 25µm

1 inch = 25.4 millimeters 1 tenth = 1/10,000 in. = 0.0001 in. = 2.5µm

1 inch = 2.54 centimeters 1 thou = 1/1,000 in. = 0.001 in. = 1 mil = 25µm

die attach
1 micron = 0.00003937 inch 1 micron = 1µ = 1µm (µ = µm)

1 millimeter = 0.03937 inch 1 inch = 1 in. = 1” (inch = in. = “)

1 centimeter = 0.3937 inch 1.0 mil = 0.001 in. = 0.001” = 25µm = 0.025 mm

Note: Engineering data is representative. Property values vary somewhat with method of manufacture, size, and shape of part. Any suggested applications are not made as a repre-
other

sentation or warranty that the material will ultimately be suitable for such applications. The customer is ultimately responsible for all design and material suitability decisions. Data
contained herein is not to be construed as absolute and does not constitute a representation or warranty for which CoorsTek assumes legal responsibility. Any warranty or representa-
tion for which CoorsTek is responsible shall be subject to a separately negotiated agreement.
CoorsTek, Amazing Solutions, and Gaiser are registered trademarks of CoorsTek, Inc.
Maxibond and OpX are trademarks of CoorsTek, Inc., Unitek is a trademark of Miyachi Unitek Corporation.

CoorsTek, Inc. 4544 McGrath Street Tel +1.805.644.5583 gaiser@coorstek.com


Gaiser Products Group Ventura, CA 93003 Fax +1.805.644.2013 www.gaisertool.com
Notes

168
Notes

capillaries
wedges
tab tools
die attach
other

169
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
Notes

170
Notes

capillaries
wedges
tab tools
die attach
other

171
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com
CoorsTek, Inc. 4544 McGrath Street T +1 805 644 5583 gaiser@coorstek.com
Gaiser Precision Tools Ventura, CA 93003 F +1 805 644 2013 www.gaisertool.com

You might also like