Aaåvq-5 Exrmwyzxq F™ VSK: Wemz Eqgii R MWM Cixþvi Cék I Mgvavb
Aaåvq-5 Exrmwyzxq F™ VSK: Wemz Eqgii R MWM Cixþvi Cék I Mgvavb
K ˆ`Iqv AvGQ, C = x2 + 4x + 3
wbGYÆq mvaviY niwewkÓ¡ f™²vskmgƒn
C x2 + 4x + 3 x2 + 3x + x + 3 (x + 3) (x + 1) (x 2) (x + 1)
‰Lb, x2 + x = x(x + 1) = x(x + 1)
,
(x + 3) (x 3) (x 2) (x + 1) (x + 3) (x 3) (x 2) (x + 1)
,
x(x + 3) + 1(x + 3) (x 3) (x 2)
= (Ans.)
x(x + 1) (x + 3) (x 3) (x 2) (x + 1)
(x + 3) (x + 1) x + 3 cÉk
² 2 (i) a3 3a2 10a, a3 + 6a2 + 8a, a4 5a3 14a2
= = (Ans.)
x(x + 1) x
wZbwU exRMvwYwZK ivwk| B [Xv. ˆev. 16]
L ˆ`Iqv AvGQ, A = x2 5x + 6
2
(ii) P = y 2, Q = y + 2y + 4 ‰es R = y + 8. 3
B = x2 9
1 1 1 1
K. (i) ‰i Z‡Zxq ivwkGK Drcv`GK weGkÏlY Ki| 2
+ = +
A B x2 5x + 6 x2 9 L. (i) ‰i wZbwU ivwki M.mv.à. wbYÆq Ki| 4
1 1 1 y2 6y
= +
x2 3x 2x + 6 x2 (3)2 M. mij Ki: P Q + R . 4
=
1
+
1 2 bs cÉGk²i mgvavbA
x(x 3) 2(x 3) (x + 3) (x 3)
K ˆ`Iqv AvGQ,
1 1
= +
(x 3) (x 2) (x + 3) (x 3) (i) ‰i Z‡Zxq ivwk = a4 5a3 14a2
x+3+x2 2x + 1 = a2(a2 5a 14)
= =
(x + 3) (x 3) (x 2) (x + 3) (x 3) (x 2) = a2(a2 7a + 2a 14)
2x + 1 = a2{a(a 7) + 2 (a 7)}
= 2 (Ans.)
(x 9) (x 2)
= a2(a 7) (a + 2) (Ans.)
M ˆ`Iqv AvGQ, A = x2 5x + 6
L (i) ‰i ˆÞGò,
B = x2 9
1g ivwk = a3 3a2 10a = a(a2 3a 10)
C = x2 + 4x + 3
1,1,1 1 1 1 = a(a2 5a + 2a 10) = a{a(a 5) + 2(a 5)}
AZ‰e, A B C
f™²vskàGjv x2 5x + 6 , x2 9 , x2 + 4x + 3 = a(a 5) (a + 2)
‰LvGb, 1g f™²vsGki ni = x2 5x + 6 = x2 3x 2x + 6 2q ivwk = a3 + 6a2 + 8a = a(a2 + 6a + 8)
= (x 3) (x 2) = a(a2 + 4a + 2a + 8) = a{a(a + 4) + 2(a + 4)}
2q f™²vsGki ni = x2 9 = (x + 3) (x 3) = a(a + 2) (a + 4)
=
y2 + 2y + 4 (y 2)2
+ 3
6y niàGjvi j.mv.à = (x 2) (x 1) (x 3)
(y 2) (y2 + 2y + 4) y + 8
1 x3
y2 + 2y + 4 (y2 4y + 4) 6y cÉ^g f™²vsk = (x 2) (x 1) = (x 2) (x 1) (x 3)
= + 3
(y 2) (y2 + 2y + 22) y +8
1 x1
y2 + 2y + 4 y2 + 4y 4 6y w«¼Zxq f™²vsk = (x 2) (x 3) = (x 1) (x 2) (x 3)
= + 3
y3 23 y +8
1 x2
6y 6y Z‡Zxq f™²vsk = (x 3) (x 1) = (x 1) (x 2) (x 3)
= 3 + 3
y 8 y +8
x3
6y4 + 48y + 6y4 48y wbGYÆq f™²vskàGjv, (x 1) (x 2) (x 3) ,
=
(y3 8) (y3 + 8)
12y4 12y4 x1
= ,
3 2 2= 6 (Ans.) (x 1) (x 2) (x 3)
(y ) 8 y 64
x2
cÉk
² 3 M = x2 3x + 2, N = x2 5x + 6 ‰es K = x2 4x + 3, (Ans.)
(x 1) (x 2) (x 3)
wZbwU exRMwYZxq ivwk| A [iv. ˆev. 17] 1 1 2x
M
cÉk
² 4 2x + 3y , 2x 3y , 4x2 9y2 wZbwU exRMvwYwZK f™²vsk|
K. x2
ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
[w`.ˆev. 17]
1 1 1
L. mij Ki : + + .
M N K
4 K. 1g f™²vsk ˆ^GK 2q f™²vsk weGqvM Ki| 2
1 1 1 L. 1g I 2q f™²vsGki àYdjGK 3q f™²vsk «¼viv fvM Ki| 4
M. M , N , K ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4
M. f™²vsk wZbwUGK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
3 bs cÉGk²i mgvavb A 4 bs cÉGk²i mgvavbA
K ˆ`Iqv AvGQ, M = x2 3x + 2
1
K ˆ`Iqv AvGQ, cÉ^g f™²vsk = 2x + 3y
= x2 2x x + 2
= x(x 2) 1(x 2) 1
w«¼Zxq f™²vsk = 2x 3y
= (x 2) (x 1)
M (x 2) (x 1) weGqvMdj = 1g f™²vsk 2q f™²vsk
= = x 1 (Ans.)
x2 (x 2) 1 1
=
L ‘K’ nGZ cvB, M = (x 2) (x 1)
2x + 3y 2x 3y
ˆ`Iqv AvGQ, N = x2 5x + 6 = x2 2x 3x + 6 2x 3y 2x 3y
=
(2x + 3y)(2x 3y)
= x(x 2) 3(x 2) = (x 2) (x 3)
6y 6y
‰es K = x 4x + 3 = x2 3x x + 3
2 =
(2x)2 (3y)2
= 2
4x 9y2
(Ans.)
= x(x 3) 1(x 3) = (x 3) (x 1) 2x
1 1 1 L ˆ`Iqv AvGQ, 3q f™²vsk = 4x2 9y2
‰Lb, + +
M N K
1 1
1 1 1 1g I 2q f™²vsGki àYdj = (2x + 3y) (2x 3y)
= + +
(x 2) (x 1) (x 2) (x 3) (x 3) (x 1)
1
x3+x1+x2 3x 6 =
= = (2x + 3y)(2x 3y)
(x 2) (x 1) (x 3) (x 2) (x 1) (x 3)
1 1
3(x 2) 3 = =
= = (Ans.) (2x)2 (3y)2 4x2 9y2
(x 2) (x 1) (x 3) (x 1) (x 3)
1
M ‘K’ I ‘L’ nGZ cvB, M = (x 2) (x 1)
1g I 2q f™²vsGki àYdj 4x2 9y2
fvMdj = 3q f™²vsk =
2x
N = (x 2) (x 3) 4x2 9y2
K = (x 3) (x 1)
1 (4x2 9y2) 1
1 1 = 2 2 = (Ans.)
cÉ^g f™²vsk, =
M (x 2) (x 1)
(4x 9y ) 2x 2x
1 1 2x
1 1 M cÉ`î f™²vskàGjv 2x + 3y , 2x 3y , 4x2 9y2
w«¼Zxq f™²vsk, N = (x 2) (x 3)
1 1
‰LvGb, 1g f™²vsGki ni = 2x + 3y
Z‡Zxq f™²vsk, K = (x 3) (x 1) 2q f™²vsGki ni = 2x 3y
exRMwYZxq f™²vsk 3
3q f™²vsGki ni = 4x2 9y2 = (2x)2 (3y)2 M evgcÞ = Q R x 1
x2 9
= (2x + 3y)(2x 3y)
x2 + 2x 3 x2 + 12x + 35 x2 9
niàGjvi j.mv.à. = (2x + 3y)(2x 3y) =
x2 + 6x 7
2
x + 4x 5
x1
1 1(2x 3y)
AZ‰e, 1g f™²vsk = 2x + 3y = (2x + 3y)(2x 3y) =
(x + 3) x2 + 5x + 7x + 35 x2 32
2 [‘L’ nGZ]
(x + 7) x + 5x x 5 x1
2x 3y
= (x + 3) x(x + 5) + 7(x + 5) (x + 3) (x 3)
4x2 9y2 =
(x + 7) x(x + 5) 1(x + 5) (x 1)
1 1(2x + 3y)
2q f™²vsk = 2x 3y = (2x 3y)(2x + 3y) (x + 3) (x + 5) (x + 7) (x 1) 1
= = = WvbcÞ
(x + 7) (x + 5) (x 1) (x + 3) (x 3) x 3
2x + 3y
= x2 9 1
4x2 9y2 QR = (ˆ`LvGbv nGjv)
x1 x3
2x 2x 1 2x
3q f™²vsk = 4x2 9y2 = (4x2 9y2) 1 = 4x2 9y2
x3 y3 1 1
cÉk
² 6 A=
x4 + x2y2 + y4
,B=
1 x + x2
,C=
1 + x + x2
2x 3y 2x + 3y 2x
wbGYÆq f™²vskàGjv: 4x2 9y2 , 4x2 9y2 I 4x2 9y2 (Ans.)
1
‰es D = 1 + x2 + x4 PviwU exRMwYZxq ivwk| [P. ˆev. 17]
2 2 2
x + 3x 4 x + 2x 3 , x + 12x + 35
cÉk
² 5 P = x2 + 7x + 12 , Q = 2 R= 2 .
x + 6x 7 x + 4x 5 K. A ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
[Kz. ˆev. 17] L. cÉgvY Ki ˆh, B C 2x D = 0. 4
K. P ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2 1+x 2
M. mij Ki : D (B + C) 4
L. P + Q ˆK mij Ki| 4
M. ˆ`LvI ˆh, Q R xx 19
2
=
1
. 4 6 bs cÉGk²i mgvavb A
x3
x3 y3 (x y) (x2 + xy + y2)
5 bs cÉGk²i mgvavb A K A = x4 + x2y2 + y4 = (x2)2 + 2x2y2 + (y2)2 x2y2
K ˆ`Iqv AvGQ,
(x y) (x2 + xy + y2)
=
x2 + 3x 4 x2 + 4x x 4 (x2 + y2)2 (xy)2
P= =
x2 + 7x + 12 x2 + 3x + 4x + 12 (x y) (x2 + xy + y2)
=
x(x + 4) 1(x + 4) (x + xy + y2) (x2 xy + y2)
2
=
x(x + 3) + 4(x + 3) xy
=
(x + 4) (x 1) x 1 x2 xy + y2
= = (Ans.)
(x + 4) (x + 3) x + 3 1 1
L ˆ`Iqv AvGQ, B = 1 x + x2 ; C = 1 + x + x2
x2 + 3x 4 x2 + 2x 3
L
P+Q= 2 +
x + 7x + 12 x2 + 6x 7
1 1 1
‰es D = 1 + x2 + x4 = 1 + 2x2 + x4 x2 = (1 + x2)2 x2
x 1 x2 + 3x x 3
= +
x + 3 x2 + 7x x 7
[‘K’ nGZ]
1
=
x 1 x(x + 3) 1 (x + 3) (1 + x + x2) (1 x + x2)
= +
x + 3 x(x + 7) 1 (x + 7)
evgcÞ = B C 2x D
x 1 (x + 3) (x 1)
= + 1 1 1
x + 3 (x + 7) (x 1)
= 2x
1 x + x2 1 + x + x2 (1 + x + x2) (1 x + x2)
x1 x+3
= + 1 1 2x
x+3 x+7
= 2
1 x + x2 1 + x + x (1 + x + x2) (1 x + x2)
(x 1) (x + 7) + (x + 3) (x + 3)
= 1 + x + x2 1 + x x2 2x
(x + 3) (x + 7)
=
(1 x + x2) (1 + x + x2)
x2 x + 7x 7 + x2 + 3x + 3x + 9
=
x2 + 7x + 3x + 21 2x 2x 0
= =
2
2x + 12x + 2 (1 x + x2) (1 + x + x2) (1 x + x2) (1 + x + x2)
=
x2 + 10x + 21 = 0 = WvbcÞ
2(x2 + 6x + 1)
= 2
(x + 10x + 21)
(Ans.) B C 2x D = 0 (cÉgvwYZ)
4 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020 MwYZ
2
1+x 1 (x + 1)(x + 3)
M
D
(B + C) =
(x – 2)(x – 3) (x + 1)(x + 3)
1 + x2 1 1 (x + 1)(x + 3)
= =
1 1 x + x2 + 1 + x + x2 (x + 1)(x + 3)(x – 2)(x – 3)
2 2
(1 + x + x ) (1 x + x ) 1
2q f™²vsk, Q = (x + 3)(x – 3)
1 + x + x2 + 1 x + x2
= (1 + x2) (1 + x + x2) (1 x + x2)
(1 x + x2) (1 + x + x2) 1 (x + 1)(x – 2)
=
2 + 2x 2 (x + 3)(x – 3) (x + 1)(x – 2)
= (1 + x2) (1 + x + x2) (1 x + x2)
(1 x + x2) (1 + x + x2) (x + 1)(x – 2)
=
2
(1 x + x ) (1 + x + x ) 2 (x + 1)(x + 3)(x – 2)(x – 3)
= (1 + x2)(1 + x + x2)(1 – x + x2)
2(1 + x2) 1
‰es 3q f™²vsk, R = (x + 1)(x + 3)
(1 x + x2)2 (1 + x + x2)2
= (Ans.) 1 (x – 2)(x – 3)
2
=
(x + 1)(x + 3) (x – 2)(x – 3)
1 1 1
cÉk
² 7 P = x2 – 5x + 6, Q = x2 – 9 ‰es R = x2 + 4x + 3 B =
(x – 2)(x – 3)
(x + 1)(x + 3)(x – 2)(x – 3)
[wm. ˆev. 17]
myZivs, P, Q I R f™²vsk wZbwUGK mgni wewkÓ¡ f™²vsGk
1 1 1
K. P + Q + R ‰i gvb wbYÆq Ki| 2 cÉKvk Kiv nGjv| (Ans.)
L. P + Q R ˆK mij Ki| 4 x+1 x2 + x x2
cÉk
² 8 A = x 1, B = x2 + x 2 , C = x2 + 5x + 6 ‰es
M. P, Q ‰es R ˆK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
x2 y2
7 bs cÉGk²i mgvavb D= PviwU exRMvwYwZK f™²vsk| A [wm. ˆev. 16]
x3 y3
1 1
K ˆ`Iqv AvGQ,
P= 2
x – 5x + 6
;Q= 2
x –9 K. D ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
1 x
‰es R = x2 + 4x + 3 L. cÉgvY Ki ˆh, A ÷ B C = x + 3 . 4
1 1 1 1 1 1 M. A, B ‰es C ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4
+ + = + +
P Q R 1 1 1 8 bs cÉGk²i mgvavbA
x2 – 5x + 6 x2 – 9 x2 + 4x + 3
= x2 – 5x + 6 + x2 – 9 + x2 + 4x + 3
K ˆ`Iqv AvGQ,
= 3x2 – x(Ans.) x2 y2 (x + y) (x y) x+y
D= = = 2 (Ans.)
x3 y3 (x y) (x2 + xy + y2) x + xy + y2
L P+QR
x+1
1 1 1 L ˆ`Iqv AvGQ, A = x 1
= +
x – 5x + 6 x2 – 9 x2 + 4x + 3
2
x2 + x x (x + 1)
1 1 1 Avevi, B = x2 + x 2 = x2 + 2x x 2
= 2 +
x – 2x – 3x + 6 x2 – 32 x2 + 3x + x + 3
x(x + 1)
1 1 1 =
= + x(x + 2) 1(x + 2)
x(x – 2) – 3(x – 2) (x + 3)(x – 3) x(x + 3) + 1(x + 3)
1 1 (x + 3)(x + 1) x(x + 1)
= + =
(x – 2)(x – 3) (x + 3)(x – 3) 1 (x + 2) (x 1)
x2 x2
=
1
+
x + 1 1 + (x – 2)(x + 1)
= ‰es C = x2 + 5x + 6 = x2 + 3x + 2x + 6
(x – 2)(x – 3) (x – 3) (x – 2)(x – 3)
1 + x2 – 2x + x – 2 x2 – x – 1 x2 x2
= = (Ans.) = =
(x – 2)(x – 3) (x – 2)(x – 3) x(x + 3) + 2(x + 3) (x + 3) (x + 2)
x+1 x(x + 1) x2
1
M ˆ`Iqv AvGQ, P = x2 – 5x + 6 = (x – 2)(x – 3)
1 ‰Lb, A B C = x 1 (x + 2) (x 1) (x + 3) (x + 2)
1 1 (x + 1) (x + 2) (x 1) x2 x
Q= = = =
2
x – 9 (x + 3)(x – 3) (x 1) x(x + 1) (x + 3) (x + 2) x + 3
1 1 x
‰es R = x2 + 4x + 3 = (x + 1)(x + 3) ABC=
x+3
(cÉgvwYZ)
K. 1g I 2q ivwkGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 2 wZbwU exRMwYZxq ivwk| [e. ˆev. 17]
L. ˆ`LvI ˆh, 3q ivwk + 2q ivwk 1g ivwk = 0| 4 K. y ‰es z ˆK mvaviY niwewkÓ¡ f™²vsGk cwiYZ Ki| 2
L. mij Ki : x y + z 4
M. 2q ivwk 3q ivwk 4^Æ ivwk ‰i mijdj wbYÆq Ki| 4
M. mij Ki : (y z) x 4
9 bs cÉGk²i mgvavb A
1
10 bs cÉGk²i mgvavbA
K 1g f™²vsk = 1 x + x2
1 1
K ˆ`Iqv AvGQ, y = 1 p + p2 ; z = 1 + p + p2
1
2q f™²vsk = 1 + x + x2
y I z ‰i niàGjvi j.mv.à.
niàGjvi j.mv.à. = (1 + x + x )(1 x + x ) = 1 + x + x
2 2 2 4 = (1 + p + p2)(1 p + p2) = {(1 + p2) + p} {(1 + p2) p}
1 (1 + x + x2) = {(1 + p2)2 p2} = 1 + 2p2 + p4 p2 = 1 + p2 + p4
1g f™²vsk = 1 x + x2 = (1 + x + x2)(1 x + x2) 1 (1 + p + p2) 1 + p + p2
y= 2= 2 2 = 2
1 p + p (1 + p + p )(1 p + p ) 1 + p + p
4 (Ans.)
1 + x + x2
= (Ans.) (1 p + p2) 1 p + p2
1 + x2 + x4 1
z = 1 + p + p2 = (1 + p + p2)(1 p + p2) = 1 + p2 + p4 (Ans.)
1 (1 x + x2)
2q f™²vsk = 1 + x + x2 = (1 + x + x2)(1 x + x2) 2p 1 1
L x y + z = 1 + p 2 + p4 1 p + p 2 + 1 + p + p 2
1 x + x2
= (Ans.) 2p 1 1
1 + x2 + x4 = + 2
(1 + p + p2)(1 p + p2) 1 p + p2 1 + p + p
L evgcÞ = 3q ivwk + 2q ivwk 1g ivwk
[‘K’ ˆ^GK cvB]
2x 1 1 2
2p 1 p p + 1 p + p 2
2p 2p
= +
1 + x2 + x4 1 + x + x2 1 x + x2 = =
(1 + p + p2)(1 p + p2) (1 + p + p2)(1 p + p2)
2x 1 1 0
= + 2 = =0
1 + 2x2 + x4 x2 1 + x + x 1 x + x2 (1 + p + p2)(1 p + p2)
2x 1 1 x y + z = 0 (Ans.)
= + 2
(1 + x2)2 x2 1 + x + x 1 x + x2
M (y z) x
2x 1 1
= + 2 1 1 2p
=
1 p + p2 1 + p + p2 1 + p2 + p4 [ˆ`Iqv AvGQ]
(1 + x + x2) (1 x + x2) 1 + x + x 1 x + x2
2 2
2x + 1(1 x + x ) 1(1 + x + x ) 2 2
= 1 + p + p (1 p + p ) 2p
(1 + x + x2) (1 x + x2) = 2 2 2 4
(1 + p + p ) (1 p + p ) 1 + p + p
2x + 1 x + x2 1 x x2 2 2
= 1 + p + p 1 + p p 2p
(1 + x + x2) (1 x + x2) = 2 4 2 4
1 + p + p 1+p +p
2x 2x 2p (1 + p2 + p4)
= = 4 = 1 (Ans.)
(1 + x + x2) (1 x + x2) 2
(1 + p + p ) 2p
6 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020 MwYZ
2(x 4) (x 2) (x 5)
= ,
(x 3) (x 4) (x 5) (x 2) (x 3) (x 4) (x 5)
1 1 2 (x 2) (x 3)
+ = (Ans.) (Ans.)
B C (x 3) (x 5) (x 2) (x 3) (x 4) (x 5)
exRMwYZxq f™²vsk 7
1 1 (a2 + b2) (a + b)
= = (Ans.)
P a2 5a + 6 (a b)
1
=
1 L ‰LvGb,
Q a2 11a 12
(a + b)2 4ab
1 1 2q f™²vsk = a3 b3
= 2
R a 9a + 20
a+b
‰LvGb, 1g f™²vsGki ni = a2 5a + 6 3q f™²vsk = a2 + ab + b2
= a2 3a 2a + 6
2q f™²vsk I 3q f™²vsk ˆhvM KGi cvB,
= a(a 3) 2 (a 3)
(a + b)2 4ab a+b
= (a 3) (a 2) + 2
a3 b3 a + ab + b2
2q f™²vsGki ni = a2 11a 12 (a b)2 a+b
2 = + 2 2
= a 12a + a 12 (a b)(a2 + ab + b2) a + ab + b
= (a 12) + 1 (a 12) ab a+b
= +
= (a 12) (a + 1) a2 + ab + b2 a2 + ab + b2
3q f™²vsGki ni = a2 9a + 20 =
ab+a+b
2
a2 + ab + b2
= a 4a 5a + 20
2a
= (a 4) (a 5) = (Ans.)
a2 + ab + b2
f™²vskàGjvi nGii j.mv.à.
M 1g f™²vsGki ni = a2 + b2 2ab = (a b)2
= (a 3) (a 2) (a 12) (a + 1) (a 4) (a 5)
1 1 2q f™²vsGki ni = a3 b3 = (a b) (a2 + ab + b2)
1g f™²vsk = a2 5a + 6 = (a 3) (a 2)
3q f™²vsGki ni = a2 + ab + b2
(a 12) (a + 1) (a 4) (a 5)
=
(a 3) (a 2) (a 12) (a + 1) (a 4) (a 5)
(Ans.) niàGjvi j.mv.à. = (a b)2 (a2 + ab + b2)
(a b)2 (a2 + ab + b2)
2q f™²vsk = a2 11a 12
1 ‰Lb, (a b)2
= a2 + ab + b2
=
(a 3) (a 2) (a 12) (a + 1)
(Ans.) 2q f™²vsk
(a 3) (a 2) (a 12) (a + 1) (a 4) (a 5)
(a + b)2 4ab (a b)2 (a b)
= 3 3 =
a b (a b) (a2 + ab + b2) (a b)
a4 b4 (a + b)2 4ab a+b
cÉk
² 4 a2 + b2 2ab , a3 b3
, 2
a + ab + b2 (a b)3
=
(a b) (a2 + ab + b2)
2
exRMwYZxq f™²vsk|
(a b)2 (a2 + ab + b2)
K. cÉ^g ivwkGK jwNÓ¤ AvKvGi cÉKvk Ki| 2 Avevi, (a2 + ab + b2)
= (a b)2
Abykxjbx 5.2
DËi ms‡KZmn m„Rbkxj cÖkœ
cÉk
² 1 A = x + 2, B = x2 − 4, C = x2 − 2x + 4, D = x2 + 2x + x2 + 3x 4 x2 16 (x 4)2
4 ‰es E = x − 8 cuvPwU exRMwYZxq ivwk|
3 cÉ
k² 2 P = 2
x 7x + 12
, Q = 2
x 9
‰es R =
(x 1)
A
K. A I C ‰i M.mv.à. wbYÆq Ki| 2 K. Q ˆ^GK ˆKvb mvswLÅK gvb weGqvM KiGj weGqvMdGji jGe
1 x + 2 6x
L. mij Ki : A − C + E 4 ˆKvGbv x ^vKGe bv? 2
A 1 1 C L. P Q R = KZ? 4
M. cÉgvY Ki, B C E D = 1 4
M. P, Q I R ˆK mvaviY niwewkÓ¡ f™²vsGk cÉKvk Ki| 4
96x Dîi: K. L.
Dîi: K. 1 L. 6 x − 64
1; x + 3
=
(x + 3) (x + 7) (x + 3)
M. A, B ‰es C ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4
(x + 7) (x – 1) (x – 1)
7 bs cÉGk²i mgvavb
(x + 3) (x – 1)
=
(x – 1) (x + 3) K ˆ`Iqv AvGQ,
=1 x2 y2 (x + y) (x y) x+y
D= = = 2 (Ans.)
= WvbcÞ x3 y3 (x y) (x2 + xy + y2) x + xy + y2
x2 – 9 x+1
Q R x2 – 4x + 3 = 1 (cÉgvwYZ) L
ˆ`Iqv AvGQ, A = x 1
a4 b4 ab a+b x2 + x x (x + 1)
cÉk
² 6 a2 2ab + b2 , a3 + b3 , a3 + b3 Avevi, B = x2 + x 2 = x2 + 2x x 2
K. 1g ivwkGK jwNÓ¤ AvKvGi cÉKvk Ki| 2 x(x + 1) x(x + 1)
= =
L. ivwk wZbwUi àYdj wbYÆq Ki| 4 x(x + 2) 1(x + 2) (x + 2) (x 1)
M. 1g ivwkGK a3 + a2b + ab2 + b3 «¼viv fvM KGi fvMdGji mvG^ x2 x2
‰es C = x2 + 5x + 6 = x2 + 3x + 2x + 6
a2
a+b
ˆhvM Ki| 4 x2 x2
= =
6 bs cÉGk²i mgvavb x(x + 3) + 2(x + 3) (x + 3) (x + 2)
a4 b4 (a2)2 (b2)2 x+1 x(x + 1) x2
K 1g ivwk
= 2 2 =
‰Lb, A B C = x 1 (x + 2) (x 1) (x + 3) (x + 2)
a 2ab + b (a b)2
(a + b ) (a b ) (a2 + b2) (a + b) (a b)
2 2 2 2 (x + 1) (x + 2) (x 1) x2 x
= = = =
(a b)2 (a b)2 (x 1) x(x + 1) (x + 3) (x + 2) x + 3
2 2
(a + b ) (a + b) x
= ABC=
x+3
(cÉgvwYZ)
(a b)
12 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020 MwYZ
=
5x + 9 K. P ˆK jwNÓ¤ AvKvGi cÉKvk Ki| 2
(x 2) (x + 1) (x + 3) RQ
5x + 9 4x 8 L. mij Ki: R+Q
4
‰Lb, (x 2) (x + 1) (x + 3) (x 2) (x 1) (x + 3)
M. P, Q ‰es R f™²vskGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
5x2 + 9x 5x 9 (4x2 8x + 4x 8)
= 11 bs cÉGk²i mgvavb
(x 2) (x + 1) (x + 3) (x 1)
5x2 + 4x 9 4x2 + 4x + 8 K ˆ`Iqv AvGQ,
= 81 y4
(x 2) (x + 1) (x + 3) (x 1) P=
9 6y + y2
x2 + 8x 1
= (Ans.) 92 (y2)2
(x 2) (x + 1) (x + 3) (x 1) = 2
3 2.3y + y2
a3 b3 (a + b)2 3ab a + b (9 + y2) (9 y2)
cÉk
² 10 (a b)2 + 3ab , a3 b3
, ‰es =
ab (3 y)2
a3 + b3 (9 + y2)(3 + y) (3 y)
a + a2b2 + b4
4 PviwU exRMwYZxq ivwk| =
(3 y)2
1 2m 1 1 2
(9 + y ) (3 + y)
K. 1 + m + 1 m2 m m2 = KZ? 2 = (Ans)
3y
L. cÉ^g ivwkGK Z‡Zxq ivwk «¼viv àY KGi cÉvµ¦ àYdGji mvG^ L ˆ`Iqv AvGQ,
KZ àY KiGj a3 + b3 àYdj nGe? 4 (3 + y)2 12y 9 + 6y + y2 12y 9 3y + y2
Q= 3 = 3 3 =
M. cÉ^g ivwk wZbwUi àYdjGK PZz^Æ ivwk «¼viv fvM Ki| 4 27 y 3 y (3 y) (9 + 3y + y2)
3+y 3+y 3+y
10 bs cÉGk²i mgvavb R= = = 2
(3 + y)2 3y 9 + 6y + y2 3y 9 + 3y + y
1 2m 1 1
K cÉ`î ivwk = 1 + m + 1 m2 m m2
3+y 9 3y + y2
R+Q=
9 + 3y + y2
+
(3 y) (9 + 3y + y2)
1 m + 2m m 1
= (3 + y)(3 y) + 9 3y + y2
(1 m2) m2 =
(3 y) (9 + 3y + y2)
1+m (1 m)
= 9 y2 + 9 3y + y2
(1 m) (1 + m) m2 =
(3 y) (9 + 3y + y2)
1
= (Ans.) 18 3y
m2 =
(3 y) (9 + 3y + y2)
a b3
3
a+b
L cÉkg² GZ,
(a b)2 + 3ab a b
p = a3 + b3 3+y 9 – 3y + y2
RQ= 2–
9 + 3y + y (3 – y) (9 + 3y + y2)
[awi, p àY KiGZ nGe] (3 + y)(3 – y) – (9 – 3y + y2)
2 =
(a b) + 3ab a b (3 – y)(9 + 3y + y2)
ev, p = (a3 + b3) a3 b3
a+b 9 – y2 – 9 + 3y – y2
=
ev, p = (a + b) (a2 ab + b2) (3 – y)(9 + 3y + y2)
a2 + ab + b2 (a b) 3y – 2y2
=
(a b) (a2 + ab + b2) (a + b) (3 – y)(9 + 3y + y2)
p = a2 ab + b2 (Ans.) 3y 2y2
R Q (3 y)(9 + 3y + y2) 3y – 2y2
M ˆ`Iqv AvGQ,
= = (Ans.)
R+Q 18 3y 18 – 3y
a3 − b3 (a + b)2 − 3ab 2
A = 2 ,B= , (3 y) (9 + 3y + y )
(a − b) + 3ab a3 − b3
(9 + y2) (3 + y)
C=
a+b
,D= 4
a3 + b3 M
‘K’ nGZ cvB, P = 3 y
a−b a + a2b2 + b4
a3 − b3 (a + b)2 − 3ab 9 – 3y + y2 3+y
ABCD= ‘L’ nGZ cvB, Q = (3 – y)(9 + 3y + y2) , R = 9 + 3y + y2
(a − b)2 + 3ab a3 − b3
a+b a3 + b3 P, Q I R ‰i niàGjvi j.mv.à. = (3 y) (9 + 3y + y2)
4 (9 + y2) (3 + y) (9 + 3y + y2)
a − b a + a2b2 + b4
P=
2
a − ab + b 2
a + b (a + ab + b ) (a2 − ab + b2)
2 2 (3 y) (9 + 3y + y2)
= 2 2
a + ab + b a−b (a + b) (a2 − ab + b2) 9 3y + y2
Q=
[Drcv`GK weGkÏlY KGi] (3 y) (9 + 3y + y2)
a2 − ab + b2 (3 + y)(3 y) 9 y2
= (Ans.) R= 2 = (Ans.)
a−b (3 y)(9 + 3y + y ) (3 y)(9 + 3y + y2)
14 cvGéix ˆR‰mwm cixÞv mnvwqKv 2020 MwYZ
16 L 17 N 18 M 19 L 20 N 21 K 22 M 23 K 24 M 25 L 26 L 27 K 28 N 29 K 30 N
exRMwYZxq f™²vsk 15
2019
a2 b2 (a + b)2 4ab a+b
DËi ms‡KZmn m„Rbkxj cÖkœ cÉk
² 6 a2 + ab +b2
,
a3 b3
‰es a2 + ab + b2 wZbwU
f™²vsk| [BÕ·vnvwb cvewjK Õ•zj I KGjR, KzwgÍÏv]
Abykxjbx-5.1 K. 1g f™²vskwUGK jwNÓ¡ AvKvGi cÉKvk Ki| 2
x 1 x a2 b2 a+b (a + b)2 4ab
cÉk
² 1 xy, yz ‰es z wZbwU exRMwYZxq f™²vsk L. mij Ki: a2 + ab + b2 + a2 + ab + b2 4
a3 b3
K. f™²vsGki jwNÓ¤i…c wK? 2 (a b) 2
M. cÉ^g wZbwU ivwki àYdjGK a2 + ab + b2 «¼viv fvM Ki| 4
L. f™²vsk wZbwUGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
2 2 2 2 2
M. f™²vsk wZbwUi ˆhvMdj wbYÆq Ki| 4 Dîi: K. 2 a b 2 L. a2 – b + 2b2; M. 2 (a + b) 2 2
xz x x2y xy + z + 1 a + ab +b a + ab + b (a + ab + b )
Dîi: L. xyz, xyz ‰es xyz; M. yz x+y xy yz
² 7 (x y)2 , x3 + y3 I x2 y2 wZbwU exRMwYZxq f™²vsk|
cÉk
2
1 1 2 + 2x 2x
cÉk
² 2 ,
1 x + x2 1 + x + x
2, , 2
x6 1 1 + x + x
4 PviwU K. f™²vsk wZbwUi niàGjvi j.mv.à wbYÆq Ki| 2
exRMvwYwZK ivwk| [cçMo miKvwi evwjKv DœP we`Åvjq] L. f™² v sk wZbwUGK mgniwewkÓ¡ f™² v sGk cÉ K vk Ki| 4
2 M. w«¼Zxq f™²vsGki ni ‰ y ‰i mnM 1 nGj f™²vskàGjvGK
3
K. 1g ivwk ˆ^GK 2q ivwk weGqvM Ki|
L. 1g, 2q I 4^Æ ivwkGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4 mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
M. 1g ivwk ˆ^GK 2q I 3q ivwk weGqvM Ki| 4 Dîi: K. (x y)2 (x3 + y3)
(x + y)2 (x2 xy + y2) (x y)3 (y z) (x y) (x2 xy + y2)
2x
Dîi: K. 1 + x2 + x4 L. (x y)2 (x3 + y3) ,(x y)2 (x3 + y3) ‰es (x y)2 (x3 + y3)
2 2 2
1 + x + x2 1 – x + x2 (x + y)(x + y) (x + xy + y ) (x + y) (x y) (y z) (x3 y3)
2x
L. 1 + x2 + x4, 1 + x2 + x4, 1 + x2 + x4 M. 2 2 3 3
(x y ) (x y )
, 2 2 3 3 , 2 2 3 3
(x y ) (x y ) (x y ) (x y )
2(x3 x2 x 1) x4 y4 (x + y)2 4xy x+y
M. x6 1 cÉk
² 8 x2 + y2 2xy, , 2
x + xy + y2
wZbwU
x3 y3
1 1 2x exRMvwYwZK ivwk| [bxjdvgvix miKvwi DœP we`Åvjq]
cÉk
² 3 A = 1 x + x2 , B = 1 + x + x2 , C = 1 + x2 + x4
K. 1g f™²vskGK jwNÓ¤ AvKvGi cÉKvk Ki| 2
x2 L. 1g I 2q f™²vsGki àYdGji mvG^ 3q f™²vsk fvM Ki| 4
‰es D = 1 x6 PviwU f™²vsk| [wfKvi‚bwbmv bƒb Õ•zj ‰´£ KGjR, XvKv]
M. f™²vskàGjvGK mvaviY ni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
K. C ‰i niGK Drcv`GK weGkÏlY Ki| 2 (x2 + y2) (x + y) (x4 y4) (x2 + xy + y2)
L. cÉgvY Ki ˆh, A B C = 0 4 Dîi: K. (x y)
; L. x2 + y2; M.
(x y)2 (x2 + xy + y2)
,
M. A, B, C ˆK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4 (x y)3 2
(x y) (x + y)
,
Dîi: K. (1 + x + x2) (1 – x + x2); (x y)2 (x2 + xy + y2) (x y)2 (x2 + xy + y2)
1 + x + x2 1 – x + x2 2x
M. 1 + x2 + x4, 1 + x2 + x4, 1 + x2 + x4 Abykxjbx-5.2
² 4 gGb Ki: A = x
cÉk
2 2
x 42, B = x + 11x + 30 cÉk
² 9 A=x + y z2 + 2xy, B = y2 + z2 x2 + 2yz ‰es
2 2
2 2 2
[weqvg gGWj Õ•zj I KGjR, eàov] C = z + x y + 2zx. [iscyi KÅvGWU KGjR]
x2 x 2 a2 7a + 12
K. jwNÓ¤ AvKvGi cÉKvk Ki: x2 1 . 2 K. a2 16 ivwkwU jwNÓ¤ AvKvGi cÉKvk Ki| 2
1 1 1 1 1
L. A ‰es B ˆK mvaviY ni wewkÓ¡ f™²vsGk cÉKvk Ki| 4 L. A , B I C ˆK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4
A B x+6 xy CB 2
M. mij Ki: x2 36 x2 25 x2 12x + 35. 4 M. mij Ki : A BC C 4
x2 x+5 x7 a3 (y + z x)
Dîi: K. x 1; L. (x2 + 11x + 30)(x 7) ‰es (x2 + 11x + 30)(x 7); Dîi: K. a + 4 M. (x + y + z) (x + y z)
1
M. x 6 cÉk
² 10 A = x + 2, B = x2 − 4, C = x2 − 2x + 4, D = x2 + 2x
+ 4 ‰es E = x3 − 8
cuvPwU exRMwYZxq ivwk| [cvebv KÅvGWU KGjR]
4 2 2
² 5 x4 + x2 + 1 , x3 1 , x3 + 1 wZbwU exRMwYZxq f™²vsk|
cÉk
K. A I C ‰i M.mv.à. wbYÆq Ki| 2
1 x + 2 6x
K. 1g f™²vsGki niGK Drcv`GK weGkÏlY Ki| 2 L. mij Ki : A − C + E 4
L. 1g I 2q f™²vsGki ˆhvMdj ˆ^GK 3q f™²vsk weGqvM Ki| 4 A 1 1 C
M. cÉgvY Ki, B C E D = 1 4
M. f™²vsk wZbwUGK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4
4x2 2(x3 1) 96x
Dîi: K. 1 L. x6 − 64
Dîi: K. (x2 + x + 1) (x2 x + 1); L. x6 1; M. x6 1
exRMwYZxq f™²vsk 17
1 1 1 1 1 2a
cÉk
² 11 A = x2 5x + 6, B = x2 7x + 12 , C = x2 9x + 20
cÉk
² 16 1 a + a2
,
1 + a + a2
I 1 + a2 + a4
wZbwU
[eÐ-~ evWÆ Õ•zj ‰´£ KGjR, wmGjU]exRMvwYZxq ivwk|
K. C ‰i niGK Drcv`GK weGkÏlY Ki| 2 K. 3q ivwkwUi niGK Drcv`GK weGkÏlY Ki| 2
1 L. 1g ivwk ˆ^GK evwK `yBwU ivwk weGqvM KGi weGqvMdGji mvG^
L. cÉgvY Ki ˆh, A B C = x2 7x + 10 4
a b + a + b ˆhvM Ki| 4
M. A, B ‰es C ˆK mgni wewkÓ¡ f™²vsGk cÉKvk Ki| 4 a b
M. wZbwU ivwki ˆhvMdjGK ˆKvb ivwk «¼viv fvM KiGj fvMdj 2
Dîi: K. (x – 4) (x – 5)
cvIqv hvGe? 4
1 a3 + b3 a4 + a3 + a2 1
cÉk
² 12 a2 ab + b2, 2a
,
4a2
wZbwU
Dîi: K. (1 + a + a2) (1 a + a2) L.
a2 + 2ab b2 1
M. 1 a + a2
ab
exRMwYZxq f™²vsk| [wf. ˆR miKvwi gvaÅwgK we`Åvjq, PzqvWvãv] x–y y–z
² 17 (y + z)(z + x) , (x + y)(z + x) `yBwU exRMwYZxq f™²vsk|
cÉk
K. Z‡Zxq f™²vsGki jeGK Drcv`GK weGkÏlY Ki| 2
L. 1g f™²vsGki ni ‰es 2q I Z‡Zxq f™²vsGki jGei j.mv.à. wbYÆq K. f™²vsk `ywUi nGii j.mv.à. ˆei Ki| 2
4 L. ˆ`LvI ˆh, ‰i
2 2 2 2 2 2
yz + xz + y z + x y + x z + xy + 2xyz
Ki|
1 3 3 4
a +b a +a b +b 2 2 4 Drcv`K f™² v sk `y w Ui nGii j.mv.à. ‰i mgvb| 4
M. a2 + ab + b2 2a 4a2 =? 4 M. f™²vsk `ywUi ˆhvMdGji mvG^ KZ ˆhvM KiGj ˆhvMdGji gvb
Dîi: K. (a + 1) (a + a − 1);
3 kƒbÅ nGe? 4
z–x
L. (a + b) (a2 − ab + b2) (a + 1) (a3 + a − 1); M. 2a(a + b)
1 Dîi: K. (y + z)(z + x) (x + y); M. (x + y)(y + z)
x2 – 4 x–7
cÉk
² 13 (i) a3 3a2 10a, a3 + 6a2 + 8a, a4 5a3 14a2 ² 18 x2 – 49 , x – 2 `yBwU exRMwYZxq f™²vsk|
cÉk
wZbwU exRMvwYwZK ivwk| K. f™²vsk `ywUGK àY Ki| 2
‰es R = y3 + 8.
(ii) P = y 2, Q = y2 + 2y + 4 L. ‘K’ àYdjwUi je I nGii mvG^ x àY KGi je ˆ^GK 3 weGqvM
K. (i) ‰i Z‡Zxq ivwkGK Drcv`GK weGkÏlY KGiv| 2 x2 – 6x + 5
‰es nGii mvG^ 12 ˆhvM KGi cÉvµ¦ f™²vskwUGK x2 – x – 20 «¼viv
L. (i) ‰i wZbwU ivwki M.mv.à. wbYÆq KGiv| 4
fvM Ki| 4
1 y2 6y
M. mij KGiv: P Q + R . 4 x2 – 6x x+1
M. ˆ`LvI ˆh, x2 – 7x + 6 ˆ^GK x2 – 1 weGqvM KiGj cÉvµ¦ gvb
12y4
Dîi: K. a2(a 7) (a + 2); L. a(a + 2); M. y6 64 ‘L’ ˆ^GK cÉvµ¦ fvMdGji gvGbi mgvb| 4
x+2
1 1 2p Dîi: K. x + 7 L. 1
cÉk
² 14 1 p + p2 , 1 + p + p2 ‰es 1 + p2 + p4 wZbwU
1 1
exRMvwYZxq f™²vsk| cÉk
² 19 2x + 2 , 2x – 2 `yBwU exRMwYZxq f™²vsk|
K. 3q f™²vsGki niGK Drcv`GK weGkÏlY Ki| 2 K. f™²vsk `ywUGK ˆhvM Ki| 2
1 1 2p L. ‘K’ ˆ^GK cÉvµ¦ ˆhvMdj ‰i jeGK ni ‰es niGK je aGi
L. cÉgvY Ki ˆh, 1 p + p2 1 + p + p2 1 + p2 + p4 = 0 4 1
cÉvµ¦ f™²vsGki gvb 3 nGj x2 + x2 ‰i gvb wbYÆq Ki| 4
M. f™²vsk 3wUGK mgniwewkÓ¡ f™²vsGk cÉKvk Ki| 4 3 3 2
x +x x –x +x–1
Dîi: K. (1 + p + p2)(1 p + p2); L. 0; M. x2 + x ˆK x
«¼viv fvM KGi ‘L’ ˆ^GK cÉvµ¦ gvb
2p
M. 1 + p2 + p4 «¼viv fvMdj wbYÆq Ki| 4
x 1
Dîi: K. x2 – 1 L. 11 M. 3
cÉk
² 15 M = a b, N = a + b ‰es R = x2 2x + 1 a4 + a2b2 + b4 a3 + b3
cÉk
² 20 a3 + b3
, 2
a b2
`yBwU exRMwYZxq ivwk|
[KÝevRvi miKvwi DœP we`Åvjq, KÝevRvi]
K. MN-ˆK `yBwU eGMÆi A¯¦i…Gc cÉKvk Ki| 2 K. cÉ^g f™²vsGki je I nGii M.mv.à. ˆei Ki| 2
L. f™²vsk `yBwUGK ˆhvM Ki| 4
L. mij Ki: a a b b + N + M N M 4 a4 + a3b + a2b2
M N M N M N M N M. f™²vsk `yBwUi ˆhvMdGji mvG^ fvM KiGj
a3 b3
M. R = 0 nGj x5 + 15 -‰i gvb wnmve Ki| 4 a+b
x fvMdj a ‰i KZ àY? 4
3a2 + b2 3 2
Dîi: K. a2 b2; L. 2ab
; M. 2 2a
Dîi: K. a2 ab + b2 L. a2 b2 M. (a + b)2
2a