100% found this document useful (2 votes)
2K views142 pages

Capacitor and Inductor Problem Solutions

1) The document contains several problems involving calculating voltages and currents in capacitive circuits given voltage or current waveforms over time. 2) Specific examples calculate the voltage across a capacitor given a constant charging current, or calculate the current given a known capacitor voltage waveform. 3) The problems involve integrating current or differentiating voltage to calculate the other quantity based on the fundamental capacitor equations relating voltage, current, and time.
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
100% found this document useful (2 votes)
2K views142 pages

Capacitor and Inductor Problem Solutions

1) The document contains several problems involving calculating voltages and currents in capacitive circuits given voltage or current waveforms over time. 2) Specific examples calculate the voltage across a capacitor given a constant charging current, or calculate the current given a known capacitor voltage waveform. 3) The problems involve integrating current or differentiating voltage to calculate the other quantity based on the fundamental capacitor equations relating voltage, current, and time.
Copyright
© Attribution Non-Commercial (BY-NC)
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 142

Irwin, Basic Engineering Circuit Analysis, 9/E

6.1 An u1charged 1 0 0 - ~ - t F cap cit 1' i chrug Cl by a constant


c1.1.rrent of I mA. Hnd tb v.o]tag aero s tb capacitm
after 4 s.
SOLUTION:
V(t)
-
-
'
V(-1)
-
-
V(:t)
-
-
V(r)
v
T
I
f
J_ (f)
dt
(
()
lf
I
J
I m cit
(00)-J..
0
I ['m(4)-0]
(00 _).)
Lfov
()9-{_
Lfov
Chapter 6: Capacitance and Inductance
Problem 6.1
Irwin, Basic Engineering Circuit Analysis, 9/E
6.10 Th voltage acmss a 25-!J..F capacitor j hown in
Fig. P6JO. Det rmin the cur1'ent w v f nn.
v(t) (v)
Figure P6.1o
SOLUTION:
t
1
- 0 2.
_2 = 0 -y 1)105
.1
3
= 08-rn.S
-*u =- I 'YYl s.
Js =- 1-2rns

0
)
/) __ ,._, , = 0
) V= LA \A..

) v= ro5 * v
) V=20V J l=-0
)
v= 6u- to
5
.::tv
Chapter 6: Capacitance and Inductance
Problem 6.1 0
2 Irwin, Basic Engineering Circuit Analysis, 9/E
Problem 6.1 0
:k3 ~ - <1-t., , V=O J i:=- 0
. ~ v= -12ox ros x
J.C :t) =
0
25
0
-2'5
0
25
0
25A
;t<O
() ~ J < o2ml
0.2m.s s :t < oy ms
Ol.frm( ~ :t < a c9m s
0 gms. ~ J:: < 1-rr.s
)"rfi.s ~ 1: < 12mS
J: 7/ /2 rns
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.11 Th voUage aero sa 2-F capacitor is given by tb wav -
onn jn Flg. P6. ll . Fi.nd tb wav tlorm for th cun nt in
tlle capacit r.
vc{t) v)
- t2
Fi gure P6.11
SOLUTION:
-t<o
; v=O
J .i= 0
0 ( :t < 205
)
J- cdv 2(06)
ct:1:
J = /2A
2o s < f < 3 o ~
J
v=6o-2YfV
J= 2G2LtJ
J..- -::: - Lf ~ A
3 OS < i < 50-S
)
V= - 3o -t 06;t V
J=2[o6]- 12A
J 7 sos
) v:::::o
)
Chapter 6: Capacitance and Inductance
Problem 6.11
2 Irwin, Basic Engineering Circuit Analysis, 9/E
J (.t)
-
0
ct <o
-
12A
0 <: J <
'los

2o.s <..:t
<
12A

< ;t < :ru.s
0
7 SDs
Problem 6.11
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6 . 12 The voltage .across a 2-jiiF c:apadt r j given by the wave-
form in Ag. P6.12. C mput th c11..1uent wavefonn.
v(t v)
2 3 6
- 11.2
Fi gure P6 . 12
SOLUTION:
t<o ) v-o
o < J: <.. 2 ms
2m.s <' x< 3ms
3 ms ( :t < 6 m.s
}
t ~ m s )
) v : -6 000 ;t v
l = C dV
ell
}
J = 2 u ( -6ooo)
J-= -12rnA
v= -I2V
._1 = 0
v = - 2Y-t LrooqJ V
.
J V=::O
1 vl=o
J( j:) -
()
-12rnA
0
gmP\
0
Chapter 6: Capacitance and Inductance
:t<O
0<1<1Y'Y'S
' 2 m ~ ( .1.. < 3rns
~ M s < .t < Gms
t 7 6ms
Problem 6.12
Irwin, Basic Engineering Circuit Analysis, 9/E
6.13 Dmw the warv form fort 1e cun nt in a capacitor
wh nth capacitor voltage is as described in Fig. P6.13.
v t (v
Fi gure P6.13
SOLUTION:
-t<o
)
J_==O
v= ;t v
L=c%'f
:t < IOOJ..,tJ
u.=
(2'-1}...{) (-2SXro
5
)
vl:::. -6A
I oo U S $ .:t < J 6 o u ) V = -5 2 + I 0
6
t V
3 I)
J - 24u [
=- / G A
Chapter 6: Capacitance and Inductance Problem 6.13
2 Irwin, Basic Engineering Circuit Analysis, 9/E
s // 160JJS ) v=o
)
i==O
J.{ i)
-:::- 0
;t<O

J < 6 o)-JS
-2L.fA
60J.JS t
<

J6 A
/OO).J. S <. J6o)..1S
0
J- //(bOLLS
Problem 6.13
Chapter 6: Capacitance and Inductance
o o ~
....-....
<C
'-'
........
0
~
..........
- ~
-oo<-f
Irwin, Basic Engineering Circuit Analysis, 9/E
6.14 Th.e vo tag acms a 10-p.F capacit r i give.n by the
wav form in Fg. P6.14l. Plot th wav l!onn f 1' the
capac tor Clm' nt.
SOLUTION:
v(t v
Fi gure P6.14
V(.t) := 12 _2inw.f
w==2TI
I
2TL
I om
W::: 2 OO)[ 1"'-c:J./s
itt) = (\oM) (__\4.) (_w) Los. t.Ot
j__ U.) '; 7 S: '-1 (_o.t w-t "''V' A
t L-t) vs. t
- = : - - - - - - - - - - - - - - - - - - - - - - - - - - ~
;
\
\
I
\
~ . . - -
oOIS
\
0 005
001 .,
\
0'01
\
\
Chapter 6: Capacitance and Inductance
Problem 6.14
Irwin, Basic Engineering Circuit Analysis, 9/E
6.15 The warvefonn for the current ]o a capacitor is
howu in Fig. P6. 15. D tennine the wavefonn for the
capadtOl' voUag .
i(t) (rnA)
110
0 10 20 30 40 t ( ms)
Fi gure P6.15
SOLUTION:
t. < o } i{ x) = o
J V(:t)-= 0
) 1 ( :t ) :::: 0 2 5 .t
V(.:t) - d f J.(.t)dJ: -tVa
V{;:)
f 025 .d..t
\lc:t) -

>/ 40mJ ) lC:1) = o
'v(t) - Joct..t 1soo{ Yoh"'J'-
50 ,u.
V( 1.) == YV
Chapter 6: Capacitance and Inductance Problem 6.15
2
V(t )=
Problem 6.15
0
'25DO.t
2
V
l-JV
Irwin, Basic Engineering Circuit Analysis, 9/E
::t<o
o ~ .:t < ltam s
.f 4 4 0 t n ~
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.16 The waveti rm f r th cmrent in a 50-p.F injfally
unch rged capac"tor shown in Hg. P6.16. D termine
th wav form or th capacit r 's voltag .
i(t) mA) .
10
0
0
-10
Fi gure P6.16
SOLUTION:
10 20 30 40 50 t (ms)
VcCtl - -t S Jc C:t J cU i V0
l(f) - /Omf\
Vcct)-=_1_ (lomrutv
0
50 ).A J
Vc(t) - 2oo_t + Vo
J.( 1)
-lornA
Vc(t) -
SD
vc{U = - 2oo t -+ Vo
~ o ~ t <o
Vc t.t-) = 0
Vc(t)
2 0 o ~ V
Chapter 6: Capacitance and Inductance
Problem 6.16
2 Irwin, Basic Engineering Circuit Analysis, 9/E
'-{-o .?\. I am s :1: 'l o Y'Y'-S
Problem 6.16
Vc Lt) = -200.t t Y V
1 oms ..:t S. 3 o fY!.S
Vc (t) - 2 OO;t-- L( V
f lforru
- 200 .f: -t g v
4-0h- 4 J: S,. 5-0(Y).S
vcll) = - v
t 7 5ams
\; c c ;t) = ov
0
2 OO.t V
"-!- L- OO;i V
-Lf+ 100 v
? - L_oot..V
- L_OotV
0
-t<a

'
/DmJ $ :J $.. '2 OfYJS
20m5 $ 1
3orn5' j { lfc:::.ms
yo ms )::
roms Gums
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.17 The waveform for the cmrent flowi ng through th ! 0-J.l.F capaci t r in Fig. P6. l7a is bown in Fig. P6. 17b. If
Vc (t = 0) = 1 V, d tem1ine vc(t) at t = 1 ms, rns, 4 rns, and 5 rns.
SOLUTION:
i t) ( mA)
15 +------.....,
3 5
+
I I I
I I I
1 0 ~ F
1 2 4
- 10
(a)
Cb)
Figure P6. 17
VcCo)
lv
-);
Vc r :t)
- Vc (to J
-t
~
f
.i(r)d:t
c
tb
hn
Vc C o) -t 7 ) (lr;m) ctJ:
0
I vn
I"-+ J ( t5m)clt
I OJ-A
0
Vc ( lrns) -
Vc ( I rn s ) = ~ +- I '5o o ( 1 m )
Vc .( lms) - 25 V
I
t (m )
I
6
Chapter 6: Capacitance and Inductance Problem 6.17
2
Problem 6.17
Irwin, Basic Engineering Circuit Analysis, 9/E
t
Vc(Jrns) = Vc. ( lms) -t- _.l_ f 15 md.:t
lo.u
lrn
t-
VcC3"'rllS) =-25 -ttooXIo
3
(1S'XIa
3
) CtJ]
lro
Vc C 1 ms) -= 2 5 + t 5bo [ t - I m J
Vc. ( 3 Y'r1 - 5 5 V
J:.
Vc ( C{ms) = \Jc C sm) +_I_ f -1 o 1"nd..:t
I 0 )..J.
)n"
J
Vc ( lf me; ) =- 5 5" X ( o o )( I 0 (-16 X I o)) [ ..t ]
3
vn
55- looo[.:t-3m]
Vc ( '-1ms) ::: 55- Joo o [ Ym-

;t
Vc. (5ms) = "t_/ J -lomcU
lop_
C,m .x
Vc C 5

== Lt 5 + 1 oo x , o3 ( -1 ox 1 c?) [ _t J
1-ft"n
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E 3
Vc C 5ms) L-r5 -tooo [.x-LrmJ
Y5- tooo [5m- Ltm]
Chapter 6: Capacitance and Inductance Problem 6.17
Irwin, Basic Engineering Circuit Analysis, 9/E
6.18 The waveform for the voltage aero 1 0 0 - ~ capacitor shown Fig. 6. l8a is given in Fig. 6.18b. Detemli ne the following
quantities: (a) the energy stored in the capacitor at t = 2.5 ms, (b) the energy stored in the capacitor at t = 5.5 ms, (c)
ic(t) at t = 1.5 m , (d) ic(t ) at t = 4.75 ms, and (e) ic(t ) at t = 7.5 ms.
v(t) 100 11F
0
~ ( 1 )
(a)
Figure P6.t8
SOLUTION:
v(t) (V)
(b)
c foour=-
(O-J UJ( t) =- _, c v1-c t)
2.
-
-
I
_L ( Joo.u) C 15 fl-
2
(b)
W(t)
-
( V
2
[t)
2..
LJJ ( 5"5niS)
we ss )'y)s)
Chapter 6: Capacitance and Inductance
_)_ ( 100.4) (- 5 }L
2..
12.o mJ
Problem 6.18
2
Problem 6.18
(C)

/YI::: 15-5
"LX I 0- 3 - I X I 0-]
)'Y) = 10 J()-00
V(-J:)= /OOOO.t f g
lo = lm)+ g
13=
Irwin, Basic Engineering Circuit Analysis, 9/E
\J(;t) -= IDOoot - 5 V '1o9-t
et
V( t} =- I 0/)00 X t. - 5 VoJ.::t!
i, (i) -=. c
Jc (t )= fOOD., [loooo]
{lj = I A
( cLJ VC :t) =- -5 V '{ott -Hvz. 1 hfe1 voJ. ef-

= C (i.v Ctl
eXt-
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E 3
icC:t} = oA
s-- 0
-=moo
Vc.t J =
5ooo :t + B
5 ==- 50oo( rn) t B
B= -35
vc f) 5 ooo.f - 35 V , nf-fovuJ
Ef
ic C;t)
c .t)
( C!VC.t)
clt
I oo 1J [ Sooo]
lc ( -=/5 ms) = os A
Chapter 6: Capacitance and Inductance Problem 6. 18
I
Irwin, Basic Engineering Circuit Analysis, 9/E
6.19 If vc(t = 2 s) = 10 V in the ci.rcu.it in Fig. P6. I9, find
the n:ergy tore in the cap.adtor and th pow r uppli. d
by til s me at t = 6 s.
3fl: 60.
Figure P6.19
SOLUTION:
6
V(J h) - L s 2. oLt i I 0
)._..
2-6V
Chapter 6: Capacitance and Inductance
1
Problem 6.19
2
Problem 6.19
Irwin, Basic Engineering Circuit Analysis, 9/E
We u,J ::: fC [ "c f;hJ J 2
WcC .t1J =- f ( -t) [ 2(;]
2
Wc(1
1
) = /bq]
VR ( ct1) = J(-tt) -L [ J
VR (1L) =
Vs C tl) = Vc c tl) t vR.. C ;tL)
\Js ( .t 2- ) = 2_ Y
v c 1-'l) ::: 3 0 v
P
5
C:t2-) = \JsC:tl-) is
p ( ;t") = 0 c 2)
?s(-1,_)=-
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.2 A I2-jiiP capacitor has an accl n1Uiat d charg of 480 ~ J ~ . C .
Determin tb voltage acmss the capac"tor.
SOLUTION:
c
Q
v
v=
en_
c
v=
L( ~ 0 ~ _
I 2 JJ
V= lfov
Chapter 6: Capacitance and Inductance
Problem 6.2
Irwin, Basic Engineering Circuit Analysis, 9/E
6.20 Th cun nt in au inductor chnngeCI fmm 0 to 200 mAin
4tns and induce a voltage of 100 mV. What is the value
of the inductor?
SOLUTION:
Vc:tJ
L cU.' c .t)
Ckt
V==L
AT
n..t
[J.t -
L=
L=
L==
Chapter 6: Capacitance and Inductance
I oom ( Lfm -)
2oom
2.rnH
Problem 6.20
Irwin, Basic Engineering Circuit Analysis, 9/E
6.21 Th curr nt in a 100'-mH inductor is i( t) = 2 sin 377t A.
Rnd (a) tb voUage acm s tb indllctor and (b) th
ex:p.ress 'on fm th . enetgy sl:o1' dl io the ]em nt
SOLUTION:
(Q) V{t) = L di c J)
d..t .
V( t ) -:: 0 'I ( l ) ( ] 7 7 ) COS 3 ll
Vet> -
(b) w( :t) L
. 2(.1-)
k'
X_ (O I) [ 2 ~ i n 3 ll.* j 2-
wt
Chapter 6: Capacitance and Inductance
Problem 6.21
Irwin, Basic Engineering Circuit Analysis, 9/E
6.22 If the Clll'r ilt i(t) = 1l.5! A flows th.rough a 2-H
inductor, fi.nd th energy stored at t = 2s.
SOLUTION:
wt
2
LuC 2) = iC l) (_ t ~ ( 1.))
2-
'2
C ~ a p t e r 6: Capacitance and Inductance Problem 6.22
Irwin, Basic Engineering Circuit Analysis, 9/E
6.23 Tihe current in a is gi.ven by the
expres i.on
i(t)=O t < O
i(t) = 10{1 - e-
1
t) rnA t > 0
Hnd (a) the vo]tag acm the inductor and b) the
XJUe sion f 1' the tor d in "t

L(t)
-
IO(l-e-t)
SOLUTION:
(Q) V(J..)
L
di CtJ
eli

t<O
)
)
k /0
V(:t J

0 )
j: < 0
-..t
JJV
I f_ /0
25D
\b) wCtJ
_L Li
1
(:t)
2
w(:t)
- L o5 , t <o
1.
t
125 0-e ) IJ'J"
)
70
Chapter 6: Capacitance and Inductance
Problem 6.23
Irwin, Basic Engineering Circuit Analysis, 9/E
6.24 Giv 11 d1e data in the previ.on pr blem, wd the
voltage acros til indJJct rand the n rgy tored nit
after 1 s.
SOLUTION:
V ( t)
) :t 70
V( I)
w( f)
W(l)
Chapter 6: Capacitance and Inductance
-1:) )_
125 ( 1--'
o 5 IJ-I
UJ , 70
Problem 6.24
Irwin, Basic Engineering Circuit Analysis, 9/E
6.2.5 Th curr 11t in -o-mH i11duct r is specified a
foUows .
i(t) = 0 t < 0
i(t) = 2te -
41
A t > 0
F".nd (a) the V ao acm induct r, ( ) the thne t
which th current i.s a maximum, and (c) d1 tim at
which th volt ge i a minimum.
SOLUTION:
i.(t) -=-oA ,
-4tA
i(l)-= 2.te
t <o
J t 70
\j L (t ) := CJ V
);t<O
(b)
r Ju t1 ~ wh.o.n i( 1:)
~ U J " ( J . . ~
d; c 1) 0
oil
Chapter 6: Capacitance and Inductance
) -;t 70
~
Problem 6.25
-
Irwin, Basic Engineering Circuit Analysis, 9/E
6.26 The vohag ac a 2-H inductor i g:iv 11 by th wave-
f rm hown in Fig. P6.26. Find tb wav form for the
ct tTent in the ]mluct r.
v t v
Fi gure P6.26
SOLUTION:
i (t) := _I_J V(:f) ill
L
V(.t) V-1 a. eac.J.1 {pan,
otncl :tlv- con btL. cu _.-
i{_t) =- jL * -t Io
L
t <o
0 ::{_ t s:: 2.5
J(t-)=2-t
2._ 5t- A
2
i C ;t) = Of 2 5 ( 1)
Chapter 6: Capacitance and Inductance
Problem 6.26
S
S
S
S
s
s
Irwin, Basic Engineering Circuit Analysis, 9/E
6.27 Th voltage across a 4-H induct r i giv n by the
waveform h wn in Fig. P6.27. Find the wavef rm
forth cun ut in the induct r. v(t) = 0, t < 0.
v t
0 10 20 30 40 50 t(ms)
Fi gure P6.2]
SOLUTION:
i.{_i) = + J \1 ( J::) cU:
V(t) WN;l:Qr\t Qc.J>-OSS f:IY)"..Q,
0 ret i._ ( -) brt 0:
l( i) == :y_t + 'Io
L
-J: < 0 ) l ( t) = o
i (t) = 2Lfm t-
Y
L{ t) - Goot JJ-A
ton roms s f 1oms
J(t) :::: fOm)
i(:t) =
Chapter 6: Capacitance and Inductance
Problem 6.27
t
2
Problem 6.27
Irwin, Basic Engineering Circuit Analysis, 9/E
- b -= 6 oo :l - 6 M f\
J(t) = 12-)J.A
vi( t) = - 12-f6oot )).A
t ?/
vt(.t) = fg ).JA
-
0
600t J)A
b)-(1\
- 6 f6oot .UA
12M A
_,'L-+ 6 ool )JA
ltMA
t <a
0$ -J L... /0YY>'5.
1 o mJ .t 20'fY1J
20'MS t
] o m s .$ :): l.f Oyy-.J'
L( on1 r- S f r-orrd'
r 7/ 5bms
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.28 The vo tag aero a 10-mH ]nductor sh w.n in
Fg. P6.28. D renuine th wavelonn ~ r the inducto
Cli.UTent
v(t) (mv
10-
0 11
Fl gu re P6 .28
SOLUTION:
._jl (;t)
Chapter 6: Capacitance and Inductance
.2
t (ms)
IO,k"Yn V
t s VL!t)c{i;
/00 J {Oj Oi
500 1
1
"m A
1 oo Jt-Jot t 2o) d..:t
-'-5o at L t '200t m A
Problem 6.28
2 Irwin, Basic Engineering Circuit Analysis, 9/E
t ( l'fr1S)
Problem 6.28
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.29 The current in a 10-mH inductor is shown in Flg. P6.29.
D tenuin.e th wav form for the voUag aero t 1
inductm.
i(t)
012 3 4 56
Fi gure P6.29
SOLUTION:
'\1'-+-) _ L di.Ctl
cU:-
) V(t)= 0
V(l)
0
-somv
6omV
()
Chapter 6: Capacitance and Inductance
-3omV
6omv
:t < 0
0(
Y'(\..5 <. t 6YY" 5
;t 7 6ms
Problem 6.29
Irwin, Basic Engineering Circuit Analysis, 9/E
6.3 A capaci.tor h.as an accumulated charge of 600 ~ C with 5
V acros H. What is th vah] of capacUanc ?
SOLUTION:
c
(Q_
v
c= 6 QO J-1.
5
c
-
110 uF
Chapter 6: Capacitance and Inductance
Problem 6.3
Irwin, Basic Engineering Circuit Analysis, 9/E
6.30 Th cnl'ent in a 50-mH induct r given in Fig. P6.30.
S!<;, lch the indu.ct r vol.tage.
i(t (mA
1 00 - - - - - - - - - - - - - - -
0
-1 00
Figure P6.3o
SOLUTION:
J-0"-'

V(.J) = L di (1)
elf-
0 < .:f 1.nts
vc ;t):::: 0
LYY1 s <( t lf))"LS
vc .1-) =
SOm [-5b]
V( :t) =
-25 v
Ltm.s

V(f) JOI"tl [50]
ms < t /OYY' s
'v(l) = :>om[- 50]
Chapter 6: Capacitance and Inductance Problem 6.30
2 Irwin, Basic Engineering Circuit Analysis, 9/E
V( t)::.- 2 5V
\X:t)(V)
'"
2'5
~
.
y
le
~
6
8
11.
~ c
25
Problem 6.30
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.31 The lUTent in a - o-mH induct r i shown in Fig. P6.3l.
Fi11d the voltage .acros the inductor.
i(t ~ m A )
+10
0
Figure P6.31
SOLUTION:
V(:J)
{-o"-
-
-
L eLl l .:t)
cU
-t<O
V(i: )= 0
v
0 < J: ~ '20yyt<;
V(t) = 50TY1 [-I J
'v( t) = - 50/"() v
2-om S. S :t . YOYYI ~
V ( -J:) = 50)"() [I 5]
'v(:t-) = l 5 m V
Ltoms < .t:_ .::: 6om ~
v(:t) = Ov
6orns z t ~ lorns
Vl:t)= 50m[-1]
V(:J.)=
Chapter 6: Capacitance and Inductance
Problem 6.31
2
V(tJ
Problem 6.31
/lams
v( :1:) = ov
0\1
-somv
l5mV
0\J
-50)')'")\J
ov
Irwin, Basic Engineering Circuit Analysis, 9/E
-L ..( 0
0 <. !- ~ 20ri'-1
1 OY"il s ~ j. S: ltorns
YoYY1s .S t ~ 6o)'Y'IJ
6orru ~ ; t ~ (om')
t /lOY'f\.C
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.32 Dr, w the wavef rm. for the voUage acros a 24-mH
inductor when the inductor cun ntis given by lit wav -
rm t wn in Fig. P6.3 .
i(t) (A)
8
4
-2
Figure P6.32
SOLUTION:
V(f) L cit (f)
d.t

)
V(:JJ=-=0
V[-):) 2Ym [
V(t) 3lO')f)V
0 3 s < .J: $ 0 '6 s
V(:J-)
24m [ - 2 o]
\J(:t)
o6s < oqs
V{J) ::: 0
Chapter 6: Capacitance and Inductance
Problem 6.32
2
Problem 6.32
Irwin, Basic Engineering Circuit Analysis, 9/E
~ o ~ Oq :S < .k $ I IS
V(:1) =- 2Lrm [sc]
V(:t)= 12oom\J
~ . 9 1 . :t 71 IS
V(;t)-= ()
V( t) =
0
32orn\J
-ygomV
0
12oornV
0
t_.{ 0
0 (_ t ~ 0 3 s
o3s < :ts 06 s
0 6 s < :k ~ o q s
oqs< : t ~ lls
u / I Is
Chapter 6: Capacitance and Inductance
3
Irwin, Basic Engineering Circuit Analysis, 9/E
VCt)
vs.
;t
?
.....:14Jo:;
--J2o-
-loao
'
-8oo -
- boO
......- ~ -
-4oo ----
--200 -------------- - - - - ~ - -
..
,...
' l
.,
.._ ...._
-f\i lo
Oi. 04
0
~
.,.
0 ~ 10 I ~ 2
-
vol;' --
- ~ -
--
Problem 6.32..
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.33 The current in a jnductol' is given by tb
wav form in Hg. P6.33. Hnd the wavef nn for the
voltage acmss the in.ductol.'.
it (A
Fi gure P6.33
SOLUTION:
V(t) = L di(:t)
cit
{o9t
i 0
V(t-) =
[- 12 "X lo
3
]
-
V[tJ =
L t 5h"S
\.(t) =- 2Lfl11 [ 11- 1<16
3
]
V( -t) == 3V
5m.s. < f qm.s
V(t) ::::0\1
Cims
v(t) -= 2-Ym [ -IL.XI o
3
]
VLt) = -2 '9'tV
I hnS' L .t 12 )"Y)S
'v( t) = 2 Lfln [ I 2. X I J
V(i) = 2'? S V
Chapter 6: Capacitance and Inductance
Problem 6.33
2
Irwin, Basic Engineering Circuit Analysis, 9/E
--f>oJL
t / /2rY"S
V(t)
::: ov
ov

v(t) 'V
0 t: s. 2h'L.S
z J: 5 rf\3
()V
5 rns < :i ..c s
- v
CjyY!_s ( :t II 'YYtS

IIYn5 <. t !'Lrll8
ov
t ?l2r0'S..
Problem 6.33 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.34 Th Cltnnt "11 a 4-mH .indlllctor i given by l:be
in Fig. P6.34. PI t the v Hage acros the indu t r.
i(t (mA) .
0. 12
1

0
t (ms)
Fi gure P6.34
SOLUTION:
ll;t) =
-120
,gin wJ:
J._.,tA.
w=
L.TI
T
T=
lrnS
w===
200011

..l
( -t)
= -120 A i Y'l
2.000 TCt
v c t) L cii C ;t:J
cU

V( J) y )'Y) [- 1'2 0 1--1 ( 2000 Jl) Co.& 2000 JT:): J
v(f:) - 3()2.. co.s 2oooJlt rnv
Chapter 6: Capacitance and Inductance
Problem 6.34
2
Irwin, Basic Engineering Circuit Analysis, 9/E
V(t) vs.t
~
:)
1..
,........,
>
~
0 ~
--..
......
-I
00015
'1
-2
-s
-y
-------------- - ~ - - - - - - - - - - - -
( ~ )
Problem 6.34 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.35 The waveform forth current in th 2-H inductor shown Fig. P6.35a is given in Fig. P6.35b. D termine the
following quantities (a) the energy stored in the inductor at t = 1.5 ms, b the energy tored in the inductor
at t = 7.5 ms, (c vL(t) at t = 1.5 m , (d) vL(t) at t = 6.25 ms, and vL(t) at t = 2.75 ms.
i(t) (rnA)
(a) (b)
Figure P6.35
SOLUTION:
w()
w(tSms)
w(I Sms)=
(b) w( t)
11_ L i
2
( t)
lo( 15 Y'A8)
!{_(2)
(C)
.t(t)=-
Chapter 6: Capacitance and Inductance
L &i Ct)
ru
3om A
Problem 6.35
2
Problem 6.35
vL(t)= 2[o]
VL(t) = OV
VL( 15r0s)= OV
(d) VL( ;t) - Lch(1)
clt
(1) :::
(Ct -f 60
VL(;t) = 20V
vL(b25ms) =-2ov

X I a-s - 2 X I a-s
Irwin, Basic Engineering Circuit Analysis, 9/E
A 1n tnKtvol
0 b I ntt sc...st
= -2(J
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
i.Lt):: -2ok te
.((t) -
3 D X I 0-
3
::: - 2 0 ( 2 !'t ICf 3) f g
&= CrOi
- 2at t Q 0 7 A tn ~ irtfi'r-val
e(- I ) ' \ j - ( ~
Chapter 6: Capacitance and Inductance
3
Problem 6.35
Irwin, Basic Engineering Circuit Analysis, 9/E
6.36 Find the pos ible capacitanc range of the foUowing
capacitOl's.
(a) 0.0068
1
jUJ. F with a of 10%.
(b) 120 pF with a tolerance of 20o/ .
(c) 39 wi.th a to] rnnce of 20o/ .
SOLUTION:
(O.) C = Q.(X)6 8' )..J. F
(b)
nanr--:
G I 2 r, F C s 7Y' 8' n F
(;('L c 7
c-=- 12opr:
Rnnr:j- ;
([) C -::: ] q ).J F w i :H-> 2 0 X tolrl -ya Q
Range,.
Chapter 6: Capacitance and Inductance Problem 6.36
Irwin, Basic Engineering Circuit Analysis, 9/E
6.37 Fnd the po sibl inductanc range of the foUowiog

(a) ll O mH wHh a toleranc of W%.
(b) 2.0 nH wHh a toleranc of -%.
(c) 68 IJ-H with a to I ranee of 1 Oo/ .
SOLUTION:
(Ct)
L- {OmH wit--h fC)-tnuna
qY1H L /1-mH
(b)
L-=- 1 n H (J._)j th 5 % f&-lo1 G Ylt9..
lq Y'IH L '2 IY)H
(C)
L== 6 8' .L1 H w J 0 ;t-o.Q_t r O..Y
1
U.
6 ) '2 u H L a- Y 8.J.J t-f
Chapter 6: Capacitance and Inductance Problem 6.37
2.24
Irwin, Basic Engineering Circuit Analysis, 9/E
6.38 Tt1e capndtor in Rg. P6.38a is 51 nF with a to]erance of
10%. Given tb voltage wavefmfll in Rg. 6.38b, graph
the cmnnt i ( 1) or the nuniml tn and maxin l tn capad-
t r va u s.
60
40
20
S'
..._.. 0
<:"
..._..
o;:, - 20
-40

SOLUTION:
c
(a)
t-
r-
1\
t-
v \
t-
\ J
'
v
0 1 2 3 4 5 6 7
Time (ms)
{b)
i[t) =- c d v
clt
{a""' 0 (. .t
j_ l:t) = OA
I l'YU < f 2W'S.
-== t II{'Jln) {Lf')(I0'-1)-=-
Chapter 6: Capacitance and Inductance Problem 6.38
2 Irwin, Basic Engineering Circuit Analysis, 9/E
2tYlS $ "3 ms
1 ( t) =- I J (51n) /OY) =yU i rnA
i"rninlt) = 09 ( SJn) (-'&'X 3(lmA
3rns-<. t .( Lfms
i-Ct) =at\
bO"t. LtY'ns < t 5 ms
imo.x Lt) -= \ \ ( 5 h,) IO '1) = 2-l Y "rYYI\
im;YlL;t):: OCf( 51YI) {Lt1-.fo'1)::: 18LfmA
..JOh 6 mJ
l(.t) =- 0 A
i(x) Cm")
1!\
3
'
2,ly ..
'
18'1
------ -----
.....
/
I
2
3 4 5 6 1
t
161.-
I I c.
----
441
t
-----
octc.
Problem 6.38 Chapter 6: Capacitance and Inductance
,
Irwin, Basic Engineering Circuit Analysis, 9/E
6.39 Giv 11 Ul capacitors in Fig. 6.39 ;u C
1
= 2.0 t.tF wi.th a
o]erance of 2o/ and C
2
= 2.0 p.F with a to]erance of
20%, find the foHowing.
(a) T 1e nonnnal value of Ceq
(b) T 1 minimum and maximum po sib]e vatu of
Ceq.
(c) T 1e p rcent enor of th minimum and maximum
vah es.
SOLUTION:
(9.)
(b)
o------i 1----1
cl
Figure P6.39
Cett =
c "YYC.J{
C 1.-'ldo-
6
) C 2- K Ia-' J
2 X ta-6 -t 2 X 10_,
(LD L1 X to-<:. ) ( lL(X /o-6 J
204,>\ I o-6 + 1Y ~ ~ o - 6
Chapter 6: Capacitance and Inductance Problem 6.39
I
2 Irwin, Basic Engineering Circuit Analysis, 9/E
(C}
Problem 6.39
cnYM - ,,, .Ll r
CMin =- C
1
rnin C1..N1iYl
c, min cl-YY">;n
CM;n :- U96X la-
6
) ( l-b Xto-
6
)
( IY 6 X I o-<;) +
1
6 i-lo-
6
-r o /o ea---b - Ch1a.x-

cecv
T fo
-
, .. , 'XlQ_, - ;f 10-&
--+ % erro1
-% (!YYDV
IX lo-6
lo /o
-
Cm;Yl-
C e_q,
CectJ
08 Kl)( Jo-
6
- I '/do-
6
))(/0-6
-I f -q :;;
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.4 A ..:5-ptF capacitor laitiaUy charged to - 10 V i charged
by a constaRt curr nt o 2.5 IJI.A. Find til voltage across
the capacit .i after 2t min.
SOLUTION:
V(t-)
V(t)
V(J)
V( -t)
t-
+f
J- C :J-) ct:.t -t VC o)
0
150
_j_
f
25 jJ d1
-10
25 }..J
0
2 5 JJ- [I 50] - 10
25 }v{
5V
Chapter 6: Capacitance and Inductance
Problem 6.4
,
Irwin, Basic Engineering Circuit Analysis, 9/E
6.40 T"he inductor in Fi.g. P6AOa i.s 4. 7 w h a tolel'anc
of 0%. G"ven lli CliH' nt waveform n Fig. 6.40b, gntrpll
the v tage v(t) for the III.inimum and n aximwn induc-
torv,h s.
(a)
f-
.--. 5
1 0
[7
\ J
\
I
\
I

I
- 115
0 10 .20 30 40 50 60 70 80
Tlrne
(b)
Fi gure P6.-4o
SOLUTION:
Vrrp_t L ;t) :::: ( 1 2-) ( '-{' {- 15) =- -';l.f6 1..1 V
Vm.-Y1Lt) Lfl,u.)(-15)= -546uV,
Chapter 6: Capacitance and Inductance Problem 6.40
2
,
Problem 6.40
Irwin, Basic Engineering Circuit Analysis, 9/E
S:. t: Ltul'Y'&
V'(Y)Qt. { t):::: OlJ ( (o5) =: -2 8 2 J.-t V
V m i Yl ( .f) -::: (6 ( Lr 1LI) (- G 5 )= - I . 8 1-A V
Dh- YuYYlJ -;t 5 () YY"S
(t) = 02.) ( Lfl.u) (f)= 5 6'-f,
V m in ( f. ) ={ o. K ) l Y 1t.-t) ( I) = l .U v
5. t <
V(t) = av
v Ct) :::
ov
Chapter 6: Capacitance and Inductance
/
Irwin, Basic Engineering Circuit Analysis, 9/E 3
v<
'"
/
-

-

----....
2-f2

-
--- ._,.... --
so
l(o
lo
20 So
6o 10
-188
t(ms}

----
-2.
-
'""
- S6Y
-
...

'
' 2(
-----

-
1-
C=
F
Chapter 6: Capacitance and Inductance Problem 6.40
Irwin, Basic Engineering Circuit Analysis, 9/E
6.41 If the t tal energy in t re circuit in Fg. P6.41 is
80 mJ what i.s l:h valll L?
200{} 80 p.F
Fi gure P641
SOLUTION:
.l c :::
c. dv,



L oUL.

1<2.. d '"J CoJJ
:tPu_
IPI
2oo..Q
Chapter 6: Capacitance and Inductance
l
;-
80.JJ - v
-::: o
) v (_
50{}
L ..t._
-----
A..h CA..
=o,
iL
..lj) a
'
[_ 't r-(.U...L:t"
-t
Vc.
Q...b:
conAJof\i
CD('-) -lo r.J
Problem 6.41
c
2 Irwin, Basic Engineering Circuit Analysis, 9/E
Reey= ? oo 11 SD - 2 oQ{ 5-o)
Rea;::.
yo.J2
c I)( ~ 0 )
_L c v 1.
l.
20a+50
lAJc = k_ ( J'O J-.l) ( LID),_
We: GYmJ
,( L - ( LOO ) ( I)
2oo+5o
L L = D z A
WL=- ' ~ t _ LiL'l.
L=-
liiVL
.i_L
)...
WtotcU =
WL i We
WL =.
gem- 6 '-f YY1
WL =-
/6mH
L=
2..[ Ibm)
(p g )'1-
L::::. 5ornH
Problem 6.41 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.42 Find 1e val.ue of C i.f tb . energy in th ca adtor
.in Hg. P6A2 eqt a. s lhe energy stored in the indl1ctor.
c
0.1 H
Fi gure P6 .42
SOLUTION:
-t Vc-
c
l 00-fl..
12-V

1 oo.tl-
j_,_
0
.1 H
Ac. (_ d. Vc = 0 J Vc i.A 0 Co'N}:t1(\i
cJ.;I.
cliL =-o ,
leU
Chapter 6: Capacitance and Inductance
Ci
-t Vc-
---.
I 00..>\-

JL
Problem 6.42
2
Problem 6.42
12
20oftoo
i L = Lt C.Ym A

2.-
Irwin, Basic Engineering Circuit Analysis, 9/E
c=
L(t5)
(::
o I ( C to->,f)
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.43 Given th network in Fig. P6.43, find fu power diss]-
pat di in the 3-0. re i.stot' and th energy stored j u th
capacitor.
3fi
i 2 v
sn
2 F
Figure P6-43
SOLUTION:
.
VL
L
d.JL=O
)
L L .JJ'J

-
,
.A. c.
12. v
otA
c_ d V c. = o J v c ..J...A coru:taAt
Olt
GJL
Chapter 6: Capacitance and Inductance Problem 6.43
2 Irwin, Basic Engineering Circuit Analysis, 9/E
'
.AR. /2-3'-
3f6

_g A
J.R -
]
We=
!{ C Vc 'l =
k_(2.)(12-)"'L
PR - iR
2
c ~ ) -= (- g / ~ ) l..( 3)
pR.-=- 2133 w
Problem 6.43 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.44 What va]{l s of capaci.tanc can b obtain d by intercon-
necting a 4-p.F capacitor, a 6-IJLF capac"tor, and a 12-IJI.F
capacitor?
SOLUTION:
Cet
l
1
l
--!i>
I
c.,
J c ~ Jc1
Ce1..1 -= C, + cL +c
3
-=
Lf).{ t 6 M t 12 L-1 =
2l...U F
1
Ce1}-
Ic,
Cetl-
---7 1 CL
C e . z ~ .
Tc!
Ce
2
2
Chapter 6: Capacitance and Inductance
-
-
_L -L_L -f J_
cl cl-- cs
_L +j_+_L
Lf..u
I:,V.
ll..U
2..uF
CC2. -tc
3
) C c, )
c,-t C1- t-C1
Problem 6.44
2
l


T
---}.
T c.
l
h
Cets

c1-
1
Jc'
Problem 6.44
Irwin, Basic Engineering Circuit Analysis, 9/E
Cezt.t
-
c
3
t
c, c}_
c,-1- cl.
Ce
2
r., I \..t . '--1 J.J F
Ce1s-
- (C,tcJ ( C
-
C
1
4cl tc!

- 5 '15 ...u F
-
(CI+c
3
)Cc,_)
f LJ
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E

Ce21
)
c1-
I
I
1
Cect")
-
Ct(CLfCl)
-
C,-f c.J_ 1CJ
c,
=
p )..A F
Ceq, 8 :: c 1 c c I + c J )
C
1
-t c1_ + c
3
po-1sib&.<
2 2 ..u r
Ce12 :: '2uf
3 = 3 , 2- 7 )--(. f
c e.z"' ::. ,u F
C e1s :::. '5 4 5 LJ F
. L1<1t:,.UF
C et7 -= g }....t F
qu F
3
Chapter 6: Capacitance and Inductance Problem 6.44
Irwin, Basic Engineering Circuit Analysis, 9/E
6.45 Given our cap< itors, lind th maximl m va1lle
aud minim111.m value tb,at can be obtain.ed by iutercon-
necth g th c. pac"to.r i.t ries/paraUe] combinations.
SOLUTION:
Clv\;Y\
?
l l
'
c1
cl.
C'1 c3
I I I
-' -t..Ltj_fJ_
c, c1.- c
1
cy
05)-.tF

u.ih-tn CU1 111
Chapter 6: Capacitance and Inductance
Problem 6.45
2 Irwin, Basic Engineering Circuit Analysis, 9/E
C ma_x. 8 .u. F
Problem 6.45 Chapter 6: Capacitance and lnd'uctance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.46 Giv n a l -, 3-, and capaci or, can. bey be inl:erooo-
nected to obtain an equival nt 2-11F
SOLUTION:
I ,.u_ F
Ceq_,-
( I X I o-
6
+ X I a
6
) ( Y X I o -t;")

)( lo-
6
-t Y Xlo-'
Chapter 6: Capacitance and Inductance
Problem 6.46
Irwin, Basic Engineering Circuit Analysis, 9/E
6.47 D tenu"ne the v iue of inductance that can be obl'lined
by intet'COIUl ct".ng a 4-mH a 6-mH inductor,
and a 1--mH induct r.
SOLUTION:
I
Le.t2.
---::::>
let,3
' -
----:)
L.t
\
j_+ ... L.:+ j_
L, Lt
2mH

Ll.
Leq,2 =
L1
L-,
Le.z_3
Let_3
Chapter 6: Capacitance and Inductance

L, + L1.... tL
3
2 )....-n H
L l. L!
-t Ll
L}__ + Lj
-

-
Problem 6.47
2
1
L e t ~
l
~ L
\ I
"">
~
)
L ~
L2.
I
I
L ~
LL
L ~ t '
---7
L,
Ls
Problem 6.47
Irwin, Basic Engineering Circuit Analysis, 9/E
Lecv'-f = l L,+ L,J I J
Lez_Lt
-
( L, f L2-) ( L3) -
L, -f LL -t LJ
~ : :
5 L-f5 mH
Le.!s ::. L, Ll_ -t Ll
L
1
-t L
2
Le.!5 = IY'YY'nH
Ll
L e . . t ~ ::.
( L, ll L ~ ) + LL
le26 ==
L, LJ
+ L2.
l,+ L ~
le.t'
=qrn H
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E

---;;>
= (LL f L,
L1t L,+ L
3
L,
Ll.
L3
=- ( L
1
+ L
3
) C L2J
. L
1
-t L l--t L
3
Chapter 6: Capacitance and Inductance
3
leq_? -= I '-1 y "r() H
qmH
le't7 == s L l m H
Leq,t -= Lt 3 m H
Problem 6.47
Irwin, Basic Engineering Circuit Analysis, 9/E
6.4.8 Giv; o f m 4--mH jnductors, det rmin the max.inmm
and tninimum vallues of inductan:c that c<1n b obtained
by illteroonnectil]g th.e inductor ill erieslparaU l
combinations.
SOLUTION:
L,
L ~
Chapter 6: Capacitance and Inductance
Problem 6 ~ 4 8
Irwin, Basic Engineering Circuit Analysis, 9/E
6.49 Given <1 6- , 9- and 18-mH lndlnctor, can th y
"ntetomulecred to obtaill an equi.val nt n -mH indll.ctor?
SOLUTION:
:: \ 1 mH
Chapter 6: Capacitance and Inductance
Problem 6.49
Irwin, Basic Engineering Circuit Analysis, 9/E
6 .. 5 Til energy that i.s stored in a 2 5 - ~ F capacitor i.s w t) =
12 si11
2
377t. Find the current in til: capacUor.
SOLUTION:
w(t) _L c V
2
(f)
2
Lu( j_-)
-
12 Sl.n
2
3ll ;;t
V
1
C)
-
c /2_ s;i;?31l t) (2)
25 X \o-
6
V( :t)
-+
ql Cf S' Sin 377 :t
C c1 V( :t-)
d.:t
v
J-(1:) ::: ( 25X to-t:) [ T q 1q. ~ (311) cos31l.:t J
j(f)
Chapter 6: Capacitance and Inductance
Problem 6.5
Irwin, Basic Engineering Circuit Analysis, 9/E
6.50 Find th . tot, I. c pacitance Cr of tb iletw rk itl
Fig P6.50.
1
Cr ---
2 fl.F 3 IIJ>F
Figure P6.so
SOLUTION:
1
/..u_F
\----It-
')uf'
. ....__ _ ___..
,-
j,uF"
}'-----'
C, = ( Lu-+ 2).(t 3u )( 4v)
c, =-
l.t.t -t l..Ll-1'1 ,Lt t 4/J
6 ).J ( '-f-U)
6u-t ltM.
C, + /1M
Chapter 6: Capacitance and Inductance Problem 6.50
Irwin, Basic Engineering Circuit Analysis, 9/E
6 . 51 Find the t tal. capac"tanc Cy of th network in
Fig. P6.- 1.
t
G T
Figure P6.51
SOLUTION:

c1
-c .___a...-c-'1-1 ...... _____.
C
1
= 1ul=' .)cL:::GuF 3MF;
Ct..t ::: Gt...U F ) C
5
= 6 U. F
C'=-
6.u. +c
1
c' y.u. i 6M. r1.uJ
Gu. +34
C'
Chapter 6: Capacitance and Inductance
Problem 6.51
2 Irwin, Basic Engineering Circuit Analysis, 9/E
c..'
T
JbuF
CT =
C/(6.u) -t-c,
c'-t 64
CT -
ML 6Lt)
T3J..-t
-
Gu+ 64
Cr
GuF
Problem 6.51
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.52 Hml the t tal capacitanc Cr shown in tb netwo1k in
Hg. P6.52 .
~ F T ~ . . . ____ c_ T_ ....... r _____ ____J T 2 ~ F
Fi gure P6.52
SOLUTION:
..
c, :: G M F ) c
1
= ~ JJ.. F
1
c3 ;; ~ .u. F)
1
Cy =- J 1-M F ) Cs-:::- 4 ,u r:- ) C
6
= 2 JJ FJ
QY'\Cl ( 1 ~ 2J..LF
C' =-
Ccs + c,) C C. to, 2. -t- c 3
CL-i+Cs+(&
C
1
(Lf_u+l2.J-t)(12_L..f) i-i,U.,
ll.u_ t y..U. + 2).{
C' -
Chapter 6: Capacitance and Inductance
Problem 6.52
2 Irwin, Basic Engineering Circuit Analysis, 9/E

I lc,
c.,
I
cl.
1

c1
T
t_Lt-_L
(/'
c..,
cl.
c._ I
-'
I
t
+_L_
c''
6J.A
C,f,..u
ll.u
c"
Cll l..U. F
Problem 6.52
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6. 53 Cmnpnt the qu]va] nt caprrdtance of Ute n tw rk ]u
Fig. P6. if a 1 the cap it are 4 ~ J . F .
'-'
;;: ::;::' ::::::::::
If
:::::: ::
1\
::: :::
,..,
Fi gure P6.53
SOLUTION:
c ' = c 2- +c J = '? J.J ,::-
I
I
lc
5
Cecv
I c,
~ c ~
J
~
c_l
I
C"=-
c c
1
I
261J.J F
cr+C
1
Chapter 6: Capacitance-and Inductance
Problem 6.53
2
Irwin, Basic Engineering Circuit Analysis, 9/E
Problem 6.'53 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.54 Find CT n fu network in Fig. P6.54 if (a) th. switch is
op n nd (b) h swi.tch is do d.
SOLUTION:
(a)
1
3,f!!-F
Fi gure P6.54
Swi.J-01 op.en :
Cr
:)
C'=
~ p .
I
Tct
6J.J.-
~ c 2
b (3)
6-tJ
Chapter 6: Capacitance and Inductance
6 ,f!!- F
sMl
c ~
I
6u
J c ~
..
l c"
J
Problem 6.54
2
Irwin, Basic Engineering Circuit Analysis, 9/E
( b) S'wi-JC.h dO:\E'cL
Problem 6.54
C
1 c.l
3
..
J1
-
---.a....- ___ bM
C 6..U. I

lc,
I c''
T
Cr :::::- c'cu
c.'+ C''
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.55 In th 11 l:w rk in Fig. P6.5- md the capacHance CT if
(a) th switch i.s p nand (b ) th switch is do ed.
112 6 f1F
Cr -
3 f.i> F 112 !JI.F
Fi gure P6 55
SOLUTION:
c,
C6
c.= 61-fF Jcl=
Chapter 6: Capacitance and Inductance
Problem 6.55
2 Irwin, Basic Engineering Circuit Analysis, 9/E
(G.J Cr =
c,( C6 2
-t
C1-(Cy)
-I-
C3CCs-)
c,+c6 (2---tC..y

(T::
Gu(I?M) + ,, J.J._ ( 6.U )
+
b't-tf?u}
Gu-t-12..u 12),{ -t6u
6/...t-f 1U
(6) SwitCh cto.recL .
Cs
c'=
C c 2. tc
3
) C c'-1 +C
5
) = C 12)..{ + 6 r3J...tJ
cl t (
3
t cl.f+Cs IIJ..t +6u + 6U +J.M
Problem 6.55
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E 3
Chapter 6: Capacitance and Inductance Problem 6.55
Irwin, Basic Engineering Circuit Analysis, 9/E
6.56 Select tile value of C to p.roduce the d sired t tal
capac-Hanc of Cr = 10 in the c'_rcu' t i n
Hg. P6.56.
o------
l e
Cr = 10 f.LF

Figure P6.s6
SOLUTION:
Cr-= ( C
1
+ Cz._) (c)
c,+c)..+c.
Chapter 6: Capacitance and Inductance
Problem 6.56
2 Irwin, Basic Engineering Circuit Analysis, 9/E
Problem 6.56
C = _CrC C
1
+ ck)
C
1
+C2- -cr
C== IOJ...t ( 8..u t I bu)
F u -t I l;.Lt - I
0
-4
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.57 S .ec t the vah of C to pmduc b , e ired tota]
capacitance of CT = 1 p.:F in the c"rcu"t in
Fi.g. P6.57.
0
Fi gure P6.57
SOLUTION:
"t
I
Cr
---4-
he
c,
T 1 Ct_
Cx -= ( C+ C J) ( C 4)
C+ cJ+ c'1
C'-1 ~ (Cr+Ct) ( ()
c tc, -1-c l.
Cr :::- ~ + C y
J c ~
Cy::: (C+C
3
)CC42 t CCrtCl-)(C)
ct c,-t c ~
Chapter 6: Capacitance and Inductance Problem 6.57
2 Irwin, Basic Engineering Circuit Analysis, 9/E
lu= (CttJ..t)(Ju) -+ (tu-+2,u)Cc)
C t I Lt -t (l.J C -t I Ll + 2 LA.
Ct2u
I= Cfl + 3c
C+2 Ct-l

C t I + 3C ( C t l)
Ct-1
(Ct2.) ( C-+2..)
3C1--t- 5C. -3 ==-o
c = -5 :t ,)25-lt( st
L.( J)
c = -5 ::t 1-gl
'
c-= L(65 nF
Problem 6.57 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.58 Th tw capacHms ]n Fi.g. P6.58 were charg d and l:h 11
connected as hown. D tennine the eqniva1 nt ca aci-
tance, the "nitia1 voltage at the t rminals, and the t tal
n gy t .red in the 11etwork.
SOLUTION:
+
~ 4 ~ F
Fi gure P6. s8
C,: /2JAF
Ct ~ C1-- l1..Lt F
V-t 6::: 2
v = - yv
Chapter 6: Capacitance and Inductance
j
Problem 6.58
2 Irwin, Basic Engineering Circuit Analysis, 9/E
Problem 6.58 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6 . 59 Th two capacitor shown in Fig. P6.59 hav been
connect d for som tim aud hav .reached their p.resent
values. Fnd VQ.
SOLUTION:
+
~ 4 ~ F
Figure P6.59
SQT'I\.a
CQ = cv
Co \Jo =- C,\1,
V
0
= y)..L( t bj
ll.u
V
0
= 533 V
Chapter 6: Capacitance and Inductance Problem 6.59
Irwin, Basic Engineering Circuit Analysis, 9/E
6.6 A capacitor i charg d by a constant curren.t of 2 mA and
r suUs in a voltage increas of n V in a 1 0- interval
\\rhat i.s th vatu of th c paci.tanc ?
SOLUTION:
12 = l_( ID)
c
C 2 X 1 0 ~ ( 1o)
12.
c 167 mF
Chapter 6: Capacitance and Inductance
Problem 6.6
Irwin, Basic Engineering Circuit Analysis, 9/E
6.60 The th.ree capadtor lmwo in Fig. P6.60 have e.n
co.IUJ!ected for orne Ume and have l' ached their present
vah s. Find Vi and v2.
+
vl
+
y.
Fi gure P6.6o
SOLUTION:
V,Ct)
'1 (t)
B,IJ!IF
+
4l ,pJF
12V
11.2V
v. -
-v.
2..
-t
12V
...L
c,
I
-
cl.
v
I -
cl
--
\J,_
c.,
Chapter 6: Capacitance and Inductance Problem 6.60
2
Problem 6.60
v,:: CL VL
c,
c2- vL-tVl== 12
c,
Irwin, Basic Engineering Circuit Analysis, 9/E
v
2
-= ~ v
v,+g= 12.
V
1
::: 4V
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.61 D term.in the inductanc at terminals A-B in th netw rk
in Fi.g. 6.61.
1 mHI 1 mH
B o - - - - - - ~
Figure P6.61
2mH
2 mH
SOLUTION:
A
lr
l ~
L I = L] = L6 = I YY\ H
L2..= I'L m ~
Ly = G mH J Lr- = L(mt-1
L l:: Lg =- lq ::: 2mH
Chapter 6: Capacitance and Inductance Problem 6.61
2 Irwin, Basic Engineering Circuit Analysis, 9/E
LtmH
Le - L
L1 i-Lb-+ Ltt
Le = 3mH
Problem 6.61 Chapter 6: Capacitance and Inductance
B
A
Irwin, Basic Engineering Circuit Analysis, 9/E
6.62 Detenui.ne tb indue nc at te.rmi.1uds A-Bin the
network in Hg. P6.62.
1 mi-t
A
.2 mH
4ml-l
B
Fi gure P6 .62
SOLUTION:
L
1
=1mti
LAg ::: ~ yY) f ~ yY")
~ F I ~ =- b mH
Chapter 6: Capacitance and Inductance Problem 6.62
Irwin, Basic Engineering Circuit Analysis, 9/E
6.63 Find the total i nductance at th terminals of tt1 n rwol'k
in Hg. P6.63.
SOLUTION:
Fi gure P6.63
CicrcuA! :
0 l'1
Ll.
'('
Sho9t..h.cl.
Lr == [c L'-11 -n., J /I L . .,
L r = [ ( I 2 ) I G m) + l-m J I/ Lt m
lr ::: [ 11 m(f>m) + J II Lf M
l2m-f6m
Chapter 6: Capacitance and Inductance Problem 6.63
2 Irwin, Basic Engineering Circuit Analysis, 9/E
Lr
Problem 6.63 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.64 Comput th equiv lent indm:: ta11c of th network i.n
Fig. P6.64 if an inductm's ar 4 mH.
SOLUTION:
~
Fi gure P6.64
lt
CL
b
c
La :::_L_, L_t._
L,-f LL
L1 LL.f
Chapter 6: Capacitance and Inductance
Lf
b
c
2mH
Red oC.U..U i -rut
d-
c
Problem 6.64
2 Irwin, Basic Engineering Circuit Analysis, 9/E

-

L
-
b { y)
-r
2
-
e.ay
2-
-

"'(Y\.'t-1
-
Problem 6.64 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.65 Find Lr n tll n rwork in Fig. P6.65 {a) wi.th the w"tch
op u and (b) with the switch c o eel AU induct rs ar
12mH.
LT -.
Figure P6.65
SOLUTION:
Lr
---'}
L8
LLt
L1
leA.
(L 1-t Lg ) I J L6
24yy, J I 12m
Lo.
~ m H
Lb
(LL II L ~ )
12m I) I2W)
Lb
6mH
Chapter 6: Capacitance and Inductance Problem 6.65
2 Irwin, Basic Engineering Circuit Analysis, 9/E
L
a.
Lr - [ ( LytLQ.) II C Lb + Ls) J + L1
Lr= [ct2m-tJ'rn) II a>'YltiLm)]+l2YYl
Ly=- (2o-m /IIZm) +12Yl-l
(b)
L,
Lr
Lb
Lt.,
-

Ls

Problem 6.65 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
Lr = ( La II Ls ) + ( L6 I I Ly ) i L
1
Lr ::. ( 8m ll I 2.. m ) -t ( 6 m J J 12 rn)-+- 12 YYI
Lr-
3
Chapter 6: Capacitance and Inductance Problem 6.65
Irwin, Basic Engineering Circuit Analysis, 9/E
6.66 Given. th 11 twork shown i.n fig. P6.6 , find , a ll
equ.ivai 11 indnctanc at terminals A-B w"tb
t rminai C-D bon circait d, and (b) the equival nt
inductance at termina]s C-D wi th tenninals A-B p n
cll'CilitOO.
20 mHI
6 mH
Figure P6.66
SOLUTION:
(a)
C-D s : h o ~
A
lLf
L
1
- 20 rnH ) L2. = 5mH
LJ =- )2mH
a rd.- LL.f = 6mrl
L,
L ~
L'-1
Chapter 6: Capacitance and Inductance
D
Problem 6.66
2 Irwin, Basic Engineering Circuit Analysis, 9/E
l.J1R =
(_ ll II LL)
t ( L
3
II Ly)
lAg= ( 1o r-n 115m)
-t ( 11 m II 6 Y"() J
LAJ] =
g'mH
(b)
wd--l-1
A--e of-0n:
c
L ~
ly
b
Lc 0 = c L I + l L ) 11 ( LJ + ~ ' - f )
Leo= (2omt5m) I/ (1'lrnT6mJ
Leo = 25'rn ) I IFrn
LeD - lal.ilmH
Problem 6.66 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6. 67 Find the value of Lin l:be network in F'g. P6.6i so that
the total indudance L, wi.U b mH.
Ly -
Figure P6. 67
SOLUTION:
'lm:::
1m=
2 mHI
6 mHI
A
...
L
[c L II L 3 ) -t l2. J /I L 1
+ '-rn J /I 4rf1
[
( 6m)L
Ltm L t ~ m
Y'Y"n -r 6m ( L)
Li6m
+ 2W'\
L.m l6m+ 6m(L) J==-ym[6m(L) +lm]
L L+ 6m L+ 6m
Chapter 6: Capacitance and Inductance Problem 6.67
2
(12 rn) ( L) + y m
Lf6m
~ 1 Y)'l)( L) -(6m) ( L)
Lt6m
Irwin, Basic Engineering Circuit Analysis, 9/E
6m -t-(GYYI)L
L t Grn
2m
(bm) ( L)
-
2m ( L-+ 6Y') -
(Ym) ( L)
- }2 )A
-
L= 12J.A
Lrm
L= ~ 1 ' n H
Problem 6.67 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.68 .Ftnd the valu of Lin th 11 tw rk in Fig. P6.68 that
th valu of Lr will b mH.
2 mHI
Fi gure P6.68
SOLUTION:
2
L,
s
(
~ L
.
L-r
\LT 4L )
II L
y-tL
L-r
( L-+ YL) L
i...1tL
Lt 2-*
l.fL
y+L
LT-=
2L -+
L( L 1...
y-fL
l( \....f+L) -f- 2( 4+L) -t L.(L
LriL
Chapter 6: Capacitance and Inductance
Problem 6.68
2 Irwin, Basic Engineering Circuit Analysis, 9/E
Problem 6.68
LT = 2l(LftL) + Y L ~
YtL
~ L t LL +S?t'LL t yL
YtL
l T = ~ L + '2LL -t Y L ')..
?L + L L t ~ -t'l..L
LT::: GL,_ + 2L
L
2
tiDL1.?
L T = 6 L 'L t ~ L
L
1
i IOL -tf
2L'l. -t 20l +I b
L( L 't - I'LL -I b = 0
L'l- sL-Y-=0
( L-LI) ( L -t I ) = 0
)
L===-1
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.69 A 20-mH indtuctot and 1 -mH imJuctor are com1 . cted
in sedes with l -A curent urc . Find (a) th equiva-
l.e.nt 'ndl ctan.c and b) th motaJ 11 rgy stored.
SOLUTION:

JA
(b)
\N t4>-\:a..l

w
1
+ w,_
Yt_L1I'l. +){L2-IJ..
I; ('LOm)(1)2--t ,k'(ilm)(1)1.
/'L 1-
I G mJ
Chapter 6: Capacitance and Inductance
Problem 6.69
Irwin, Basic Engineering Circuit Analysis, 9/E
6. 7 Th CUIIl'ent j n 1 00-!i-F capaci t r is sh wn n Fi.g. P6. 7.
D t rm.i ne th \V v f rm for th v ltage acr s th apa i -
or jf it j inillaUy 1.1.ncharged.
i(t) (mA)
10 P-----.
0 2
t (ms)
Figure P6.7
SOLUTION:
1
1
= 2mS
* <O
1
i=O J Qhd V=O
) l = Ia 'YYlA ) o.rd
L_W\
s
torn c:J..L
Joo.u.
0
2 N ~
V=
lcrm
[ t] lOOt V
IOO)J.
D
v = 02V
Chapter 6: Capacitance and Inductance
Problem 6.7
2
Irwin, Basic Engineering Circuit Analysis, 9/E
V(t) ov
J
:t<.o
lOOt V ,
02 v
Problem 6.7 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.]0 For tb network i.ll Hg. P6.70, Vs( t) = no c 377t v.
Find Vo(t) .
1 kO
+
Figure P6.7o
SOLUTION:
'
c
_l.,
C= l,t.Jf=""
a.rcl R = I k_Q_
Vs ( -t) ::: 12 0 C06 3 ll-t V
C ctVs
eLf
( irucu op- etm_p)
- Vo
-
~
V
0
=- - Q c clVs_
cit
Vo= -(I K) C /.Lt) Gl2o( j 77) cos ~ l l i ]
Chapter 6: Capacitance and Inductance
Problem 6. 70
2 Irwin, Basic Engineering Circuit Analysis, 9/E
Vo (t)
Problem 6.70
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.71 For tbe n twodc in Fig. P6. 71 cbo C l ch that
v
0
= -1l0 J v
5
dt .
Source mode'! C
Fl gu re P6.71
SOLUTION:
+
V
0
= - I o S VscU:
Vs-O
Recv
R s t 7 0 K. = f OK + l 0 1<.
Recy =- ~ 0 K.Jl.
-CdVo
cU
V
0
I fVsct.t
f<ettc
Chapter 6: Capacitance and Inductance Problem 6.71
2
c-=
Problem 6. 71
I
10
12Sur
Irwin, Basic Engineering Circuit Analysis, 9/E
Chapter 6: Capacitance and Inductance
3
t
t
t
2 Irwin, Basic Engineering Circuit Analysis, 9/E
Vo(t)
-2111 Stn37lt V
Problem 6. 72 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.73 Th circuit shown in Fig. P6.73 i known as a "D bo '
int grat r.
(a) Express the utput vol. age in t rms o. tb ' npu voU-
ag and circuit p ram ters.
(b) How j d1 D bo int performance differe11
t' m hat of a standard integrator?
(c) \Vhat kind of application w uld j u ti y d1 use of
tbi device?
-y

...
Fi gure P6.73
SOLUTION:
+
R
..
l's
+
Vo
-i
cr
R,.,
'
CO.)
V
5
-v,... C. JVA t
VA-Vo
R
CiT
R3
Vs. cdVA
+
VA-Vo.
-tVA
-
-
R
dl

. R
Chapter 6: Capacitance and Inductance
Problem 6. 73
2 Irwin, Basic Engineering Circuit Analysis, 9/E

Vs =
;z, R c_
d.Vo
-t 0 R1 R. -
R ) Vo
(( ,-t 12.,_
C}.J;:
(R,+RJ

-t ( R1 ) v
R ,+ r<,_ o
'vs =-
R,f?-.C
dVo t ( Rif<d - (!_
]Vo
R,-t-R.l..
cl.:t
R
3
( R.,-t.z..)
(b) the. c. w h.e. Y\ ;
Problem 6. 73
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
3
t
M n!l.tu prui Ji ve .
(c)
Chapter 6: Capacitance and Inductance Problem 6. 73
Irwin, Basic Engineering Circuit Analysis, 9/E
6.7 4 An integrator is required that ha the oiiowing
perf rman e
v
0
( t) = lcfl J dt
wher b capaci.tor val ue must b great r than
10 nF and the r si t r values mu t b gr at r than
10k.fl.
(a) Design tb int gratol.'.
(b) If ::!: 1 0-V uppUe are used, what are the maxi .mum
and minimum vah1.e of v
0
?
(c) S 1ppose = 1 V. \\'hat .i the rate of d1, l'lge of v
0
?
SOLUTION:
c
v.
=
rJ..
.,....,
J cU:
20flF
)
(<.1. -;:: 2...
rz Mft-
-
-
Chapter 6: Capacitance and Inductance Problem 6.74
2
Irwin, Basic Engineering Circuit Analysis, 9/E
(b)
-tt0\1
(C)
\Is= IV
Problem 6. 7 4 Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.75 A driverless bile .i under deve]opm nt On criti-
cal i sue i braking, patticubdy at red lights. It d cid-
ed that th braking ffort shoul d d p nd on distance to
the tight (i f you're c] , you bett r top now) and peed
if you're going fast, you'll. need more brake ). Th
resulting design ation i
braking eff rt = Kt [ + K
2
x(t)
where x, the distance from th vebi.cle o th .i11te1s cdon,
i m asured by a ns ..r who output is prop rtionai to
X, Vsen.se = CiX. U SUp .!pOSition to l1 W that th circuit
in Fig. P6.75 can produc the brak"ng effort signal.
Ra
V euse
Figure P6.75
SOLUTION:
c
Chapter 6: Capacitance and Inductance

Problem 6.75
3
Irwin, Basic Engineering Circuit Analysis, 9/E
6.8 Th voltage across a 50-!J..F capacitor i hown io
Fig. P6.8. D tennine the current wav fomi .
v t v
Figure P6.8
SOLUTION:
i(t)
iC t)
50 ).A [ )000]
25omA
2 ms <: t- S:.. Llms
OA

LpYIS
<

?ms
i(t)
5o [- s-ooo]
i(t-)
-L5b

gms

IOm.s
j(t-) = OA
Chapter 6: Capacitance and Inductance
Problem 6.8
2 Irwin, Basic ,Engineering Circuit Analysis, 9/E
loms /2mS
i(r) = 50..u. [ 5Qoo]
l(;t} = 25DmA
l(f)
-
-
(tn mA)
Problem 6.8
:t 7 /2m.s
iCt)-= oA
250
0
-250
0
250
0
0 :t :S 2ms
2ms :t Wrns
Lrms'


I a'rf"'6
/O'YnS :J:
12 YYIS
t- 7 I 2... m s
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E
6.9 Draw the wavef rm fi .1!' the m'fellt in a 1 -j.LF capacitor
wh nth c paci.tor voltag i as described in Fig. P6.9.
v(t) (v)
12
t (fl-S)
- 8
Figure P6.9
SOLUTION:
l(t)
i(:t) = 2LJA.
6 u.S <.. t: IOJ.A.S
12.U [ - 5 'X/0
6
J
i (:t)
-6oA
lop-s :t .$. 16J.JS
i(:t)


j(:J.:) -= 16A
r / 16
i(J:.)=O
Chapter 6: Capacitance and Inductance
Problem 6.9
2
'30
2..0
r------- -- ----
IO
0
-lo
,........
4:
-20
..._,
r--
+I.
-3,() ...........
-.(_
-40
-s-o
t----------- --
-60
-:to
Problem 6.9
Irwin, Basic Engineering Circuit Analysis, 9/E
2YA.
-6oA
16 A
OA
i(:t) vst=
. ----------------------

D t 6 I-tS
6w s :t
!6J.AS
t>16us
------
20
Chapter 6: Capacitance and Inductance
Irwin, Basic Engineering Circuit Analysis, 9/E 1
Chapter 6: Capacitance and Inductance Problem 6.FE-1
SOLUTION:
The correct answer is a.
Yes. The capacitors should be connected as shown.
F 2
F 4
F 6
eq
C
F C
eq



3
6 6
) 6 ( 6

Irwin, Basic Engineering Circuit Analysis, 9/E 1


Chapter 6: Capacitance and Inductance Problem 6.FE-2
SOLUTION:
The correct answer is c.
}
= dt t i t q ) ( ) (

>
s <
s
=
s t C
s t C t
t C
t q


1 , 6
1 0 , 6
0 , 0
) (
C
t q
t v
) (
) ( =

>
s <
s
=
s t V
s t V t x
t V
t v


1 , 6
1 0 , 10 6
0 , 0
) (
6
) (
2
1
) (
2
t v C t w =

>
s <
s
=
s t J
s t J t x
t J
t w


1 , 18
1 0 , 10 18
0 , 0
) (
2 6
Irwin, Basic Engineering Circuit Analysis, 9/E 1
Chapter 6: Capacitance and Inductance Problem 6.FE-3
SOLUTION:
The correct answer is b.
The voltage across the unknown capacitor C
x
is (using KVL):
x
V 8 24
V V
x
16
v C q
The capacitors are connected in series and the charge is the same.
C q 480 ) 8 ( 60
F
v
q
C
x

30
16
480

Irwin, Basic Engineering Circuit Analysis, 9/E 1
Chapter 6: Capacitance and Inductance Problem 6.FE-4
SOLUTION:
mH 6
eq
L
mH 12
mH 3
mH 3
mH 9
mH 2
The correct answer is d.
m m m m m m L
eq
2 ] 3 6 ] 12 ) 9 3 [( [
m m m m m L
eq
2 ] 3 6 ] 12 ) 12 [( [
m m m m L
eq
2 ] 3 6 6 [
m m m L
eq
2 ] 3 3 [
m m L
eq
2 5 . 1
mH L
eq
5 . 3
Irwin, Basic Engineering Circuit Analysis, 9/E 1
Chapter 6: Capacitance and Inductance Problem 6.FE-5
SOLUTION:
The correct answer is a.
dt
t di
L t v
) (
) ( =
t t t t
te e e te
dt
t di
2 2 2 2
40 20 20 ) 2 ( 20
) (

= + =
| |
t t
te e m t v
2 2
40 20 10 ) (

=

>
<
=

0 , 4 . 0 2 . 0
0 , 0
) (
2 2
t V te e
t V
t v
t t

You might also like