An 327
An 327
com
ES D1 01 - B 1 / ES D1 0 3 -B 1
Edition 2013-05-22
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
Licenciado para - robertofreire - 64494535591 - Protegido por Eduzz.com
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Other Trademarks
Advanced Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™
of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium.
HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™
of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS
Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of
Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems
Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc.
SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software
Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™
of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™
of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
List of Content, Figures and Tables
Table of Content
1 Introduction ........................................................................................................................................ 5
1.1 Basics of Transient Voltage Suppression (TVS) Diodes...................................................................... 5
1.2 Requirements for Electrostatic Discharge Protection at RF ................................................................ 7
2 ESD101-B1 / ESD103-B1 Overview ................................................................................................... 9
2.1 Features ............................................................................................................................................... 9
2.2 Key Applications of ESD101-B1 / ESD103-B1 .................................................................................... 9
2.3 Description ........................................................................................................................................... 9
3 Application Circuit and Performance Overview ............................................................................ 10
3.1 Schematic Diagram ............................................................................................................................ 10
3.2 Linear and NON-linear measurement Setups .................................................................................... 10
3.3 Summary of Measurement Results .................................................................................................... 12
4 Measurement Graphs ...................................................................................................................... 13
4.1 Linear RF characteristic ..................................................................................................................... 13
4.2 Non-linear RF characteristic ............................................................................................................... 14
5 Authors .............................................................................................................................................. 16
List of Figures
Figure 1 Typical application of the uni-directional ESD diode ............................................................................ 5
Figure 2 Typical application of the bi-directional ESD diode .............................................................................. 5
Figure 3 Principal characteristic of a uni-directional ESD protection device including snap-back ..................... 6
Figure 4 Principal characteristic of a bi-directional ESD protection device including snap-back ....................... 6
Figure 5 Operating principle of a low capacitance uni-directional ESD diode ................................................... 8
Figure 6 Bi-directional ESD diode, dedicated to protect RF lines ...................................................................... 8
Figure 7 Pin configuration and schematic diagram of ESD101-B1 / ESD103-B1 .............................................. 9
Figure 8 Schematics of the ESD101-B1 / ESD103-B1 Application Circuit ...................................................... 10
Figure 9 Set-Up for Harmonics Measurement.................................................................................................. 11
Figure 10 Test Set-Up for IMD Measurements .................................................................................................. 11
Figure 11 Insertion Loss: ESD101 vs. ESD103 @ 0V bias............................................................................... 13
Figure 12 Return Loss: ESD101 vs. ESD103 @ 0V bias ................................................................................... 13
Figure 13 Harmonics Generation in Low Band (f0=824MHz), ESD101-B1 ........................................................ 14
Figure 14 Harmonics Generation in Low Band (f0=824MHz), ESD103-B1 ........................................................ 14
Figure 15 Harmonics Generation in High Band (f0=1800MHz), ESD101-B1 ..................................................... 15
Figure 16 Harmonics Generation in High Band (f0=1800MHz), ESD103-B1 ..................................................... 15
Figure 17 Example of Intermodulation Measurement Data (ESD103-B1, Band V, fBlock=791.5 MHz) depending
on the phase shifter adjustment ......................................................................................................... 16
List of Tables
Table 1 Feature overview of ESD101-B1 / ESD103-B1 ................................................................................... 9
Table 2 Test Conditions for IMD Measurements............................................................................................. 11
Table 3 Electrical Characteristics (at room temperature) ................................................................................ 12
Table 4 Harmonics generation ........................................................................................................................ 12
Table 5 Intermodulation distortion ESD101-B1 ............................................................................................... 12
Table 6 Intermodulation distortion ESD103-B1 ............................................................................................... 12
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Introduction
1 Introduction
node 1
Wanted signal
shunts
positive voltage swing!!
positive and negative
+Vp < +V_maximal working voltage ESD strike
node1
~0V
Blocks negative wanted signal
< - V_maximal working voltage
-Vp < -V_maximal working voltage
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Introduction
IR
Diode_Characteristic_Curve_with_snapback_Uni-directional.vsd
VF Forward voltage IF
ITrig
ITrig
IHold
RDYN
-IPP
IR
VRWM Reverse working voltage maximum IRWM Reverse working current maximum
Diode_Characteristic_Curve_with_snapback_Bi-directional.vsd
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Introduction
For ESD protection in RF application it is mandatory to keep the ESD diode capacitance as small as possible.
This avoids a de-tuning of input matching structure and the protection device will create less harmonic
distortion.The principle of minimizing the ESD diode´s capacitance is explained for a unidirectional diode (Figure
5) and extrapolated to the bi-directional type (Figure 6)
To control the overall device capacitance a low capacitance PIN diode (PIN1) is used in series to the avalanche
(Zener) diode. When signal voltage is between 0V and VRWM (positive), Zener diode is driven in reverse direction
and is not conducting.Voltage drop across the PIN1 diode is about 0V or very little positive, diode is forward
driven. Under this condition capacitance of the PIN1 diode depends on the diffusion current in forward direction
which is equal to the leakage current of the Zener diode.This is also a reason the leakage current of the TVS
diode must be kept as low as possible.
The described structure can handle a positive ESD strike only, because the PIN1 diode (serial to the Zener
diode) can only hande the ESD current in forward direction. Driving the PIN1 diode in reverse breakthrough
results in its damage. To make the ESD diode safe for the negative ESD strike as well, another PIN diode
(PIN2) is added. In case a negative voltage, caused by an ESD strike or by an other reason, is applied to the
signal line, PIN2 becomes conductive and shunt the negative voltage to ground (bypassing PIN1 and the Zener
diode).
This kind of low-capacitance ESD diode construction can handle positive and negative ESD strikes, but is only
suited for positive wanted signals. To handle positive and negative signals (e.g. a bias free RF signal) without
distortion, the unidirectional ESD diode structure has to be expanded to a bi-directional structure. This can be
done by adding the same structure serial in a flipped way. This approach is used in ESD101 and ESD103
design. 2 chips are placed in one package and connedcted by a chip to chip bond. To ensure linearity, both
chips are matched in characteristic.
In order to maintain device linearity at RF the “positive” and the “negative” diodes has to be identical in
characteristic (good diode matching). Poor matching would lead to generation of even order harmonics (2, 4,
6…). However, even with good diode matching TVS diode still remains nonlinear device. Effects like nonlinear
V-I characteristic, and even more importantly voltage dependent capacitance lead to harmonics generation and
to intermodulation distortions.
The requirements to ESD protection diodes suitable for RF applications can be summarized as follows:
Bi-directionality
Low parasitics
− Minimal capacitance
− Absence of (self)resonanse, or resonance frequency much higher than working frequency
− Low Insertion Loss
− Low intermodulation distortion of 3-rd order (IMD3), especially in full-duplex systems (CDMA, UMTS, LTE)
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Introduction
wanted signal: 0V… max VRWM wanted signal: 0V… max VRWM
Cpin1 = f(I_leakage)
Zener diode, PIN1 cap.,
PIN2 cap., rev. biased
PIN diode (low cap) PIN1
Zener diode
PIN2
I_leakage
(GND) (GND)
RF signal line
negative ESD strike
PIN2
PIN1
PIN1
PIN diode
Zener diode
PIN2
(GND)
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
ESD101-B1 / ESD103-B1 Overview
2.1 Features
1) at f = 1 GHz
2.3 Description
Devices ESD101-B1 / ESD103-B1 consist of two identical chips, connected in series in opposite directions (see
Figure 7b). The device structure and the manufacturing process have been specifically optimized to fulfill
requirements stated above.
The devices belong to the same family, and differ primarily in their operating voltage range. Both devices are
available in the TSSLP-2 package (ESD101/103-B1-02ELS) with dimensions of 0.62 mm x 0.32 mm x 0.31 mm
(EIA case size 0201) and later on as well in TSLP-2 (ESD101/103-B1-02EL) with dimensions of 1.0 mm x 0.6
mm x 0.39 mm (EIA case size 0402).
Pin 1 marking
(lasered) TSLP-2
TSSLP-2
PG-TS(S)LP-2_Dual_Diode_Serie_PinConf_and_SchematicDiag.vsd
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Application Circuit and Performance Overview
50 Ohm 50 Ohm
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Application Circuit and Performance Overview
Load
-20dB
Directional
Coupler
-20dB
Signal Power Tunable
Circulator
Generator Amplifier Bandpass
Filter
A
Power meter
Agilent -3dB
E4419B
B
DUT
ANT Tx
K&L
-20dB
Directional
Signal Tunable Coupler
Analyzer Bandstop
Filter
-20dB
-3dB
Tx
Mini Circuits K&L
(ZHL-30W-252 -S+)
Tunable Signal
Bandpass Filter Generator
Rx
K& L Power reference plane
-3 dB
PTx = +20 dBm
Tunable PBl = -15 dBm
Signal
Analyzer Bandpass
Filter
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Application Circuit and Performance Overview
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Measurement Graphs
4 Measurement Graphs
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Measurement Graphs
Comparing the RF characteristic (S-parameter) between the ESD101/103-B1-02ELS in TSSLP-2 (SMD size
0201) with the slightly larger ESD101/103-B1-02EL in TSLP-2 (SMD size 0402) we have to take the longer
internal chip to chip bond into account. This results in a shift of the self-resonance frequency of about 45GHz for
the ESD101/103-B1-02ELS, down to ca. 35GHz.
PH1, dBm
14,00 16,00 18,00 20,00 22,00 24,00 26,00
0
-10
H2/dBm
-20
-30 H3/dBm
PH2/PH3, dBm
-40
-50
-60
-70
-80
-90
-100
PH1, dBm
14,00 19,00 24,00 29,00 34,00
0,00
-10,00
H2/dBm
-20,00
-30,00 H3/dBm
PH2/PH3, dBm
-40,00
-50,00
-60,00
-70,00
-80,00
-90,00
-100,00
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Measurement Graphs
PH1, dBm
19 20 21 22 23 24 25 26 27 28
0
-10
H2/dBm
-20
H3/dBm
-30
PH2/PH3, dBm
-40
-50
-60
-70
-80
-90
PH1, dBm
19 21 23 25 27 29 31 33 35 37
0
-10
H2/dBm
-20
H3/dBm
-30
PH2/PH3, dBm
-40
-50
-60
-70
-80
-90
ESD101-B1 / ESD103-B1
Bi-directional Ultra Low Capacitance TVS Diodes
Authors
Delay, ps
0 50 100 150 200 250 300
-82
-84
-86
-88
-90
IMD, dBm
-92
-94
-96
-98
-100
-102
-104
5 Authors
Anton Gutsul, Application Engineer of Business Unit “RF and Protection Devices”
Alexander Glas, Principal Engineer of Business Unit “RF and Protection Devices”
w w w . i n f i n e o n . c o m