No.
of Printed Pages : 8                             MEC-003
         MASTER OF ARTS (ECONOMICS)
                 Term-End Examination
                          June, 2022
       MEC-003 : QUANTITATIVE TECHNIQUES
Time : 3 hours                          Maximum Marks : 100
Note : Answer questions from both the sections as per
       instructions.
                         SECTION A
Answer any two questions from this section.            220=40
1.   Explain how differential equations are applied in
     economics. Discuss the role of initial condition in
     solving a differential equation. Give appropriate
     examples.
2.   Consider the following utility function :
           u = f(x1, x2, ... xn)
     where xi is the quantity of ‘n’ goods consumed.
     Let the price of good xi be pi for i = 1, 2, ... n. Let
     the income of the consumer be M. Show that the
     Lagrangian multiplier of utility maximisation
     problem equals the marginal utility of income.
MEC-003                            1                      P.T.O.
3.   (a)      Describe the properties of standard normal
              distribution.
     (b)      The impurities in a chemical are normally
              distributed with mean 127 parts per
              million   (ppm)     and   standard    deviation
              22 ppm. The chemical is acceptable only if
              its impurities are below 150 ppm. What is
              the    proportion    of   chemicals    that    is
              acceptable ? [The area under standard
              normal curve for the value z = 1·5 is 0·668.]
4.   A revenue maximising monopolist requires a
     profit of at least 1500. His demand and cost
     functions are :
              D = 304 – 2 Q and
              C = 500 + 4 Q + 8 Q2.
     Determine the equilibrium level of output and
     price.     If   the      monopolist   opts    for   profit
     maximisation, what will be his output and price ?
MEC-003                            2
                          SECTION B
Answer any five questions from this section.                512=60
5.   Given that :
               1       1 1             1  2    3
                                                   
           A = 2      3 4 , B=         6 12      6
                                                   
               3      2 3              5 10      5
     Find the rank of the matrices AB, BA and A + B.
6.   The correlation coefficient between the nasal
     length and stature of 20 persons was found to be
     0·203.    Test      whether        the   correlation    is
     statistically significant.
7.   A linear programming problem is given as :
     Maximize         z = 30x1 + 50x2
     subject to       x1 + x2  9
                      x1 + 2x2  12
                      x1  0, x2  0.
     Find its optimal solution.
8.   Find the extreme values of
           z = 2 x 12 – x1 x2 + 4 x 22 + x3 + x 32 + 2.
     Verify whether it is a case of maximum or
     minimum.
MEC-003                           3                          P.T.O.
9.   Show that in a Poisson distribution, the mean
     and the variance are equal.
10. State and explain Bayes’ theorem.
11. Explain the method of maximum likelihood
     method for estimation of parameters.
12. Write short notes on any two of the following :
     (a)   Eigenvalues
     (b)   Taylor’s expansion
     (c)   Kuhn-Tucker conditions
MEC-003                     4
                                                       E_.B©.gr.-003
                         E_.E. (AW©emñÌ)
                           gÌm§V narjm
                            OyZ, 2022
             E_.B©.gr.-003 : n[a_mUmË_H$ à{d{Y`m±
g_` : 3 KÊQ>o                                      A{YH$V_ A§H$ : 100
ZmoQ> : XmoZm| ^mJm|> go {ZX}emZwgma àíZm| Ho$ CÎma Xr{OE &
                                ^mJ> H$
Bg ^mJ> go {H$Ýht Xmo àíZm| Ho$ CÎma Xr{OE &                  220=40
1.   ì`m»`m H$s{OE {H$ AW©emñÌ _| {d^oXH$ g_rH$aU H¡$go
     bmJy hmoVo h¢ & {d^oXH$ (AdH$b) g_rH$aU H$mo hb H$aZo
     _| àma§{^H$ eV© H$s ^y{_H$m na MMm© H$s{OE & C{MV
     CXmhaU Xr{OE &
2.   {ZåZ Cn`mo{JVm \$bZ na {dMma H$s{OE       :
             u = f(x1, x2, ... xn)
     Ohm±     Cn^moJ H$s JB© ‘n’ dñVwAm| H$s _mÌm h¡ & _mZm
            xi,
     i = 1, 2, ... n Ho$ {bE pi dñVw xi H$s H$s_V h¡ & Cn^moº$m
     H$s Am` H$mo M _mZVo h¢ & Xem©BE {H$ Cn`mo{JVm
     A{YH$V_rH$aU g_ñ`m H$m b¡J«opÝO`Z JwUH$ Am` H$s
     gr_m§V Cn`mo{JVm Ho$ ~am~a h¡ &
MEC-003                              5                          P.T.O.
3.   (H$) _mZH$ àgm_mÝ` ~§Q>Z H$s {deofVmAm| H$m dU©Z
          H$s{OE &
     (I) EH$ agm`Z _| Aew{Õ`m± 127 ^mJ à{V {_{b`Z
         (ppm) _mÜ` Am¡a 22 ^mJ à{V {_{b`Z (ppm)
         _mZH$ {dMbZ Ho$ gmW gm_mÝ` ê$n go ~§{Q>V h¢ &
         agm`Z V^r ñdrH$m`© hmoJm O~ CgH$s Aew{Õ`m±
         150 ^mJ à{V {_{b`Z (ppm) go H$_ hm|Jr &
         ñdrH$m`© agm`Zm| H$m AZwnmV Š`m h¡ ?
         [z = 1·5 Ho$ {bE _mZH$ gm_mÝ` dH«$ Ho$ A§VJ©V joÌ
         0·668 h¡ &]
4.   amOñd (Am`) A{YH$V_ H$aZo dmbo EH$m{YH$mar H$mo
     H$_-go-H$_ 1500 Ho$ bm^ H$s Amdí`H$Vm h¡ & CgHo$ _m±J
     \$bZ Am¡a bmJV \$bZ h¢ :
            D = 304 – 2 Q Am¡a
           C = 500 + 4 Q + 8 Q2.
     CËnmXZ Am¡a H$s_V H$m g§Vb
                              w Z ñVa kmV H$s{OE & `{X
     EH$m{YH$mar bm^ A{YH$V_ H$aZm Mmho, Vmo CgHo$ CËnmXZ
     Am¡a H$s_V Š`m hm|Jo ?
MEC-003                        6
                                   ^mJ> I
Bg ^mJ> go {H$Ýht nm±M àíZm| Ho$ CÎma Xr{OE &                 512=60
5.   {X`m J`m h¡ {H$   :
                1          1 1              1  2   3
                                                       
            A = 2         3 4 , B=          6 12     6
                                                       
                3         2 3               5 10     5
     Amì`yh AB,    BA       Am¡a   A + B    H$s Om{V (H$mo{Q>) kmV
     H$s{OE &
6.   20  bmoJm| H$s Zm{gH$m H$s bå~mB© Am¡a D±$MmB© Ho$ ~rM
     ghg§~§Y JwUm§H$ H$m _yë` 0·203 àmßV hþAm & narjU
     H$s{OE {H$ Š`m `h ghg§~§Y gm§p»`H$s` ê$n go _hÎd
     aIVm h¡ &
7.   EH$ a¡{IH$ àmoJ«m_Z g_ñ`m Bg àH$ma h¡       :
     A{YH$V_ H$s{OE z = 30x1 + 50x2
     ~eV}                x1 + x2  9
                            x1 + 2x2  12
                            x1  0, x2  0.
     Bï>V_ hb kmV H$s{OE &
8.   z = 2 x 12 – x1 x2 + 4 x 22 + x3 + x 32 + 2
                                             Ho$ Ma_ _yë`m|
     H$mo kmV H$s{OE & gË`m{nV H$s{OE {H$ `h A{YH$V_ H$s
     pñW{V h¡ `m Ý`yZV_ H$s &
MEC-003                              7                           P.T.O.
9.    Xem©BE {H$ EH$ ßdmgm| ~§Q>Z _| _mÜ` Am¡a àgaU ~am~a
      hmoVo h¢ &
10.   ~oµO à_o` ~VmBE Am¡a BgH$s ì`m»`m H$s{OE &
11.   àmMbm| Ho$ AmH$bZ Ho$ {bE A{YH$V_ g§^m{dVm {d{Y H$s
      ì`m»`m H$s{OE &
12.   {ZåZ _| go {H$Ýht Xmo na g§{jßV {Q>ßn{U`m± {b{IE   :
      (H$) A{^bj{UH$ _mZ (AmBJoZ_mZ)
      (I) Q>oba H$m {dñVma
      (J) Hw$hZ-Q>H$a eV]
MEC-003                          8