0% found this document useful (0 votes)
170 views17 pages

Aaåvq-5 Exrmwyzxq F™ VSK: Wemz Eqgii R MWM Cixþvi Cék I Mgvavb

Uploaded by

Tanmin Rahman
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
170 views17 pages

Aaåvq-5 Exrmwyzxq F™ VSK: Wemz Eqgii R MWM Cixþvi Cék I Mgvavb

Uploaded by

Tanmin Rahman
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

exRMwYZxq f™²vsk gƒj eBGqi AwZwiÚ Ask-2020 1

weMZ eQGii ˆR‰mwm cixÞvi cÉk² I mgvavb


AaÅvq-5 exRMwYZxq f™²vsk
cÉk
² 1 A = x2  5x + 6, B = x2  9, C = x2 + 4x + 3 A [Xv. ˆev. 17] 1
=
1
=
1(x  2) (x + 1)
B (x + 3) (x  3) (x + 3) (x  3) (x  2) (x + 1)
C
K. x2 + x ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2 (x  2) (x + 1)
=
1 1 (x + 3) (x  3) (x  2) (x + 1)
L. mij Ki: A + B 4 1 1 1(x  3) (x  2)
= =
1 1 1 C (x + 3) (x + 1) (x + 3) (x  3) (x  2) (x + 1)
M. A , B , C ˆK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4 (x  3) (x  2)
=
1 bs cÉGk²i mgvavb A (x + 3) (x  3) (x  2) (x + 1)

K ˆ`Iqv AvGQ, C = x2 + 4x + 3
  wbGYÆq mvaviY niwewkÓ¡ f™²vskmgƒn
C x2 + 4x + 3 x2 + 3x + x + 3 (x + 3) (x + 1) (x  2) (x + 1)
‰Lb, x2 + x = x(x + 1) = x(x + 1)
,
(x + 3) (x  3) (x  2) (x + 1) (x + 3) (x  3) (x  2) (x + 1)
,

x(x + 3) + 1(x + 3) (x  3) (x  2)
= (Ans.)
x(x + 1) (x + 3) (x  3) (x  2) (x + 1)
(x + 3) (x + 1) x + 3 cÉk
² 2 (i) a3  3a2  10a, a3 + 6a2 + 8a, a4  5a3  14a2
= = (Ans.)
x(x + 1) x
wZbwU exRMvwYwZK ivwk| B [Xv. ˆev. 16]
L ˆ`Iqv AvGQ, A = x2  5x + 6
 2
(ii) P = y  2, Q = y + 2y + 4 ‰es R = y + 8. 3

B = x2  9
1 1 1 1
K. (i) ‰i Z‡Zxq ivwkGK Drcv`GK weGkÏlY Ki| 2
 + = +
A B x2  5x + 6 x2  9 L. (i) ‰i wZbwU ivwki M.mv.à. wbYÆq Ki| 4
1 1 1 y2 6y
= +
x2  3x  2x + 6 x2  (3)2 M. mij Ki: P  Q + R . 4

=
1
+
1 2 bs cÉGk²i mgvavbA
x(x  3)  2(x  3) (x + 3) (x  3)
K ˆ`Iqv AvGQ,

1 1
= +
(x  3) (x  2) (x + 3) (x  3) (i) ‰i Z‡Zxq ivwk = a4  5a3  14a2
x+3+x2 2x + 1 = a2(a2  5a  14)
= =
(x + 3) (x  3) (x  2) (x + 3) (x  3) (x  2) = a2(a2  7a + 2a  14)
2x + 1 = a2{a(a  7) + 2 (a  7)}
= 2 (Ans.)
(x  9) (x  2)
= a2(a  7) (a + 2) (Ans.)
M ˆ`Iqv AvGQ, A = x2  5x + 6

L (i) ‰i ˆÞGò,

B = x2  9
1g ivwk = a3  3a2  10a = a(a2  3a  10)
C = x2 + 4x + 3
1,1,1 1 1 1 = a(a2  5a + 2a  10) = a{a(a  5) + 2(a  5)}
AZ‰e, A B C
f™²vskàGjv x2  5x + 6 , x2  9 , x2 + 4x + 3 = a(a  5) (a + 2)
‰LvGb, 1g f™²vsGki ni = x2  5x + 6 = x2  3x  2x + 6 2q ivwk = a3 + 6a2 + 8a = a(a2 + 6a + 8)
= (x  3) (x  2) = a(a2 + 4a + 2a + 8) = a{a(a + 4) + 2(a + 4)}
2q f™²vsGki ni = x2  9 = (x + 3) (x  3) = a(a + 2) (a + 4)

3q f™²vsGki ni = x2 + 4x + 3 = x2 + 3x + x + 3 ‰es ‘K’ ˆ^GK cvB, 3q ivwk = a2(a  7) (a + 2)


= (x + 3) (x + 1)  wbGYÆq M.mv.à = a(a + 2)
 niàGjvi j.mv.à = (x + 3) (x  3) (x  2) (x + 1) M ˆ`Iqv AvGQ, P = y  2, Q = y2 + 2y + 4 ‰es R = y3 + 8

1 1 1(x + 3) (x + 1) 1 y2 6y
‰Lb, A = (x  3) (x  2) = (x + 3) (x  3) (x  2) (x + 1) cÉ`î ivwk = P  Q + R
(x + 3) (x + 1) 1 y2 6y
= =  2 + 3
(x + 3) (x  3) (x  2) (x + 1) y  2 y + 2y + 4 y + 8
2 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020  MwYZ

=
y2 + 2y + 4  (y  2)2
+ 3
6y niàGjvi j.mv.à = (x  2) (x  1) (x  3)
(y  2) (y2 + 2y + 4) y + 8
1 x3
y2 + 2y + 4  (y2  4y + 4) 6y  cÉ^g f™²vsk = (x  2) (x  1) = (x  2) (x  1) (x  3)
= + 3
(y  2) (y2 + 2y + 22) y +8
1 x1
y2 + 2y + 4  y2 + 4y  4 6y  w«¼Zxq f™²vsk = (x  2) (x  3) = (x  1) (x  2) (x  3)
= + 3
y3  23 y +8
1 x2
6y 6y  Z‡Zxq f™²vsk = (x  3) (x  1) = (x  1) (x  2) (x  3)
= 3 + 3
y 8 y +8
x3
6y4 + 48y + 6y4  48y  wbGYÆq f™²vskàGjv, (x  1) (x  2) (x  3) ,
=
(y3  8) (y3 + 8)
12y4 12y4 x1
= ,
3 2 2= 6 (Ans.) (x  1) (x  2) (x  3)
(y )  8 y  64
x2
cÉk
² 3 M = x2  3x + 2, N = x2  5x + 6 ‰es K = x2  4x + 3, (Ans.)
(x  1) (x  2) (x  3)
wZbwU exRMwYZxq ivwk| A [iv. ˆev. 17] 1 1 2x
M
cÉk
² 4 2x + 3y , 2x  3y , 4x2  9y2 wZbwU exRMvwYwZK f™²vsk|
K. x2
ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
[w`.ˆev. 17]
1 1 1
L. mij Ki : + + .
M N K
4 K. 1g f™²vsk ˆ^GK 2q f™²vsk weGqvM Ki| 2
1 1 1 L. 1g I 2q f™²vsGki àYdjGK 3q f™²vsk «¼viv fvM Ki| 4
M. M , N , K ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4
M. f™²vsk wZbwUGK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
3 bs cÉGk²i mgvavb A 4 bs cÉGk²i mgvavbA
K ˆ`Iqv AvGQ, M = x2  3x + 2
 1
K ˆ`Iqv AvGQ, cÉ^g f™²vsk = 2x + 3y

= x2  2x  x + 2
= x(x  2)  1(x  2) 1
w«¼Zxq f™²vsk = 2x  3y
= (x  2) (x  1)
M (x  2) (x  1)  weGqvMdj = 1g f™²vsk  2q f™²vsk
 = = x  1 (Ans.)
x2 (x  2) 1 1
= 
L ‘K’ nGZ cvB, M = (x  2) (x  1)
 2x + 3y 2x  3y

ˆ`Iqv AvGQ, N = x2  5x + 6 = x2  2x  3x + 6 2x  3y  2x  3y
=
(2x + 3y)(2x  3y)
= x(x  2)  3(x  2) = (x  2) (x  3)
 6y 6y
‰es K = x  4x + 3 = x2  3x  x + 3
2 =
(2x)2  (3y)2
= 2
4x  9y2
(Ans.)
= x(x  3)  1(x  3) = (x  3) (x  1) 2x
1 1 1 L ˆ`Iqv AvGQ, 3q f™²vsk = 4x2  9y2

‰Lb, + +
M N K
1 1
1 1 1  1g I 2q f™²vsGki àYdj = (2x + 3y)  (2x  3y)
= + +  
(x  2) (x  1) (x  2) (x  3) (x  3) (x  1)
1
x3+x1+x2 3x  6 =
= = (2x + 3y)(2x  3y)
(x  2) (x  1) (x  3) (x  2) (x  1) (x  3)
1 1
3(x  2) 3 = =
= = (Ans.) (2x)2  (3y)2 4x2  9y2
(x  2) (x  1) (x  3) (x  1) (x  3)
1
M ‘K’ I ‘L’ nGZ cvB, M = (x  2) (x  1)
 1g I 2q f™²vsGki àYdj 4x2  9y2
 fvMdj = 3q f™²vsk =
2x
N = (x  2) (x  3) 4x2  9y2
K = (x  3) (x  1)
1 (4x2  9y2) 1
1 1 = 2 2  = (Ans.)
 cÉ^g f™²vsk, =
M (x  2) (x  1)
(4x  9y ) 2x 2x
1 1 2x
1 1 M cÉ`î f™²vskàGjv 2x + 3y , 2x  3y , 4x2  9y2

w«¼Zxq f™²vsk, N = (x  2) (x  3)
1 1
‰LvGb, 1g f™²vsGki ni = 2x + 3y
Z‡Zxq f™²vsk, K = (x  3) (x  1) 2q f™²vsGki ni = 2x  3y
exRMwYZxq f™²vsk 3
3q f™²vsGki ni = 4x2  9y2 = (2x)2  (3y)2 M evgcÞ = Q  R  x  1

x2  9
= (2x + 3y)(2x  3y)
x2 + 2x  3 x2 + 12x + 35 x2  9
 niàGjvi j.mv.à. = (2x + 3y)(2x  3y) =
x2 + 6x  7
 2
x + 4x  5

x1
1 1(2x  3y)
AZ‰e, 1g f™²vsk = 2x + 3y = (2x + 3y)(2x  3y) =
(x + 3) x2 + 5x + 7x + 35 x2  32
 2  [‘L’ nGZ]
(x + 7) x + 5x  x  5 x1
2x  3y
= (x + 3) x(x + 5) + 7(x + 5) (x + 3) (x  3)
4x2  9y2 =  
(x + 7) x(x + 5)  1(x + 5) (x  1)
1 1(2x + 3y)
2q f™²vsk = 2x  3y = (2x  3y)(2x + 3y) (x + 3) (x + 5) (x + 7) (x  1) 1
=   = = WvbcÞ
(x + 7) (x + 5) (x  1) (x + 3) (x  3) x  3
2x + 3y
= x2  9 1
4x2  9y2  QR = (ˆ`LvGbv nGjv)
x1 x3
2x 2x  1 2x
3q f™²vsk = 4x2  9y2 = (4x2  9y2)  1 = 4x2  9y2
x3  y3 1 1
cÉk
² 6 A=
x4 + x2y2 + y4
,B=
1  x + x2
,C=
1 + x + x2
2x  3y 2x + 3y 2x
 wbGYÆq f™²vskàGjv: 4x2  9y2 , 4x2  9y2 I 4x2  9y2 (Ans.)
1
‰es D = 1 + x2 + x4 PviwU exRMwYZxq ivwk| [P. ˆev. 17]
2 2 2
x + 3x  4 x + 2x  3 , x + 12x + 35
cÉk
² 5 P = x2 + 7x + 12 , Q = 2 R= 2 .
x + 6x  7 x + 4x  5 K. A ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
[Kz. ˆev. 17] L. cÉgvY Ki ˆh, B  C  2x  D = 0. 4
K. P ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2 1+x 2
M. mij Ki : D  (B + C) 4
L. P + Q ˆK mij Ki| 4
M. ˆ`LvI ˆh, Q  R  xx  19
2
=
1
. 4 6 bs cÉGk²i mgvavb A
x3
x3  y3 (x  y) (x2 + xy + y2)
5 bs cÉGk²i mgvavb A K A = x4 + x2y2 + y4 = (x2)2 + 2x2y2 + (y2)2  x2y2

K ˆ`Iqv AvGQ,
 (x  y) (x2 + xy + y2)
=
x2 + 3x  4 x2 + 4x  x  4 (x2 + y2)2  (xy)2
P= =
x2 + 7x + 12 x2 + 3x + 4x + 12 (x  y) (x2 + xy + y2)
=
x(x + 4)  1(x + 4) (x + xy + y2) (x2  xy + y2)
2

=
x(x + 3) + 4(x + 3) xy
=
(x + 4) (x  1) x  1 x2  xy + y2
= = (Ans.)
(x + 4) (x + 3) x + 3 1 1
L ˆ`Iqv AvGQ, B = 1  x + x2 ; C = 1 + x + x2

x2 + 3x  4 x2 + 2x  3
L
 P+Q= 2 +
x + 7x + 12 x2 + 6x  7
1 1 1
‰es D = 1 + x2 + x4 = 1 + 2x2 + x4  x2 = (1 + x2)2  x2
x  1 x2 + 3x  x  3
= +
x + 3 x2 + 7x  x  7
[‘K’ nGZ]
1
=
x  1 x(x + 3) 1 (x + 3) (1 + x + x2) (1  x + x2)
= +
x + 3 x(x + 7)  1 (x + 7)
evgcÞ = B  C  2x  D
x  1 (x + 3) (x  1)
= + 1 1 1
x + 3 (x + 7) (x  1)
=  2x 
1  x + x2 1 + x + x2 (1 + x + x2) (1  x + x2)
x1 x+3
= + 1 1 2x
x+3 x+7
=  2 
1  x + x2 1 + x + x (1 + x + x2) (1  x + x2)
(x  1) (x + 7) + (x + 3) (x + 3)
= 1 + x + x2  1 + x  x2  2x
(x + 3) (x + 7)
=
(1  x + x2) (1 + x + x2)
x2  x + 7x  7 + x2 + 3x + 3x + 9
=
x2 + 7x + 3x + 21 2x  2x 0
= =
2
2x + 12x + 2 (1  x + x2) (1 + x + x2) (1  x + x2) (1 + x + x2)
=
x2 + 10x + 21 = 0 = WvbcÞ
2(x2 + 6x + 1)
= 2
(x + 10x + 21)
(Ans.)  B  C  2x  D = 0 (cÉgvwYZ)
4 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020  MwYZ
2
1+x 1 (x + 1)(x + 3)
M
 D
 (B + C) = 
(x – 2)(x – 3) (x + 1)(x + 3)
1 + x2 1 1 (x + 1)(x + 3)
=   =
1 1  x + x2 + 1 + x + x2 (x + 1)(x + 3)(x – 2)(x – 3)
2 2
(1 + x + x ) (1  x + x ) 1
2q f™²vsk, Q = (x + 3)(x – 3)
1 + x + x2 + 1  x + x2
= (1 + x2) (1 + x + x2) (1  x + x2) 
(1  x + x2) (1 + x + x2) 1 (x + 1)(x – 2)
= 
2 + 2x 2 (x + 3)(x – 3) (x + 1)(x – 2)
= (1 + x2) (1 + x + x2) (1  x + x2) 
(1  x + x2) (1 + x + x2) (x + 1)(x – 2)
=
2
(1  x + x ) (1 + x + x ) 2 (x + 1)(x + 3)(x – 2)(x – 3)
= (1 + x2)(1 + x + x2)(1 – x + x2) 
2(1 + x2) 1
‰es 3q f™²vsk, R = (x + 1)(x + 3)
(1  x + x2)2 (1 + x + x2)2
= (Ans.) 1 (x – 2)(x – 3)
2
= 
(x + 1)(x + 3) (x – 2)(x – 3)
1 1 1
cÉk
² 7 P = x2 – 5x + 6, Q = x2 – 9 ‰es R = x2 + 4x + 3 B =
(x – 2)(x – 3)
(x + 1)(x + 3)(x – 2)(x – 3)
[wm. ˆev. 17]
myZivs, P, Q I R f™²vsk wZbwUGK mgni wewkÓ¡ f™²vsGk
1 1 1
K. P + Q + R ‰i gvb wbYÆq Ki| 2 cÉKvk Kiv nGjv| (Ans.)
L. P + Q  R ˆK mij Ki| 4 x+1 x2 + x x2
cÉk
² 8 A = x  1, B = x2 + x  2 , C = x2 + 5x + 6 ‰es
M. P, Q ‰es R ˆK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
x2  y2
7 bs cÉGk²i mgvavb D= PviwU exRMvwYwZK f™²vsk| A [wm. ˆev. 16]
x3  y3
1 1
K ˆ`Iqv AvGQ,
 P= 2
x – 5x + 6
;Q= 2
x –9 K. D ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
1 x
‰es R = x2 + 4x + 3 L. cÉgvY Ki ˆh, A ÷ B  C = x + 3 . 4
1 1 1 1 1 1 M. A, B ‰es C ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4
 + + = + +
P Q R 1 1 1 8 bs cÉGk²i mgvavbA
x2 – 5x + 6 x2 – 9 x2 + 4x + 3
= x2 – 5x + 6 + x2 – 9 + x2 + 4x + 3
K ˆ`Iqv AvGQ,

= 3x2 – x(Ans.) x2  y2 (x + y) (x  y) x+y
D= = = 2 (Ans.)
x3  y3 (x  y) (x2 + xy + y2) x + xy + y2
L P+QR

x+1
1 1 1 L ˆ`Iqv AvGQ, A = x  1

= + 
x – 5x + 6 x2 – 9 x2 + 4x + 3
2

x2 + x x (x + 1)
1 1 1 Avevi, B = x2 + x  2 = x2 + 2x  x  2
= 2 + 
x – 2x – 3x + 6 x2 – 32 x2 + 3x + x + 3
x(x + 1)
1 1 1 =
= +  x(x + 2)  1(x + 2)
x(x – 2) – 3(x – 2) (x + 3)(x – 3) x(x + 3) + 1(x + 3)
1 1 (x + 3)(x + 1) x(x + 1)
= +  =
(x – 2)(x – 3) (x + 3)(x – 3) 1 (x + 2) (x  1)
x2 x2
=
1
+
x + 1 1 + (x – 2)(x + 1)
= ‰es C = x2 + 5x + 6 = x2 + 3x + 2x + 6
(x – 2)(x – 3) (x – 3) (x – 2)(x – 3)
1 + x2 – 2x + x – 2 x2 – x – 1 x2 x2
= = (Ans.) = =
(x – 2)(x – 3) (x – 2)(x – 3) x(x + 3) + 2(x + 3) (x + 3) (x + 2)
x+1 x(x + 1) x2
1
M ˆ`Iqv AvGQ, P = x2 – 5x + 6 = (x – 2)(x – 3)

1 ‰Lb, A  B  C = x  1  (x + 2) (x  1)  (x + 3) (x + 2)

1 1 (x + 1) (x + 2) (x  1) x2 x
Q= = =   =
2
x – 9 (x + 3)(x – 3) (x  1) x(x + 1) (x + 3) (x + 2) x + 3
1 1 x
‰es R = x2 + 4x + 3 = (x + 1)(x + 3)  ABC=
x+3
(cÉgvwYZ)

 f™²vskàGjvi nGii j. mv. à. = (x + 1)(x – 2)(x – 3)(x + 3) M ‘L’ ˆ^GK cvB,



1 x+1 x(x + 1) x2
 1g f™²vsk, P = (x – 2)(x – 3) A=
x1
,B=
(x + 2) (x  1)
,C=
(x + 3) (x + 2)
exRMwYZxq f™²vsk 5
 f™²vskàGjvi nimgƒGni j.mv.à. = (x  1) (x + 2) (x + 3) =
0
= 0 = WvbcÞ
(1 + x + x2) (1  x + x2)
x+1 (x + 1) (x + 2) (x + 3)
‰Lb, A = x  1 = (x  1) (x + 2) (x + 3)  3q ivwk + 2q ivwk  1g ivwk = 0 (ˆ`LvGbv nGjv)
x(x + 1) x(x + 1) (x + 3) M ‰LvGb, 2q ivwk  3q ivwk  4^Æ ivwk

B= =
(x + 2) (x  1) (x  1) (x + 2) (x + 3) 1 2x (x + 1)2  (x2 + x)
=  
x 2
x (x  1)2
1 + x + x2 1 + x2 + x4 x3 + 1
C= =
(x + 2) (x + 3) (x  1) (x + 2) (x + 3) 1 2x x2 + 2x + 1  x2  x
= 2  2 
1 + x + x (1 + x + x ) (1  x + x ) (x + 1) (x2  x + 1)
2
 wbGYÆq mgni wewkÓ¡ f™²vsk :
1 2x (x + 1)
(x + 1) (x + 2)(x + 3) x(x + 1)(x + 3) =  
,
(x  1) (x + 2) (x + 3) (x  1) (x + 2) (x + 3)
‰es 1 + x + x2 (1 + x + x2) (1  x + x2) (x + 1) (1  x + x2)
1 (1 + x + x2) (1  x + x2) (x + 1) (1  x + x2)
x2(x  1) =
(1 + x + x2)

2x

(x + 1)
(Ans.)
(x  1) (x + 2) (x + 3)
(1  x + x2)2
= (Ans.)
1 1 2x (x + 1)2  (x2 + x) 2x
cÉk²9 1  x + x2 , 1 + x + x2 , 1 + x2 + x4 ‰es
 x3 + 1
2p 1 1
PviwU exRMvwYwZK ivwk| A [h. ˆev. 17]
cÉk
² 10 x=
1 + p 2 + p4
,y=
1  p + p2
‰es z = 1 + p + p2

K. 1g I 2q ivwkGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 2 wZbwU exRMwYZxq ivwk| [e. ˆev. 17]

L. ˆ`LvI ˆh, 3q ivwk + 2q ivwk  1g ivwk = 0| 4 K. y ‰es z ˆK mvaviY niwewkÓ¡ f™²vsGk cwiYZ Ki| 2
L. mij Ki : x  y + z 4
M. 2q ivwk  3q ivwk  4^Æ ivwk ‰i mijdj wbYÆq Ki| 4
M. mij Ki : (y  z)  x 4
9 bs cÉGk²i mgvavb A
1
10 bs cÉGk²i mgvavbA
K 1g f™²vsk = 1  x + x2
 1 1
K ˆ`Iqv AvGQ, y = 1  p + p2 ; z = 1 + p + p2

1
2q f™²vsk = 1 + x + x2
 y I z ‰i niàGjvi j.mv.à.
 niàGjvi j.mv.à. = (1 + x + x )(1  x + x ) = 1 + x + x
2 2 2 4 = (1 + p + p2)(1  p + p2) = {(1 + p2) + p} {(1 + p2)  p}
1 (1 + x + x2) = {(1 + p2)2  p2} = 1 + 2p2 + p4  p2 = 1 + p2 + p4
 1g f™²vsk = 1  x + x2 = (1 + x + x2)(1  x + x2) 1 (1 + p + p2) 1 + p + p2
 y= 2= 2 2 = 2
1  p + p (1 + p + p )(1  p + p ) 1 + p + p
4 (Ans.)
1 + x + x2
= (Ans.) (1  p + p2) 1  p + p2
1 + x2 + x4 1
 z = 1 + p + p2 = (1 + p + p2)(1  p + p2) = 1 + p2 + p4 (Ans.)
1 (1  x + x2)
 2q f™²vsk = 1 + x + x2 = (1 + x + x2)(1  x + x2) 2p 1 1
L x  y + z = 1 + p 2 + p4  1  p + p 2 + 1 + p + p 2

1  x + x2
= (Ans.) 2p 1 1
1 + x2 + x4 =  + 2
(1 + p + p2)(1  p + p2) 1  p + p2 1 + p + p
L evgcÞ = 3q ivwk + 2q ivwk  1g ivwk
 [‘K’ ˆ^GK cvB]
2x 1 1 2
2p  1  p  p + 1  p + p 2
2p  2p
= + 
1 + x2 + x4 1 + x + x2 1  x + x2 = =
(1 + p + p2)(1  p + p2) (1 + p + p2)(1  p + p2)
2x 1 1 0
= + 2  = =0
1 + 2x2 + x4  x2 1 + x + x 1  x + x2 (1 + p + p2)(1  p + p2)
2x 1 1  x  y + z = 0 (Ans.)
= + 2 
(1 + x2)2  x2 1 + x + x 1  x + x2
M (y  z)  x

2x 1 1
= + 2  1 1 2p
= 
1  p + p2  1 + p + p2  1 + p2 + p4 [ˆ`Iqv AvGQ]
(1 + x + x2) (1  x + x2) 1 + x + x 1  x + x2
2 2
2x + 1(1  x + x )  1(1 + x + x ) 2 2
= 1 + p + p  (1  p + p ) 2p
(1 + x + x2) (1  x + x2) = 2 2  2 4
 (1 + p + p ) (1  p + p )  1 + p + p
2x + 1  x + x2  1  x  x2 2 2
= 1 + p + p  1 + p  p  2p
(1 + x + x2) (1  x + x2) =  2 4  2 4
 1 + p + p  1+p +p
2x  2x 2p (1 + p2 + p4)
= = 4  = 1 (Ans.)
(1 + x + x2) (1  x + x2) 2
(1 + p + p ) 2p
6 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020  MwYZ

DËi ms‡KZmn m„Rbkxj cÖkœ


Abykxjbx 5.1
a b cÉk
² 2 cÉ`î exRMvwYwZK ivwkàGjv chÆGeÞY Ki : A
cÉk
² 1 a2 – 9b2 , a2 + 6ab + 9b2 `yBwU exRMwYZxq f™²vsk| A
x y xy
K. f™²vsk `yBwUi niàGjvi j.mv.à. wbYÆq Ki| 2 x3 + y3 , x3  y3 , x4 + x2y2 + y4
L. f™²vsk `yBwUi ˆhvMdj wbYÆq Ki| 4
K. cÉ^g I w«¼Zxq ivwki AbycvZ wbYÆq Ki| 2
M. f™²vsk `yBwUi ˆhvMdGji mvG^ KZ ˆhvM KiGj ˆhvMdj
L. cÉ^g I w«¼Zxq ivwki ˆhvMdj nGZ Z‡Zxq ivwk weGqvM Ki| 4
1
a + 3b
nGe? 4 M. f™²vsk wZbwUGK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
Dîi: K. (a + 3b) (a  3b)
2 3
x(x  y )3 4
x +y 4
Dîi: K. y(x3 + y3) ; L. x6  y6 ;
a2 + 4ab  3b2
L. (a + 3b)2 (a  3b)
x(x3  y3) y(x3 + y3) xy(x2  y2)
M. x6  y6 , x6  y6 , x6  y6
 2b(2a + 3b)
M. (a + 3b)2 (a  3b)

m†Rbkxj cÉGk²i mgvavb


cÉk²1 A = x2  5x + 6, B = x2  7x + 12 ‰es C = x2  9x + 
 M ‘K’ ‰es ‘L’ ˆ^GK cvB,
20 wZbwU exRMwYZxq ivwk| A = (x  3) (x  2)
K. 1g ivwkGK Drcv`GK weGkÏlY Ki| 2 B = (x  3) (x  4)
1 1 C = (x  4) (x  5)
L. B + C ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 4 1 1 1
, ‰es ‰i nGii j.mv.à.
1 1 1 A B C
M. A , B ‰es C ˆK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
= (x  2) (x  3) (x  4) (x  5)
1 bs cÉGk²i mgvavb 1 1
‰i ˆÞGò, (x  3) (x  2) ‰i je I niGK
K 1g ivwk = x2  5x + 6
 A
= x2  3x  2x + 6 (x  4) I (x  5) «¼viv àY KGi cvB,
= x(x  3)  2(x  3) (x  4) (x  5)
= (x  3) (x  2) (Ans.) (x  2) (x  3) (x  4) (x  5)
L B = x2  7x + 12
 1 1
‰i ˆÞGò, (x  3) (x  4) ‰i je I niGK
B
= x2  3x  4x + 12
= x(x  3)  4(x  3) (x  2) I (x  5) «¼viv àY KGi cvB,
= (x  3) (x  4) (x  2) (x  5)
C = x2  9x + 20 (x  2) (x  3) (x  4) (x  5)
= x2  4x  5x + 20 1 1
C
‰i ˆÞGò, (x  4) (x  5) ‰i je I niGK (x  2) I (x
= x(x  4)  5(x  4)
= (x  4) (x  5)  3) «¼viv àY KGi cvB,
1 1 1 1 (x  2) (x  3)
 + = +
B C (x  3) (x  4) (x  4) (x  5) (x  2) (x  3) (x  4) (x  5)
x5+x3
=  wbGYÆq f™²vskàGjv nGe
(x  3) (x  4) (x  5)
2x  8 (x  4) (x  5)
= ,
(x  3) (x  4) (x  5) (x  2) (x  3) (x  4) (x  5)

2(x  4) (x  2) (x  5)
= ,
(x  3) (x  4) (x  5) (x  2) (x  3) (x  4) (x  5)
1 1 2 (x  2) (x  3)
 + = (Ans.) (Ans.)
B C (x  3) (x  5) (x  2) (x  3) (x  4) (x  5)
exRMwYZxq f™²vsk 7

cÉk²2 A = 2x2  7x + 6, B = 2x2  11x + 12


 1
M ‰LvGb, A  B + C

1 2
‰es C = x2  6x + 8
1 1
A = 
K. B ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2 (2x  3) (x  2) (x  4) (2x  3)
2
1 1 1 + [‘K’ I ‘L’ ˆ^GK]
L. A , B I C ˆK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4 (x  4) (x  2)
1(x  4)  1(x  2) + 2(2x  3)
1 1 2 =
M. mij Ki : A  B + C 4 (2x  3) (x  2) (x  4)
x  4  x + 2 + 4x  6
2 bs cÉGk²i mgvavb =
(2x  3) (x  2) (x  4)
K ˆ`Iqv AvGQ, A = 2x2  7x + 6, B = 2x2  11x + 12
 5x  x + 2  10
A 2x2  7x + 6 =
‰Lb, = 2 (2x  3) (x  2) (x  4)
B 2x  11x + 12
4x  8
2x2  3x  4x + 6 =
= 2 (2x  3) (x  2) (x  4)
2x  3x  8x + 12 4(x  2)
x(2x  3)  2(2x  3) =
= (2x  3) (x  2) (x  4)
x(2x  3)  4(2x  3) 4
(2x  3) (x  2) x  2 = (Ans.)
(2x  3) (x  4)
= = (Ans.)
(2x  3) (x  4) x  4
L ˆ`Iqv AvGQ, A = 2x2  7x + 6
 1 1
cÉk
² 3 S = 2 a4 + 2, P = 2 (2a2  10a + 12), Q = a2  11a  12
2
B = 2x  11x + 12
C = x2  6x + 8
‰es R = a2  9a + 20
1 1 1 1 K. S ˆK Drcv`GK weGkÏlY Ki| 2
AZ‰e, A , B , C f™²vsàGjv 2x2  7x + 6 , 1 1
L. +
Q 12
ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 4
1 1
2x2  11x + 12
‰es x2  6x + 8 1 1 1
M. , ‰es ˆK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
P Q R
‰LvGb, 1g f™²vsGki ni = 2x2  7x + 6
= (2x  3) (x  2) [‘K’ ˆ^GK] 3 bs cÉGk²i mgvavb
1 a4 + 4
2q f™²vsGki ni = 2x2  11x + 12 K ˆ`Iqv
 AvGQ, S = 2 a4 + 2 = 2
= (x  4) (2x  3) [‘K’ ˆ^GK] (a2)2 + (2)2 (a2 + 2)2  2.a2.2
= =
3q f™²vsGki ni = x  6x + 8
2 2 2
= x2  4x  2x + 8 (a2 + 2)2  4a2
=
= x(x  4)  2(x  4) 2
= (x  4) (x  2) (a2 + 2)2  (2a)2
=
2
 niàGjvi j.mv.à = (2x  3) (x  2) (x  4)
1 2
1 1 1  (x  4) = (a + 2a + 2) (a2  2a + 2) (Ans.)
‰Lb, A = (2x  3) (x  2) = (2x  3) (x  2) (x  4) 2
L ˆ`Iqv AvGQ, Q = a2  11a  12

(x  4)
= 1 1 1 1
(2x  3) (x  2) (x  4)  + = +
Q 12 a2  11a  12 12
1 1 1  (x  2)
= = 12 + a2  11a  12 a2  11a
B (x  4) (2x  3) (x  4) (2x  3) (x  2) = 2 = 2
12(a  11a  12) 12(a  11a  12)
(x  2)
= a(a  11)
(2x  3) (x  2) (x  4) =
12(a2  12a + a  12)
1 1 1  (2x  3)
= = a(a  11)
C (x  4) (x  2) (2x  3) (x  2) (x  4) =
12{a(a  12) + 1 (a  12)}
(2x  3)
= a(a  11)
(2x  3) (x  2) (x  4) = (Ans.)
12(a  12) (a + 1)
myZivs wbGYÆq mvaviY niwewkÓ¡ f™²vskmgƒn
M ˆ`Iqv AvGQ,

x4 x2
, , 1
(2x  3) (x  2) (x  4) (2x  3) (x  2) (x  4) P= (2a2  10a + 12)
2
2x  3 1
(2x  3) (x  2) (x  4) = . 2 (a2  5a + 6) = a2  5a + 6
2
8 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020  MwYZ
Q = a2  11a  12 (a2 + b2) (a2  b2) (a2 + b2) (a + b) (a  b)
= =
R = a2  9a + 20 (a  b)2 (a  b) (a  b)

1 1 (a2 + b2) (a + b)
 = = (Ans.)
P a2  5a + 6 (a  b)


1
=
1 L ‰LvGb,

Q a2  11a  12
(a + b)2  4ab
1 1 2q f™²vsk = a3  b3
 = 2
R a  9a + 20
a+b
‰LvGb, 1g f™²vsGki ni = a2  5a + 6 3q f™²vsk = a2 + ab + b2
= a2  3a  2a + 6
2q f™²vsk I 3q f™²vsk ˆhvM KGi cvB,
= a(a  3)  2 (a  3)
(a + b)2  4ab a+b
= (a  3) (a  2) + 2
a3  b3 a + ab + b2
2q f™²vsGki ni = a2  11a  12 (a  b)2 a+b
2 = + 2 2
= a  12a + a  12 (a  b)(a2 + ab + b2) a + ab + b
= (a  12) + 1 (a  12) ab a+b
= +
= (a  12) (a + 1) a2 + ab + b2 a2 + ab + b2

3q f™²vsGki ni = a2  9a + 20 =
ab+a+b
2
a2 + ab + b2
= a  4a  5a + 20
2a
= (a  4) (a  5) = (Ans.)
a2 + ab + b2
 f™²vskàGjvi nGii j.mv.à.
M 1g f™²vsGki ni = a2 + b2  2ab = (a  b)2

= (a  3) (a  2) (a  12) (a + 1) (a  4) (a  5)
1 1 2q f™²vsGki ni = a3  b3 = (a  b) (a2 + ab + b2)
1g f™²vsk = a2  5a + 6 = (a  3) (a  2)
3q f™²vsGki ni = a2 + ab + b2
(a  12) (a + 1) (a  4) (a  5)
=
(a  3) (a  2) (a  12) (a + 1) (a  4) (a  5)
(Ans.)  niàGjvi j.mv.à. = (a  b)2 (a2 + ab + b2)
(a  b)2 (a2 + ab + b2)
2q f™²vsk = a2  11a  12
1 ‰Lb, (a  b)2
= a2 + ab + b2

1 (a4  b4)  (a2 + ab + b2)


=  1g f™²vsk = (a2 + b2  2ab) (a2 + ab + b2)
(a  12) (a + 1)
(a  3) (a  2) (a  4) (a  5) (a4  b4) (a2 + ab + b2)
= (Ans.) =
(a  3) (a  2) (a  12) (a + 1) (a  4) (a  5) (a  b)2 (a2 + ab + b2)
1 1 (a  b)2 (a2 + ab + b2)
3q f™²vsk = a2  9a + 20 = (a  4) (a  5) Avevi, (a  b)(a2 + ab + b2) = (a  b)

=
(a  3) (a  2) (a  12) (a + 1)
(Ans.)  2q f™²vsk
(a  3) (a  2) (a  12) (a + 1) (a  4) (a  5)
(a + b)2  4ab (a  b)2  (a  b)
= 3 3 =
a b (a  b) (a2 + ab + b2) (a  b)
a4  b4 (a + b)2  4ab a+b
cÉk
² 4 a2 + b2  2ab , a3  b3
, 2
a + ab + b2 (a  b)3
=
(a  b) (a2 + ab + b2)
2
exRMwYZxq f™²vsk|
(a  b)2 (a2 + ab + b2)
K. cÉ^g ivwkGK jwNÓ¤ AvKvGi cÉKvk Ki| 2 Avevi, (a2 + ab + b2)
= (a  b)2

L. w«¼Zxq I Z‡Zxq ivwki ˆhvMdj wbYÆq Ki| 4 a+b (a  b)2 (a + b)


 3q f™²vsk = a2 + ab + b2 = (a  b)2 (a2 + ab + b2)
M. ivwkàGjvGK mgniwewkÓ¡ f™²vsGk cwiYZ Ki| 4
4 bs cÉGk²i mgvavb (a4  b4) (a2 + ab + b2)
 mgni wewkÓ¡ wZbwU f™²vsk (a  b)2 (a2 + ab + b2)
K
 ˆ`Iqv AvGQ,
(a  b)3 (a  b)2 (a + b)
4
a b 4 22
(a )  (b ) 22 2 , (Ans.)
1g ivwk = a2 + b2  2ab = (a  b)2 (a  b) (a + ab + b ) (a  b)2 (a2 + ab + b2)
2 2
exRMwYZxq f™²vsk 9

Abykxjbx 5.2
DËi ms‡KZmn m„Rbkxj cÖkœ

cÉk
 ² 1 A = x + 2, B = x2 − 4, C = x2 − 2x + 4, D = x2 + 2x + x2 + 3x  4 x2  16 (x  4)2
4 ‰es E = x − 8 cuvPwU exRMwYZxq ivwk|
3 cÉ
 k² 2 P = 2
x  7x + 12
, Q = 2
x 9
‰es R =
(x  1)
A

K. A I C ‰i M.mv.à. wbYÆq Ki| 2 K. Q ˆ^GK ˆKvb mvswLÅK gvb weGqvM KiGj weGqvMdGji jGe
1 x + 2 6x
L. mij Ki : A − C + E 4 ˆKvGbv x ^vKGe bv? 2
A 1 1 C L. P  Q  R = KZ? 4
M. cÉgvY Ki, B  C  E  D = 1 4
M. P, Q I R ˆK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
96x Dîi: K. L.
Dîi: K. 1 L. 6 x − 64
1; x + 3

m†Rbkxj cÉGk²i mgvavb


cÉk²1 P = x2 – 15x + 56, Q = x2 – x – 56, R = x2 – 12x + 32
 1 1
‰LvGb, P = (x  7) (x  8)
2x x x
‰es S = x2 + 5x + 4 – x2 – 1 + x2 + 3x – 4, PviwU exRMwYZxq ivwk| (x + 7) (x  4)
=
K. exRMwYZxq f™²vsk ejGZ Kx ˆevS? 2 (x  7) (x  8) (x + 7) (x  4)

L. S ‰i mijdj wbYÆq Ki| 4 1 1


=
Q (x  8) (x + 7)
1 1 1
M. P, Q ‰es R ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4 (x  7) (x  4)
=
(x  8) (x + 7) (x  7) (x  4)
1 bs cÉGk²i mgvavb
1 1
K exRMwYZxq f™²vsk : hw` m I n `ywU exRMwYZxq ivwk nq,
 =
R (x  4) (x  8)
m
ZGe n ‰KwU exRMwYZxq f™²vsk ˆhLvGb n  0| (x  7) (x + 7)
= (Ans.)
2 (x  4) (x  8) (x  7) (x + 7)
x+y x 5
ˆhgb : z  b , 2x + y BZÅvw`|
cÉk²2 A = x – 2, B = x2 + 2x + 4 ‰es C = x3 – 8 wZbwU

2x x x
L ˆ`Iqv AvGQ,
 S= 2  +
x + 5x + 4 x2  1 x2 + 3x  4 exRMwYZxq ivwk|
=
2x

x
+
x K. C ˆK Drcv`GK weGkÏlY Ki| 2
(x + 1) (x + 4) (x + 1) (x  1) (x + 4) (x  1)
L. B, C I x3 + 8 ‰i j.mv.à. wbYÆq Ki| 4
2x(x  1)  x(x + 4) + x(x + 1)
= 1 x+2 2–x 1
(x  1) (x + 1) (x + 4) M. cÉgvY Ki ˆh, A ÷ B × x3 – 8 = 4 – x2 4
2x2  2x  x2  4x + x2 + x
=
(x  1) (x + 1) (x + 4) 2 bs cÉGk²i mgvavb
2x2  5x K C = x3  8

=
(x  1) (x + 1) (x + 4)
= x3  23
2x2  5x
= 2 (Ans.) = (x  2) (x2 + 2x + 4) (Ans.)
(x  1) (x + 4)
L ‰LvGb, B = x2 + 2x + 4

M ‰Lb, P = x2  15x + 56
 C = (x  2) (x2 + 2x + 4) [‘K’ nGZ]
2
= x  7x  8x + 56 x3 + 8 = x3 + 23
= (x  7) (x  8) = (x + 2) (x2  2x + 4)
Q = x2  x  56
 B, C I x3 + 8 ‰i j.mv.à
= x2  8x + 7x  56
= x(x  8) + 7(x  8) = (x  2) (x + 2x + 4) (x + 2) (x2  2x + 4)
2

= (x  8) (x + 7) = (x3  23) (x3 + 23)


R = x2  12x + 32 = (x3  8) (x3 + 8)
= (x  4) (x  8) = x6  82
R, Q I R ‰i j.mv.à = (x  7) (x  8) (x + 7) (x  4) = x6  64 (Ans.)
10 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020  MwYZ
1
M evgcÞ = A  B  x3  8

x+2 2x 4 bs cÉGk²i mgvavb
x xy
1 x2 + 2x + 4 { (x  2)} K
 y

y
=  
x2 x+2 (x  2) (x2 + 2x + 4)
xx+y y
1 = = = 1 (Ans.)
= 2 y y
x  22
L DóxcGKi ivwk wZbwUi àYdj

1 1
= 2 = x3 + y3 x3  y3 xy
2  x2 4  x2 =  
x2 + xy + y2 x2  xy + y2 x + y
= WvbcÞ (cÉgvwYZ)
(x + y) (x2  xy + y2) (x  y) (x2 + xy + y2) x  y
1 1 1 =  
cÉk
 ² 3 A = x2 – 11x + 28, B = x2 – 13x + 36, C = x2 – 15x + 44 x2 + xy + y2 x2  xy + y2 x+y

1 1 2 = (x  y)2 (ˆ`LvGbv nGjv)


‰es D = x2 – 1 + x4 – 1 + x8 – 1
M 1g ivwk  3q ivwk  2q ivwk

K. x + x y + y ˆK Drcv`GK weGkÏlY Ki|
4 2 2 4
2 x3 + y3 xy x3  y3
2 2  2
L. D ˆK mij Ki| 4 x + xy + y x + y x  xy + y2
M. A, B I C ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4 (x + y) (x2  xy + y2) x + y (x  y) (x2 + xy + y2)
=  
x2 + xy + y2 xy x2  xy + y2
3 bs cÉGk²i mgvavb
= (x + y)2 (Ans.)
K cÉ`î ivwk = x4 + x2y2 + y4

= (x2)2 + 2x2y2 + (y2)2  x2y2
x2 + 3x – 4 x2 + 2x – 3
= (x2 + y2)2  (xy)2 cÉk²5 P = x2 + 7x + 12, Q = x2 + 6x – 7 ‰es

= (x2 + xy + y2) (x2  xy + y2) (Ans.)
x2 + 12x + 35
1 1 2 R=
x2 + 4x – 5
wZbwU exRMvwYwZK ivwk|
L ‰LvGb,
 D= 2 + +
x  1 x4  1 x8  1
2x + y y
1 1 2 K.  x + y – 1  1 – x + y ˆK mij Ki| 2
= 2 + +
x  1 x4  1 (x4 + 1) (x4  1)
1 x4 + 1 + 2 L. (P + Q – R) = KZ? 4
= 2 + 4 2
x  1 (x + 1) (x4  1) x –9
M. cÉgvY Ki ˆh, Q  R  x2 – 4x + 3 = 1 4
1 x4 + 3
= 2 + 4
x  1 (x + 1) (x2  1) (x2 + 1) 5 bs cÉGk²i mgvavb
(x4 + 1) (x2 + 1) + x4 + 3 2x + y y
= 4
(x + 1) (x2 + 1) (x2  1) K  x + y – 1  1 – x + y

x6 + x4 + x2 + 1 + x4 + 3 2x + y – x – y x + y – y
= =
(x4 + 1) (x4  1)  x+y  x+y 
x + 2x4 + x2 + 4
6
x x
=
x8  1 = 
x+y x+y
M A, B I C ‰i niàGjv h^vKÌGg
 x x+y
= 
x2  11x + 28 = (x  7) (x  4) x+y x
x2  13x + 36 = (x  4) (x  9) = 1 (Ans.)
‰es x  15x + 44 = (x  4) (x  11)
2
L ˆ`Iqv AvGQ,

niàGjvi j.mv.à = (x  4) (x  7) (x  9) (x  11) x2 + 3x – 4 x2 + 4x – x – 4
1 (x  9) (x  11) P= 2 = 2
x + 7x + 12 x + 4x + 3x + 12
A= =
x2  11x + 28 (x  7) (x  4) (x  9) (x  11) x(x + 4) – 1(x + 4)
=
1 (x  7) (x  11) x(x + 4) + 3(x + 4)
B= 2 =
x  13x + 36 (x  4) (x  9) (x  7) (x  11) (x + 4)(x – 1) x – 1
= =
1 (x  7) (x  9) (x + 4)(x + 3) x + 3
C= 2 = (Ans.)
x  15x + 44 (x  4) (x  11) (x  7) (x  9) x2 + 2x – 3 x2 + 3x – x – 3
Q= =
3
x +y 3
x –y 3 3
x–y x2 + 6x – 7 x2 + 7x – x – 7
cÉk
² 4 , ,
x2 + xy + y2 x2 – xy + y2 x + y
wZbwU exRMwYZxq ivwk|
x(x + 3) – 1(x + 3)
x x–y =
K. ‰es y ‰i weGqvMdj wbYÆq Ki| 2 x(x + 7) – 1(x + 7)
y
(x + 3)(x – 1)
L. ˆ`LvI ˆh, ivwk wZbwUi àYdj (x – y) . 2
4 =
(x + 7)(x – 1)
M. cÉ^g ivwkGK Z‡Zxq ivwk «¼viv fvM KGi cÉvµ¦ fvMdjGK w«¼Zxq ivwk x+3
«¼viv àY Ki| 4 =
x+7
exRMwYZxq f™²vsk 11

x2 + 12x + 35 x2 + 7x + 5x + 35 L ‘K’ nGZ cvB,



‰es R = x2 + 4x – 5 = x2 + 5x – x – 5
a4  b4 (a2 + b2) (a + b)
x(x + 7) + 5(x + 7) 2 2=
= a  2ab + b (a  b)
x(x + 5) – 1(x + 5)
(x + 5)(x + 7) x+7 ivwk wZbwUi àYdj
= = (a2 + b2) (a + b) a  b a+b
(x + 5)(x – 1) x–1
=  3 
 cÉ`î ivwk (a  b) a + b3 a3 + b3
=P+Q–R (a2 + b2) (a + b) ab (a + b)
=  
x–1 x+3 x+7 (a  b) (a + b) (a2  ab + b2) (a + b) (a2  ab + b2)
= + –
x+3 x+7 x–1 a2 + b2
= 2 (Ans.)
(x – 1)(x + 7) + (x + 3)2 x + 7 (a  ab + b2)2
= –
(x + 3)(x + 7) x–1 a4  b4
2 2
x – x + 7x – 7 + x + 6x + 9 x + 7 M
 a  2ab + b2
2  (a3 + a2b + ab2 + b3)
= –
x2 + 3x + 7x + 21 x–1 (a2 + b2) (a + b)
2
2x + 12x + 2 x + 7 =  {a2 (a + b) + b2(a + b)} [‘K’ nGZ cvB,]
= 2 – (a  b)
x + 10x + 21 x – 1
(a2 + b2) (a + b)
(2x + 12x + 2)(x – 1) – (x + 7)(x2 + 10x + 21)
2
=  {(a + b) (a2 + b2)}
= (a  b)
(x2 + 10x + 21) (x – 1)
2x + 12x + 2x – 2x2 – 12x – 2 – x3 – 7x2
3 2 (a2 + b2) (a + b) 1
= 
– 10x2 – 70x – 21x – 147 (a  b) (a + b) (a2 + b2)
=
(x – 1)(x2 + 10x + 21) 1
=
x3 – 7x2 – 101x – 149 ab
= (Ans.)
(x – 1)(x + 3) (x + 7) a2
2
x –9 x2 – 32
‰Lb, cÉvµ¦ fvMdGji mvG^ a + b ˆhvM KiGj nq|
M
 ‰LvGb, x2 – 4x + 3 = x2 – 3x – x + 3
1 a2 a + b + a2 (a  b)
(x + 3)(x – 3) + =
ab a+b (a + b) (a  b)
=
x(x – 3) – 1(x – 3) a + b + a3  a2b a + a3 + b  a2b
(x + 3)(x – 3) x + 3 = = (Ans.)
= = (a + b) (a  b) a2  b2
(x – 3)(x – 1) x – 1 2 2
x+1 x +x x
‘L’ ˆ^GK cvB, cÉk
² 7 A = x  1 , B = x2 + x  2 , C = x2 + 5x + 6
x+3 x+7
Q=
x+7
‰es R = x – 1 x2  y2
‰es D = x3  y3 PviwU exRMvwYwZK f™²vsk|
x2 – 9
evgcÞ = Q  R  x2 – 4x + 3 K. D ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
x + 3 x + 7 (x + 3) (x - 3) x
=  
x + 7 x – 1 (x – 3)(x - 1)
L. cÉgvY Ki ˆh, ABC=
x+3
| 4

=
(x + 3) (x + 7) (x + 3)
  M. A, B ‰es C ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4
(x + 7) (x – 1) (x – 1)
7 bs cÉGk²i mgvavb
(x + 3) (x – 1)
= 
(x – 1) (x + 3) K ˆ`Iqv AvGQ,

=1 x2  y2 (x + y) (x  y) x+y
D= = = 2 (Ans.)
= WvbcÞ x3  y3 (x  y) (x2 + xy + y2) x + xy + y2
x2 – 9 x+1
 Q  R  x2 – 4x + 3 = 1 (cÉgvwYZ) L
 ˆ`Iqv AvGQ, A = x  1
a4  b4 ab a+b x2 + x x (x + 1)
cÉk
² 6 a2  2ab + b2 , a3 + b3 , a3 + b3 Avevi, B = x2 + x  2 = x2 + 2x  x  2
K. 1g ivwkGK jwNÓ¤ AvKvGi cÉKvk Ki| 2 x(x + 1) x(x + 1)
= =
L. ivwk wZbwUi àYdj wbYÆq Ki| 4 x(x + 2)  1(x + 2) (x + 2) (x  1)
M. 1g ivwkGK a3 + a2b + ab2 + b3 «¼viv fvM KGi fvMdGji mvG^ x2 x2
‰es C = x2 + 5x + 6 = x2 + 3x + 2x + 6
a2
a+b
ˆhvM Ki| 4 x2 x2
= =
6 bs cÉGk²i mgvavb x(x + 3) + 2(x + 3) (x + 3) (x + 2)
a4  b4 (a2)2  (b2)2 x+1 x(x + 1) x2
K 1g ivwk
 = 2 2 =
‰Lb, A  B  C = x  1  (x + 2) (x  1)  (x + 3) (x + 2)
a  2ab + b (a  b)2
(a + b ) (a  b ) (a2 + b2) (a + b) (a  b)
2 2 2 2 (x + 1) (x + 2) (x  1) x2 x
= = =   =
(a  b)2 (a  b)2 (x  1) x(x + 1) (x + 3) (x + 2) x + 3
2 2
(a + b ) (a + b) x
=  ABC=
x+3
(cÉgvwYZ)
(a  b)
12 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020  MwYZ

M ‘L’ ˆ^GK cvB,


 (1 + a2 + a4)
= (1 + a2) (1 + a2 + a4) 
x+1 x(x + 1) x2 2(1 + a2)
A= ,B= ,C= (1 + a2 + a4)2
x1 (x + 2) (x  1) (x + 3) (x + 2)
= (Ans.)
2
 f™²vskàGjvi nimgƒGni j.mv.à = (x  1) (x + 2) (x + 3)
2 3 2
x+1 (x + 1) (x + 2) (x + 3)
‰Lb, A = x  1 = (x  1) (x + 2) (x + 3) cÉk²9 x2  x  2 , x2 + x  6 ‰es x2 + 6x + 9 wZbwU
 f™²vsk|

x(x + 1) x(x + 1) (x + 3) K. 2q f™²vsGki nGii Drcv`K wbYÆq Ki| 2


B= =
(x + 2) (x  1) (x  1) (x + 2) (x + 3) L. f™²vskàGjvGK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
x2 x2(x  1) 4x  8
C= =
(x + 2) (x + 3) (x  1) (x + 2) (x + 3) M. 1g `ywU f™²vsGki ˆhvMdj ˆ^GK (x  2) (x  1) (x + 3) weGqvM
 wbGYÆq mgni wewkÓ¡ f™²vsk : Ki| 4
(x + 1) (x + 2)(x + 3)
,
x(x + 1)(x + 3)
‰es 9 bs cÉGk²i mgvavb
(x  1) (x + 2) (x + 3) (x  1) (x + 2) (x + 3)
2
K 2q f™²vsGki ni = x2 + x  6

x (x  1)
(Ans.) = x2 + 3x  2x  6
(x  1) (x + 2) (x + 3)
9 9 = x(x + 3)  2(x + 3)
x y 1 1
cÉk
² 8 A = x3  y3, B = 1  a + a2, C = 1 + a + a2 ‰es = (x  2) (x + 3)
1 L
 1g f™²vsGki ni = x2  x  2
D= = x2  2x + x  2
1 + a2 + a4
K. A ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2 = x(x  2) + 1 (x  2)
= (x  2) (x + 1)
L. (B  C)  (2a  D) ‰i gvb wbYÆq Ki| 4
1 + a2 2q f™²vsGki ni = (x  2) (x + 3) [‘K’ nGZ]
M. mij Ki : D  (B + C) 4 3q f™²vsGki ni = x2 + 6x + 9
8 bs cÉGk²i mgvavb = x2 + 2.x.3 + 32
x9  y9 = (x + 3)2
K A = x3  y3
 = (x + 3) (x + 3)
(x3)3  (y3)3  f™²vsk wZbwUi nGii j.mv.à.
=
x3  y3 = (x  2) (x + 1) (x + 3) (x + 3)
(x3  y3) {(x3)2 + x3 . y3 + (y3)2} 2
=
(x3  y3)
1g f™²vsk = x2  x  2
(x3  y3) (x6 + x3y3 + y6) 2 (x + 3) (x + 3)
= = 
(x3  y3) (x  2) (x + 1) (x + 3) (x + 3)
= x + x y + y6 (Ans.)
6 3 3
2(x + 3)2
=
1 (x  2) (x + 1) (x + 3)2
L
 ˆ`Iqv AvGQ, B = 1  a + a2
3
1
2q f™²vsk = x2 + x 6
C=
1 + a + a2 3 (x + 1) (x + 3)
1 = 
‰es D = 1 + a2 + a4 (x  2) (x + 3) (x + 1) (x + 3)
3(x + 1) (x + 3)
1 1 2a =
 (B  C)  (2a  D) =  2 2 4
(x  2) (x + 1) (x + 3)2
1  a + a2 1 + a + a 1 + a + a 2
2
1 + a + a  (1  a + a ) 2
2a 3q f™²vsk = x2 + 6x + 9
=  2 4
(1  a + a2) (1+ a + a2) 1 + a + a 2 (x  2) (x + 1)
2
1+a+a 1+aa 2
2a = 
=  (x + 3) (x + 3) (x  2) (x + 1)
(1 + a2)2  a2 1 + a2 + a4
2(x  2) (x + 1)
2a 1 + a2 + a4 =
(x  2) (x + 1) (x + 3)2
= 2 4 = 1 (Ans.)
1+a +a 2a
2(x + 3)2
1+a 2
 wbGYÆq f™²vskàGjv = (x  2) (x + 1) (x + 3)2 ,
M
 D
 (B + C)
3(x + 1) (x + 3) , 2(x  2) (x + 1)
1 + a2 1 1
=  + 2 (x  2) (x + 1) (x + 3)2 (x  2) (x + 1) (x + 3)2
1 1  a + a2 1 + a + a 
1+a +a2 4 M 1g `ywU f™²vsGki ˆhvMdj

2
1+a+a +1a+a 
2 2 3
= (1 + a2) (1 + a2 + a4)   2 
+
2
(1  a + a ) (1 + a + a ) x2  x  2 x2 + x  6
2 + 2a2  2 3
= (1 + a2) (1 + a2 + a4)   = +
(x  2) (x + 1) (x  2) (x + 3)
1 + a2 + a4
exRMwYZxq f™²vsk 13

2x + 6 + 3x + 3 81  y4 (3 + y)2  12y 3+y


=
(x  2) (x + 1) (x + 3)
cÉk
² 11 P = 9  6y + y2, Q = 27  y3
,R=
(3 + y)2  3y

=
5x + 9 K. P ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
(x  2) (x + 1) (x + 3) RQ
5x + 9 4x  8 L. mij Ki: R+Q
4
‰Lb, (x  2) (x + 1) (x + 3)  (x  2) (x  1) (x + 3)
M. P, Q ‰es R f™²vskGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
5x2 + 9x  5x  9  (4x2  8x + 4x  8)
= 11 bs cÉGk²i mgvavb
(x  2) (x + 1) (x + 3) (x  1)
5x2 + 4x  9  4x2 + 4x + 8 K ˆ`Iqv AvGQ,

= 81  y4
(x  2) (x + 1) (x + 3) (x  1) P=
9  6y + y2
x2 + 8x  1
= (Ans.) 92  (y2)2
(x  2) (x + 1) (x + 3) (x  1) = 2
3  2.3y + y2
a3  b3 (a + b)2  3ab a + b (9 + y2) (9  y2)
cÉk
² 10 (a  b)2 + 3ab , a3  b3
, ‰es =
ab (3  y)2
a3 + b3 (9 + y2)(3 + y) (3  y)
a + a2b2 + b4
4 PviwU exRMwYZxq ivwk| =
(3  y)2
1 2m 1 1 2
(9 + y ) (3 + y)
K.  1 + m + 1  m2 m  m2 = KZ? 2 = (Ans)
  3y
L. cÉ^g ivwkGK Z‡Zxq ivwk «¼viv àY KGi cÉvµ¦ àYdGji mvG^ L ˆ`Iqv AvGQ,

KZ àY KiGj a3 + b3 àYdj nGe? 4 (3 + y)2  12y 9 + 6y + y2  12y 9  3y + y2
Q= 3 = 3 3 =
M. cÉ^g ivwk wZbwUi àYdjGK PZz^Æ ivwk «¼viv fvM Ki| 4 27  y 3 y (3  y) (9 + 3y + y2)
3+y 3+y 3+y
10 bs cÉGk²i mgvavb R= = = 2
(3 + y)2 3y 9 + 6y + y2  3y 9 + 3y + y
1 2m 1 1
K cÉ`î ivwk = 1 + m + 1  m2 m  m2
 3+y 9  3y + y2
  R+Q=
9 + 3y + y2
+
(3  y) (9 + 3y + y2)
1  m + 2m m  1
=  (3 + y)(3  y) + 9  3y + y2
(1  m2) m2 =
(3  y) (9 + 3y + y2)
1+m  (1  m)
=  9  y2 + 9  3y + y2
(1  m) (1 + m) m2 =
(3  y) (9 + 3y + y2)
1
= (Ans.) 18  3y
m2 =
(3 y) (9 + 3y + y2)
a  b3
3
a+b
L cÉkg² GZ,
 
(a  b)2 + 3ab a  b
 p = a3 + b3 3+y 9 – 3y + y2
RQ= 2–
9 + 3y + y (3 – y) (9 + 3y + y2)
[awi, p àY KiGZ nGe] (3 + y)(3 – y) – (9 – 3y + y2)
2 =
(a  b) + 3ab a  b (3 – y)(9 + 3y + y2)
ev, p = (a3 + b3)  a3  b3

a+b 9 – y2 – 9 + 3y – y2
=
ev, p = (a + b) (a2  ab + b2) (3 – y)(9 + 3y + y2)
a2 + ab + b2 (a  b) 3y – 2y2
=
 
(a  b) (a2 + ab + b2) (a + b) (3 – y)(9 + 3y + y2)
 p = a2  ab + b2 (Ans.) 3y  2y2
R Q (3 y)(9 + 3y + y2) 3y – 2y2
M ˆ`Iqv AvGQ,
  = = (Ans.)
R+Q 18  3y 18 – 3y
a3 − b3 (a + b)2 − 3ab 2
A = 2 ,B= , (3  y) (9 + 3y + y )
(a − b) + 3ab a3 − b3
(9 + y2) (3 + y)
C=
a+b
,D= 4
a3 + b3 M
 ‘K’ nGZ cvB, P = 3 y
a−b a + a2b2 + b4
a3 − b3 (a + b)2 − 3ab 9 – 3y + y2 3+y
 ABCD=  ‘L’ nGZ cvB, Q = (3 – y)(9 + 3y + y2) , R = 9 + 3y + y2
(a − b)2 + 3ab a3 − b3
a+b a3 + b3 P, Q I R ‰i niàGjvi j.mv.à. = (3  y) (9 + 3y + y2)
  4 (9 + y2) (3 + y) (9 + 3y + y2)
a − b a + a2b2 + b4
 P=
2
a − ab + b 2
a + b (a + ab + b ) (a2 − ab + b2)
2 2 (3  y) (9 + 3y + y2)
= 2 2  
a + ab + b a−b (a + b) (a2 − ab + b2) 9  3y + y2
Q=
[Drcv`GK weGkÏlY KGi] (3  y) (9 + 3y + y2)
a2 − ab + b2 (3 + y)(3 y) 9 y2
= (Ans.) R= 2 = (Ans.)
a−b (3 y)(9 + 3y + y ) (3  y)(9 + 3y + y2)
14 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020  MwYZ

AaÅvGqi cÉÕ§wZ hvPvB: NGi eGm cixÞv


.gGWj cÉk-² 5.
m†Rbkxj eüwbeÆvPwb cÉk²cò
mgq: 30 wgwbU; gvb-30
x2 x 4 2 1 x+1 (x  1)2
1. 
x2  16 x + 4
= KZ? A K
x
L 0 M
x
N
x 22. x  1 ‰es x2 + x ‰i àYdj KZ?
2
2x 4x 1 – xy x2  1 x+1 x1 x+1
K 2
x  16
L 2
x  16
12. x–y
‰es x3 – y3 ‰i ˆhvMdj KZ? K L M N
x x x x1
2x(x  2) 4x – (x2 + y2) wbGPi ZG^Åi wfwîGZ (23-25) bs cÉGk²i Dîi `vI:
M 2 N 2 K
x  16 x  16 (x – y)(x2 + xy + y2) a3 + b 3 a3 – b 3
x2  6x + 5 x2 + y2 I
a2 – ab + b2 a2 + ab + b2
`yBwU exRMvwYZxq
2. ‰i jwNÓ¤ AvKvGi cÉKvwkZ i…c L 2
x – xy + y2
x2  1 f™²vsk|
wbGPi ˆKvbwU? x2 + y2 23. cÉ^g f™²vskwUi jwNÓ¤ i…c wbGPi ˆKvbwU?
M
x5 x+1 x1 x5 (x – y)(x2 + xy + y2) a+b
A K L M N x2 – y2 A K a+b L
x+1 x5 x+1 x1 N a2  b2 + ab
x y z (x – y)(x2 + xy + y2)
3. + + ‰i ˆhvMdj KZ nGe?
y z x x2  x  30 M
1
N
a+b
xz + xy + yz xyz
13. x2  36
‰i jwNÓ¤ i…c ˆKvbwU? a+b ab
A K L x+5 x+5 x5 x5
24. w«¼Zxq f™²vskwUi jwNÓ¤ i…c wbGPi ˆKvbwU?
xyz xz + xy + yz a2 – b2
2 2 2 A K L M N a–b a+b
x z + xy + yz xyz x6 x+6 x+6 x6 A K L M ab N 2 2
M N 2 mn2 , a3b
a+b ab a +b
xyz x z + xy2 + yz2
4. exRMwYZxq f™²vsGki ˆÞGò@ 14. n 3 a 2b 2
f™²vsk `yBwUi@ 25. f™²vsk«¼Gqi àYdj KZ?
a b a b a2 a A K a2 + b 2 L a2 – b 2
i.  =1 ii.  = 2 i. w«¼ZxqwUi jwNÓ¤ AvKvi M (a3 + b3) (a3  b2)
b a b a b b
1 1 1 m N (a + b)2
iii.  = ii. cÉ^gwUi jwNÓ¤ AvKvi (x + y)2  4xy x2  y2 x2  xy + y2
1 + x 1  x2 1  x n 26. x3 + y3

(x + y)2

x+y
wbGPi ˆKvbwU mwVK? iii. ˆhvMdj
an + bm
A K i I ii L i I iii bn ‰i mijK‡Z gvb ˆKvbwU?
M ii I iii N i, ii I iii wbGPi ˆKvbwU mwVK? A K
x+y
L
xy
M x  yN x + y
x2  5x  6 A K i I ii L i I iii xy x+y
5. f™²vskwUi jwNÓ¤ i…c ˆKvbwU? M ii I iii N i, ii I iii x x
x2  1 27. y  1 I 1  y ivwk `yBwUi@
(x  3) (x  2) x+6 wbGPi ZG^Åi wfwîGZ (15 I 16) bs cÉGk²i Dîi `vI:    
K L 1 1 4 32 i. ˆhvMdj 0 ii. fvMdj 1
(x + 1) (x  1) x+1 , , , PviwU
x6 x6 x – 2 x + 2 x2 + 4 x4 16 (x  y)2
M N iii. àYdj
x+1 x1 exRMvwYwZK ivwk| y2
wbGPi ZG^Åi AvGjvGK (6-8) bs cÉGk²i Dîi `vI: 15. 1g I 2q ivwki weGqvMdj wbGPi ˆKvbwU? wbGPi ˆKvbwU mwVK?
6(y2  6y + 5) 4 4 1 1 K i I ii L i I iii
8(y2  25)
‰KwU exRMvwYwZK f™²vsk| A K 2
x –4
L 2
x +4
M
x+2
N
x–2 M ii I iii N i, ii I iii
6. wbGPi ˆKvbwU f™²vskwUi nGii ‰KwU 16. ivwkgvjvi niàGjvi j.mv.à. ˆKvbwU? x z
Drcv`K nGe? A K x4 + 16 L x4 – 16 28. , f™²vsk `ywUi@
y y
A K y + 25 L 2(y + 25) M x2 + 16 N x2 – 16 y
M y5 N y1 m2 – n2 (m – n)2 i. cÉ^g f™²vskwUi àYvñK wecixZ f™²vsk x
17. 
m2 + n2 – 2mn (m + n)2 – 4mn
‰i
7. f™²vskwUi je I nGii M.mv.My. KZ? y
w«¼ZxqwUi àYvñK wecixZ f™²vsk z
A K y5 L 2(y  5) mijK‡Z gvb wbGPi ˆKvbwU? ii.
M 2(y + 5) N 2(y  1) m–n m+n x
8. f™²vskwUi jwNÓ¤ i…c ˆKvbwU? K m–n L m+ n M
m+n
N
m –n iii. fvMdj z
3(y  1) y1 x2 – 5x + 6
18. x2 – 9x + 20 f™²vskwUGK (x – 4)(x – 5) wbGPi ˆKvbwU mwVK?
A K L A K i I ii L ii I iii
4(y + 5) y+5
4(y + 5) 3(y + 1) «¼viv àY KiGj àYdj KZ nGe? M i I iii N i, ii I iii
M N 2
K x – 9x + 20 L x – 6x + 5 2
3(y + 1) 4(y + 5) x , x
x,y,z M x2 – 5x + 6 N x2 – 8x + 180 29. x+y xy
f™²vsk `yBwUi@
9. ˆK mvaviY niwewkÓ¡ f™²vsGk 2p2q3 6r2
p q r 19.  2 2 = KZ? i. nGii àYdj x2  y2
cÉKvk KiGj nGe@ 3r 4p q
x2 x+y
xqr , ypr , zpq xpq , yqr , zrp A K pq L qr M pr N pqr ii. àYdj 2 iii. fvMdj
A K L x+y 1 x  y2 xy
pqr pqr pqr pqr pqr pqr 20.  = KZ? wbGPi ˆKvbwU mwVK?
xrp , ypq , zqr xqr , ypq , zpr x2  y2 x  y
M N x+y x+y 1 A K i I ii L ii I iii
pqr pqr pqr pqr pqr pqr
x 1
A K
xy
L 2 2M
x y xy
N 1 M i I iii N i, ii I iii
10. 2+ 2 = KZ? 2 a2 a3
(x + 1) (x + 1)
21.
p – 2p + 1 p–1
ˆK x – 1 «¼viv fvM KiGj 30.  2
x3 x 9
‰i gvb KZ?
x x x2 – 2x + 1
K L fvMdj KZ nGe? a3 a
(x + 1) x+1 A K L
x 1 p–1 x–1 (x  3) (x2  9) x3
M N A K L a x+3
(x + 1)2 (x + 1) x–1 p–1 M N
1 1 2 (p – 1)3 p3 – 1 x+3 a
11. +  = KZ?
x x x M
(x – 1)3
N 3
x –1
1 L 2 K 3 M 4 K 5 N 6 M 7 L 8 K 9 K 10 N 11 L 12 M 13 L 14 N 15 K
Dîi

16 L 17 N 18 M 19 L 20 N 21 K 22 M 23 K 24 M 25 L 26 L 27 K 28 N 29 K 30 N
exRMwYZxq f™²vsk 15

m†Rbkxj iPbvgƒjK cÉk²cò


mgq: 2 N¥Ÿv 30 wgwbU; gvb-70
[ ˆh ˆKvGbv 7wU cÉGk²i Dîi `vI ]
1. M = x2  3x + 2, N = x2  5x + 6 ‰es K = x2  4x + 3, wZbwU K. 1g f™²vsk ˆ^GK 2q f™²vsk weGqvM Ki| 2
exRMwYZxq ivwk| L. 1g I 2q f™²vsGki àYdjGK 3q f™²vsk «¼viv fvM Ki| 4
M M. f™²vsk wZbwUGK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
K. x  2 ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2 x3  y3 1 1
7. A = x4 + x2y2 + y4 , B = 1  x + x2 , C = 1 + x + x2 ‰es
1 1 1
L. mij Ki : M + N + K . 4 1
D=
1 + x2 + x4
PviwU exRMwYZxq ivwk|
1 1 1
M. , ,
M N K
ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4 K. A ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
1 1 1 L. cÉgvY Ki ˆh, B  C  2x  D = 0. 4
2. x2  5x + 6 , x2  7x + 12 I x2  8x + 15 wZbwU f™²vsk| 1 + x2
M. mij Ki : D  (B + C) 4
K. cÉ^g f™²vsk `ywUi ˆhvMdj wbYÆq KGiv| 2
2p 1 1
L. ni wZbwUi M.mv.à. wbYÆq KGiv| 4 8. x = 1 + p2 + p4 , y = ‰es z = 1 + p + p2 wZbwU
1  p + p2
M. f™²vsk wZbwUGK mvaviY niwewkÓ¡ f™²vsGk cÉKvk KGiv| 4 exRMwYZxq ivwk|
1 1 2x
3. A = 1  x + x2 , B = 1 + x + x2 , C = 1 + x2 + x4 K. y ‰es z ˆK mvaviY niwewkÓ¡ f™²vsGk cwiYZ Ki| 2
L. mij Ki : x  y + z 4
x2
‰es D = 1  x6 PviwU f™²vsk| M. mij Ki : (y  z)  x 4
3a 2a a
K. C ‰i niGK Drcv`GK weGkÏlY Ki| 2 9. L = a2 + 3a  4, M = a2  1, N = a2 + 5a + 4,
L. cÉgvY Ki ˆh, A  B  C = 0 4 x3 + y3 + 3xy(x + y) (x  y)2 + 4xy
2  3 ... ... ... (a)
(x + y)  4xy x  y3  3xy(x  y)
M. A, B, C ˆK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
1 x y2
K. cÉ^g wZbwU ivwki nimgƒGni M.mv.à. wbYÆq Ki| 2
4. x  y , x2 + xy + y2 , x3  y3 wZbwU exRMvwYwZK ivwk| L. L + M + N ‰i gvb wbYÆq Ki| 4
K. f™²vsk wZbwUi nGii j.mv.à. wbYÆq Ki| 2 M. (a) ˆK mijxKiY Ki| 4
2 2 2
L. f™²vskàGjvi ˆhvMdj wbYÆq Ki| 4 10. P = x2 + 3x  4 , Q = x 2 16 ‰es R = (x  4)
x  7x + 12 x 9 (x  1)
M. cÉ`î f™²vskàGjvGK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4 2
a b a a
5. P = a2  5a + 6, Q = a2  7a + 12 ‰es R = a2  9a + 20 wZbwU K. mij Ki: b + a + 1  b2 + b + 1. 2
exRMwYZxq ivwk| L. P  Q  R = KZ? 4
a a+b M. P, Q I R ˆK mvaviY ni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
K. b  b ‰i weGqvMdj KZ? 2
3 3
a b 2ab a+b ab
1 1 11.  a  b  3ab, 1  a2 + b2 , a  b + a + b  wZbwU
L. ˆK jwNÓ¤ AvKvGi cÉKvk Ki|
+
Q R
4    
exRMwYZxq ivwk|
1 1 1
M. P , Q , R ˆK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4 K. cÉ^g ivwkGK jwNÓ¤i…Gc cÉKvk Ki| 2
1 1 2x L. w«¼Zxq ivwkGK cÉ^g ivwk «¼viv fvM Ki| 4
6. 2x + 3y , 2x  3y , 4x2  9y2 wZbwU exRMvwYwZK f™²vsk| M. ‘L’ ˆ^GK cÉvµ¦ fvMdGji mvG^ Z‡Zxq ivwki àYdj wbYÆq Ki|4
3 xy (1  x + x2)2 (1 + x + x2)2
1. K. x  1; L. (x  1) (x  3) 7. K. x2  xy + y2 ; M. 2
2 1 + p + p2 1  p + p2
2. K. (x  2) (x  4) ; L. (x  3) 8. K. 1 + p2 + p4; 1 + p2 + p4; L. 0; M. 1
3. K. (1 + x + x2) (1 – x + x2) 2a(3a + 5)
Dîigvjv

9. K. 1; L. (a + 4)(a + 1)(a  1); M. x2  y2


2(x2 + y2)
4. K. x3 – y3; L. 3 3
x –y b
10. K. a ; L. x + 3
2
5. K.  1; L.
(a  3) (a  5) 1 2
11. K. (a  b)2; L. a2 + b2 ; M. a2  b2
6y 1
6. K.  2
4x  9y2
; L. 2x;
16 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020  MwYZ

2019
a2  b2 (a + b)2  4ab a+b
DËi ms‡KZmn m„Rbkxj cÖkœ cÉk
² 6 a2 + ab +b2
,
a3  b3
‰es a2 + ab + b2 wZbwU
f™²vsk| [BÕ·vnvwb cvewjK Õ•zj I KGjR, KzwgÍÏv]
Abykxjbx-5.1 K. 1g f™²vskwUGK jwNÓ¡ AvKvGi cÉKvk Ki| 2
x 1 x a2  b2 a+b (a + b)2  4ab
cÉk
² 1 xy, yz ‰es z wZbwU exRMwYZxq f™²vsk L. mij Ki: a2 + ab + b2 + a2 + ab + b2  4
a3  b3
K. f™²vsGki jwNÓ¤i…c wK? 2 (a  b) 2
M. cÉ^g wZbwU ivwki àYdjGK  a2 + ab + b2 «¼viv fvM Ki| 4
L. f™²vsk wZbwUGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
2 2 2 2 2
M. f™²vsk wZbwUi ˆhvMdj wbYÆq Ki| 4 Dîi: K. 2 a  b 2 L. a2 – b + 2b2; M. 2 (a + b) 2 2
xz x x2y xy + z + 1 a + ab +b a + ab + b (a + ab + b )
Dîi: L. xyz, xyz ‰es xyz; M. yz x+y xy yz
² 7 (x  y)2 , x3 + y3 I x2  y2 wZbwU exRMwYZxq f™²vsk|
cÉk

2
1 1 2 + 2x 2x
cÉk
² 2 ,
1  x + x2 1 + x + x
2, , 2
x6  1 1 + x + x
4 PviwU K. f™²vsk wZbwUi niàGjvi j.mv.à wbYÆq Ki| 2
exRMvwYwZK ivwk| [cçMo miKvwi evwjKv DœP we`Åvjq] L. f™² v sk wZbwUGK mgniwewkÓ¡ f™² v sGk cÉ K vk Ki| 4
2 M. w«¼Zxq f™²vsGki ni ‰ y ‰i mnM 1 nGj f™²vskàGjvGK
3
K. 1g ivwk ˆ^GK 2q ivwk weGqvM Ki|
L. 1g, 2q I 4^Æ ivwkGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4 mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
M. 1g ivwk ˆ^GK 2q I 3q ivwk weGqvM Ki| 4 Dîi: K. (x  y)2 (x3 + y3)
(x + y)2 (x2  xy + y2) (x  y)3 (y  z) (x  y) (x2  xy + y2)
2x
Dîi: K. 1 + x2 + x4 L. (x  y)2 (x3 + y3) ,(x  y)2 (x3 + y3) ‰es (x  y)2 (x3 + y3)
2 2 2
1 + x + x2 1 – x + x2 (x + y)(x + y) (x + xy + y ) (x + y) (x  y) (y  z) (x3  y3)
2x
L. 1 + x2 + x4, 1 + x2 + x4, 1 + x2 + x4 M. 2 2 3 3
(x  y ) (x  y )
, 2 2 3 3 , 2 2 3 3
(x  y ) (x  y ) (x  y ) (x  y )
2(x3  x2  x  1) x4  y4 (x + y)2  4xy x+y
M. x6  1 cÉk
² 8 x2 + y2  2xy, , 2
x + xy + y2
wZbwU
x3  y3
1 1 2x exRMvwYwZK ivwk| [bxjdvgvix miKvwi DœP we`Åvjq]
cÉk
² 3 A = 1  x + x2 , B = 1 + x + x2 , C = 1 + x2 + x4
K. 1g f™²vskGK jwNÓ¤ AvKvGi cÉKvk Ki| 2
x2 L. 1g I 2q f™²vsGki àYdGji mvG^ 3q f™²vsk fvM Ki| 4
‰es D = 1  x6 PviwU f™²vsk| [wfKvi‚bwbmv bƒb Õ•zj ‰´£ KGjR, XvKv]
M. f™²vskàGjvGK mvaviY ni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
K. C ‰i niGK Drcv`GK weGkÏlY Ki| 2 (x2 + y2) (x + y) (x4  y4) (x2 + xy + y2)
L. cÉgvY Ki ˆh, A  B  C = 0 4 Dîi: K. (x  y)
; L. x2 + y2; M.
(x  y)2 (x2 + xy + y2)
,
M. A, B, C ˆK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4 (x  y)3 2
(x  y) (x + y)
,
Dîi: K. (1 + x + x2) (1 – x + x2); (x  y)2 (x2 + xy + y2) (x  y)2 (x2 + xy + y2)
1 + x + x2 1 – x + x2 2x
M. 1 + x2 + x4, 1 + x2 + x4, 1 + x2 + x4 Abykxjbx-5.2
² 4 gGb Ki: A = x
cÉk
 2 2
 x  42, B = x + 11x + 30 cÉk
² 9 A=x + y  z2 + 2xy, B = y2 + z2  x2 + 2yz ‰es
2 2

2 2 2
[weqvg gGWj Õ•zj I KGjR, eàov] C = z + x  y + 2zx. [iscyi KÅvGWU KGjR]
x2  x  2 a2  7a + 12
K. jwNÓ¤ AvKvGi cÉKvk Ki: x2  1 . 2 K. a2  16 ivwkwU jwNÓ¤ AvKvGi cÉKvk Ki| 2
1 1 1 1 1
L. A ‰es B ˆK mvaviY ni wewkÓ¡ f™²vsGk cÉKvk Ki| 4 L. A , B I C ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4
A B x+6 xy CB 2
M. mij Ki: x2  36  x2  25  x2  12x + 35. 4 M. mij Ki : A  BC  C 4
x2 x+5 x7 a3 (y + z  x)
Dîi: K. x  1; L. (x2 + 11x + 30)(x  7) ‰es (x2 + 11x + 30)(x  7); Dîi: K. a + 4 M. (x + y + z) (x + y  z)
1
M. x  6 cÉk
² 10 A = x + 2, B = x2 − 4, C = x2 − 2x + 4, D = x2 + 2x
+ 4 ‰es E = x3 − 8
cuvPwU exRMwYZxq ivwk| [cvebv KÅvGWU KGjR]
4 2 2
² 5 x4 + x2 + 1 , x3  1 , x3 + 1 wZbwU exRMwYZxq f™²vsk|
cÉk
 K. A I C ‰i M.mv.à. wbYÆq Ki| 2
1 x + 2 6x
K. 1g f™²vsGki niGK Drcv`GK weGkÏlY Ki| 2 L. mij Ki : A − C + E 4
L. 1g I 2q f™²vsGki ˆhvMdj ˆ^GK 3q f™²vsk weGqvM Ki| 4 A 1 1 C
M. cÉgvY Ki, B  C  E  D = 1 4
M. f™²vsk wZbwUGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
4x2 2(x3  1) 96x
Dîi: K. 1 L. x6 − 64
Dîi: K. (x2 + x + 1) (x2  x + 1); L. x6  1; M. x6  1
exRMwYZxq f™²vsk 17

1 1 1 1 1 2a
cÉk
² 11 A = x2  5x + 6, B = x2  7x + 12 , C = x2  9x + 20 
cÉk
² 16 1  a + a2
,
1 + a + a2
I 1 + a2 + a4
wZbwU
[eÐ-~ evWÆ Õ•zj ‰´£ KGjR, wmGjU]exRMvwYZxq ivwk|
K. C ‰i niGK Drcv`GK weGkÏlY Ki| 2 K. 3q ivwkwUi niGK Drcv`GK weGkÏlY Ki| 2
1 L. 1g ivwk ˆ^GK evwK `yBwU ivwk weGqvM KGi weGqvMdGji mvG^
L. cÉgvY Ki ˆh, A  B  C = x2  7x + 10 4
a  b + a + b ˆhvM Ki| 4
M. A, B ‰es C ˆK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4  a b 
M. wZbwU ivwki ˆhvMdjGK ˆKvb ivwk «¼viv fvM KiGj fvMdj 2
Dîi: K. (x – 4) (x – 5)
cvIqv hvGe? 4
1 a3 + b3 a4 + a3 + a2  1
cÉk
² 12 a2  ab + b2, 2a
,
4a2
wZbwU
Dîi: K. (1 + a + a2) (1  a + a2) L.
a2 + 2ab  b2 1
M. 1  a + a2
ab
exRMwYZxq f™²vsk| [wf. ˆR miKvwi gvaÅwgK we`Åvjq, PzqvWvãv] x–y y–z
² 17 (y + z)(z + x) , (x + y)(z + x) `yBwU exRMwYZxq f™²vsk|
cÉk

K. Z‡Zxq f™²vsGki jeGK Drcv`GK weGkÏlY Ki| 2
L. 1g f™²vsGki ni ‰es 2q I Z‡Zxq f™²vsGki jGei j.mv.à. wbYÆq K. f™²vsk `ywUi nGii j.mv.à. ˆei Ki| 2
4 L. ˆ`LvI ˆh, ‰i
2 2 2 2 2 2
yz + xz + y z + x y + x z + xy + 2xyz
Ki|
1 3 3 4
a +b a +a b +b 2 2 4 Drcv`K f™² v sk `y w Ui nGii j.mv.à. ‰i mgvb| 4
M. a2 + ab + b2  2a  4a2 =? 4 M. f™²vsk `ywUi ˆhvMdGji mvG^ KZ ˆhvM KiGj ˆhvMdGji gvb
Dîi: K. (a + 1) (a + a − 1);
3 kƒbÅ nGe? 4
z–x
L. (a + b) (a2 − ab + b2) (a + 1) (a3 + a − 1); M. 2a(a + b)
1 Dîi: K. (y + z)(z + x) (x + y); M. (x + y)(y + z)
x2 – 4 x–7
cÉk
² 13 (i) a3  3a2  10a, a3 + 6a2 + 8a, a4  5a3  14a2 ² 18 x2 – 49 , x – 2 `yBwU exRMwYZxq f™²vsk|
cÉk

wZbwU exRMvwYwZK ivwk| K. f™²vsk `ywUGK àY Ki| 2
‰es R = y3 + 8.
(ii) P = y  2, Q = y2 + 2y + 4 L. ‘K’ àYdjwUi je I nGii mvG^ x àY KGi je ˆ^GK 3 weGqvM
K. (i) ‰i Z‡Zxq ivwkGK Drcv`GK weGkÏlY KGiv| 2 x2 – 6x + 5
‰es nGii mvG^ 12 ˆhvM KGi cÉvµ¦ f™²vskwUGK x2 – x – 20 «¼viv
L. (i) ‰i wZbwU ivwki M.mv.à. wbYÆq KGiv| 4
fvM Ki| 4
1 y2 6y
M. mij KGiv: P  Q + R . 4 x2 – 6x x+1
M. ˆ`LvI ˆh, x2 – 7x + 6 ˆ^GK x2 – 1 weGqvM KiGj cÉvµ¦ gvb
12y4
Dîi: K. a2(a  7) (a + 2); L. a(a + 2); M. y6  64 ‘L’ ˆ^GK cÉvµ¦ fvMdGji gvGbi mgvb| 4
x+2
1 1 2p Dîi: K. x + 7 L. 1
cÉk
² 14 1  p + p2 , 1 + p + p2 ‰es 1 + p2 + p4 wZbwU
1 1
exRMvwYZxq f™²vsk| cÉk
² 19 2x + 2 , 2x – 2 `yBwU exRMwYZxq f™²vsk|
K. 3q f™²vsGki niGK Drcv`GK weGkÏlY Ki| 2 K. f™²vsk `ywUGK ˆhvM Ki| 2
1 1 2p L. ‘K’ ˆ^GK cÉvµ¦ ˆhvMdj ‰i jeGK ni ‰es niGK je aGi
L. cÉgvY Ki ˆh, 1  p + p2  1 + p + p2  1 + p2 + p4 = 0 4 1
cÉvµ¦ f™²vsGki gvb 3 nGj x2 + x2 ‰i gvb wbYÆq Ki| 4
M. f™²vsk 3wUGK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4 3 3 2
x +x x –x +x–1
Dîi: K. (1 + p + p2)(1  p + p2); L. 0; M. x2 + x ˆK x
«¼viv fvM KGi ‘L’ ˆ^GK cÉvµ¦ gvb
2p
M. 1 + p2 + p4 «¼viv fvMdj wbYÆq Ki| 4
x 1
Dîi: K. x2 – 1 L. 11 M. 3
cÉk
² 15 M = a  b, N = a + b ‰es R = x2  2x + 1 a4 + a2b2 + b4 a3 + b3
cÉk
² 20 a3 + b3
, 2
a  b2
`yBwU exRMwYZxq ivwk|
[KÝevRvi miKvwi DœP we`Åvjq, KÝevRvi]
K. MN-ˆK `yBwU eGMÆi A¯¦i…Gc cÉKvk Ki| 2 K. cÉ^g f™²vsGki je I nGii M.mv.à. ˆei Ki| 2
L. f™²vsk `yBwUGK ˆhvM Ki| 4
L. mij Ki:  a  a    b  b  +  N + M   N  M 4 a4 + a3b + a2b2
M N M N M N M N M. f™²vsk `yBwUi ˆhvMdGji mvG^ fvM KiGj
a3  b3
M. R = 0 nGj x5 + 15 -‰i gvb wnmve Ki| 4 a+b
x fvMdj a ‰i KZ àY? 4
3a2 + b2 3 2
Dîi: K. a2  b2; L. 2ab
; M. 2 2a
Dîi: K. a2  ab + b2 L. a2  b2 M. (a + b)2
2a

You might also like