L 99 Asc 03
L 99 Asc 03
Applications
• Mechatronic three-phase motor application
TQFP48-EP such as engine cooling fans, fuel pumps, water
pumps, oil pumps
Features Description
• Automotive qualified The L99ASC03 is a multifunctional system IC
designed for three-phase motor control
• 5 V low-drop voltage regulator (200 mA applications.
continuous mode)
The device features a voltage regulator to supply
• Very low current consumption in standby mode
an external microcontroller and an operation
(typ. 15 µA)
amplifier for motor current sensing. It is designed
• ST SPI interface for control and diagnostics to control six external
• Window watchdog and fail-safe functionality N-channel MOSFETs in bridge configuration to
drive three-phase motors in automotive
• Two separate power supply pins
applications. All gate driver outputs are controlled
• Three half-bridge drivers to control external by separate inputs.
MOSFETs (configurable by SPI)
The integrated Serial Peripheral Interface (SPI)
• Full drive of external MOSFETs down to 6 V makes it possible to adjust device parameters,
input voltage control all operating modes and read out
• Input pin for each gate driver (with cross- diagnostic information.
current protection)
• Two-stage charge pump supporting 100% duty
cycle
• PWM operation up to 80 kHz (not restricted)
• Current-sense amplifier (configurable by SPI)
• Disable input to turn off gate driver outputs
• Analog multiplexer output to monitor external
power supply voltages and internal junction
temperature Table 1. Device summary
• Advanced BEMF detection IP Order codes
Package
• Overcurrent protection (programmable) Tube Tape and real
• Drain-source monitoring and open-load
TQFP48-EP L99ASC03 L99ASC03TR
detection
Contents
2 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Supply pins (VS, VSREG, VSMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 VS, VSREG and VSMS overvoltage warning . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 VS, VSREG and VSMS overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 VS, VSREG and VSMS undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 VDD (5V) voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 NRES reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.4 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Device operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Active Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.3 VDD Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.4 VBAT Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.5 Device mode state diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.6 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 DIS pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 INH pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.1 Normal mode: TEMPM = ‘0’ (TW1, TSD1, TSD2) . . . . . . . . . . . . . . . . . 18
2.8.2 Warning mode: TEMP = ‘1’ (TW1, TW2, TSD2) . . . . . . . . . . . . . . . . . . 18
2.9 Wake-up events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.11 Gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.12 Drain-source monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12.1 Drain-source monitoring in ON state (short-circuit detection) . . . . . . . . 22
2.12.2 Drain-source monitoring in OFF state (open-load / short-circuit detection)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 Current-sense amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.14 Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.15 BEMF module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.15.1 BEMF comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.6 SPI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 ST-SPI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.1 Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.2 Clock and data characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 SDI frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 SDO frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Addresses and data definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.1 Device information registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 SPI Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 Device Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.3 Device Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.4 Device Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.5 Device Control Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.6 Device Control Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.7 Device Control Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.8 Device Control Register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.9 Device Control Register 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.10 Device Status Registers 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.11 Device Status Registers 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 TQFP48-EP mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
List of tables
List of figures
VS
Central 2 Step Charge Pump
EMC optimized „Spread Spectrum“
L99ASC03
VSREG
RINH
10kΩ Undervoltage Temperature
CVSREG
Overvoltage Det. Prewarning
C* & Temperature
100nF
* Size according application Shutdown VSMS
requirements (Voltage dropout
test, warm cranking, …) Control Logic VCP VSMS
5V Voltage
Regulator
VDD (and Reset)
Note: This is a very simplified example of
NINT an application circuit. The function must be
verified in the real application. The
external componant values should be used
as guidline only.
GAPGCFT00013
VSMS
GH1
GH3
GH2
SH3
SH2
SH1
GL1
GL3
GL2
SL2
SL1
45
37
48
40
47
46
44
43
42
41
39
38
SL3 1 36 CP
TQFP48-EP
CSI+ 2 35 CP2+
CSI- 3 34 CP2-
SGND2 4 L99ASC03 33 CP1+
CSO 5 32 CP1-
IL3 6 Leadframe 31 VS
IH3 7 & 30 VSREG
IL2 8 Slug 29 INH
IH2 9 28 Reserved
IL1 10 27 VDD
IH1 11 26 AGND
SGND1 12 25 Reserved
16
24
13
21
14
15
17
18
19
20
22
23
SDI
SCK
SDO
CSN
BC
DIS
NRES
AOUT
BEMFOUT
DOUT
NINT
SGND3
GAPGCFT00654
2 Device description
stable for output capacitor greater/eqaul than 660 nF (ESR < 50 mΩ) close to the device. An
additional external capacitor up to 47 µF is permitted.
In case of a short circuit to GND on VDD when VDD is turned on (VDD < VDDFAIL for at least
4 ms), the device automatically enters the VBAT Standby Mode and the VDDFAIL flag is set.
Reactivation of the device is possible through a wake-up event. The VDDFAIL flag can be
cleared by an SPI “Read & Clear” command, once the short circuit is removed and the
device leaves the VBAT Standby Mode.
965(*
965(*89
965(*89ELWLVVHW
,QWHUQDO3RZHU RQ 5HVHWWKUHVKROG
965(*325
WLPH
W 67$5783
9''
9''7<3
957[
W 9''89 W 9''89
9'')$,/
W 9''89
1R5HVHWJHQHUDWHG 9''XQGHUYROWDJHILOWHUWLPH
WLPH
5HVHWUHDFWLRQWLPH
,IW !W 9''6+7VWDUW
W 55 W 55
9''VKRUWGHWHFWHG 5HVHWSXOVHWLPH
Æ9%$76WDQGE\
15(6
W 53 W 53
WLPH
'!0'#&4
2.4 Watchdog
A window watchdog is integrated in the device. The watchdog supervises the operation of
the external microcontroller in Active Mode and, if the ICMP bit is set to ‘0’ and IVDD > ICMP,
also in VDD Standby Mode.
When the device powers up and the NRES pin is released, the watchdog is started with a
long open window (typ. 65 ms). The microcontroller has to write the WDTRIG bit to ‘1’ within
this time in order to terminate the long open window and start the window watchdog. After
that, the watchdog has to be serviced properly by alternating the logic value written to the
WDTRIG bit within the watchdog open window. A correct watchdog trigger immediately
starts the next cycle.
After eight consecutive watchdog failures, the VDD regulator is turned off for a time equal to
tVDDoff (typ. 200 ms). In case seven additional and consecutive watchdog failures occur, the
VDD regulator is completely turned off and the device enters VBAT Standby Mode.
A watchdog failure causes a reset pulse at the NRES pin and the deactivation of the gate
drivers (fail-safe condition, for further details see Table 5).
When the device is in Flash Mode, the watchdog is disabled. Besides even in VDD Standby
Mode with ICMP = 1 the WDG is always disabled. If the WDDIS bit is set to ‘1’ in Flash Mode
and then a transition to Active Mode occurs, the watchdog remains disabled in Active Mode
until the next POR.
After a WDG failure event, after a VDD_UV event or after a wake event from VBAT Standby
Mode the watchdog starts again in LOW mode. Once properly toggled the WDGTRIG bit,
writing the same WDGTRIG bit value anywhere within the WDG window does not generate
any WDG failure event.
&LASH -ODE
:DWFKGRJGLVDEOHG
:'',6ELWZULWDEOH
9%&9 W\S
6"!4 3TANDBY
6$$ 3TANDBY -ODE
'!0'#&4
$FWLYH0RGH
LONG
OPEN
WINDOW
9''!957957
JR6WDQGE\
75,* Ã 7$ 9%$76WDQGE\
/&& 9''6WDQGE\ ,9'',&03RU,&03
7INDOW
SURSSHUWULJJHULQ
-ODE
JR6WDQGE\
:LQGRZPRGH
$FWLYH0RGH
'!0'#&4
$FWLYH0RGH LONG
OPEN
WINDOW
([LW)/$6+PRGH
)/$6+0RGH 7$ )/$6+PRGH
/&&
)/$6+0RGH
$FWLYH0RGH
7INDOW
-ODE
'!0'#&4
:'IDLO
LONG
76'
OPEN
WINDOW
$FWLYH0RGH 9''!957957
IRUFHG9%$7
75,* Ã :'IDLO 9''957957 7$ 9%$76WDQGE\
76' /&&
9''957957
7INDOW
SURSSHUWULJJHULQ
-ODE
:LQGRZPRGH
IRUFHG9%$7[:'IDLO
[76'
$FWLYH0RGH 6KRUW9''
'!0'#&4
965(*!9325
9%$7VWDUWXS
$OOUHJLVWHUV
VHWWRGHIDXOW
567%ELWVHWWR
9%&9 W\S
$1'
96',9
)ODVK0RGH
:DWFKGRJGLVDEOHG
:'',6ELWZULWDEOH
9%&9 W\S
$FWLYH
9
9%& W\S
0RGH
9''RQ
:DWFKGRJDFWLYH
:DWFKGRJGLVDEOHG
LI:'',6ELWVHWWR
63,FRPPDQG LQ)ODVK0RGH
25
9''5ELWV
9%&9 W\S 25
9''IDLO 9''9'')$,/IRUPVDW
WXUQRQ !VKRUWWR*1'
25
[:'IDXOWV
63,FRPPDQG
:DNHXS(YHQW
:DNHXS(YHQW
9%&9 W\S
9%$76WDQGE\ 9''6WDQGE\
0RGH 0RGH
9''RII 9''RQ
:DWFKGRJGLVDEOHG :DWFKGRJGLVDEOHG
63,2)) LI,9'',FPSRU,&03
9''5ELWV
25,9''!,&03$1',&03 $1'[:'IDXOWV
:DNHXS(YHQW,1+KLJK63,FRPPDQG
RQO\LQ9''6WDQGE\0RGH
'!0'#&4
7M!76' 7:
76'
9''5ELWV
:DNHXSHYHQW
7M!76'7:
7M76'7:
$1'
³5HDG &OHDU³
63,FRPPDQG
7M7:
$1'
9%$76WDQGE\ ³5HDG &OHDU³
63,FRPPDQG 7:
287V SDVVLYH2))
&3/,1DQG&6$2))
7:ELWLVVHW
9''2))
)676'ELWLVVHW
7M7:
$1'
³5HDG &OHDU³
63,FRPPDQG
7M!7:
!CTIVE
0RGH
9V!9325
3RZHU2Q5HVHW
*$3*&)7
CSN pin low and first rising edge on SCK pin, active only in VDD
SPI Access
Standby Mode
INH High level on the INH pin, active in both standby modes
All wake-up events from VDD Standby Mode generate a low-pulse on NINT pin for
56 μs (typical).
9&3ORZWKUHVKROG
&39ROWDJH
&KDUJHSXPSORZ
W I&3 ILOWHUWLPH
15'<ELW
15'<DXWRFOHDU
&3/2:ELW
&3/2:5HDG &OHDUYLD63,
*$3*&)7
shoot-through protection. The minimum tCCP is applied between outputs GHx and GLx only
if a lower (or null) dead-time is present between inputs ILx and IHx (see Figure 18). In case
the IHx and the ILx input of a half bridge are active at the same time, both gate driver
outputs (high side and low side) are turned off. In addition, if IHx and ILx are both driven
active for longer than tCCP, the affected half bridge is disabled and the ST(x) error flag is set.
To re-enable the half bridge, this fault condition has to be removed and the corresponding
ST(x) flag has to be reset through an SPI "Read & Clear" command.
The gate driver circuit limits the gate-source voltage of the external MOSFETs. All gate
driver circuits are independent of each other and use their source connection to the external
MOSFET as a reference.
In order to drive different MOSFETs and adjust the gate currents according to external
conditions (e.g. temperature), the source and sink current (i.e. the charging and discharging
current) of the gate driver can be programmed via SPI.
The HARDOFF feature is an additional measure against cross-current conduction in a half
bridge. When the HOFFCONT bit is set to 0, any of the outputs GHx and GLx is switched off
using maximum sink current (max PCSI) after a tCCP from related turn-off command. When
the HOFFCONT bit is set to 1, any of the outputs GHx and GLx is switched off using
maximum sink current (max PCSI) as soon as the complementary output signal
(respectively GLx or GHLx) goes to high.
,+[
W&&3 W&&3
,/[
PLQ3&6,
*+[
PD[3&6,
*+[+$5'2))
PLQ3&6,
*/[
PD[3&6,
*/[+$5'2))
'!0'#&4
,+[
,/[
PLQ3&6,
*+[
PD[3&6,
*+[+$5'2))
PLQ3&6,
*/[
PD[3&6,
*/[+$5'2))
'!0'#&4
In order to allow the SHx pins to go below GND, the current sink has a diode in series and
the sink current will disappear below 0.8V. Therefore, when using the test currents, the
drain-source voltage threshold should be programmed to a value greater than 0.8V.
2.18 Diagnostics
All diagnostic functions are internally filtered and each fault/warning condition has to be
valid for a defined time before the corresponding status bit is set in the status register. The
filters are used to improve the noise immunity of the device. Several error types and
warnings can be distinguished. All errors and warnings are reported in the corresponding
status bits and are mirrored in the associated bits of the Global Status Byte (GSB).
• The device reacts to several error types by changing its state. The different error types
can be grouped as follows:
• fail-safe errors (mirrored in the FS bit of the GSB)
• device errors (mirrored in the DE bit of the GSB)
• functional errors (mirrored in the FE bit of the GSB)
• physical-layer errors (mirrored in the PLE bit of the GSB)
• SPI errors (mirrored in the SPIE bit of the GSB)
In order for the device to recover from an error condition, the error itself must be removed
and the associated status bit in the device has to be cleared via SPI by a “Read & Clear”
command.
Warning functions are intended only for information and will not change the state of the
device. Warnings are mirrored in the GW bit of the GSB. To clear a warning, the source of
the warning must be removed and the associated flag has to be cleared via SPI by a “Read
& Clear” command.
– After NRES is
– NRES asserted low
released,
– Gate drivers
write
actively discharged; WDTRIG = 1
charge pump, CSA during
Watchdog not
FSWD = 1; and BEMF module
triggered or FS (FS = 1 in the watchdog
MCU Watchdog fail OFF long open
triggered out of the GSB)
counter WDF>0 – Control registers window to
open window
(except Control reset WDF
Register 1 and counter bits
DSFT_DIS) reset to
– Read & Clear
default value FSWD
– Gate drivers
actively discharged;
charge pump, CSA
and BEMF module
Short circuit at VDD FS (FS = 1 in the OFF Read & Clear
VDDFAIL = 1
turn-on GSB) – Control registers VDDFAIL
(except Control
Register 1 and
DSFT_DIS) reset to
default value
– NRES asserted low
– Gate drivers
VDD actively discharged;
charge pump, CSA
Undervoltage and BEMF module
FS (FS = 1 in the Read & Clear
(VDD < reset VDDUV = 1 OFF
GSB) VDDUV
threshold) – Control registers
(except Control
Register 1 and
DSFT_DIS) reset to
default value
Undervoltage
warning GW (GW = 1 in Read & Clear
VRT2LOW = 1 – None
(VDD_VTH = 0 and the GSB) VRT2LOW
VDD < VRT2)
– Gate drivers
actively discharged;
charge pump, CSA
and BEMF module
FS and SPIE OFF
SPI_DI = 1 and
SDI short circuit to (FS = 1 and – Control registers Read & Clear
SPIE = 1 in the
GND or VDD SPIE = 1 in the (except Control SPI_DI
GSB
GSB) Register 1 and
SPI DSFT_DIS bits)
reset to default
value
– SPI frame ignored
GW and SPIE
CSN timeout or SPI_FL = 1 and
(GW = 1 and Read & Clear
SCK clock count SPIE = 1 in the SPI frame ignored
SPIE = 1 in the SPI_FL
other than 0 or 16 GSB
GSB)
Some specific fail-safe errors will force the device to transition to VBAT Standby Mode in
order to avoid potential damage to the system. Table 6 provides an overview of these cases.
The device leaves the VBAT Standby Mode upon any wake-up event.
VDD Short circuit at VDD turn-on VDDFAIL = 1 Read & Clear VDDFAIL
Tj>TSD2 for 7 times
Temperature TSD2 = 1 Read & Clear TSD2
(VDDR = 111)
Figure 13. Persistent watchdog failure (VBAT Standby Mode entered after 15 watchdog faults)
W9''RII
9''
WLPH
W/2: W53
15(6
WLPH
)RUFHG
9%$76WDQGE\
&RXQWHU
*$3*&)7
Figure 14. Persistent TSD2 failure (VBAT Standby Mode entered after 7 VDD turn-offs)
tTSD
VDD
t
Forced
VBAT Standby
Counter 1 2 3 4 5 6 7
3 Electrical specifications
Note: All maximum ratings are absolute ratings. Exceeding any these values may cause an
irreversible damage of the integrated circuit!
VSOVW,
VSREGOVW, Overvoltage warning threshold 18 20 22 V
VSMSOVW
VSOV,
VSREGOV, Overvoltage threshold 28.1 30 32 V
VSMSOV
VSOVH,
VSREGOVH, Overvoltage hysteresis 2 V
VSMSOVH
VSUV,
VSREGUV, Under-voltage threshold VS, VSREG, VSMS decreasing 5.2 5.5 5.7 V
VSMSUV
VSUVH,
VSREGUVH, Undervoltage hysteresis 0.4 V
VSMSUVH
tfVS, tfVREG, Overvoltage and undervoltage
30 80 µs
tfVSMS filter time
VS = VSREG = VSMS = 12 V;
IS Current consumption 5 10 mA
active mode; open outputs
VS = VSREG = VSMS = 12 V;
ISREG Current consumption 15 25 mA
active mode; open outputs
VS = VSREG = VSMS = 12 V;
VBAT standby (no wakeup); 20 µA
TTest = -40°C to 25°C; open outputs
VS = VSREG = VSMS = 12 V;
ISMS VSMS DC input current 2 mA
active mode; SLx vs. GND
VS = VSREG = VSMS = 12 V;
ISMSQ VSMS quiescent input current INH = 0; TTest = -40°C to 25°C; 10 µA
open outputs
Figure 15. Watchdog timing (Long, Early, Late and Safe Window)
W/2: ORQJRSHQZLQGRZ
FRUUHFWWULJJHUWLPLQJ W&: FORVHGZLQGRZ
HDUO\WULJJHUWLPLQJ W2: RSHQZLQGRZ
PLVVLQJWULJJHU W53 UHVHWSXOVH
W:'3 ZDWFKGRJSHULRG
W&: W2: W&: W2: W&: W:'3
W/2: W&: W2: W/2: W/2:
:'
7LJJHU
WLPH
W53 W53
15(6
'!0'#&4
:'
W/2: W/2: W/2:
7LJJHU
WLPH
WLPH
'!0'#&4
W:'3BPD[
W:'3BPLQ
W&:BPD[
W&:BPLQ
WLPH
'!0'#&4
Timings are measured at 20% and 80% for falling and rising transitions.
Figure 18. Cross-current protection time generation when IHx and ILx are tied together
W &&3 0LQLPXPGHDGWLPHGXUDWLRQ
,/[,+[
W *;[5 W *;[)
)DOOWLPH 5LVHWLPH
9*+[ 9*+[
*+[
9*+[ 9*+[
W &&3W 3*+[/+ W 3*+[+/ 3URSDJDWLRQ
GHOD\WLPH
9*/[
*/[
9*/[
'!0'#&4
Figure 19. Cross-current protection time generation when at tDT > tCCP is provided an input
,+[
W'7!W&&3 W'7!W&&3
W *;[5 W *;[)
)DOOWLPH 5LVHWLPH
9*+[ 9*+[
*+[
9*+[ 9*+[
W '7 W
3*+[/+ W 3*+[+/ 3URSDJDWLRQ
GHOD\WLPH
9*/[
*/[
9*/[
W
'!0'#&4
VSxOUT VSxOUT voltage ratio AOUT sinking/ sourcing 2 mA 0.106 0.125 0.144
VTROOM TSENSE output voltage (5 * VBE) VS = 12 V, Tj = 25°C — 3.7 — V
ΔV/ΔTj Temperature coefficient Tj = -40°C to 130°C — -7.85 — mV/°C
CSA DC parameters
IBEMF
Current output capability 2 mA
IDOUT
CI(1) Input capacitance 10 pF
CO (1)
Output capacitance 30 pF
1. Not tested guaranteed by design.
W+&61
&61
W&6149 W&6147
W6&.49
W6&61 W+6&. W/6&. W66&.
6&.
W66', W+6',
W&6149&61IDOOLQJXQWLO6'2YDOLG
W&6147&61ULVLQJXQWLO6'2WULVWDWH
W6&.496&.IDOOLQJXQWLO6'2YDOLG
W6&61&61VHWXSWLPHEHIRUH6&.ULVLQJ
W66',6',VHWXSWLPHEHIRUH6&.ULVLQJ
W+6',6',KROGWLPHDIWHU6&.ULVLQJ
W+6&.PLQLPXP6&.KLJKWLPH
W/6&.PLQLPXP6&.ORZWLPH
W+&61PLQLPXP&61KLJKWLPH
W66&.6&.VHWXSWLPHEHIRUH&61ULVLQJ
("1($'5
&61
WLPH
6&.
WLPH
6',
WLPH
6',GDWDLVQRWDFFHSWHG
6'2 *6%1
WLPH
6'2VWDWXVLQIRUPDWLRQRIGDWDELW *OREDO6WDWXV%LW1RW ZLOOVWD\DVORQJDV&61LVORZ
("1($'5
4 ST-SPI Protocol
&61
6&.
& /$6&
6',
63,0DVWHU 63,6ODYH
6'2
*$3*&)7
&61
§ § §§ §§
6&.
*$3*&)7
The communication frame starts with the falling edge of the CSN (Communication Start).
SCK has to be low.
The SDI data is then latched at all following rising SCK edges into the internal shift registers.
After Communication Start the SDO will leave tristate mode and present the MSB of the data
shifted out to SDO. At all following falling SCK edges data is shifted out through the internal
shift registers to SDO.
The communication frame is finished with the rising edge of CSN. If a valid communication
took place (e.g. correct number of SCK cycles), the requested operation by the OpCode will
be performed (Write or Clear operation).
4.2 Protocol
2& 2& $ $ $ $ $ $
06%
WLPH WLPH
*$3*&)7
Operating codes
0 0 Write operation
0 1 Read operation
1 0 Read & Clear operation
1 1 Read Device information
The operating code is used to distinguish between different access modes to the registers of
the slave device.
A Write Operation writes the payload data to the addressed register if a write access is
allowed (e.g. Control Register, valid data). In addition, the content of the addressed register
(the data present at Communication Start) is shifted out on the SDO pin.
A Read Operation shifts out the data present in the addressed register at Communication
Start. The payload data is ignored and internal data are not modified. In addition a Burst
Read can be performed.
A Read & Clear Operation will lead to a clear of addressed status bits. The bits to be cleared
are defined first by address, second by payload bits set to ‘1’. In addition, the content of the
addressed register (the data present at Communication Start) is shifted out on the SDO pin.
Status registers that change their status during a communication frame could be cleared by
an ongoing Read & Clear Operation and would be reported neither in the ongoing
communication frame nor in the next communication frame. To avoid missing information
about any status change, it is recommended to clear the status bits that have been already
reported in previous communication frames (Selective Bitwise Clear).
Address
Following the OpCode bits, the six Address bits are a fixed part of the communication frame.
The six bits, in combination with the OpCode, allow access to a 2 x 64-wide address range.
OC1 OC0
0 0
0 1
1 0
OC1 OC0
1 1
The data contained in the Device Information address range is predefined by the ST-SPI
Standard v4.0. The data is read only and represent device specific data like Device ID, SPI
settings and Watchdog information. For details, please refer to Section 4.3.1
Data-in payload
The Payload is the data transferred to the slave device with every SPI communication
frame. The Payload always follows the OpCode and the Address bits.
For write accesses, the Payload represents the new data written to the addresses registers.
For Read & Clear operations, the Payload indicates the clear of a Status Register in case of
a '1' in the corresponding bit position.
For a Read Operation the Payload is not used. For functional safety reasons it is
recommended to set unused Payload to '0'.
06%
WLPH WLPH
*$3*&)7
Data-out payload
The Payload is the data transferred from the slave device to the microcontroller with every
SPI communication frame. The Payload always follows the OpCode and the Address bits of
the frame that is currently being sent (In-Frame Response).
OC1 OC0
1 1
15 14 13 12 11 10 9 8
Global status byte GSBN RSTB SPIE PLE FE DE GW FS R
7 6 5 4 3 2 1 0
0x01 Device Control Reg. 1 WDDIS CPDIS TEMPM ICMP VDD_VTH STBYSEL GOSTBY WDTRIG R/W
0x02 Device Control Reg. 2 BEMFCM BEMFDIR BEMFMOD BEMFPOL BEMFSW DSMFBT DSMTH(1) DSMTH(0) R/W
0x03 Device Control Reg. 3 BEMFSIGN BEMFOS(2) BEMFOS(1) BEMFOS(0) BEMFBY BEMFCNT(2) BEMFCNT(1) BEMFCNT(0) R/W
0x04 Device Control Reg. 4 PCSO(3) PCSO(2) PCSO(1) PCSO(0) PCSI(3) PCSI(2) PCSI(1) PCSI(0) R/W
0x05 Device Control Reg. 5 DMUX AMUX(2) AMUX(1) AMUX(0) WOBM WOBF Reserved Reserved R/W
0x06 Device Control Reg. 6 GCSA(1) GCSA(0) OCSHUTD OCADC(4) OCADC(3) OCADC(2) OCADC(1) OCADC(0) R/W
0x07 Device Control Reg. 7 HOFFCONT CCT(2) CCT(1) CCT(0) CPLOWM ISTEST(3) ISTEST(2) ISTEST(1) R/W
0x11 Device Status Reg. 1 CPLOW NRDY DISABLE INHWAKE SPIWAKE Reserved DEVST(1) DEVST(0) R/C
0x12 Device Status Reg. 2 SPI_DI Reserved Reserved Reserved INHST VRT2LOW VDDUV VDDFAIL R/C
0x13 Device Status Reg. 3 WDF(3) WDF(2) WDF(1) WDF(0) FSWD WD75% WD50% WD25% R/C
0x14 Device Status Register 4 — VDDR(2) VDDR(1) VDDR(0) — TSD2 TSD1/TW2 TW1 R/C
0x15 Device Status Register 5 — VSOV VSOVW VSUV — VSREGOV VSREGOVW VSREGUV R/C
0x16 Device Status Register 6 ST(3) ST(2) ST(1) CSAOC SPI_FL VSMSOV VSMSOVW VSMSUV R/C
0x17 Device Status Register 7 — — DSLS(3) DSHS(3) DSLS(2) DSHS(2) DSLS(1) DSHS(1) R/C
Type: R
Address: 0x1
Type: R/W
Description: In this register, device operating information is stored. This register is not set to
default in case of fail-safe errors.
Address: 0x2
Type: R/W
Description: In this register static BEMF parameters and the drain-source monitoring parameters
are set.
Address: 0x3
Type: R/W
Description: In this register, dynamic BEMF parameters are set.
+
+
+
3:021/6
/
/
/
$FWLYH)UHHZKHHOLQJ
+
+
+
3:021/6
/
/
/
3DVVLYH)UHHZKHHOLQJ *$3*36
Address: 0x4
Type: R/W
Description: In this register, the current for charging and discharging the gates of the external
MOSFETs can be selected.
Address: 0x5
Type: R/W
I
Address: 0x6
Type: R/W
Address: 0x7
Type: R/W
Address: 0x8
Type: R/W
Clear mode Read & Clear Auto cleared Read & Clear Read & Clear Read & Clear — Read & Clear
Address: 0x11
Type: R/C
I
After a device state transition to Active mode or Flash mode, the DEVST bits always report
the previous device state. If an SPI "Read & Clear" command is performed on these bits,
they will then report the current device state.
Address: 0x12
Type: R/C
Address: 0x13
Type: R/C
Clear mode Read & Clear on any of the VDD_R(x) bits — Read & Clear Read & Clear Read & Clear
Address: 0x14
Type: R/C
Address: 0x15
Type: R/C
Clear mode Read & Clear Read & Clear Read & Clear Read & Clear Read & Clear Read & Clear Read & Clear Read & Clear
Address: 0x16
Type: R/C
Address: 0x17
Type: R/C
5 Package information
A 1.20
A1 0.05 0.15
c 0.09 0.20
D2 4.50
D3 5.50
E2 4.50
E3 5.50
e 0.50
L1 1.00
k 0° 3.5° 7°
ccc 0.08
6 Revision history
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.