Single and Dual PMOS High-Side H-Bridge: Features Description
Single and Dual PMOS High-Side H-Bridge: Features Description
Description
Features
L9959S/L9959U and L9959T are single and dual
Full path RDSON less than 540 mΩ integrated H-bridges for resistive and inductive
Continuous load current > 3 A loads featuring output current direction and
Operating battery supply voltage 5 V to 28 V supervising functions.
Operating VDD supply voltage 4.5 V to 5.5 V The PowerSSO24 houses one full H-Bridge, while
the PowerSSO36 houses both two H-Bridges that
All ECU internal pins can withstand up to 18 V
can work in parallel, through independent input
Output switching frequency up to 11 kHz driving commands, and one full H-bridge, by
Monitoring of VDD supply voltage improving PCB footprint design versus different
target applications.
SPI programmable output current limitation
from 5 A to 8.6 A (in 3 steps) Target application ranges from throttle control
Over temperature and short circuit protection actuators to exhaust gas recirculation control
valves in automotive domain to a more general
Full diagnosis capability use to drive DC and Stepper motors.
Fast switch-off open-drain input/output
Contents
1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Outputs OUT1 and OUT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Temperature dependent current reduction . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Free-wheeling diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 SPI / logic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Power stage switching behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1 PWM mode (same current direction) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 DIR-change mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Protection and monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Current feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Temperature dependent current reduction . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.4 Short to battery (SCB) and short to Ground (SCG) . . . . . . . . . . . . . . . . 28
4.2.5 Short circuit over load (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.6 Open load (OL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 VS-undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Inverse current at VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 /ABE pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 VDD-monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 VDD-monitor test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.8 Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1 PowerSSO-24 (exposed pad) package information . . . . . . . . . . . . . . . . . 42
7.2 PowerSSO-36 (exposed pad) package information . . . . . . . . . . . . . . . . . 45
8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
List of tables
List of figures
1 Block diagram
63
6$$ 6
#ONTROLLER
6$$
!"%
'.$!"%
-ONITORING
63
5NDERVOLTAGE
$)2
,OGIC /54
07-
'ATE #ONTROL /54
$)3
3/
)N TERFACE
3)
$IAGNOSIS
30)
3#+
33
#&
!'.$
0'.$
'!0'03
2 Pins description
.# .#
0'.$ /54
/54 .#
.# 07-
3#+ $)2
33
033/ $)3
3) 63
3/ 6$$
#& .#
!"% !'.$
'.$!"% .#
.# .#
'!0'03
0'.$ /54
/54 07-
3#+ $)2
33 $)3
3) 63
3/ 63
#& 6$$
!"% .#
'.$!"% !'.$
033/
!'.$ '.$!"%
.# !"%
6$$ #&
63 3/
63 3)
$)3 33
$)2 3#+
07- /54
/54 0'.$
'!0'03
0'.$ /54
/54 07-
3#+ $)2
33 $)3
3) 63
3/ 63
#& 6$$
!"% .#
'.$!"% !'.$
033/
.# .#
.# .#
.# .#
.# .#
.# .#
.# .#
.# .#
.# .#
.# .#
*$3*36
1, 4,
12, 13,
NC To be connected to GND on PCB.
14, 16,
22, 24
2 PGND Power Ground
Bridge output 1 and 2:
3 OUT1
The bridge outputs are built of a high-side p-channel and a low-side N-channel transistor.
Serial clock input:
5 SCK
This input controls the internal shift register of the SPI.
Slave Select input:
6 SS The serial data transfer between the device and the micro controller is enabled by pulling
the input SS to low level.
Slave in (Serial data input):
7 SI
The input receives serial data from the microcontroller.
Slave Out (Serial data output):
8 SO
The diagnosis data is available via the SPI through this tristate-output.
Ground:
1 PGND1(1) Important: For the capability of driving the full current at the outputs, all ground pins must be
externally connected.
Bridge output 11, 12, 21, and 22:
2 OUT11 The bridge outputs are built of a high-side p-channel and a low-side N-channel transistor.
The bridge outputs of chip 1 are OUT11 and OUT12, of chip 2 OUT21 and OUT22.
Serial clock input:
3 SCK1 This input controls the internal shift register of the SPI.
SCK1 belongs to chip 1 and SCK2 to chip 2.
Slave Select input:
The serial data transfer between the device and the micro controller is enabled by pulling
4 SS1
the input SS to low level.
SS1 belongs to chip 1 and SS2 to chip 2.
Slave in (Serial data input):
5 SI1 The input receives serial data from the microcontroller.
SI1 belongs to chip 1 and SI2 to chip 2.
Slave Out (Serial data output):
6 SO1 The diagnosis data is available via the SPI through this tristate-output.
SO1 belongs to chip 1 and SO2 to chip 2.
Table 3. L9959T (Two H-Bridge drivers in one package) PSSO36 pin-out (continued)
Pin Symbol Function
Table 3. L9959T (Two H-Bridge drivers in one package) PSSO36 pin-out (continued)
Pin Symbol Function
Ground:
1 PGND Important: For the capability of driving the full current at the outputs, all ground pins must be
externally connected.
2 OUT1 The bridge outputs are built of a high-side p-channel and a low-side N-channel transistor.
Serial clock input:
3 SCK
This input controls the internal shift register of the SPI.
Current Proportional Feedback output:
7 CF The CF pin provides in conjunction with an external resistor an output current, which is
proportional to the H-Bridge current
Bidirectional Ability/Enable Pin:
8 /ABE Open-Drain Output, which is pulled low in case of VDD over- and under-voltage. If the input
is pulled to low, all output stages are switched off.
9 GNDABE Sense Ground for VDD monitoring
10,11,
12,13,
14,15,
16,17,
18,19,
NC To be connected to GND on PCB.
20,21,
22,23,
24,25,
26,27,
29
28 AGND Device Ground. (Connected to Exposed PAD)
30 VDD VDD Supply: 5 V Supply.
Power supply voltage for power stage outputs (external reverse protection required):
31, 32 VS1 Important: For the capability of driving the full current at the outputs all pins of VS must be
externally connected.
Disable input :
33 DIS
DIS switches OUT1 and OUT2 to tristate
Direction input:
34 DIR
DIR pin controls the switch direction of OUT1 and OUT2.
PWM input:
35 PWM
PWM input switches OUT1 and OUT2.
36 OUT2 The bridge outputs are built of a high-side p-channel and a low-side N-channel transistor.
3 Electrical specifications
Warning: Stressing the device above the rating listed in the "Absolute
maximum ratings" table may cause permanent damage to the
device. These are stress ratings only and operation of the
device at these or any other conditions above those
indicated in the operating sections of this specification is not
implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Refer also to
the STMicroelectronics SURE program and other relevant
quality document.
DC supply voltage
VVS The device is able to sustain load dump as -1.0 to +40 V
specified in the ISO16750 documentation
VVDD Stabilized supply voltage, logic supply -0.3 to 18 V
CF (1) Current feedback output -0.3 to 18 V
VSI, VSCK, VSS, VSO,
Logic input / output voltage range -0.3 to 18 V
VDIR, VPWM, VDIS
Output voltage (n = 1,2 or 11,12,21,22);
-1.0 to 40 V
VOUTn VOUTn < VS + 1 V
Dynamic pulse / t < 500ms; VOUTn < VS + 2 V -2.0 to 40 V
Operating junction temperature -40 to 150 °C
Tj
Dynamic junction temperature (1000hrs) 150 to 175 °C
Tstg Storage temperature -55 to 150 °C
1. It is withstood at VS = 18 V
All pins versus ground group (AGND, PGND1, PGND2, GND_ABE1, GND_ABE2) ±2(1) kV
VS pin, Power Output Pins: OUT1, OUT2 or OUT11, OUT12, OUT21, OUT22
±4(2) kV
versus ground group (AGND, PGND1, PGND2, GND_ABE1, GND_ABE2)
1. HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A.
2. HBM with all unzipped pins grounded.
Table 8. Supply
Symbol Parameter Test condition Min. Typ. Max. Unit
rONVS VDD = 5 V; VS = 10 V,
On-resistance to supply - - 315 m
OUT1,2 IOUT1,2 = 3 A
rONGND VDD = 5 V; VS = 10 V,
On-resistance to PGND - - 225 m
OUT1,2 IOUT1,2 = 3 A
VDD = 5 V; VS = 13 V;
-200 - - μA
Switched-off output current of VOUT = 0 V
ILEAK
OUT1,2 VDD = 5 V; VS = 13 V;
- - 200 μA
VOUT = VS
07-
T
6OUT(
/54X
6OUT,
T
TD /. TD /&&
'!0'03
6OUT(
/54X
6OUT,
TF TR T
'!0'03
!"%
63 T
63
6/54
T
TDDIS TDEN '!0'03
$)3
63 T
63
6/54
T
TDDIS TDEN
'!0'03
Note: If the value of the connected load is below 5 kΩ no Open Load is detected; whereas if the
value of the connected load is more than 50 kΩ, Open Load is detected.
If the load is in the range between (5 to 50) kΩ, the Open Load diagnosis could be not
reliable.
tdelay retest Retest delay for failures: SCB, SCG, SCL Guaranteed through scan. 290 350 410 μs
Table 21. Inputs: SI, SS, SCK, DIR, DIS and PWM; Output: SO
Symbol Parameter Test condition Min Typ Max Unit
Input: DIS
Output: SO
TAC C
33 T DT
TDLD TLEAD TC Y C T LAG T DLG
3#+
TDIS
TV
3/ "ITN "ITN x "IT
TSU TH
'!0'03
4 Application information
$)2 07-
/54 /54
)NDUCTIVE ,OAD
$)2 07-
/&& FAST ,3 ,3
/. FAST
'!0'03
/54
6OUT,
T
6$
'!0'03
During PWM mode the high-side (e.g. Figure 10 HS1) output is switched off with a slow slew
rate until it is off and the low-side body-diode has taken over the entire current (passive
freewheeling). Then the associated low-side transistor (e.g. Figure 10 LS1) is turned on with
a fast slope to reduce the voltage across the device and to minimize the power.
The output is pulled to high voltage, by first turning off the low-side driver with a fast slew
rate and, after it is off, the high-side driver is switched on by a slow one (e.g. Figure 10 LS1,
HS1).
This assures, that the voltage and current change over the body diode is done smoothly,
reducing the electromagnetic emission.
,QGXFWLYH/RDG
',5 3:0
3KDVH
21IDVW /6 /6 21
*$3*36
',5 3:0
287 287
,QGXFWLYH/RDG
3KDVH
21 /6 /6 2))VORZ
*$3*36
287
9RXW/
W
9'
9'
9RXW+
287
9RXW/
3KDVH 3KDVH W *$3*36
$)2 07-
L TO
#,CONTROL
3 NA
#,THRESHOLD
O
OP
0R
)NDUCTIVE ,OAD
KȰ
$)2 07-
,3 ,3
'!0'03
Figure 15 Current Feedback and Current Limiting shows the current feedback in case the
OUT1 is controlled by PWM (DIR = 0). In this case, the current is measured through low-
side 2. If the direction is inverted, the current is measured through low-side 1.
)#,
"LANKING
4IME TB
#URRENT ,IMIT
(YSTERESIS ) (93
T '!0'03
),
),?43$
)/#
)#,
"LANKING T$&?/&&
4IME TB
The three different over-current limits are related to the programmable current limitation,
which can be programmed into the SPI register (Table 33: Configuration register
(CONFIG_REG)). The over-current limits are independent of the resistor at pin CF.
Note: SCG: Fault Detection works correctly if the following condition is respected: Duty (switch on
time) > Tdon + Slew rate + tDF.
4.3 VS-undervoltage
VS is monitored for under-voltage. If VS goes below the VS-undervoltage threshold, the
outputs are switched to tristate after the time tFUV.
4.6 VDD-monitor
VDD is monitored for under- and over-voltage referenced to GNDABE.
If VDD goes below VDD_THL or above VDD_THH, /ABE is pulled to low and the outputs enter
tristate mode after the time tFIL_OFF. The VDD-monitoring state is stored into the status and
control register (STACON_REG).
If VDD increases above VDD_THL, /ABE is pulled to high after the filter time tFIL_ON. The SPI
remains functional as long as VDD is above the power-on reset threshold.
The behavior of the pin /ABE and the output stages after VDD goes below VDD_THH from
VDD-over-voltage is determined by bit CONFIG 0 in the status and configuration register
(STATCON):
CONFIG0 = 1: /ABE is latched and the outputs remain in tristate
CONFIG0 = 0: /ABE goes to inactive and the output stages are enabled after the filtering
time tFIL_ON.
Upper threshold
The over-voltage threshold can be reduced using the configuration registers 1 and 2
(CONFIG1 and CONFIG2) in the status and control register (STACON_REG) to VTEST_THH
(see Table 35: Status and configuration register (STATCON_REG)). Since VTEST_THH is
below the normal VDD voltage, the status bit STATUS0 shows a VDD over-voltage.
Lower threshold
The under-voltage threshold can be increased to VTEST_THL using CONFIG1 and CONFIG2
in the STATCON register. Since the VDD voltage is below VTEST_THL, the resulting VDD-
undervoltage resets STATUS0.
After leaving the VDD-monitor test mode, the bits in the STACON register return to their
normal state.
33
33
5.2 SPI-instruction
Table 24. SPI instruction byte
Bit 7 6 5 4 3 2 1 0
Note: Reading this register does not reset the bits. Writing STACON_REG.DIACLR1 = 0 transfers
all latched errors to DIA_REG2 and resets DIA_REG1 afterwards, if there is no VS-
undervoltage.
Current Reduction:
7 CurrRed 0, if temperature dependent current reduction is active This information bit is reset after
each read access
Current Limitation:
6 CurrLim
0, if current limitation is active This information bit is reset after each read access
Over temperature
5 OT 1 no over-temperature
0 over-temperature
4 Res Reserved, 0
3 DIA21
2 DIA20
Diagnosis Bits (see Table 32: Diagnosis bits (DIA_REG2))
1 DIA11
0 DIA10
Reset(5.4.
7 6 5 4 3 2 1 0
1)
POR 1 1 1 0 1 1 1 1
SPIR 1 1 1 X 1 1 1 1
ENDISR 1 1 X X X X X X
RDR 1 1 X X X X X X
DIACLR2 1 1 1 X 1 1 1 1
Reset(5.4.
7 6 5 4 3 2 1 0
1)
POR 1 1 1 1 1 0 1 0
SPIR 1 1 1 1 1 0 1 0
ENDISR X X X X X X 1 X
RDR X X X X X X 1 X
Reset(5.4.1) 7 6 5 4 3 2 1 0
POR 1 1 0 1 1 X X X
SPIR 1 1 0 1 1 X X X
ENDISR X X X 1 1 X X X
RDR X X X 1 1 X X X
Note: Only the bits ‘CONFIG’ and ‘DIACLR’ in this register can be written, all other bits are ‘read-
only’
Not
7 -
specified
Not
6 -
specified
Not
5 -
specified
Open-load filter in active mode only.
OLDAFILT OLDAFILTER is a don't care in case of Off state
4
ER 1: open-load in on detected after one retry
0: openload in on detected after 40 ms
Not
3 -
specified
Voltage SR selection
2 SR 1: fast slew rate
0: slow slew rate
Not
1 -
specified
SPREADSPECTRUM mode selection
1: spread spectrum = active
SPRCSPE 0: spread spectrum = disabled
0
C Spread spectrum = active provides the internal state machine with slightly tittering clock.
Spread spectrum = disabled. The internal state machine runs with constant clock
frequency.
Reset
( 7 6 5 4 3 2 1 0
5.4.1)
POR 0 0 0 1 0 0 0 1
SPIR 0 0 0 1 0 0 0 1
ENDISR X X X X X X X X
RDR X X X X X X X X
6 Application circuit
%DWWHU\
9 96
) ) $%(
Nȍ
9 9''
3RZHU6XSSO\ 287
6&.
62 Q)
& / '&
6,
66 287
',6
Q)
Q) &)
)
Nȍ *1'V
*$3*36
7 Package information
* *
(
(
*
'
H HHH &
$ $
FFF &
6($7,1*3/$1(
$ E GGG 0 &'
&
6HFWLRQ$$
[
' III & $%
ș K
'
$ ' K
1 $ ș
+
5
% VHH6HFWLRQ%%
5
*$8*(3/$1(
LQGH[DUHD /
6 %
'[(
*[ ș
ș
/
/
( (
( SLQLQGLFDWRU *
6HFWLRQ%%
[ E
:,7+3/$7,1*
DDD & '
[17,36
EEE & F F
1
% $ %$6(0(7$/
E
VHH6HFWLRQ$$
7RSYLHZ
B0B9 *$3*36
Ө 0° - 8° 0° - 8°
Ө1 5° - 10° 5° - 10°
Ө2 0° - - 0° - -
A - - 2.45 - 0.0965
A1 0.0 - 0.1 0.0 0.0039
A2 2.15 - 2.35 0.0846 0.0925
b 0.33 - 0.51 0.013 0.0201
b1 0.28 0.40 0.48 0.011 0.0157 0.0189
c 0.23 - 0.32 0.0091 0.0126
c1 0.20 0.20 0.30 0.0079 0.0079 0.0118
(2)
D 10.30 BSC 0.4055 BSC
D1 VARIATION
D2 - 3.65 - - 0.1437 -
D3 - 4.30 - - 0.1693 -
e 0.80 BSC 0.0315 BSC
E 10.30 BSC 0.4055 BSC
(2)
E1 7.50 BSC 0.2953 BSC
E2 VARIATION
E3 - 2.30 - - 0.0906 -
E4 - 2.90 - - 0.1142 -
G1 - 1.20 - - 0.0472 -
G2 - 1.0 - - 0.0394 -
G3 - 0.80 - - 0.0315 -
h 0.30 - 0.40 0.0118 - 0.0157
L 0.55 0.70 0.85 0.0217 - 0.0335
L1 1.40 REF 0.0551 REF
L2 0.25 BSC 0.0098 BSC
N 24 (# lead)
R 0.30 - - 0.0118 - -
R1 0.20 - - 0.0079 - -
S 0.25 - - 0.0098 - -
Option A
Option B
* *
(
(
*
'
H HHH &
$ $
FFF &
6($7,1*3/$1( 6HFWLRQ$$
&
$ E GGG 0 &'
ș K
K
[
ș
' III & $%
+
5
'
$ ' % VHH6HFWLRQ%%
$ 5
1
*$8*(3/$1(
/
6 %
ș
ș
/
/
LQGH[DUHD
'[( *[
( ( 6HFWLRQ%% E
:,7+3/$7,1*
( SLQLQGLFDWRU *
F F
[
DDD &' E %$6(0(7$/
[17,36
EEE &
1
% $
7RSYLHZ VHH6HFWLRQ$$
B,B(+ *$3*36
Ө 0° - 8° 0° - 8°
Ө1 5° - 10° 5° - 10°
Ө2 0° - - 0° - -
A 2.15 - 2.45 0.0846 - 0.0965
Option A
Option B
Option C
8 Revision history
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.