0% found this document useful (0 votes)
150 views1 page

WinMaths 2

Uploaded by

syokora.1885
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
150 views1 page

WinMaths 2

Uploaded by

syokora.1885
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 1

 WinMaths Choi Wing Lam

S4 Form Test 1 
done: 17 / 20
score: 8 / 20

Question 1: 
(8y 8 )4
=
8y 2
A. 64y 8 .
B. 512y 16 .
C. 64y 32 .
D. 512y 30 .

A B C D

Question 2: 
(6x4 )2
=
6x3
A. 6x11 .
B. 36x24 .
C. 36x5 .
D. 6x5 .

A B C D

Question 3: 
(2x9 )4
=
8x4
A. 2x32 .
B. 6x32 .
C. 6x40 .
D. 2x40 .

A B C D

Question 4: 
87n+8
= Answer: B
48n+4
A. 224n+16 . Solution:
B. 25n+16 . 87n+8 23(7n+8)
=
C. 2n+16 . 48n+4 22(8n+4)
221n+24
= 16n+8
D. 221n+8 . 2
= 2(21n+24)−(16n+8)
= 25n+16

A B C D

Question 5: 
(27 ⋅ 9n+2 )8 = Answer: B
A. 316n+72 . Solution:
B. 316n+56 .
(27 ⋅ 9n+2 )8 = (33 ⋅ 32(n+2) )8
C. 324n+40 . = (33+2n+4 )8
D. 316n+40 . = (32n+7 )8
= 316n+56

A B C D

Question 6: 
1
( ) 874 = Answer: A
64 176

A. 1 Solution:
.
8278 1 874
B. 0. ( 176 ) 8 = 2 176
74
64 (8 )
C. 1
. 874
8324 = 352
1 8
D. . 1
8102 = 352−74
8
1
= 278
8

A B C D

Question 7: 
(x + 4)(x2 + 6x + 16) = Answer: C
A. x3 + 16. Solution:
B. (x + 4)3 . (x + 4)(x2 + 6x + 16)
C. x3 + 10x2 + 40x + 64. = (x)(x2 + 6x + 16) + (4)(x2 + 6x + 16)
D. x3 + 8x2 + 32x + 64. = x3 + 6x2 + 16x + 4x2 + 24x + 64
= x3 + 10x2 + 40x + 64

A B C D

Question 8: 
a b
If + = 4 , then x = Answer: A
7x 9y
A. 9ay Solution:
.
252y − 7b a b
7ay + =4
B. . 7x 9y
9b − 252y a ⋅ 9y b ⋅ 7x
7ay + =4
C. . 7x ⋅ 9y 9y ⋅ 7x
252y − 9b 9ay 7bx
9ay + =4
D. . 63xy 63xy
7y − 252b 9ay + 7bx
=4
63xy
9ay + 7bx = 4 ⋅ 63xy
9ay + 7bx = 252xy
9ay = 252xy − 7bx
9ay = (252y − 7b)x
9ay
x=
252y − 7b

A B C D

Question 9: 
If 7 − 3m = 8n , then m = Answer: C
A. 8n − 7
. Solution:
3
B. n. 7 − 3m = 8n
C. 7 − 8n 7 − 8n = 3m
.
3 7 − 8n
7 + 8n m=
D. . 3
3

A B C D

Question 10: 
If a(a − b) = −5(b + a), then b = Answer: D
A. −a2 + 5a
. Solution:
5+a
B. −a2 − 6a a(a − b) = −5(b + a)
.
6−a a2 − ab = −5b − 5a
C. −a2 + 6a 5b − ab = −a2 − 5a
.
6+a
(5 − a)b = −a2 − 5a
D. −a2 − 5a
. −a2 − 5a
5−a b=
5−a

A B C D

Question 11: 
1 1
− = Answer: A
4x + 7 4x − 7
A. 14 Solution:
.
49 − 16x2
8 1 1
B. . −
49 − 16x2 4x + 7 4x − 7
14 4x − 7 4x + 7
C. . = −
16x2 − 49 (4x + 7)(4x − 7) (4x + 7)(4x − 7)
8 4x − 7 4x + 7
D. . = −
16x2 − 49 16x2 − 49 16x2 − 49
(4x − 7) − (4x + 7)
=
16x2 − 49
4x − 7 − 4x − 7
=
16x2 − 49
−14
=
16x2 − 49
14
=
49 − 16x2

A B C D

Question 12: 
1 1
− = Answer: D
x2 + 4x + 4 x2 + 8x + 12
A. 1 Solution:
.
(x + 2)(x + 6)
1 1 1 1
B. 2x + 8 − = −
. x2 + 4x + 4 x2 + 8x + 12 (x + 2)2 (x + 2)(x + 6)
(x + 2)2 (x + 6) x+6 x+2
8 = −
C. . (x + 2)2 (x + 6) (x + 2)2 (x + 6)
(x + 2)2 (x + 6)
(x + 6) − (x + 2)
D. 4 =
. (x + 2)2 (x + 6)
(x + 2)2 (x + 6) x+6−x−2
=
(x + 2)2 (x + 6)
4
=
(x + 2)2 (x + 6)

A B C D

Question 13: 
hl + kl − hm − km + hn + kn = Answer: B
A. (h − k)(l + m − n). Solution:
B. (h + k)(l − m + n).
hl + kl − hm − km + hn + kn
C. (h + k)(l + m + n). = l(h + k) − m(h + k) + n(h + k)
D. (h − k)(l − m − n). = (h + k)(l − m + n)

A B C D

Question 14: 
a2 − b2 − a − b = Answer: A
A. (a + b)(a − b − 1). Solution:
B. (a − b)(a + b + 1).
a2 − b2 − a − b
C. (a − b)(a + b − 1). = (a + b)(a − b) − (a + b)
D. (a + b)(a − b + 1). = (a + b)(a − b − 1)

A B C D

Question 15: 
α2 + α − β 2 + β Answer: D
A. (α − β ) (α + β − 1) Solution:
B. (α + β ) (α + β + 1)
α2 + α − β 2 + β
C. (α − β ) (α − β − 1) = α2 − β 2 + α + β
D. (α + β ) (α − β + 1) = (α + β)(α − β) + (α + β)
= (α + β)(α − β + 1)

A B C D

Question 16: 
4m2 − 6m − 25n2 − 15n = Answer: C
A. (2m − 5n)(2m + 5n − 3). Solution:
B. (2m + 5n)(2m − 5n + 3).
4m2 − 6m − 25n2 − 15n
C. (2m + 5n)(2m − 5n − 3). = 4m2 − 25n2 − 6m − 15n
D. (2m − 5n)(2m + 5n + 3). = (2m + 5n)(2m − 5n) − 3(2m + 5n)
= (2m + 5n)(2m − 5n − 3)

A B C D

Question 17: 
2m2 + 7mn − 9n2 − 4m + 4n Answer: B
A. (m − n)(2m − 9n − 4). Solution:
B. (m − n)(2m + 9n − 4).
2m2 + 7mn − 9n2 − 4m + 4n
C. (m + n)(2m − 9n + 4). = (m − n)(2m + 9n) − 4(m − n)
D. (m + n)(2m + 9n + 4). = (m − n)(2m + 9n − 4)

A B C D

Question 18: 
Let p and q be constants. If x2 + p(x + 2) + q ≡ (x − Answer: C
8)(x + 2), then q =
Solution:
A. −6.
Method 1: Substitution
B. −7.
We can put any value of x into an identity.
C. −4.
D. −1. Put x = −2 to kill p:
(−2)2 + p(−2 + 2) + q = (−2 − 8)(−2 + 2)
q = −4

Method 2: Compare Coefficients

Expand:
x2 + p(x + 2) + q = (x − 8)(x + 2)
x2 + px + (2p + q) = x2 − 6x − 16

Compare coeff.:
p = −6
{
2p + q = −16

∴ p = −6 , q = −4

A B C D

Question 19: 
Let m and n be constants. If m(x + 6)2 + n(x − 5)2 ≡ Answer: B
x2 − 98x − 19 , then m =
Solution:
A. 6.
Method 1: Substitution
B. −4.
We can put any value of x into an identity.
C. 5.
D. −1. Put x = 5 to kill n:
m(5 + 6)2 + n(5 − 5)2 = (5)2 − 98(5) − 19
m = −4

Method 2: Compare Coefficients

Expand:
m(x + 6)2 + n(x − 5)2 ≡ x2 − 98x − 19
(m + n)x2 + (12m − 10n)x + (36m + 25n) ≡ 1x2 − 98x − 19

Compare coeff.:
⎧ m+n=1
⎨12m − 10n = −98
⎩36m + 25n = −19

Solve any two of these equations:

m = −4 , n = 5

A B C D

Question 20: 
If m and n are constants such that mx2 + m(x + 1) + Answer: C
15 ≡ mx(x + 4) + n(x − 2), then n =
Solution:
A. −7.
Method 1: Substitution
B. 3.
We can put any value of x into an identity.
C. −9.
D. 4. It is impossible to kill m first, so let's kill n and find
m first.

Put x = 2 to kill n :
m(2)2 + m(2 + 1) + 15 = m(2)(2 + 4) + n(2 − 2)
7m + 15 = 12m
m=3

Put x = 0 and m = 3:
0 + 3(0 + 1) + 15 = 0(0 + 4) + n(0 − 2)
n = −9

Method 2: Compare Coefficients

Expand:
mx2 + m(x + 1) + 15 ≡ mx(x + 4) + n(x − 2)
mx2 + mx + (m + 15) ≡ mx2 + (4m + n)x − 2n

Compare coeff.:
m = 4m + n
{
m + 15 = −2n

∴ m = 3 , n = −9

A B C D

You might also like