0% found this document useful (0 votes)
97 views78 pages

Panjeree Math

The document contains mathematical equations and problems involving complex numbers, inequalities, and polynomial functions. It discusses various mathematical concepts such as the properties of complex numbers, solving inequalities, and polynomial roots. Additionally, it includes graphical representations and examples to illustrate the mathematical principles presented.

Uploaded by

mobashshirsobhan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
97 views78 pages

Panjeree Math

The document contains mathematical equations and problems involving complex numbers, inequalities, and polynomial functions. It discusses various mathematical concepts such as the properties of complex numbers, solving inequalities, and polynomial roots. Additionally, it includes graphical representations and examples to illustrate the mathematical principles presented.

Uploaded by

mobashshirsobhan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 78

ˆevWÆ cixÞvi cÉk²cGòi mgvavb 1

gƒj eBGqi AwZwiÚ Ask

‰Kv`k-«¼v`k ˆkÉwY

w«¼Zxq cò

ˆevWÆ cixÞvi cÉk²cGòi mgvavb


m†Rbkxj iPbvgƒjK
2 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

m†Rbkxj iPbvgƒjK
Z‡Zxq AaÅvq: RwUj msLÅv
2x + 3 x+3
cÉk
² 21 wbGPi DóxcKwU jÞÅ Ki : M cÉ`î AmgZv: x  3 < x  1

z = x + iy; |z + 5| + |z − 5| = 15 .................. (i)
2x + 3 x+3
2x + 3 x + 3 ev, x  3  x  1 < 0
< ........................... (ii)
x−3 x−1
(2x2 + 3x  2x  3)  (x2  9)
K. ‰KGKi Nbgƒjmgƒn wbYÆq Ki| 2 ev, (x  3) (x  1)
<0
L. DóxcK-1 nGZ, mÂvicG^i mgxKiY wbYÆq Ki| 4 2x2 + x  3  x2 + 9
M. DóxcK-2 ‰ ewYÆZ AmgZvwUi mgvavb Ki ‰es ev, (x  3) (x  1)
<0

msLÅvGiLvq ˆ`LvI| 4 x2 + x + 6
ev, (x  3) (x  1) < 0
[PëMÉvg ˆevWÆ-2017  cÉk² bs 1]
1 1 2 1
21 bs cÉGk²i mgvavb
ev,
x2 + 2. .x +
2 ()
2
+6
4
<0
3 (x  3) (x  1)
K gGb Kwi, 1 = x ZvnGj, x3 = 1 ev, x3  1 = 0

1 23 2
ev, (x  1) (x2 + x + 1) = 0
 x  1 = 0 A^ev x2 + x + 1 = 0 ev,
(x+ ) +
2 4
< 0 ... ... ... (i)
(x  3) (x  1)
‰Lb, x  1 = 0 nGj, x = 1
( 1) + 234 > 0
2

1 14
‰LvGb, x + 2
Avevi, x2 + x + 1 = 0 nGj, x = 2
 (x  3) I (x  1)‰i gGaÅ ‰KwUi wPn× abvñK ‰es
1
= ( 1  i 3) AciwUi wPn× FYvñK nGj (i) AmgZvwUi kZÆ wm«¬ KGi|
2
1 kZÆ (x  1) ‰i (x  3) ‰i (x  3) (x  1) ‰i
myZivs, ‰KGKi Nbgƒjàwj 1, 2 ( 1 + i 3)
wPn× wPn× wPn×
1
‰es 2 ( 1  i 3) (Ans.) x<1   +
1<x<3 +  
L ˆ`Iqv AvGQ, z = x + iy
 x>3 + + +
‰Lb, |z + 5| + |z  5| = 15  (i) AmgZvwU mZÅ nGe hw` 1 < x < 3 nq|
ev, |x + iy + 5| + |x + iy  5| = 15
 wbGYÆq mgvavb : 1 < x < 3
ev, |x + 5 + iy| + |x  5 + iy| = 15
msLÅvGiLv :
ev, (x + 5)2 + y2 + (x  5)2 + y2 = 15 1 0 1 2 3 4

ev, (x + 5)2 + y2 = 15  (x  5)2 + y2


² 22 `†kÅK͸-1 : x + iy = 2e−i `†kÅK͸-2 : F = y − 2x
cÉk

ev, x2 + 10x + 25 + y2 = 225
kZÆàwj: x + 2y  6, x + y  4, x, y  0
+ (x2  10x + 25 + y2)  30 (x  5)2 + y2 [eMÆ KGi]
K. z = x + iy nGj, |z + i| = |−z + 2| «¼viv wbG`ÆwkZ mçvic^
ev, x + 10x + 25 + y2  225  x2 + 10x  25  y2
2
wbYÆq Ki| 2
=  30 x2  10x + 25 + y2
L. `†kÅK͸-1 nGZ cÉgvY Ki ˆh, x2 + y2 = 4. 4
ev, 20x  225 =  30 x2  10x + 25 + y2
M. `†kÅK͸-2 ‰ ewYÆZ ˆhvMvkÉqx ˆcÉvMÉvgwU nGZ ŠjwLK
ev, 4x  45 =  6 x2  10x + 25 + y2 c«¬wZGZ F ‰i mGeÆvœP gvb wbYÆq Ki| 4
ev, 16x2  360x + 2025 = 36(x2  10x + 25 + y2) [hGkvi ˆevWÆ-2017  cÉk² bs 2]
ev, 16x2  360x + 2025 = 36x2  360x + 900 + 36y2 22 bs cÉGk²i mgvavb
ev, 20x2 + 36y2 = 1125 K ˆ`Iqv AvGQ, z = x + iy  |z + i| = |−z + 2|

x2 y2
ev, + =1
−−−−−−−
ev, |x + iy + i| = | x + iy + 2|
15 2
( )
2
5 52
 2  ev, |x + iy + i| = |x − iy + 2|
hv wbGYÆq mÂvicG^i mgxKiY| (Ans.) ev, |x + i (y + 1)| = |(x + 2) − iy)|
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 3
ev, x2 + (y + 1)2 = (x + 2)2 + y2
Y
ev, x2 + (y + 1)2 = (x + 2)2 + y2 Dfq AGÞ 5 eMÆ Ni = 1 ‰KK
(0, 4)
ev, x2 + y2 + 2y + 1 = x2 + 4x + 4 + y2
ev, 2y + 1 = 4x + 4 ev, 4x − 2y + 3 = 0 (0, 3)
hv ‰KwU mijGiLvi mÂvi c^| (Ans.)
L `†kÅK͸-1 nGZ cvB, x + iy = 2e−i
 P(2, 2)

ev, x + iy = 2(cos  i sin)


ev, x + iy = 2 cos  2i sin
evÕ¦e I Kv͸wbK Ask mgxK‡Z KGi cvB,
R(6, 0)
x = 2 cos ‰es y =  2 sin
X Q(4, 0)
‰Lb, x2 + y2 = (2 cos)2 + ( 2 sin)2
X

Y (ii) (i)
= 4 cos2 + 4 sin2 = 4 (cos2 + sin2) = 4
 x + y2 = 4
2
(cÉgvwYZ) ˆjLwPGò ˆ`Lv hvq, (i) bs ‰i mKj we±`y ‰es ‰i ˆh cvGk
M `†kÅK͸ 2 nGZ cvB, F = y − 2x
 gƒjwe±`y ˆmB cvGki mKj we±`yi RbÅ mZÅ|
kZÆàwj : x + 2y  6, x + y  4, x, y  0 (ii) bs ‰i mKj we±`y ‰es ‰i ˆh cvGk gƒjwe±`y Zvi wecixZ
F ‰i mGeÆvœP gvb wbYÆq KiGZ nGe| cvGki mKj we±`yi RbÅ mZÅ|
cÉ`î AmgZvàwjGK mgZv aGi mgxKiYàwji ˆjLwPò Aâb Avevi (i) I (ii) ‰i ˆQ`we±`y P(2, 2)
Kwi ‰es mgvavGbi mÁ¿veÅ ‰jvKv wPwn×Z Kwi| (iv) I (ii) ‰i ˆQ`we±`y Q(4, 0)
x y
Avgiv cvB, x + 2y = 6 ev, 6 + 3 = 1... ... ... (i) (iv) I (i) ‰i ˆQ`we±`y R (6, 0)
 wbGYÆq ˆKŒwYK we±`y P(2, 2), Q(4, 0) I R(6, 0)
x y
x+y=4 ev, 4 + 4 = 1 ... ... ... (ii) ‰Lb P(2, 2) we±`yGZ F = 2 − 2.2 = 2 − 4 = − 2
x = 0 ... ... ... (iii), y = 0 ... ... ... (iv) Q (4, 0) we±`yGZ F = 0 − 2.4 = 0 − 8 = − 8
R (6, 0) we±`yGZ F = 0 − 2.6 = 0 − 12 = − 12
 wbGYÆq mGeÆvœP gvb −2 (Ans.)
4 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

PZz^Æ AaÅvq: eüc`x I eüc`x mgxKiY

cÉk
² 31 (x) = ax3 + bx2 + cx + d; (x) = x2  mx + l. (i) bs mgxKiGYi gƒj«¼Gqi RbÅ,
K. a ‰i gvb KZ nGj (a  1)x2  (a + 2)x + 4 = 0 +=l

mgxKiGYi gƒjàGjv evÕ¦e I mgvb nGe? 2 ‰es  = m


L. (x) = 0 mgxKiGY a = 4, b = 2, c = 0 ‰es d = 3 nGj ‰es Avevi, (ii) bs mgxKiGYi,
gƒjàGjv , ,  nGj 2 ‰i gvb wbYÆq Ki| 4 gƒj«¼Gqi ˆhvMdj,  + k +  + k = m
M. (x) = 0 mgxKiGY a = 0, b = 1, c =  l ‰es d = m nGj; ev,  +  + 2k = m
(x) = 0 ‰es (x) = 0 mgxKiGYi gƒj«¼Gqi cv^ÆKÅ ‰KwU ev, l + 2k = m [‹  +  = l]
aË‚eK ivwk nGj cÉgvY Ki ˆh, l + m + 4 = 0. 4 k=
ml
2
wkLbdj- 4, 5, 7 I 9 [XvKv ˆevWÆ-2021  cÉk² bs 2]
31 bs cÉGk²i mgvavb Avevi, gƒj«¼Gqi àYdj, ( + k) ( + k) = l
K (a  1)x2  (a + 2)x + 4 = 0 mgxKiGYi gƒjàGjv evÕ¦e I mgvb
 ev,  + ( + ) k + k2 = l
2
nGj wbøvqK D = 0 nGe| ml ml
ev, m + l.  2  +  2  = l; [gvb ewmGq]
‰Lb, D = 0
ml  l2 m2  2ml + l2
ev, { (a + 2)}2  4. (a  1) 4 = 0 ev, m + 2
+
4
=l
ev, a2 + 4a + 4  16a + 16 = 0 4m + 2ml  2l2 + m2  2ml + l2
ev, a2  12a + 20 = 0 ev, 4
=l

ev, a2  10a  2a + 20 = 0 ev,


m2  l2 + 4m
=l
4
ev, a (a  10)  2 (a  10) = 0
ev, (a  10) (a  2) = 0 ev, m2  l2 + 4m  4l = 0
 a = 10, 2 (Ans.) ev, (m + l) (m  l) + 4 (m  l) = 0
L ˆ`Iqv AvGQ, (x) = ax3 + bx2 + cx + d
 ev, (m  l) (m + l + 4) = 0
(x) = 0 mgxKiGY a = 4, b =  2, c = 0 ‰es wK¯§ m  l  0 ev, m  l
d = 3 nGj, 4x3  2x2 + 3 = 0 mgxKiYwUi gƒjòq KviY m = l nGj (i) I (ii) bs ‰KB mgxKiY nGe|
,  ‰es .  l + m + 4 = 0 (cÉgvwYZ)
1
++=
2 cÉk
² 32 f(x)= ax2 + bx + c; g(x) = px2 + qx + r
Avevi,  +  +  = 0 1
K. x – x = k mgxKiYwUi ‰KwU gƒj 5 – 2 nGj, k-‰i gvb
3
‰es  =  4 wbYÆq Ki| 2
cÉ`î ivwk =    2
L. f(x) = 0 mgxKiGYi gƒj«¼q  I  nGj,
= 2 + 2 + 2 + 2 + 2 + 2 a2x2 – (b2 – 2ac)x + c2 = 0 mgxKiGYi gƒj«¼qGK  I
= 2 + 2 +  + 2 + 2 +  + 2 + 2 +   3 -‰i gvaÅGg cÉKvk Ki| 4
=  ( +  + ) +  ( +  + ) +   ( +  + )  3
M. hw` f(x) = 0 mgxKiGYi gƒj `yBwUi AbycvZ g(x) = 0 mgxKiGYi
= ( +  + ) ( +  + )  3
1 3 9 gƒj `yBwUi AbycvGZi mgvb nq, ZvnGj ˆ`LvI ˆh, b : q = 6 :
= .0  3.   = (Ans.)
2  4 4 35 hLb a = 2, c = 3, p = 5, r = 7. 4
M ˆ`Iqv AvGQ, (x) = ax3 + bx2 + cx + d ‰es
 wkLbdj- 3 I 7 [gqgbwmsn ˆevWÆ-2021  cÉk² bs 1]
 (x) = x2  mx + l 32 bs cÉGk²i mgvavb
‰Lb, a = 0, b = 1, c =  l ‰es d = m nGj 1
K ˆ`Iqv AvGQ, x – x = k ev, x2 – 1 = kx

 (x) = 0 mgxKiYwU nGe,
x2  lx + m = 0 ... ... ... (i)  x2 – kx – 1 = 0 ... ... ... (i)
Avevi,  (x) = 0 (i) bsmgxKiGYi ‰KwU gƒj 5 – 2 nGj,
ev, x2  mx + l = 0 ... ... ... (ii) Aci gƒjwU AekÅB – 5 – 2 nGe|
gGb Kwi, (i) bs ‰i gƒj«¼q  I  ‰es (ii) bs ‰i gƒj«¼q  + k A^Ævr, 5 – 2 – 5 – 2 = k [gƒj«¼Gqi ˆhvMdj]
I  + k.  k = – 4 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 5
L ˆ`Iqv AvGQ, f(x) = ax2 + bx + c
 cÉk
² 33 x2 + cx + b = 0 mgxKiGYi gƒj«¼q , 
‰es f(x) = 0 A^Ævr ax2 + bx + c = 0 mgxKiGYi gƒj«¼q  I . K. a ‰i gvb KZ nGj x2  4ax + 4 = 0 mgxKiGYi gƒj«¼q
b
+=–
a
RwUj nGe? 2
c L. b(x2 + 1)  (c2  2b)x = 0 mgxKiGYi gƒj«¼qGK  I 
 =
a ‰i gvaÅGg cÉKvk Ki| 4
cÉ`î mgxKiY, a x – (b – 2ac) x + c = 0
2 2 2 2
M.
1
+ I+
1
gƒjwewkÓ¡ mgxKiY wbYÆq Ki| 4
b 2c 2
c 2  
ev, x2 – a2 – a x + a2 = 0 wkLbdj- 3, 4, 5, 6 I 7 [ivRkvnx ˆevWÆ-2021  cÉk² bs 1]
 
b 2
c c 2 33 bs cÉGk²i mgvavb
ev, x2 – – a  – 2. a x + a  = 0
     K cÉ`î mgxKiY: x2  4ax + 4 = 0

ev, x2 – {( + )2 – 2}x + ()2 = 0 mgxKiYwUi gƒj«¼q RwUj nGe hw` ‰i wbøvqK D < 0 nq|
 x2 – (2 + 2)x + 22 = 0 ... .. (ii)  (4a)2  4.4.1 < 0
(ii) bs
mgxKiY nGZ cÉvµ¦ gƒj«¼q 2 ‰es 2. ev, 16a2  16 < 0
BnvB cÉ`î mgxKiGYi gƒj«¼qGK  I  ‰i gvaÅGg cÉKvk| ev, 16a2 < 16
(Ans.) ev, a2 < 1 ev,  1 < a < 1
M a = 2 I c = 3 nGj, f(x) = 2x2 + bx + 3
   1 < a < 1 nGj x2  4ax + 4 = 0 mgxKiGYi gƒj«¼q RwUj
‰es p = 5 I r = 7 nGj, g(x) = 5x2 + qx + 7 nGe| (Ans.)
 mgxKiY«¼q, 2x2 + bx + 3 = 0 ... (i) L ˆ`Iqv AvGQ, x2 + cx + b = 0 mgxKiGYi gƒj«¼q , 

‰es 5x2 + qx + 7 = 0 ... ... ... (ii) +=c
gGb Kwi, (i) bs mgxKiGYi gƒj«¼q  I   = b

+=
b
‰es  = 2
3 cÉ`î mgxKiY: b(x2 + 1)  (c2  2b)x = 0
2
ev, (x2 + 1)  {( + )2  2}x = 0
Avevi, (ii) bs mgxKiGYi gƒj«¼q  I  ev, x2 +   (2 + 2)x = 0
q 7
+=
5
‰es  = 5 ev, x2 +   2x  2x = 0
  + + ev, x2  2x  2x +  = 0
cÉkg² GZ,  =  ev,    =    ev, x(x  )  (x  ) = 0
+ + ev, (x  )(x  ) = 0
ev, =
( + )2  4 ( + )2  4  x   = 0 A^ev x   = 0
b 4  

2

5 ev, x =  ev, x = 
ev, =
b 2 3
 2   4.2  5   4.75
q 2  
 gƒj«¼q: , (Ans.)
     
b2 q2 M ‘L’ nGZ cvB,  +  =  c ‰es  = b

4 25 1 1
ev, b2 =
q2 28 ‰Lb,  +  ‰es  +  gƒjwewkÓ¡ mgxKiY:
6 
4 25 5 1
b2 q2 x2  +  +  +  x +  +
( 1 1
)  + 1  = 0

 
4 25
ev, b2 =
b2 q2 28 q2
1 1 1
ev, x   +  +  + x +  + 1 + 1 +  = 0
2 
6  
4 4 25 5 25
+ 1
b2 q2 ev, x2   +  +  x + 2 +  +  = 0
4 25
ev, 6 = 28 c 1
ev, x2   c + b x + 2 + b + b  = 0
5  
b2 q2 c 1
ev, 24 = 140 ev, x2 + c + b x + 2 + b + b  = 0
   
2
b2 24 6 bc + c 2b + b + 1
ev, q2 = 140 = 35 ev, x2 +  b x +  =0
   b 
b
ev, q =
6 ev, bx2 + (bc + c)x + (b2 + 2b + 1) = 0
35 ev, bx2 + c(b + 1)x + (b + 1)2 = 0
 b : q = 6 : 35 (ˆ`LvGbv nGjv)  wbGYÆq mgxKiY, bx2 + c(b + 1)x + (b + 1)2 = 0 (Ans.)
6 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

cÉk
² 34 `†kÅK͸-1: (x) = x4  3x3  11x2 + 23x  10. ² 35 `†kÅK͸: f(x) = ax2 + bx + c, a  0 ‰KwU w«¼NvZ
cÉk

`†kÅK͸-2: g (x) = x3  3x2  8x + 30. dvskb|
1 1 K. a = 1, b =  2, c = 1 nGj, (x) = 0 mgxKiGYi gƒGji
K. x2 + 5x + 3 = 0 mgxKiGYi gƒj«¼q ,  nGj,    ‰i gvb
cÉK‡wZ wbYÆq Ki| 2
wbYÆq Ki| 2 L. `†kÅKG͸i AvGjvGK (x) = 0 mgxKiGYi gƒj«¼q ,  nGj,
L. `†kÅK͸-2 ‰i AvGjvGK g (x) = 0 mgxKiGYi ‰KwU gƒj 3 + b2
cx2    2c x + c = 0 mgxKiGYi gƒj«¼q
i nGj, Aci gƒjàwj wbYÆq Ki| 4 a 
,  ‰i gvaÅGg cÉKvk Ki| 4
M. `†kÅK͸-1 ‰i AvGjvGK (x) = 0 mgxKiGYi ‰KwU gƒj 1
M. `†kÅKG͸ a = 1, b =  2n, c = n2  m2 nGj ‰gb ‰KwU
‰es Aci gƒjàwj , ,  nGj
mgxKiY MVb Ki hvi gƒj«¼q, (x) = 0 mgxKiGYi
3 + 3 + 3 wbYÆq Ki| 4 gƒj«¼Gqi ˆhvMdj I A¯¦idGji ˆhvMGevaK gvb nGe| 4
wkLbdj- 3, 7 I 9 [w`bvRcyi ˆevWÆ-2021  cÉk² bs 1] wkLbdj- 3, 4, 5, 6 I 7 [w`bvRcyi ˆevWÆ-2021  cÉk² bs 2]
34 bs cÉGk²i mgvavb 35 bs cÉGk²i mgvavb
K ˆ`Iqv AvGQ, x + 5x + 3 = 0 mgxKiGYi gƒj«¼q , 
 2
K ˆ`Iqv AvGQ, (x) = ax2 + bx + c

  +  =  5 ‰es   = 3 a = 1, b =  2 ‰es c = 1 nGj (x) = 0
1 1
cÉ`î ivwk =    = 
 mgxKiYwUi wbøvqK, D = b2 4ca
= (2)2  4.1.1 = 4  4 = 0
(  ) 2 2
( + )  4  (x) = 0 mgxKiGYi gƒj«¼q evÕ¦e, gƒj` I mgvb nGe| (Ans.)
= =
  L cÉ`î f(x) = 0 ev ax2 + bx + c = 0 mgxKiGYi gƒj«¼q , 

(5)2  4.3 13 b c
=
3
=
3
(Ans.) +=
a
‰es  = a
2
L ˆ`Iqv AvGQ, g(x) = x3  3x2  8x + 30
 cÉ`î mgxKiY: cx2   b  2c x + c = 0
a 
cÉkg² GZ, x3  3x2  8x + 30 = 0 mgxKiGYi ‰KwU gƒj c 2 2 c
ev, a x   b2  2 c x + a = 0
3 + i| ZvnGj Aci ‰KwU gƒj nGe 3  i; KviY RwUj gƒjàwj a a
ˆRvovq ˆRvovq ^vGK| ev, x2  {( + )2  2} x +  = 0
awi, Aci gƒj  ev, x2  (2 + 2)x +  = 0
gƒjòGqi àYdj (3 + i) (3  i).  =  30 ev, x2  2x  2x +  = 0
ev, (9  i2).  =  30 ev, (9 + 1)  =  30 ev, x (x  )   (x  ) = 0
 (x  ) (x  ) = 0
ev, 10  =  30   =  3
nq x   = 0 A^ev x   = 0
 g (x) = 0 mgxKiGYi Aci gƒjàwj 3  i,  3. (Ans.)
 
ev, x =  ev, x = 
M ˆ`Iqv AvGQ, f(x) = x4  3x3  11x2 + 23x  10

 x4  3x3  11x2 + 23x  10 = 0 ... ... ... (i)  
x = , (Ans.)
 
ˆ`Iqv AvGQ, cÉ`î (i) bs mgxKiGYi ‰KwU gƒj 1 ‰es Aci
M cÉ`î mgxKiY, (x) = 0

gƒjàwj , , 
ev, ax2 + bx + c = 0
  = 1 +  +  +  = 3   +  +  = 2 ... (ii)
a = 1, b =  2n, c = n2  m2 nGj mgxKiYwU nGe,
 = 1. + 1. + 1. + . + . +  = 11
x2  2nx + n2  m2 = 0 ... ... ... (i)
ev,  +  +  +  +  +  =  11 awi, (i) bs mgxKiGYi gƒj«¼q  ‰es 
ev,  +  +  = 11  2 [‹  +  +  = 2]  +  = 2n ‰es  = n2  m2
  +  +  =  13 ... ... (iii) cÉkg² GZ, wbGYÆq mgxKiGYi gƒj«¼q  +  ‰es |  |
‰es  =  10 ... ... ... (iv) ‰Lb, (  )2 = ( + )2  4
cÉ`î ivwk = 3 + 3 + 3 ev,    =  ( + )2  4 =  (2n)2  4 (n2  m2)
= 3 + 3 + 3  3 + 3 =  4n2  4n2 + 4m2 =  4m2 =  2m
= ( +  + ) {2 + 2 + 2      } + 3  |  | = 2m
= ( +  + ) {( +  + )2  2 ( +  + )  wbGYÆq mgxKiY:
 ( +  + )} + 3 x2  {( + ) + | |} x + ( + ) |  | = 0
2
= ( +  + ) {( +  + )  3 ( +  + )} + 3 ev, x2  (2n + 2m)x + 2n.2m = 0
= 2 {22  3 (13)} + 3. (10) = 56 (Ans.)  x2  2 (m + n)x + 4mn = 0 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 7

² 36 `†kÅK͸-1: x2  px + pq = 0.
cÉk
 ˆhGnZz,  mgxKiY«¼Gqi mvaviY gƒj ˆmGnZz (i) I (ii) bs nGZ
`†kÅK͸-2: x2 + ax + b = 0 ‰es x2 + bx + a = 0. cvB,
K. x3 + qx + r = 0 mgxKiGYi gƒjàGjv a, b, c nGj (b + c  a) 2 + a + b = 0
(c + a  b) (a + b  c) ‰i gvb wbYÆq Ki| 2 2 + b + a = 0

L. `†kÅK͸-1 ‰i mgxKiYwUi gƒj«¼Gqi A¯¦i r nGj p ˆK q I r mgxKiY«¼Gqi eRÊàYb KGi cvB,


‰i gvaÅGg cÉKvk Ki| 4 2  1
= =
a – b2 b – a b – a
2
M. `†kÅK͸-2 ‰i mgxKiY«¼Gqi ‰KwU mvaviY gƒj ^vKGj ˆ`LvI
(a + b)(a – b) b–a
ˆh, ZvG`i Aci `ywU gƒj «¼viv MwVZ mgxKiYwU =
– (a – b)
‰es  = b – a = 1
x2 + x + ab = 0. 4 ev,  = – (a + b)
wkLbdj- 3, 4, 7 I 8 [Kz w gÍÏ v ˆevWÆ
- 2021  cÉ
k ² bs 2] ev, 1 = – (a + b); [‹  = 1]
36 bs cÉGk²i mgvavb a+b=–1
K ˆ`Iqv AvGQ, x + qx + r = 0 mgxKiGYi gƒjàGjv a, b, c.
 3
b
 a + b + c = 0 ... (i)  = 1 nGj = =b
1
Avevi, ab + bc + ca = q ... (ii) ‰es abc = – r ... (iii) a
‰es  = 1 nGj =1=a
‰LvGb, cÉ`î ivwk
= (b + c – a) (c + a – b) (a + b – c) I  gƒjwewkÓ¡ mgxKiY:
= (– a – a) (– b – b) (– c – c); [(i) bs nGZ cvB]
x2 – ( + )x +  =0
= (– 2a) (– 2b) (2c)
=  8abc ev, x – (b + a)x + ba = 0
2

= – 8.(– r) ; [(iii) bs nGZ cvB] ev, x2 – (– 1)x + ab = 0; [‹ a + b = – 1]


= 8r (Ans.)  x2 + x + ab = 0 (ˆ`LvGbv nGjv)
L ˆ`Iqv AvGQ,

x2 – px + pq = 0 ... (i) cÉk
² 37 `†kÅK͸-1: 2x2  3x + 1 = 0 mgxKiGYi gƒj«¼q  I .
gGb Kwi, mgxKiYwUi gƒj«¼q  ‰es  + r. `†kÅK͸-2: x2 + x  k = 0 ‰es x2  7x + (k + 4) = 0 `ywU w«¼NvZ
gƒj«¼Gqi ˆhvMdj,  +  + r = p mgxKiY|
ev, 2 + r = p K. 3x2 + 2x + 5 = 0 mgxKiGYi gƒGji cÉK‡wZ wbYÆq Ki| 2
=
p–r L. `†kÅK͸-1 ‰i AvGjvGK  +  ‰es  gƒjwewkÓ¡ mgxKiY
2
wbYÆq Ki| 4
Avevi, gƒj«¼Gqi àYdj, ( + r) = pq
M. `†kÅK͸-2 ‰i AvGjvGK mgxKiY `ywUi ‰KwU gvò mvaviY
ev, 2 + r = pq
2 gƒj ^vKGj k ‰i gvb wbYÆq Ki| 4
ev, (p 2– r) + (p 2– r)r = pq wkLbdj- 4, 5, 6 I 7 [PëMÉvg ˆevWÆ-2021  cÉk² bs 1]
ev, (p – r)2 + 2r(p – r) = 4pq 37 bs cÉGk²i mgvavb
ev, p2 – 2pr + r2 + 2pr – 2r2 – 4pq = 0 K cÉ`î mgxKiYwUGK ax2 + bx + c = 0 mgxKiGYi mvG^ Zzjbv

KGi cvB, a = 3, b = 2 ‰es c = 5
ev, p2 – 4qp – r2 = 0
wbøvqK, D = (2)2  4.3.5 = 4  60 =  56 < 0
– ( 4q)  (– 4q)2 – 4.1.(– r2)
p=  mgxKiYwUi gƒj«¼q AevÕ¦e I Amgvb| (Ans.)
2.1
4q  16q2 + 4r2 L ˆ`Iqv AvGQ,

=
2 cÉ`î mgxKiY, 2x2  3x + 1 = 0 ... ... (i)
 p = 2q  4q2 + r2 (Ans.) (i) bs mgxKiGYi gƒj«¼q  I  nGj,
3 3 1
M ˆ`Iqv AvGQ, + = 
  2  = 2 ‰es  = 2
x2 + ax + b = 0 ... (i)
( + ) I  gƒjwewkÓ¡ mgxKiY,
x2 + bx + a = 0... (ii)
x2  ( +  + ) x + ( + )  = 0
gGb Kwi, Dfq mgxKiGYi mvaviY gƒj . (i) bs ‰i Aci gƒj 3 1 3 1
 x2   +  x + . = 0
 ‰es (ii) bs ‰i Aci gƒj . 2 2  2 2
(i) bs mgxKiGYi gƒj«¼Gqi ˆhvMdj,  +  = – a 3
 x2  2x + = 0  4x2  8x + 3 = 0 (Ans.)
4
‰es gƒj«¼Gqi àYdj,  = b
Avevi, (ii) bs mgxKiGYi gƒj«¼Gqi ˆhvMdj, M awi, x2 + x  k = 0 ... ... (i)

+=–b ‰es x2  7x + (k + 4) = 0 ... ... (ii)
‰es gƒj«¼Gqi àYdj,  = a gGb Kwi, mvaviY gƒjwU  ZvnGj,
2
 +   k = 0 ... ... (iii)
8 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
‰es 2  7 + k + 4 = 0 ... ... (iv)  pq =
c
... ... ... (ii)
(iv) bs mgxKiY nGZ cvB, a2
2 +   8 + k + 4 = 0 p q c p+q c
‰Lb, + + = +
 k  8 + k + 4 = 0; [(iii) bs nGZ] q p a pq a
k+2 c
 8 = 2k + 4   = ... ... ... (v) –
4 a c
(iii) bs mgxKiY nGZ cvB,
= +
a
[(i) I (ii) bs nGZ]
c
2
k +4 2  + k +4 2  k = 0 a2
  c a c c c
k2 + 4k + 4 k + 2 =– 
a c
+ =– + =0
 + k=0 a a a
16 4
2 p q c
 k + 4k + 4 + 4k + 8  16k = 0
 k2  8k + 12 = 0  k2  6k  2k + 12 = 0

q
+
p
+
a
=0 (ˆ`LvGbv nGjv)
 k (k  6)  2 (k  6) = 0 M ax2 + bx + c = 0 mgxKiGYi gƒj«¼q  I  nGj,

 (k  6) (k  2) = 0  k = 2, 6 (Ans.)
b c
+= ‰es  = a
cÉk
² 38 (x) = ax + bx + c.
2 a
DóxcGKi AvGjvGK wbGPi (L) I (M) cÉGk²i Dîi `vI: 1 1
‰Lb,  +  ‰es  +  gƒjwewkÓ¡ mgxKiGYi
K. ˆ`LvI ˆh, b = p bv nGj, 2x2  2(b + p) x + b2 + p2 = 0 1 1
mgxKiYwUi gƒjàGjv evÕ¦e nGZ cvGi bv| 2 gƒj«¼Gqi ˆhvMdj =  +  +  + 
L. b = c ‰es (x) = 0 mgxKiGYi gƒj«¼Gqi AbycvZ p : q nq, 1 1
= ( + ) +  + 
p q c  
ZGe ˆ`LvI ˆh, q
+
p
+
a
= 0. 4  + 
= ( + ) + 
1 1   
M. (x) = 0 mgxKiGYi gƒj `ywU ,  nGj  +  I  +  –b –b/a –b b
= + = a –c
a
    c/a
gƒjwewkÓ¡ mgxKiY wbYÆq Ki| 4
wkLbdj- 3, 4, 5 I 6 [wmGjU ˆevWÆ-2021  cÉk² bs 1] –bc – ab
= =–
(ab + bc)
ac ac
38 bs cÉGk²i mgvavb
1 1
K cÉ`î mgxKiY,
 ‰es gƒj«¼Gqi àYdj =  +   + 
2x2 – 2(b + p)x + b2 + p2 = 0 º º (i) 1
=  + 1 + 1 +
(i)bs mgxKiGYi gƒjàwj evÕ¦e nGe hw` c†^vqGKi gvb kƒbÅ 
1 c 1
A^ev abvñK nq| =  +

+2= +
a c/a
+2
 (i) ‰i c†^vqK = {– 2(b + p)}2 – 4.2 (b2 + p2) c a 2 2
c + a + 2ac (a + c) 2
= + +2= =
= 4(b + p)2 – 8(b2 + p2) a c ac ac
= 4(b2 + 2bp + p2 – 2b2 – 2p2) 1 1
  +  ‰es  +  gƒjwewkÓ¡ wbGYÆq mgxKiY,
= 4( – b2 – p2 + 2bp) = – 4 (b – p)2  0    
x2 – (gƒj«¼Gqi ˆhvMdj)x + gƒj«¼Gqi àYdj = 0
‰GÞGò cÉ`î mgxKiGYi gƒjàwj evÕ¦e nGe hw` c†^vqGKi gvb
– (ab + bc)  (a + c)2
kƒbÅ| A^Ævr , (b  p)2 = 0  b  p = 0 ev, x2 –  ac  x + ac = 0
 
 b = p nq| (a + c)bx (a + c)2
ev, x2 + ac + =0
myZivs b = p bv nGj cÉ`î mgxKiGYi gƒjàwj evÕ¦e nGZ cvGi ac
2 2
 acx + b(a + c)x + (a + c) = 0 (Ans.)
bv| (ˆ`LvGbv nGjv)
L ˆ`Iqv AvGQ, (x) = ax2 + bx + c
 cÉk
² 39 ax3 + bx2 + cx + d = 0 ‰KwU wòNvZ mgxKiY|
b = c nGj, (x) = ax + cx + c
2 K. p ‰i gvb KZ nGj px2 + 4x + 3 ivwkwU cƒYÆeMÆ nGe? 2
‰es f(x) = 0 A^Ævr, ax + cx + c = 0
2 L. hw` a = 3, b =  2, c = 0, d = 1 nq ‰es mgxKiYwUi
awi, cÉ`î mgxKiGYi gƒj«¼q p ‰es q gƒjòq , ,  nq ZGe 2 ˆei Ki| 4
gƒj mnM mÁ·KÆ AbymvGi, M. hw` a = 1, b =  9, c = 23, d =  15 nq ‰es mgxKiYwUi
c ‰KwU gƒj 3 nq, ZGe Aci gƒjàGjv wbYÆq Ki| 4
p + q = –
a wkLbdj- 4, 5, 7 I 9 [wmGjU ˆevWÆ-2021  cÉk² bs 2]
c 39 bs cÉ Gk² i mgvavb
p+q=– ... ... ... (i)
a
c K px2 + 4x + 3 ivwkwU cƒYÆ eMÆ nGe hw`

‰es p.q = a px2 + 4x + 3 = 0 mgxKiGYi wbøvqK
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 9
D = (4)2  4.p.3 = 0 nq awi, Aci gƒjwU 
4
A^Ævr 16  12p = 0  12p = 16  p = 3 (Ans.) cÉkg² GZ, (2  3i)(2 + 3i). = 65 ev, (4  9i2). = 65
65
L
 ˆ`Iqv AvGQ, a = 3, b =  2, c = 0, d = 1 ev, (4 + 9). = 65   = 13 = 5
 cÉ`î mgxKiY, 3x3  2x2 + 1 = 0  wòNvZ mgxKiYwUi wZbwU gƒj 2  3i, 2 + 3i ‰es 5.
‰Lb, 3x  2x2 + 1 = 0 mgxKiGYi gƒj I mnGMi mÁ·KÆ
3
 mgxKiYwU x3  (2  3i + 2 + 3i + 5)x2
nGZ cvB, + {(2 + 3i)(2  3i) + (2 + 3i).5 + (2  3i).5}x
2 1  (2  3i)(2 + 3i).5 = 0
 +  +  =  = ,  +  +  =  = 0 ‰es  =  ev, x3  9x2 + (4  9i2 + 10 + 15i + 10  15i)x  65 = 0
3 3
‰Lb 2 = 2 + 2 + 2 + 2 + 2 + 2 ev, x3  9x2 + (4 + 9 + 10 + 10)x  65 = 0
= 2 + 2 +  + 2 +  + 2 +  ev, x3  9x2 + 33x  65 = 0
+ 2 + 2  3  wbGYÆq mgxKiY, x3  9x2 + 33x  65 = 0 (Ans.)
  M
 ˆ`Iqv AvGQ, ax2 + bx + b = 0
= ( +  + ) ( +  + )  3
2 1 gGb Kwi, cÉ`î mgxKiGYi gƒj«¼q p ‰es q
=   (0)  3  = 1  2 = 1 (Ans.) b b
3   3 p + q = – ‰es p.q =
a a
M ˆ`Iqv AvGQ, a = 1, b =  9, c = 23, d =  15
 b
 cÉ`î mgxKiY, x3  9x2 + 23x  15 = 0 p+q=– ... ... ... (i)
a
awi, Aci gƒjòq  I  b
 pq = ... ... ... (ii)
3 +  +  =  ( 9)   +  = 6 a2
  = 6   ... ... ... (i) p q b p+q b
Avevi, 3 =  (15) ‰Lb, evgcÞ = q + p + a = +
a
pq
  = 5 b
  (6  ) = 5 [(i) nGZ gvb ewmGq] –
a b
 6  2 = 5  2  6 + 5 = 0  2    5 + 5 = 0 = +
a
[(i) I (ii) bs nGZ]
  (  1)  5 (  1) = 0  (  1) (  5) = 0 b
  = 1, 5 a2
‰i gvb (i) bs ‰ ewmGq cvB, =– 
b a
+
b
=–
b
+
b
= 0 = WvbcÞ
 = 6  1 = 5 A^ev  = 6  5 = 1 a b a a a
 wbGYÆq Aci gƒj«¼q 1 ‰es 5 (Ans.) p q b
 + + = 0 (ˆ`LvGbv nGjv)
q p a
cÉk
² 40 `†kÅK͸-1: ‰KwU wòNvZ mgxKiGYi ‰KwU gƒj
cÉk
² 41 f(x) = x2  5x + 4; g(x) = px2 + qx + r, p  0.
2  3 1 ‰es gƒjàGjvi àYdj 65
K. Drcv`GKi mvnvGhÅ x2 + i2 2x + 16 = 0 mgxKiGYi
`†kÅK͸-2: lx2 + mx + m = 0 mgxKiGYi gƒj«¼Gqi AbycvZ a : b
K. (m  1)x2  (m + 1)x + 2 = 0, m ‰i gvb KZ nGj cÉ`î mgvavb wbYÆq Ki| 2
mgxKiGYi gƒjàGjv mgvb nGe? 2 L. f(x) = 0 mgxKiGYi gƒj«¼q a, b nGj a2 + b2 I a3 + b3
L. `†kÅK͸-1 ‰i AvGjvGK mgxKiYwU wbYÆq Ki| 4 gƒjwewkÓ¡ w«¼NvZ mgxKiYwU wbYÆq Ki| 4
M. `†kÅK͸-2 ˆ^GK cÉgvY Ki ˆh, M. g(x) = 0 mgxKiGYi mvaviY mgvavb wbYÆq KGi c†^vqK
a b m
eÅvLÅv Ki| 4
b
+
a
+
l
= 0. 4 wkLbdj- 1, 2, 4 I 6 [ewikvj ˆevWÆ-2021  cÉk² bs 1]
wkLbdj- 3, 4, 5 I 6 [hGkvi ˆevWÆ-2021  cÉk² bs 1] 41 bs cÉ Gk² i mgvavb
40 bs cÉGk²i mgvavb K
 x2
+ i 2 2x + 16 = 0
K cÉ`î (m  1)x2  (m + 1)x + 2 = 0 mgxKiGYi gƒjàGjv
 ev, x2 + 2.x. 2i + ( 2i)2 + 18 = 0
mgvb nGe hw` ‰i wbøvqK kƒbÅ nq| ev, (x + 2i)2 =  18 ev, (x + 2i)2 = 18i2
 { (m +1)}2  4.2.(m  1) = 0  x + 2i =  3 2i
ev, (m + 1)2  8(m  1) = 0  x = 3 2i  2i A^ev, x =  3 2i  2i
ev, m2 + 2m + 1  8m + 8 = 0 = 2 2i =  4 2i
ev, m2  6m + 9 = 0  wbGYÆq mgvavb, x = 2 2i,  4 2i (Ans.)
ev, (m)2  2.m.3 + (3)2 = 0 L
 ˆ`Iqv AvGQ, f(x) = x2  5x + 4
ev, (m  3)2 = 0 ‰es f(x) = 0
ev, m  3 = 0  x2  5x + 4 = 0 ... ... (i)
 m = 3 (Ans.)
L `†kÅK͸-1 nGZ cvB, ‰KwU wòNvZ mgxKiGYi ‰KwU gƒj
 (i) bs mgxKiGYi gƒj«¼q a I b
2  3 1 = 2  3i ‰es gƒjàGjvi àYdj 65| ˆhGnZz ‰KwU  ( 5)
ZvnGj, gƒj«¼Gqi ˆhvMdj, a + b = 1 = 5
gƒj 2  3i.
4
Aci ‰KwU gƒj nGe ‰i Abye®¬x A^Ævr, 2 + 3i. gƒj«¼Gqi àYdj, ab = 1 = 4
 wòNvZ mgxKiYwUi `yBwU gƒj 2  3i ‰es 2 + 3i
10 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
‰Lb, a2 + b2 = (a + b)2  2ab = 52  2.4 = 25  8 = 17 42 bs cÉGk²i mgvavb
a3 + b3 = (a + b)3  3ab(a + b) = 53  3.4.5 K w«¼NvZ mgxKiGYi RwUj gƒjàwj ˆRvovq ˆRvovq ^vGK|

= 125  60 = 65
 ‰KwU gƒj 2  3i nGj Aci gƒj 2 + 3i|
 a2 + b2 ‰es a3 + b3 gƒjwewkÓ¡ w«¼NvZ mgxKiY,
x2  (17 + 65)x + 65  17 = 0 gƒj«¼Gqi ˆhvMdj = 2  3i + 2 + 3i = 4
 x2  82x + 1105 = 0 (Ans.) gƒj«¼Gqi àYdj = (2  3i)(2 + 3i) = 4  9i2
M
 ˆ`Iqv AvGQ, g(x) = px2 + qx + r, p  0 = 4  9( 1) = 13
‰es g(x) = 0  wbGYÆq w«¼NvZ mgxKiY: x2  4x + 13 = 0 (Ans.)
cÉ`î mgxKiY px2 + qx + r = 0 L ˆ`Iqv AvGQ, (x) = x3  9x2 + 21x  5

ev, 4p x + 4pqx + 4pr = 0
2 2
‰es (x) = 0
[Dfq cÞGK 4p «¼viv àY KGi ]  x3  9x2 + 21x  5 = 0 ... ... (i)
ev, (2px)2 + 2(2px). q + q2  q2 + 4pr = 0 (i) bs mgxKiGYi ‰KwU gƒj 5
ev, (2px + q)2 = q2  4pr
‰Lb, x3  5x2  4x2 + 20x + x  5 = 0
ev, 2px + q =  q2  4pr
ev, x2(x  5)  4x(x  5) + 1(x  5) = 0
ev, 2px =  q  q2  4pr 2
 (x  5)(x  4x + 1) = 0
q q2  4pr
myZivs, x = 2p  (i)bs mgxKiGYi Aci gƒj«¼q nGe
2
px + qx + r = 0, (p  0) w«¼NvZ mgxKiGYi gƒj«¼q x  4x + 1 = 0 w«¼NvZ mgxKiGYi gƒj«¼q|
2

q+ 2
q  4pr q q2  4pr  ( 4)  ( 4)2  4.1.1
2p
‰es 2p
, x=
2.1
ˆhLvGb p, q, r evÕ¦e msLÅv| 4  16  4 4  2 3
= = =2 3
‰LvGb jÞYxq ˆh, Dfq gƒGjB ‰KwU ivwk q  4pr 2 2 2

we`Ågvb| myZivs ‘ ’ ‰i gGaÅi ivwk (q2  4pr) ‰i wewf®²  Aci gƒj `yBwU nGjv 2 + 3 I 2  3 (Ans.)
M (x) = x3  3x2 + 5x  8
gvGbi RbÅ gƒj«¼Gqi cÉK‡wZI cwiewZÆZ nGe| A^Ævr, q  4pr 
2

‰i gvb chÆvGjvPbv KGi w«¼NvZ mgxKiGYi gƒGji cÉK‡wZ ‰es (x) = 0


wbwøZ fvGe wbi…cY Kiv hvq ev wewf®² cÉKvGi gƒjGK c†^K  x3  3x2 + 5x  8 = 0 ... ... (i)
Kiv hvq| ‰ KviGYB (q  4pr) ˆK cÉ`î w«¼NvZ mgxKiGYi
2
mgxKiGYi gƒjòq a, b, c nGj,
c†^vqK ev wbøvqK (Discriminant) ejv nq|  ( 3) 5
a+b+c= = 3, ab + bc + ca = =5
–q  q2  4pr 1 1
w«¼NvZ mgxKiGYi mgvavb x = 2p  ( 8)
q
‰es abc = 1
=8
(i) hw` q  4pr = 0 nq, ZGe gƒj«¼q x =  2p ‰es
2

‰Lb, a3b = a3b + b3c + c3a + ab3 + bc3 + ca3


q

2p
nq, A^Ævr gƒj«¼q evÕ¦e I mgvb nGe| = a3b + ab3 + b3c + bc3 + c3a + ac3
= a3b + ab3 + abc2 + b3c + bc3 + bca2 + c3a
(ii) hw` q2  4pr abvñK A^Ævr, q2  4pr > 0 nq, ZGe
+ a3c + acb2  abc2  bca2  acb2
gƒj«¼q evÕ¦e I Amgvb nGe| = ab(a + b + c ) + bc(b + c2 + a2)
2 2 2 2

(iii) hw` q2  4pr FYvñK A^Ævr, q2  4pr < 0 nq, ZGe + ca(c2 + a2 + b2)  abc(c + a + b)
gƒj«¼q RwUj I Amgvb nGe| RwUj gƒj«¼q ‰KwU 2 2 2
= (a + b + c )(ab + bc + ca)  abc(a + b + c)
AciwUi Abye®¬x nGe| = {(a + b + c)2  2(ab + bc + ca)}(ab + bc + ca)  abc(a + b + c)
(iv) hw` q2  4pr abvñK A^Ævr, q2  4pr > 0 ‰es cƒYÆeMÆ = (32  2.5).5  8.3 = (9  10).5  24
msLÅv ‰es p, q, r gƒj` msLÅv nq, ZGe gƒj«¼q gƒj` I =  5  24 =  29 (Ans.)
Amgvb nGe|
cÉk²43 F(x) = 27x2 + 6x  (m + 2), P(x) = rx2  2nx + 4m

cÉk
² 42 (x) = x  9x + 21x  5; (x) = x  3x + 5x  8.
3 2 3 2
‰es Q(x) = mx2 + nx + r.
K. ‰KwU w«¼NvZ mgxKiY wbYÆq Ki hvi ‰KwU gƒj 2  3i. 2 K. (2 + 2 3i) gƒjwewkÓ¡ w«¼NvZ mgxKiY wbYÆq Ki| 2
L. (x) = 0 mgxKiGYi ‰KwU gƒj 5 nGj Aci gƒj«¼q wbYÆq L. F(x) = 0 mgxKiYwUi ‰KwU gƒj Aci gƒjwUi eGMÆi mgvb
Ki| 4 nGj, m ‰i gvb wbYÆq Ki| 4
M. (x) = 0 mgxKiGYi gƒjòq a, b, c nGj a3b ‰i gvb M. P(x) = 0 ‰es Q(x) = 0 mgxKiY `ywUi ‰KwU mvaviY gƒj
wbYÆq Ki| 4 ^vKGj, cÉgvY Ki ˆh, (2m  r)2 + 2n2 = 0
A^ev 2m + r = 0 4
wkLbdj- 6, 7 I 9 [ewikvj ˆevWÆ-2021  cÉk² bs 2] wkLbdj- 4, 5, 6 I 7 [XvKv ˆevWÆ-2019  cÉk² bs 2]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 11
43 bs cÉGk²i mgvavb 44 bs cÉGk²i mgvavb
K wbGYÆq w«¼NvZ mgxKiYwUi ‰KwU gƒj (2 + 2 3i) nGj Aci
 K (m  1)x  (m + 2)x + 4 = 0 mgxKiGYi gƒjàGjv evÕ¦e I mgvb
 2

gƒjwU (2  2 3i); nGj wbøvqK D = 0 nGe|


KviY evÕ¦e mnMwewkÓ¡ RwUj gƒj ˆRvovq ^vGK|
‰Lb, D = 0
wbGYÆq mgxKiYwU,
x2  (2 + 2 3i + 2  2 3i)x + (2 + 2 3i) (2  2 3i) = 0 ev, { (m + 2)}2  4. (m  1) 4 = 0
 x2  4x + 22  (2 3i)2 = 0 ev, m2 + 4m + 4  16m + 16 = 0
 x2  4x + 4 + 12 = 0 ev, m2  12m + 20 = 0
 x2  4x + 16 = 0 (Ans.)
L
 gGb Kwi, cÉ`î mgxKiGYi gƒj«¼q  I 2 ev, m2  10m  2m + 20 = 0
6  (m + 2) ev, m (m  10)  2 (m  10) = 0
ZvnGj,  + 2 = – 27 ‰es .2 = 3 = 27 ... ... ... (i)
ev, (m  10) (m  2) = 0
2
  + 2 =  m = 10, 2 (Ans.)
9
ev, 9 + 9 = 2
2 L ˆ`Iqv AvGQ, f(x) = px2 + qx + r

ev, 92 + 9 + 2 = 0 cÉkg² GZ, f(x) = 0
ev, 92 + 6 + 3 + 2 = 0  px2 + qx + r = 0 mgxKiGYi gƒj«¼q  I .
ev, 3(3 + 2) + 1(3 + 2) = 0 q r
ev, (3 + 2) (3 + 1) = 0 ˆhvMdj,  +  = p ‰es àYdj,  = p
2 1
= ,– Avevi, rx2 + 4qx + 16p = 0
3 3
r q 16p
2
(i) bs ‰  =  ewmGq,
1
Avevi, (i) bs ‰  =  3 ev, p x2  4  p  x + p = 0
3
2 3 (m + 2) 1 3 (m + 2) ev, x2  4( + )x + 16 = 0
( ) 
3
=
27 ( )
ewmGq,  3 =  27
ev, x2  4x  4x + 16 = 0
8 (m + 2) 1 (m + 2)
ev, 27 =  27 ev, 27 =  27 ev, x (x  4)  4(x  4) = 0
ev, m + 2 = 8 ev, m = 6 ev, m + 2 = 1 ev, m = 1  (x  4) (x  4) = 0
 m = 6,  1 (Ans.) nq, x  4 = 0 A^ev, x  4 = 0
M
 gGb Kwi, P(x) = rx2  2nx + 4m = 0 ‰es Q(x) = mx2 + nx + r = 0 4
ev, x = 4  x =  ev, x = 4
awi, mgxKiY«¼Gqi mvaviY gƒj .
myZivs r2  2n + 4m = 0 ... ... ... (i) 4
x=
m2 + n + r = 0 ... ... ... (ii) 
(i) I (ii) bs nGZ eRÊàYb c«¬wZGZ, 4 4
2 1  wbGYÆq gƒj«¼q  ‰es 

= =
 2nr  4mn 4m2  r2 nr + 2mn
 1 4m2  r2 M f(x) = 0

‰LvGb, 4m2  r2 = nr + 2mn   = n(2m + r)  px2 + qx + r = 0 ... ... (i)
2
Avevi,  2nr  4mn = 4m2  r2
 ‰es g(x) = 0  rx2 + qx + p = 0 ... ... (ii)
awi, (i) I (ii) bs mgxKiY«¼Gqi mvaviY gƒj |
 2n(2m + r) 4m2  r2 2n(2m + r)
ev,  = 4m2  r2 ev, n(2m + r) = 4m2  r2  p2 + q + r = 0 … … (iii)
ev, (4m2  r2)2 =  2n2(2m + r)2 ‰es r2 + q + p = 0 … … (iv)
ev, (2m + r)2 (2m  r)2 + 2n2 (2m + r)2 = 0 (iii) I (iv) bs nGZ eRÊàYb c«¬wZGZ,
ev, (2m + r)2 {(2m  r)2 + 2n2} = 0 2
=

=
1
ev, (2m + r)2 = 0 nq pq  qr r2  p2 pq  qr
 2m + r = 0 A^ev, (2m  r)2 + 2n2 = 0 (cÉgvwYZ) 2 
 =
q (r  p) (r + p) (r  p)
cÉk
² 44 f(x) = px2 + qx + r ‰es g(x) = rx2 + qx + p.  1 q
K. m ‰i gvb KZ nGj, (m  1) x2  (m + 2) x + 4 = 0 ev, q = r + p   = r + p … … (v)
mgxKiGYi gƒj«¼q mgvb nGe? 2  1  1
L. DóxcK ˆ^GK f(x) = 0 mgxKiGYi gƒj«¼q ,  nGj Avevi, r2  p2 = pq  qr ev, (r + p) (r  p) = q (r  p)
rx2 + 4qx + 16p = 0 mgxKiGYi gƒj«¼qGK  I  ‰i  1 (r + p)
gvaÅGg cÉKvk Ki| 4 ev, r + p = q ev,  = q
[(v) bs nGZ]
M. DóxcGKi f(x) = 0 ‰es g(x) = 0 mgxKiY«¼Gqi ‰KwU q (r + p)
mvaviY gƒj ^vKGj p, q ‰es r ‰i gGaÅ mÁ·KÆ Õ©vcb ev, r + p = q
ev, (p + r)2 = q2
Ki| 4  p + r =  q BnvB wbGYÆq mÁ·KÆ|
wkLbdj- 4, 5 I 7 [ivRkvnx ˆevWÆ-2019  cÉk² bs 2]
12 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

cÉk
² 45 P(x) = mx3 + nx2 + qx + r. ² 46 `†kÅK͸-1: g(x) = 1  9x + 20x2
cÉk

1

K. m = 0 ‰es n = q = r = 1 nGj, P(x) = 0 mgxKiGYi gƒGji


`†kÅK͸-2: mx2 + nx + s = 0 ‰KwU w«¼NvZ mgxKiY|
cÉK‡wZ wbYÆq Ki| 2 K.  4  4i RwUj msLÅvi AvàÆGg´Ÿ wbYÆq Ki| 2
L. P(x) = 0 mgxKiGYi gƒjàGjv , ,  nGj,  wbYÆq Ki| 4
3
L. `†kÅK͸-1 ‰i AvGjvGK g(x) ‰i weÕ¦‡wZi xn ‰i mnM wbYÆq
M. ‰gb ‰KwU mgxKiY wbYÆq Ki hvi gƒj«¼q h^vKÌGg Ki| 4
1
P(x) = 0 mgxKiGYi gƒj `ywUi mgwÓ¡ I A¯¦idGji cig M. `†kÅK͸-2 ‰i AvGjvGK m = 9, n = 2, s =  3 (p + 2) nGj
gvb nGe, ˆhLvGb, m = 0, n = 2, q = 1, r = 1. 4 cÉvµ¦ mgxKiGYi ‰KwU gƒj hw` AciwUi eGMÆi mgvb nq
wkLbdj- 4, 5, 7 I 9 [w`bvRcyi ˆevWÆ-2019  cÉk² bs 3] ZGe p ‰i gvb wbYÆq Ki| 4
45 bs cÉGk²i mgvavb [PëMÉvg ˆevWÆ-2019  cÉk² bs 2]
46 bs cÉGk²i mgvavb
K ˆ`Iqv AvGQ, P(x) = mx3 + nx2 + qx +r

K RwUj msLÅvwU:  4  4i

m = 0, n = q = r = 1 ‰es P(x) = 0 nGj,
4
0 = 0.x3 + 1.x2 + 1.x + 1 ev, x2 + x + 1 = 0 AvàÆGg´Ÿ,  = tan1   1
 4 = tan 1
mgxKiYwUi wbøvqK = 12  4.1.1 = 1  4 =  3 < 0 ˆhGnZz we±`ywU Z‡Zxq PZzfÆvGM AewÕ©Z|
 mgxKiYwUi gƒj«¼q RwUj ‰es Amgvb| (Ans.) 

wbGYÆq AvàÆGg´Ÿ = tan1 1   = 4   =  4 (Ans.)
3

L ˆ`Iqv AvGQ, mx3 + nx2 + qx + r = 0


 1
mgxKiYwUi gƒjàGjv ,  I  nGj, L cÉ`î weÕ¦‡wZ, g(x) = 1  9x + 20x2

n q r 1 1
++=
m
,  +  +  =
m
‰es  = m = =
1  5x  4x + 20x2 1  5x  4x(1  5x)
=

‰Lb, 3 + 3 + 3  3 = ( +  + )(2 + 2 + 2 1


(1  5x)(1  4x)
     )
1 1
= ( +  + ){( +  + )2  2( +  +)  ( +  + )} = +
4 5
= ( +  + ){( +  + )2  3( +  + )} ( )
(1  5x) 1 
5
(1  4x) 1 
4( )
 3 + 3 + 3 = ( +  + ) {( +  +  [‘cover-up rule’ AbymvGi]
 5 4
= 
 n  n2 q  r 1  5x 1  4x
=   3 .  + 3 
m  m  m  m = 5[1 + 5x + (5x)2 + ... + (5x)n + ...]  4[1 + 4x + ... + (4x)n + ...]
n3 3nq 3r (Ans.)
 3 =  +  (Ans.)
m3 m2 m  x ‰i mnM = 5.5  4.4 = 5  4 (Ans.)
n n n n+1 n+1

M ˆ`Iqv AvGQ, P(x) = mx3 + nx2 + qx + r


 M ˆ`Iqv AvGQ, w«¼NvZ mgxKiY, mx2 + nx + s = 0

 0 = 2x2 + x  1 ˆ`Iqv AvGQ, 1
‰Lb, m = 9, n = 2, s =  3 (p + 2) nGj, mgxKiYwU
ev, 2x + x  1 = 0
2
P(x) = 0
(p + 2)
awi, mgxKiYwUi gƒj«¼q a I b m=0 9x2 + 2x 
3
= 0 ............. (i)
1 1 n=2
ZvnGj, a + b = 2 , ab =  2  27x2 + 6x  (p + 2) = 0
q=1
gGb Kwi, cÉ`î mgxKiGYi gƒj«¼q  I 2
r=1
‰Lb, (a  b)2 = (a + b)2  4ab 6  (p + 2)
ZvnGj,  + 2 = – 27 ‰es .2 = 3 = 27 ... ... (i)
1 2
=    4  21 = 14 + 2 = 1 +4 8 = 49
2
 2
  + 2 =
9
ev, 9 + 92 = 2
3
ab=
2 ev, 92 + 9 + 2 = 0
3 ev, 92 + 6 + 3 + 2 = 0
kZÆvbymvGi, |a  b| = 2
ev, 3(3 + 2) + 1(3 + 2) = 0
(a + b) I | a  b | gƒj«¼q wewkÓ¡ mgxKiY, ev, (3 + 2) (3 + 1) = 0
x2  {(a + b) + (| a  b |)}x + (a + b)(| a  b |) = 0 2 1
 = ,–
1 3 1 3 3 3
ev, x2   2 + 2x +  2   2 = 0
  (i) bs ‰  = 
2
ewmGq, Avevi, (i) bs ‰
3
3 1
ev, x2  x  4 = 0  4x2  4x  3 = 0 (Ans.) =
3
ewmGq,
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 13
3 3
M cÉ`î DóxcK = (1 + 3y)2n; ‰LvGb, n ‰i ˆh ˆKvb gvGbi RbÅ

( 23) =
(p + 2)
27 ( 13) =  (p27+ 2) 2n ˆRvo msLÅv|
8 (p + 2) 1 (p + 2)
ev, 27 =  27 ev, 27 =  27 KvGRB, weÕ¦‡wZwUGZ ‰KwU gvò gaÅc` AvGQ|
ev, p + 2 = 8 ev, p + 2 = 1 gaÅc`wU = (2n2 + 1) Zg c` = (n + 1) Zg c`
ev, p = 6 ev, p = 1  gaÅc`wUi gvb Tn+1 = 2nCn . (1)2n − n . (3y)n
 p = 6,  1 (Ans.) = 2nCn . (1)n . (3y)n = 2nCn . (3y)n

² 47 `†kÅK͸-1: 8x2  6x + 1 = 0 mgxKiGYi gƒj«¼q a I b.


cÉk 2n
= . (3y)n
`†kÅK͸-2: (1 + 3y)2n ˆhLvGb n  Ù. n 2n − n
3
K. gvb wbYÆq Ki : i . 2 =
2n . (2n − 1) . (2n − 2) . (2n − 3) ..... 4.3.2.1
(3y)n
L. `†kÅK͸-1 nGZ ‰Bi…c ‰KwU mgxKiY wbYÆq Ki hvi gƒj«¼q n . n
1 1 {2n (2n − 2) (2n − 4) .... 4.2} {(2n −1) (2n − 3) ... 5.3.1}
a+
b
‰es b + a . 4 = (3y)n
n . n
M. `†kÅK͸-2 ‰i AvGjvGK ˆ`LvI ˆh, cÉ`î weÕ¦‡wZi gaÅc`wU n
2 {n (n − 1) (n − 2) .... 2.1} {1.3.5 ...... (2n − 3) (2n −1)}
1 . 3 . 5 .... (2n  1) n n = 3n.yn
nGe n!
6y. 4 n . n
[PëMÉvg ˆevWÆ-2021  cÉk² bs 3] {1.2.3 ........ (n  2) (n  1)n} {1.3.5 ..... (2n  3) (2n  1)}
= 2n . 3n.yn
47 bs cÉGk²i mgvavb n . n
3
K gGb Kwi, x = i
 n {1.3.5. .......... (2n −1)}
= 6n . yn
ev, x3 = i [Nb KGi] n . n
ev, x3  i = 0 ev, x3 + i3 = 0 [ i2 = –1]
= 1.3.5 ........... (2n − 1)
6n.yn (ˆ`LvGbv nGjv)
ev, (x + i) (x2  ix + i2) = 0 n
nq x + i = 0
 x=i cÉk
² 48 (x) = lx2 + mx + n.
A^ev, x  ix + i = 0
2 2
K. x3 + x2 + 4x + 4 = 0 mgxKiGYi ‰KwU gƒj 2i nGj,
ev, x2  ix  1 = 0 mgxKiYwU mgvavb Ki| 2
i i2  4(1) i  1 + 4 L. (x) = 0 mgxKiGYi gƒj«¼q a, b nGj,
ev, x = 2
=
2
nl(x2 + 1) + (2nl  m2)x = 0 mgxKiGYi gƒj«¼qGK a, b
i 3
x=
2 ‰i gvaÅGg cÉKvk Ki| 4
3 i 3
M. l = 42, m =  13, n = 1 nGj, {(x)}1 ‰i weÕ¦‡wZGZ x99
 i = i,
2
(Ans.) ‰i mnM wbYÆq Ki| 4
[wmGjU ˆevWÆ-2019  cÉk² bs 3]
L ˆ`Iqv AvGQ, 8x2  6x + 1 = 0 mgxKiGYi gƒj«¼q a I b.

6 3 1 48 bs cÉGk²i mgvavb
 a+b= = ‰es ab =
8 4 8 K x + x + 4x + 4 = 0 mgxKiGYi ‰KwU gƒj 2i hv ‰KwU RwUj
 3 2

1 1 a+b
‰Lb, a + b + b + a = a + b + ab msLÅv| wK¯§ RwUj gƒj ˆRvovq ^vGK| myZivs w«¼Zxq gƒjwU  2i|
3 awi, Z‡Zxq gƒj 
3 4 3 3
= + = + 8
cÉ`î mgxKiY nGZ cvB,
4 1 4 4 2i + ( 2i) +  =  1
8
ev,  =  1
3 + 24 27
=
4
=
4  gƒjòq, h^vKÌGg  2i,  1 (Ans.)
1 1 L lx2 + mx + n = 0 mgxKiYwUi gƒj«¼q a I b nGj,

( )( )
‰es a + b b + a
m n
1 1 1 + 80 81 a+b=
l
‰es ab = l
= ab + 1 + 1 + = + 2 + 8 = =
ab 8 8 8
‰Lb, nl(x2 + 1) + (2nl  m2)x = 0
27 81
 wbGYÆq mgxKiY: x2 
4
x+
8 ( )
=0 ev, ln (x2 + 1)  (m2  2nl)x = 0
ln(x2 + 1) 1 2
ev, 8x  54x + 81 = 0 (Ans.)
2
ev, l2
 2 (m  2nl)x = 0 [l2
l
«¼viv fvM KGi]
14 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
n 2
49 bs cÉGk²i mgvavb
ev, l (x2 + 1)  (ml  2 nl )x = 0
2
K 4x + 2x  1 = 0
 2
n m 2 n
ev, l (x2 + 1)   l   2 l x = 0 wbøvqK = (2)2  4.(1).4 = 4 + 16 = 20
 
ev, ab(x + 1)  {(a + b)  2ab}x = 0
2 2 ˆhGnZz mgxKiYwUi wbøvqK abvñK wK¯§ cƒYÆeMÆ bq| AZ‰e
ev, abx2 + ab  a2x  b2x = 0 mgxKiYwUi gƒj«¼q, evÕ¦e Amgvb I Agƒj`|
ev, abx2  a2x + ab  b2x = 0 L px2 + qx + r = 0 ‰i RbÅ cÉk²wU mgvavb Kiv mÁ¿e bq| r ‰i

ev, ax(bx  a)  b(bx  a) = 0 Õ©Gj q nGj Zv cÉgvY Kiv mÁ¿e|
ev, (bx  a) (ax  b) = 0 gGb Kwi, px2 + qx + q = 0
 bx  a = 0 A^ev, ax  b = 0 cÉ`î mgxKiGYi gƒj«¼q, u ‰es v
a b
ev, x = b ev, x = a q q
u + v = –
p
‰es u.v = p
a b
 gƒj
`yBwU: b ‰es a (Ans.) q
u+v=– ... ... ... (i)
p
M ˆ`Iqv AvGQ, l = 42, m =  13, n = 1
 q
 {(x)}1 = (42x2  13x + 1)1  uv = ... ... ... (ii)
p2
= (42x2  7x  6x + 1)1 u v q u+v q
= {7x (6x  1)  1 (6x  1)}1 ‰Lb, v
+
u
+
p
= +
p
uv
= {(6x  1) (7x  1)}1
1 q
= –
(6x  1) (7x  1) p q
= +
p
[(i) I (ii) bs nGZ]
1 A B q
awi, (6x  1) (7x  1)  6x  1 + 7x  1 p2
Dfq cÞGK (6x  1) (7x  1) «¼viv àY KGi cvB, q p q
=–  +
1  A(7x  1) + B(6x  1) p q p
1 1 1
7 ( 7 ) (
x = nGj, 1 = A 7   1 + B 6   1 ) 7 =–
q
p
+
q
p
=0
1
( )
ev, 1 = A  0 + B  7  B =  7

u
v
+
v
u
+
q
p
=0 (cÉgvwYZ)
1 1 1
( ) ( )
Avevi, x = 6 nGj, 1 = A 7  6  1 + B 6  6  1
( 1)
M cÉ`î ivwk = 3x2  x

n

1
ev, 1 = A  6 + B  0  A = 6 1 9
n = 9 nGj, (3x  ) ‰i gaÅc` nGe 2wU ‰es Zv nGe,
2
1 6 7 x
 = 
(6x  1) (7x  1) 6x  1 7x  1
=
6

7
 (1  6x)  (1  7x)
( 2 ) Zg c` = (9 +2 1) Zg c` = 5 Zg c` ‰es
n+1

=
7

1  7x 1  6x
6 (n +2 1 + 1) Zg c` = (9 2+ 1 + 1) Zg c` = 6 Zg c`|
1 4
= 7(1 – 7x)–1 – 6(1 – 6x)–1 5 Zg c` = (4 + 1) Zg c` = 9C4 (3x2)9  4 .  x 
= 7{1 + 7x + 49x2 + .... + 7r . xr + ...}
 6{1 + 6x + 36x2 + ..... + 6r.xr + ... } 1
= 126.35. x10. = 30618 x6
x4
 r = 99 nGj, Avgiv cvB,
1 5
7(1 + 7x + 49x2 + ..... + 799.x99)
 6(1 + 6x + 36x2 + .... + 699.x99)
6 Zg c` = (5 + 1) Zg c` = 9C5 (3x2)9  5. ( )
x
 x99 ‰i mnM = 7100  6100 (Ans.) 1
= 126. 34. x8. 5 = 10206 x3
x
² 49 `†kÅK͸-1: px2 + qx + r = 0 mgxKiGYi gƒj `ywUi AbycvZ
cÉk n=9 nGj gaÅc`«¼q 30618 x6,  10206 x3 (Ans.)
u : v| 12

1 n n = 12 ( 1) ‰i gaÅc` nGe ‰KwU ‰es Zv


nGj, 3x2  x
(
`†kÅK͸-2: 3x2  x . ) n 12
nGe, (2 + 1) Zg c` = ( 2 + 1) Zg c` = 7 Zg c`
K. 4x + 2x  1 = 0 mgxKiGYi gƒGji cÉK‡wZ wbYÆq Ki|
2
2
u v q 1 6
L. `†kÅK͸-1 ˆ^GK cÉgvY Ki ˆh, v + u
+
p
= 0. 4 7 Zg c` = (6 + 1) Zg c` = 12C6 (3x2)126 .  x 
M. `†kÅK͸-2 ‰i AvGjvGK n = 9 I n = 12 ‰i RbÅ cÉ`î = 924 . 36 . x12 .
1
= 673596x6
weÕ¦‡wZi gaÅcG`i gvb wbYÆq Ki| 4 x6
wkLbdj- == [ewikvj ˆevWÆ-2019  cÉk² bs 3]  n = 12 nGj gaÅc` 673596 x6 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 15
2 2
4a – c
cÉk
² 50 hw` f(x) = ax2 + bx + c ‰es g(x) = cx2 + bx + a nq ‰es  = 2bc – 4ab [2q I 3q AbycvZ nGZ]
ZGe, 2 2
K. f(x) = 0 ‰i gƒGji cÉK‡wZ wbYÆq Ki| 2 myZivs Avgiv cvB, bc 2 2ab2 = 4a  c
4a  c 2bc  4ab
L. f(x) = 0 mgxKiGYi gƒj«¼q h^vKÌGg ,  nGj ˆ`LvI ˆh,
ev, (bc – 2ab)(2bc – 4ab) = (4a – c2)2
2
b3  3abc
3
(a + b) + (a + b) = 3
a3c3
4 ev, 2b2 (c –2a)2 = (c –2a)2(c +2a)2
M. f(x) = 0 ‰i ‰KwU gƒj, g(x) = 0 mgxKiGYi ‰KwU gƒGji ev, 2b2 (c –2a)2 – (c –2a)2(c +2a)2 = 0
ev, (c –2a)2 {2b2 –(2a + c)2} = 0
w«¼àY nGj, ˆ`LvI ˆh, 2a = c A^ev (2a + c)2 = 2b2 4
wkLbdj- 3, 4, 5 I 7 [XvKv ˆevWÆ-2017  cÉk² bs 2]
nq, (c –2a)2 = 0 A^ev, 2b2 –(2a + c)2 = 0
50 bs cÉGk²i mgvavb ev, c –2a = 0 ev, (2a + c)2 = 2b2
 2a = c
K ˆ`Iqv AvGQ, f(x) = ax2 + bx + c

‰LvGb, f(x) = 0 ev, ax2 + bx + c = 0 ... ... ... (i)  2a = c A^ev, (2a + c)2 = 2b2 (cÉgvwYZ)
2
b b  4ac cÉk
 ² 51 `†kÅK͸-1: z = 2 + 4i  i2
(i) bs mgxKiYwUi mgvavb, x = 2a
b  4ac ‰i mvnvGhÅ (i) bs mgxKiYwUi gƒGji cÉK‡wZ
2 `†kÅK͸-2: px2 + qx + r = 0
wbwøZfvGe Rvbv hvq| K. ‰KGKi RwUj Nbgƒj , 2 nGj
(i) b2  4ac > 0 I cƒYÆeMÆ nGj, gƒj«¼q evÕ¦e, gƒj` I Amgvb nGe| ( 1 + 3)7 + ( 1  3 )7 ‰i gvb wbYÆq Ki| 2
(ii) b2  4ac < 0 nGj, gƒj«¼q RwUj I Amgvb nGe|
L. `†kÅK͸-1 ‰ z ‰i eMÆgƒGji gWzjvm meÆ`v 5 mwVK Kx bv
(iii) b2  4ac = 0 nGj, gƒj«¼q evÕ¦e I mgvb nGe|
(iv) b2  4ac > 0 ‰es cƒYÆeMÆ bv nGj, gƒj«¼q evÕ¦e, Agƒj` I hvPvB Ki| ˆhLvGb z nGœQ z ‰i Abye®¬x RwUj msLÅv| 4
Amgvb nGe| M. `†kÅK͸-2 ‰ DGÍÏwLZ mgxKiGYi gƒj«¼q ,  nGj
L ax2 + bx + c = 0 ... ... ... (i)
 2 2
, gƒjwewkÓ¡ mgxKiY wbYÆq Ki| 4
b  
(i) bs mgxKiGYi gƒj«¼q ,  nGj,  +  =
a AaÅvq 3 I 4 ‰i mg®¼Gq [ivRkvnx ˆevWÆ-2017  cÉk² bs 2]
ev, a + a =  b 51 bs cÉGk²i mgvavb
ev, a + b =  a ... ... ... (ii)
Avevi, a + b =  a ... ... ... (iii)  1 + 3
K Avgiv Rvwb, ‰KGKi Kv͸wbK gƒj«¼q  =
 2
c
‰es  = a ............. (iv)  1  3
‰Lb, (a + b)3 + (a + b)3 = ( a)3 + ( a)3 ‰es 2 = 2
1 1 A^Ævr, 2 =  1 + 3 ‰es 22 =  1   3
= 3 3  3 3
a a
 ( 1 + 3)7 + ( 1  3)7
1 1 1 1 3 + 3
=  3  3 + 3 =  3  3 3  = (2)7 + (22)7 = 277 + 2714 = 128(7 + 14)
a    a   
1 ( + )3  3 ( + ) = 128( + 2) = 128  (1) =  128 (Ans.)
= 3  
a  ()3  L ˆ`Iqv AvGQ, z = 2 + 4i  i2 = 2 + 4i  (1)

3
 b
   3 . .   c  b = 2 + 4i + 1 = 3 + 4i
1  a  a  a  z, z ‰i Abye®¬x RwUj msLÅv|
= 3  
a c 3
 a    z = 3  4i = 22 + i2  2.2.i = (2  i)2
 
3  z̄ ‰i eMÆgƒj =  (2  i) = 2  i,  2 + i
 b3 +
3bc
1 a a2  1 3 3
| z̄ | = 22 + ( 1)2 = 5 ‰es | z̄ |= ( 2)2 + 12 = 5
= = 3  b +3 3abc  a3
a3 c3 a  a  c
a3 
z ‰i eMÆgƒGji gWzjvm meÆ`v 5 (hvPvB Kiv nGjv)
3
=
b  3abc
(ˆ`LvGbv nGjv) M cÉ`î mgxKiY, px2 + qx + r = 0 ‰i gƒj«¼q ,  nGj,

a3c3 q r
M gGb
 Kwi, cx + bx + a = 0 ‰i ‰KwU gƒj 
2 +=
p
‰es  = p
ZvnGj kZÆvbyhvqx, ax2 + bx + c = 0 ‰i ‰KwU gƒj 2| 2 2
‰es  gƒjwewkÓ¡ mgxKiY,
myZivs  «¼viv cx2 + bx + a = 0 ‰es 2 «¼viv 
ax2 + bx + c = 0 mgxKiY wm«¬ nGe, A^Ævr, 2 2 2 2  +  4
x2   + x +  = 0 ev, x2  2
c2 + b + a = 0 ... ... (i)       x +  = 0
4a2 + 2b + c = 0 ... ... (ii)
 qp
(i) I (ii) bs nGZ eRËàYb cÉwKÌqvq cvB, 4 2q p
2  1
ev, x2  2 r  x + r = 0 ev, x2 + r x + 4  r = 0
= =  
bc – 2ab 4a2 – c2 2bc – 4ab p p
bc – 2ab 2
  = 2 2 [1g I 2q AbycvZ nGZ]  rx + 2qx + 4p = 0 (Ans.)
4a – c
16 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

cÉk
² 52 z =  + i, ˆhLvGb  I  evÕ¦e msLÅv| L cÉ`î mgxKiY x2 + bx + c = 0 ‰i gƒj«¼q , 

+=b
x3 – 8
K. x–2
eüc`xi NvZ wbYÆq Ki| 2 ‰es  = c
‰Lb, c(x2 + 1)  (b2  2c)x = 0
L. DóxcGK  = 2,  = 3 nGj, z gƒjwewkÓ¡ w«¼NvZ mgxKiY ev, cx2  (b2  2c)x + c = 0
wbYÆq Ki| 4 ev, x2  {( + )2  2}x +  = 0
M. DóxcGK  = 0 ‰es  I  ‰i mnM ciÕ·i mgvb nGj
5 15
ev, x2  (2 + 2 + 2  2)x +  = 0
10 ev, x2  (2 + 2)x +  = 0
 2z2 + R3 ‰i weÕ¦‡wZ ˆ^GK R ‰i gvb wbYÆq Ki| 4
 z ev, x2  2x  2x +  = 0
[KzwgÍÏv ˆevWÆ-2017  cÉk² bs 3] ev, x(x  )  (x  ) = 0
52 bs cÉGk²i mgvavb ev, (x  ) (x  ) = 0
 
3
x –8 3
x –2 3
(x – 2)(x2 + 2x + 4) x= ‰es 
K x–2 = x–2 =
 x–2

 
 gƒj
`yBwU  ‰es  (Ans.)
= x2 + 2x + 4 ‰LvGb x ‰i mGeÆvœP NvZ 2 (Ans.)
L ˆ`Iqv AvGQ, z =  + i
 M x2 + bx + c = 0 mgxKiGYi gƒj«¼q , 

hLb,  = 2,  = 3 nq ZLb, z = 2 + i 3 +=b
 = c
z ˆKvb mgxKiGYi gƒj nGj, x = 2 + i 3 ev, x  2 = i 3 wbGYÆq mgxKiGYi gƒj«¼Gqi ˆhvMdj
ev, x2  4x + 4 =  3  x2  4x + 7 = 0 1 1 1 1
=+ +  + = ( + ) +  + 
BnvB wbGYÆq mgxKiY| (Ans.)    
+  b  bc  b
M  = 0 nGj, z = 
 =b+

=b+
c
=
c
10 10
1 1 1
ZvnGj,  2z + R3 =  22 + R3
2 ‰es gƒj«¼Gqi àYdj =  +   +  =  + 1 + 1 + 
 z  
1 c2 + 2c + 1 (c + 1)2
10
=c+2+ = =
R c c c
‰Lb,  22 + 3 ‰i weÕ¦‡wZGZ, (r + 1)Zg c` 1 1
     
r   I  +  gƒjwewkÓ¡ wbGYÆq mgxKiY,
 +
10
= Cr (2 ) 2 10 – r  R3 1
= 10Cr . 210 – r 20 – 2r. Rr.  bc  b (c + 1)2
  3r x2  x+ =0
c c
= 10Cr. 210 – r  20 – 2r – 3r. Rr = 10Cr. 210 – r 20 – 5r. Rr 2 2
 cx + b(c + 1)x + (c + 1) = 0 (Ans.)
5 ‰i mnGMi RbÅ 20 – 5r = 5 5r = 20 – 5
 5r = 15  r = 3 cÉk
² 54 z = −2 −2 3i ‰KwU RwUj ivwk|
 ‰i mnM = C3 2 . R = C3 2 . R
5 10 10 – 3 3 10 7 3
K. x + iy =
p + iq
nGj ˆ`LvI (x2 + y2)2 = r2 + s2
p2 + q2
2
r + is
Avevi, 15 ‰i mnGMi RbÅ, 20 – 5r = 15
 5r = 5  r = 1 L. Arg ( z) wbYÆq Ki| 4
 15 ‰i mnM = 10C1 210 – 1. R = 10C1. 29 R M. ˆKvGbv wòNvZ mgxKiGYi ‰KwU gƒj z ‰es gƒjàwji àYdj
R3 80 nGj mgxKiYwU wbYÆq Ki| 4
10
C 29
cÉkg² GZ, 10C3 27 . R3 = 10C1 . 29. R  R = 10C1 . 27
3 AaÅvq-3 I 4 ‰i mg®¼Gq [wmGjU ˆevWÆ-2017  cÉk² bs 2]
10 4 1
 R2 =
120
. 2 2  R2 =
12
 R2 =
3
54 bs cÉGk²i mgvavb
p − iq
R=
1
(Ans.) K x + iy ‰i RwUj Abye®¬x x – iy  x − iy =
 r − is
3
p + iq p − iq
 (x + iy) (x − iy) = .
cÉk
² 53 x2 + bx + c = 0 mgxKiGYi gƒj«¼q ,  r + is r − is
K. DóxcGKi mgxKiYwUi wbøvqK KZ? 2 ev, x2 − i2y2 =
(p + iq) (p − iq)
(r + is) (r − is)
L. c(x + 1) − (b − 2c) x = 0 ‰i gƒj `yBwU ,  ‰i gvaÅGg
2 2

p 2 − i 2q 2
cÉKvk Ki| 4 ev, x2 + y2 = r2 − i2s2
[‹ i2 = −1]
1 1
M. ‰i…c ‰KwU mgxKiY wbYÆq Ki hvi gƒj«¼q  +  I  +  4 p2 + q2
ev, x2 + y2 = r2 + s2
wkLbdj- 4 I 5 [PëMÉvg ˆevWÆ-2017  cÉk² bs 2] p + q2
2

53 bs cÉGk²i mgvavb  (x2 + y2)2 = 2 2 (ˆ`LvGbv nGjv)


r +s
K Avgiv Rvwb,
 L ˆ`Iqv AvGQ, z =  2  2 3i

ax2 + bx + c = 0 mgxKiGYi wbøvqK b2  4ac.
= 12  2.1. 3i + ( 3i)2 = (1  3i)2
 x2 + bx + c = 0 mgxKiGYi wbøvqK b2  4.1.c = b2  4c
 z =  (1  3i)
(Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 17
awi, z1 = 1  3i ‰es z2 =  1 + 3i ‰LvGb, ' ' ‰i wfZGii ivwk b2 – 4ac ‰i gvGbi Dci wfwî
y
y KGi gƒj«¼Gqi cÉK‡wZ cwiewZÆZ nq| ‰i gvb chÆvGjvPbv KGi
3
1 
x
gƒGji cÉK‡wZ wbwøZfvGe wbi…cY Kiv hvq| ‰ KviGY ‰GK
x 1

c†^vqK ejv nq|
3
ax2 + bx + c = 0 ‰i c†^vqK, b2 – 4ac
 arg z1 =    arg z2 =    D`vniY: x2 − x − 6 ivwkwUi c†^vqK = (−1)2 − 4.1(−6)
3 = 1 + 24 = 25
=   tan1 
3
=  tan1   1
 1 L ˆ`Iqv AvGQ, (x) = x – 13x + 61x – 107x + 58
 4 3 2

  ‰es (x) = 0
=  (Ans.) =
3 3
 x4 – 13x3 + 61x2 – 107x + 58 = 0 ... ... (i)
2
=
3
(Ans.) mgxKiYwUi ‰KwU gƒj 5 + 2i nGj Aci ‰KwU gƒj nGe 5 – 2i.
M ˆ`Iqv AvGQ, ‰KwU gƒj z
 gGb Kwi, mgxKiYwUi AewkÓ¡ gƒj `yBwU , 
 gƒjàwji ˆhvMdj, 5 + 2i + 5 – 2i +  +  = 13
 Aci gƒjwU nGe z = − 2 + 2 3i ev,  +  + 10 = 13   +  = 3 ... ... (ii)
awi, Z‡Zxq gƒj = t Avevi, gƒjàwji àYdj, (5 + 2i) (5 – 2i)  = 58
cÉkg² GZ, z−zt = 80 ev, (25 – 4i2)  = 58 ev, {25 – 4(– 1)}  = 58
ev, (−2 − 2 3i) . (−2 + 2 3i) . t = 80 ev, 29 = 58   = 2 ... ... (iii)
ev, {(−2)2 − (2 3i)2} . t = 80 ev, (4 − 4.3i2) . t = 80 ‰Lb, ( – )2 = ( + )2 – 4 = 32 – 4.2 = 1
80
ev, (4 + 12) . t = 80  t = 16 = 5  –  =  1.
(+) wPn× eÅenvi KGi cvB,  –  = 1 ... ... (iv)
‰Lb, z + −z + t = −2 − 2 3i − 2 + 2 3i + 5 = 5 − 4 = 1 (ii) I (iv) ˆhvM KGi cvB, 2 = 4   = 2
z−
z +− zt + tz  ‰i gvb (ii) bs ‰ ewmGq cvB, 2 +  = 3   = 1
= (−2 − 2 3i) (−2 + 2 3i) + (−2 + 2 3i).5 + 5 (−2 − 2 3i) (–) wPn× eÅenvi KGiI ‰KB gƒj cvIqv hvq|
= (4 − 4.3i2) + 10 3i − 10 − 10 − 10 3i = 16 − 20 = − 4  wbGYÆq Aci gƒjàwj 5 – 2i, 2, 1(Ans.)
 wbGYÆq mgxKiYwU
x
x3 − (z + −
z + t) x2 + (z−
z+−
zt + tz) x − z−
zt = 0 M ˆ`Iqv AvGQ, g(x) = 1 – 4x + 3x2

 x3 − x2 − 4x − 80 = 0 (Ans.) x x
= =
1 – 3x – x + 3x2 (1 – 3x)(1 – x)
x
cÉk
² 55 (x) = x4 – 13x3 + 61x2 – 107x + 58, g(x) = 1 – 4x + 3x2 1
3 1
K. D`vniYmn c†^vqGKi msæv `vI| B 2 =
1
+
(1  x) (1  3)
L. (x) = 0 mgxKiGYi ‰KwU gƒj 5 + 2i nGj Aci gƒjàGjv (1  3x) 1 ( )
3
wbYÆq Ki| 4 [cover-up rule ‰i mvnvGhÅ]
M. g(x) ‰i weÕ¦‡wZGZ x ‰i mnM wbYÆq Ki|
r
4 1

1
2 2 1
[ewikvj ˆevWÆ-2017  cÉk² bs 3] = + = {(1 – 3x)– 1 – (1 – x)– 1}
1 – 3x 1 – x 2
55 bs cÉGk²i mgvavb 1
= [{1 + 3x + (3x)2 + ... + (3x)r + ...} – {1+ x + x2 +... + xr + ...}]
K c†^vqK: ax + bx + c = 0 ‰KwU w«¼NvZ mgxKiY|
 2 2
– b  b2 – 4ac 1
‰i gƒj«¼q, = [1 + 3x + 9x2 + ... ... + 3r. xr + ... ... – 1 – x – x2 – ... ... – xr  ...]
2a 2
1
ˆhLvGb, a, b, c evÕ¦e msLÅv|  xr ‰i mnM = (3r – 1) (Ans.)
2
18 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

cçg AaÅvq: w«¼c`x weÕ¦‡wZ


cÉk
² 6 z = 2x + 3y. Y ˆÕ•j: x I y AÞ eivei Þz`ËZg eGMÆi cÉwZ
K. (a + x)4 ‰i weÕ¦‡wZGZ x3 ‰i mnM 16 nGj, 2.5 evüi Š`NÆÅ mgvb 1 ‰KK
(ii)
a ‰i gvb wbYÆq Ki| 2
1
L. y =  x2 nGj DóxcK ˆ^GK z12 ‰i weÕ¦‡wZGZ x ewRÆZ (i) C
c`wUi gvb wbYÆq Ki| 4 B
M. x + 2y  8, x + y  6 ‰es x, y  0, kZÆvaxGb DóxcGKi
AvGjvGK z ‰i mGeÆvœP gvb wbYÆq Ki| 4
AaÅvq 2 I 5 ‰i mg®¼Gq [ivRkvnx ˆevWÆ-2019] A
X O X
6 bs cÉGk²i mgvavb Y (ii) (i)
K (a + x)4 = a4 + 4a3x + 6a2x2 + 4ax3 + x4

ˆjLwPGò ˆ`Lv hvq ˆh, mgxKiY (i) I (ii) ‰i mKj we±`y ‰es
 (a + x)4 ‰i weÕ¦‡wZGZ x3 ‰i mnM 4a. ‰G`i ˆh cvGk gƒj we±`y AewÕ©Z ˆmB cvGki mKj we±`yi
cÉkg² GZ, 4a = 16 RbÅ cÉ`î AmgZvàGjv mZÅ| ˆhLvGb O(0, 0) nGœQ gƒj we±`y|
ev, a = 4
16 wPòvbymvGi, A, B I C h^vKÌGg (ii) I (iv); (i) I (ii) ‰es (i)
I (iii) ‰i ˆQ` we±`y|
 a = 4 (Ans.) ZvnGj, mÁ¿veÅ mgvavb ‰jvKv nGœQ OABCO hv wPGò Qvqv
L ˆ`Iqv AvGQ, z = 2x + 3y
 ˆNiv ‰jvKv wnmvGe wPwn×Z Kiv AvGQ ‰es mÁ¿veÅ mgvavb
1 3 ‰jvKvi ˆKŒwYK ev cÉvw¯¦K we±`yàGjv h^vKÌGg-
y=
x2
nGj, z = 2x  x2 O(0, 0), A(6, 0), B(4, 2) ‰es C(0, 4)
3 12 ‰Lb O(0, 0) we±`yGZ z = 2  0 + 3  0 = 0
 z12 (
ev 2x  x2 ) ‰i weÕ¦‡wZGZ A(6, 0) we±`yGZ z = 2  6 + 3  0 = 12
B(4, 2) we±`yGZ z = 2  4 + 3  2 = 14
3 r
(r + 1)-Zg c` = 12Cr (2x)12  r  x2  C(0, 4) we±`yGZ z = 2  0 + 3  4 = 12
Õ·Ó¡Z: B(4, 2) we±`yGZ z ‰i mGeÆvœPgvb cvIqv hvq|
= 12Cr 212  r x12  r (3)r x2r
 mGeÆvœP gvb zmax = 14 (Ans.)
= 12Cr 212  r (3)r x12  3r

(2 x)
n
cÉkg² GZ, x 12  3r
= x0 cÉk
² 7 `†kÅK͸-1: A = x + 2
ev, 12  3r = 0
`†kÅK͸-2: B = (1  9x + 20x2)1
ev, 12 = 3r
K. 6x2  5x  1 = 0 mgxKiGYi gƒj«¼Gqi cÉK‡wZ wbYÆq Ki| 2
12
ev, r = 3 L. n ‰i RbÅ ˆKvb kZÆ AvGivc KiGj `†kÅK͸ A ‰i ‰KwU gaÅc`
 r=4 ^vKGe?
x ewRÆZ c`wUi gvb = 12Cr 212  r (3)r n = 21 nGj gaÅc` ev (c`mgƒGni) gvb wbYÆq Ki| 4
= 12C4.2124 . (3)4 [ r = 4] M. `†kÅK͸ B ‰i RbÅ cÉgvY Ki ˆh, x ‰i mnM 5  4 | 4
9 10 10

= 495  256  81 [ivRkvnx ˆevWÆ-2017  cÉk² bs 3]


= 10264320 (Ans.) 7 bs cÉGk²i mgvavb
M ˆ`Iqv AvGQ, AfxÓ¡ dvskb z = 2x + 3y ‰es mxgve«¬Zvi 
 K cÉ`î mgxKiY, 6x2  5x  1 = 0
kZÆmgƒn: x + 2y  8, x + y  6, x, y  0 mgxKiYwUi wbøvqK = ( 5)2  4  6  (1) = 25 + 24
cÉ`î AmgZvàGjvGK mgZv aGi cÉvµ¦ mgxKiYàGjvi ˆjLwPò = 49 = 72 hv ‰KwU cƒYÆeMÆ msLÅv|
Aâb Kwi ‰es mgvavGbi mÁ¿veÅ AbyK„j ‰jvKv wbYÆq Kwi|  gƒj«¼q gƒj` I Amgvb nGe| (Ans.)
AZ‰e Avgiv cvB, 2 x n
x y
L ˆ`Iqv AvGQ, A = x + 2
 ( )
x + 2y = 8  + = 1 º º (i)
8 4 n ˆRvo msLÅv nGj ‰KwU gaÅc` ^vKGe| (Ans.)
x y
x + y = 6  + = 1 º º (ii) n = 21 nGj gaÅc` ^vKGe `yBwU|
6 6 21  1
x = 0 º º º º º ºº º (iii) ‰àwj nj  2 + 1 Zg I (212+ 1 + 1) Zg c`«¼q
y = 0 º º º º º ºº º (iv) ev, 11 Zg ‰es 12 Zg c`«¼q
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 19
8 bs cÉGk²i mgvavb
(2x) . (x2)
21  10 10
11 Zg c` ev (10 + 1) Zg c` = 21C10.
3 3 3
x –8 x –2 (x – 2)(x2 + 2x + 4)
21 211 x10 K x–2 = x–2 =
 x–2
= C10 . 11 . 10
x 2
= x2 + 2x + 4 ‰LvGb x ‰i mGeÆvœP NvZ 2 (Ans.)
2 705432
= 21C10 . = (Ans.) L ˆ`Iqv AvGQ, z =  + i

x x
2 21  11 x 11 hLb,  = 2,  = 3 nq
12 Zg c` ev (11 + 1) Zg c` = 21C11 .
10
x
11
() ().
2 ZLb, z = 2 + i 3
2 x Avgiv Rvwb, ˆKvGbv evÕ¦e mnM wewkÓ¡ w«¼NvZ mgxKiGYi
= 21C11 10 . 11
x 2
x
RwUj gƒjàwj hyMGj ^vGK| ‰KwU gƒj 2 + i 3 nGj Aci
21
= C11
2 gƒjwU nGe 2 – i 3 ‰es mgxKiYwU nGe,
= 176358x (Ans.) x2 – (2 + i 3 + 2 – i 3) x + (2 + i 3)(2 – i 3) = 0
 x2 – 4x + (4 – i2 3) = 0
M ˆ`Iqv AvGQ, B = (1  9x + 20x2)1

 x2 – 4x + (4 + 3) = 0
1
=
20x2  9x + 1  x2 – 4x + 7 = 0, BnvB wbGYÆq mgxKiY (Ans.)

=
1 M  = 0 nGj, z = 

20x2  4x  5x + 1 10 10
R R
1 ZvnGj,  2z2 + z3 =  22 + 3
=
4x(5x  1) 1 (5x  1)
   
10
1 R
= ‰Lb,  22 + 3 ‰i weÕ¦‡wZGZ, (r + 1)Zg c`
(4x  1) (5x  1)  
r
awi,
1

A
+
B 10
= Cr (2 ) 2 10 – r  R3
(4x  1) (5x  1) 4x  1 5x  1  
(4x  1) (5x  1) «¼viv DfqcÞGK àY KGi cvB, 1
= 10Cr . 210 – r 20 – 2r. Rr.
3r
1  A(5x  1) + B(4x  1)
= 10Cr. 210 – r  20 – 2r – 3r. Rr
1 1 4
5 ( ) ( )
x = nGj, 1 = A 5   1 + B
5 5
1 = 10Cr. 210 – r 20 – 5r. Rr
5 ‰i mnGMi RbÅ 20 – 5r = 5
1
ev, 1 = A  0 + B( )  5r = 20 – 5  5r = 15
5
 r=3
 B=5
 ‰i mnM = 10C3 210 – 3. R3 = 10C3 27. R3
5
1 5 1
x = nGj, 1 = A
4 4 ( ) (
1 +B 4 1
4 ) Avevi, 15 ‰i mnGMi RbÅ, 20 – 5r = 15
 5r = 5
1
ev, 1 = A  4 + B  0 r=1
 A=4  15 ‰i mnM = 10C1 210 – 1. R = 10C1. 29 R
1 4 5 cÉkg² GZ, C3 27 . R3 = 10C1 . 29. R
10
 =  R3 C1 29 10
10
(4x  1) (5x  1) 4x  1 5x  1
 = .  R2 =
10 . 22
4 5 5 4 R C3 27 120
=  =  4 1
 (1  4x)  (1  5x) 1  5x 1  4x  R2 =  R2 =
= 5(1  5x)1  4(1  4x)1 12 3
1
= 5{1 + 5x + 25x2 + ... ... + 5r.xr + ... ...}  4{1 + 4x R= (Ans.)
+ 16x2 + ... ... + 4r.xr + ... ...} 3
 x ‰i mnM = 5  4
r r +1 r+1
3 11

r = 9 nGj, x‰i mnM = 5  4


9 9+1 9+1 cÉk
² 9 (x) = x2 + x ( ) ............... (i)
 x9 ‰i mnM = 510  410 (cÉgvwYZ) g(x) = (1 + px)m .......................... (ii)
K. (1 − 3x)−1 ‰i weÕ¦‡wZ wbYÆq Ki| 2
cÉk
² 8 z =  + i, ˆhLvGb  I  evÕ¦e msLÅv|
x3 – 8 L. (x) ‰i weÕ¦‡wZGZ (r + 1) Zg I (r + 2) Zg cG`i mnM
K. x – 2 eüc`xi NvZ wbYÆq Ki| 2 mgvb nGj r ‰i gvb wbYÆq Ki| 4
L. DóxcGK  = 2,  = 3 nGj, z gƒjwewkÓ¡ w«¼NvZ mgxKiY M.
1
g(x) ‰ p = − 8 ‰es m = − nGj,
2
wbYÆq Ki| 4 r
(2r)!2
M. DóxcGK  = 0 ‰es 5 I 15 ‰i mnM ciÕ·i mgvb ˆ`LvI ˆh xr ‰i mnM (r!)2 . 4
10
nGj  2z + R3 ‰i
2
weÕ¦‡wZ ˆ^GK R ‰i gvb wbYÆq Ki| 4
 z 
[KzwgÍÏv ˆevWÆ-2017  cÉk² bs 3] [PëMÉvg ˆevWÆ-2017  cÉk² bs 3]
20 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
9 bs cÉGk²i mgvavb x
cÉk
² 10 (x) = x4 – 13x3 + 61x2 – 107x + 58, g(x) = 1 – 4x + 3x2.
( 1) ( 1  1)
K (1  3x)1 = 1 + (1) ( 3x) +
 2!
( 3x)2 K. D`vniYmn c†^vqGKi msæv `vI| 2
( 1) ( 1  1) ( 1  2) L. (x) = 0 mgxKiGYi ‰KwU gƒj 5 + 2i nGj Aci gƒjàGjv
+ ( 3x)3 + ... ...
3! wbYÆq Ki| 4
2 ( 1) ( 2) ( 3) M. g(x) ‰i weÕ¦‡wZGZ xr ‰i mnM wbYÆq Ki| 4
= 1 + 3x + (9x2) + ( 27x3) + ... ...
2 6 [ewikvj ˆevWÆ-2017  cÉk² bs 3]
= 1 + 3x + 9x2 + 27x3 + ... ... ... (Ans.) 10 bs cÉGk²i mgvavb
3 11
K c†^vqK: ax + bx + c = 0 ‰KwU w«¼NvZ mgxKiY| ‰i gƒj«¼q,
 2
L (x) =
 ( x2 +
x ) – b  b2 – 4ac

(3)
r 2a
(x) ‰i weÕ¦‡wZGZ (r + 1) Zg c` = 11Cr (x2)11  r x
ˆhLvGb, a, b, c evÕ¦e msLÅv|
3r ‰LvGb, ' ' ‰i wfZGii ivwk b2 – 4ac ‰i gvGbi Dci wfwî
= 11Cr x22  2r
xr
KGi gƒj«¼Gqi cÉK‡wZ cwiewZÆZ nq| ‰i gvb chÆvGjvPbv KGi
= 11Cr . 3r . x22  3r gƒGji cÉK‡wZ wbwøZ fvGe wbi…cY Kiv hvq| ‰ KviGY ‰GK
3 r+1 c†^vqK ejv nq|
‰es (r + 2) Zg c` = 11
()
Cr + 1 (x2)11  r  1
x
ax2 + bx + c = 0 ‰i c†^vqK, b2 – 4ac
r+1
3
= 11Cr + 1 x22  2r  2
xr + 1
D`vniY: x2 − x − 6 ivwkwUi c†^vqK (−1)2 − 4.1(−6)
= 1 + 24 = 25
= 11Cr + 1 . 3r + 1 . x22  3r  3
L ˆ`Iqv AvGQ, (x) = x – 13x + 61x2 – 107x + 58
 4 3
ˆhGnZz (r + 1) Zg c` I (r + 2) Zg cG`i mnM mgvb|
11
‰es (x) = 0
 Cr . 3r = 11Cr + 1 . 3r + 1  x4 – 13x3 + 61x2 – 107x + 58 = 0 ... ... (i)
11! 11! mgxKiYwUi ‰KwU gƒj 5 + 2i nGj Aci ‰KwU gƒj nGe 5 – 2i.
ev, r! (11  r)!
.3r =
(r + 1)! (11  r  1)!
. 3r + 1
gGb Kwi, mgxKiYwUi AewkÓ¡ gƒj `yBwU , 
1 3
ev, =  gƒjàwji ˆhvMdj, 5 + 2i + 5 – 2i +  +  = 13
r! (11  r) (11  r  1)! (r + 1) r! (11  r  1)!
1 3
ev,  +  + 10 = 13
ev, =
11  r r + 1
  +  = 3 ... ... (ii)
Avevi, gƒjàwji àYdj, (5 + 2i) (5 – 2i)  = 58
ev, r + 1 = 33  3r ev, (25 – 4i2)  = 58 ev, {25 – 4(– 1)}  = 58
ev, r + 3r = 33  1 ev, 29 = 58
ev, 4r = 32   = 2 ... ... (iii)
 r = 8 (Ans.) ‰Lb, ( – )2 = ( + )2 – 4 = 32 – 4.2 = 1
 –  =  1.
M g(x) = (1 + px)m
 (+) wPn× eÅenvi KGi cvB,  –  = 1 ... ... (iv)
1
p=8
1
‰es m = 2 nGj g(x) = (1  8x)

2 (ii) I (iv) ˆhvM KGi cvB,
2 = 4   = 2
‰Lb, g(x) ‰i weÕ¦‡wZGZ (r + 1) Zg c`  ‰i gvb (ii) bs ‰ ewmGq cvB,
2+=3=1
( 12) ( 12  1) ... ... ( 12  r + 1) ( 8x) r
(–) wPn× eÅenvi KGiI ‰KB gƒj cvIqv hvq|
r!  wbGYÆq Aci gƒjàwj 5 – 2i, 2, 1(Ans.)
1 1 1

=
( 1)r
2 ( ) ... ... (
2
+1 r1+
2 ) ( 1) .8 .xr r r
x
M ˆ`Iqv AvGQ, g(x) = 1 – 4x + 3x2 = 1 – 3x – x + 3x2

x

r! 1 1
2r
( 1) 1.3.5 ... (2r  1) 3r r x 3–1 1–3
= .2 . x = = + [cover-up rule ‰i mvnvGhÅ]
2r . r! (1 – 3x)(1 – x) 1 – 3x 1 – x
1 1
{1.3.5 ....... (2r  1)} {2.4.6 ......2r} 2r r –
= 2 .x 2 2 1
r! {2.4.6 ...... 2r} = + = {(1 – 3x)– 1 – (1 – x)– 1}
1 – 3x 1 – x 2
1.2.3.4 ....... 2r
= .22r . xr 1
r! 2r (1.2.3.........r) = [{1 + 3x + (3x)2 + ... + (3x)r + ...}
2
(2r)! r r (2r)! 2r r – {1+ x + x2 + ... + xr + ...}]
= .2 . x = x
r! r! (r!)2 1
(2r)! . 2r = [1 + 3x + 9x2 + ... + 3r. xr + ... – 1 – x – x2 – ... – xr  ...]
2
 g(x) ‰i weÕ¦‡wZGZ xr ‰i mnM
(r!)2
(ˆ`LvGbv nGjv)
1
 xr ‰i mnM = (3r – 1) (Ans.)
2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 21

lÓ¤ AaÅvq: KwYK


5
² 47 `†kÅK͸-1: x = ay2 + by + c
cÉk
 ev, a2 1 + a  = 36 ev, a2 + 5a  36 = 0
 
`†kÅK͸-2: Awae†Gîi DcGK±`Ê S( 6, 0) ‰es S(6, 0).
x2 y2
ev, a + 9a  4a  36 = 0 ev, a (a + 9)  4 (a + 9) = 0
2

K. p + 25 = 1 Dce†îwU (6, 4) we±`yMvgx nGj Dce†Gîi e†nr  (a + 9) (a  4) = 0


wK¯§ a   9, KviY ae = 6 ‰es Awae†Gîi e > 1
AGÞi Š`NÆÅ ˆei Ki| 2
 a = 4  a2 = 16 ‰es b2 = 5.4 = 20
L. `†kÅK͸-1 nGZ cive†Gîi kxlÆ (1, 2) ‰es cive†îwU x2 y2
a2 I b2 ‰i gvb (i) bs ‰ ewmGq cvB,  =1
(3,  2) we±`yMvgx nGj a, b, c ‰i gvb wbYÆq Ki| 4 16 20
M. `†kÅK͸-2 ‰i AvGjvGK Awae†Gîi DcGKw±`ÊK jGÁ¼i Š`NÆÅ ev, 5x2  4y2 = 80  5x2  4y2  80 = 0 (Ans.)
10 ‰KK nGj Awae†îwUi mgxKiY wbYÆq Ki| 4 ² 48 DóxcK-1: y = ax2 + bx + c KwYKwU (8, 7) we±`yMvgx
cÉk

wkLbdj- 7, 13 I 23 [XvKv ˆevWÆ - 2021  cÉ
k ² bs 6]
‰es Dnvi kxlÆwe±`y (4, 5)
47 bs cÉGk²i mgvavb DóxcK-2: (x, y) = 4x2  9y2  8x  36y  68
x2 y2
K p + 25 = 1 Dce†îwU (6, 4) we±`yMvgx nIqvq,
 K. ‰KwU Dce†Gîi DcGKw±`ÊK jÁ¼ Dnvi e†nr AGÞi
62 42 36 16 36 9 ‰K-Z‡Zxqvsk| Dnvi DrGKw±`ÊKZv wbYÆq Ki| 2
+ = 1 ev, =1 ev, p = 25
p 25 p 25 L. DóxcK-1 ‰i a, b, c ‰i gvb wbYÆq Ki| 4
25
ev, p = 9  36  p = 100 = 102 = a2 M. DóxcK-2 ‰i mvnvGhÅ (x, y) = 0 KwYKwUi wbqvgKGiLvi
‰es b2 = 25 = 52  a > b mgxKiY wbYÆq Ki| 4
 e†n`vGÞi Š`NÆÅ = 2a = 2.10 = 20 ‰KK (Ans.) wkLbdj- 7, 15 I 25 [ivRkvnx ˆevWÆ-2021  cÉk² bs 6]
L ˆ`Iqv AvGQ, cive†Gîi mgxKiY, x = ay2 + by + c ‰es ‰i
 48 bs cÉGk²i mgvavb
kxlÆ (1, 2) K awi, Dce†îwUi e†nr AÞ I Þz`Ë AGÞi Š`NÆÅ h^vKÌGg a I b

ˆhGnZz cÉ`î mgxKiYwU y ‰i w«¼NvZ ˆmGnZz cive†îwUi cÉkg² GZ, DcGKw±`ÊK jGÁ¼i Š`NÆÅ, a = 3
2b2 a
AÞGiLv x AGÞi mgv¯¦ivj|
‰Lb, awi, cive†îwUi mgxKiY, b2 1
2
ev, a2 = 6
(y  ) = 4a (x  ) ... ... ... (i)
cive†îwUi kxlÆ (1, 2) we±`yGZ nIqvq (i) nGZ cvB, b2
(y  2)2 = 4a (x  1) ... ... ... (ii)
 DrGKw±`ÊKZv, e = 1
a2
Avevi cive†îwU (3, 2) we±`yMvgx nIqvq (ii) nGZ cvB, 1 5
= 1 = (Ans.)
(2 2)2 = 4.a. (3  1) ev, 16 = 8a  a = 2 6 6
a ‰i gvb (ii) bs ‰ ewmGq cvB, (y  2)2 = 4.2. (x  1) L cÉ`î KwYK, y = ax2 + bx + c ... ... .. (i)

ev, y2  4y + 4 = 8x  8 ev, 8x = y2  4y + 4 + 8 awi, KwYKwUi mgxKiY, (x  )2 = 4a1(y  ) ˆhLvGb
ev, 8x = y2  4y + 12
1 1 3 kxlÆwe±`yi Õ©vbvâ (, )
 x = y2  y + ... ... ... (iii)
8 2 2 kxlÆwe±`y (4, 5) nGj, (x  4)2 = 4a1(y  5) ..... (ii)
(iii) bs mgxKiYGK x = ay2 + by + c ‰i mvG^ Zzjbv KGi cvB, mgxKiY (ii) (8, 7) we±`yMvgx nGj,
1 1 3
a = , b =  ‰es c = (Ans.) (8  4)2 = 4a1(7  5) ev, 16 = 4a1  2  a1 = 2
8 2 2
a1 ‰i gvb (ii) bs mgxKiGY ewmGq cvB,
M ˆ`Iqv AvGQ, Awae†Gîi DcGK±`Ê«¼q S( 6, 0) ‰es S (6, 0)

6+6 0+0 (x  4)2 = 4  2(y  5)
 Dce†Gîi ˆK±`Ê  2  2   (0, 0) ev, x2  8x + 16 = 8y  40
x2 y2 ev, 8y = x2  8x + 56
gGb Kwi, Awae†Gîi mgxKiY:  = 1 ..... (i)
a2 b2
1
DcGK±`Ê«¼Gqi ˆKvwU 0 nIqvq Dce†îwUi e†nr AÞ x-AÞ ‰es ev, y = 8x2  x + 7 ... ... (iii)
ˆK±`Ê ˆ^GK ˆhGKvb DcGKG±`Êi `ƒiZ½ (i) I (iii) bs mgxKiY Zzjbv KGi cvB,
ae = 6 ... ... (ii)
2b2 1
‰es DcGKw±`ÊK jGÁ¼i Š`NÆÅ, a = 10 a = , b =  1 ‰es c = 7 (Ans.)
8
ev, 2b2 = 10a  b2 = 5a M DóxcK-2 AbymvGi, (x, y) = 0

‰Lb, (ii) bs nGZ cvB, a e = 62
2 2  4x2  9y2  8x  36y  68 = 0
b 2
5a ev, 4(x2  2x + 1)  9(y2 + 4y + 4)  4 + 36  68 = 0
ev, a2 1 + a2  = 62 ev, a2 1 + a2  = 36; [gvb ewmGq]
    ev, 4(x  1)2  9(y + 2)2 = 36
22 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

ev,
(x  1)2 (y + 2)2
 =1
ev, x  3 =  2
9 4  x=2+3
ev,
2
(x  1) (y + 2)

2
=1
(+) wbGq, x = 2 + 3  x = 5 (Ans.)
32 22 () wbGq, x =  2 + 3  x = 1 (Ans.)
‰wU ‰KwU Awae†Gîi mgxKiY ‰es M ˆ`Iqv AvGQ, Awae†Gîi DcGK±`Ê«¼q (8, 3) I (16, 3) ‰es

(x  )2 (y  )2 DrGKw±`ÊKZv 4| DcGK±`Ê `yBwUi ˆKvwU mgvb eGj Awae†îwUi
a2

b2
=1 ‰i mvG^ wgwjGq cvB,
Avo AÞ x AGÞi mgv¯¦ivj|
a = 3, b = 2,  = 1,  = 2 ‰es a > b.  DcGK±`Ê `yBwUi `ƒiZ½, 2ae = |8  16| = 8
b2 4 13 ev, 2a  4 = 8 [ DrGKw±`ÊKZv, e = 4]
 DrGKw±`ÊKZv, e = 1+
a2
=
1+ =
9 3 a=1
3 b2 a2 + b2
 wbqvgK ˆiLvi mgxKiY: x  1 =  Avevi, e = 1 + 2 ev, e2 =
13 a a2
3 ev, a + b = e a  b = a (e2  1) = 1 (42  1) = 15
2 2 2 2 2 2

9 9 8 + 16 3 + 3
ev, x  1 =  ev, x =  + 1 (Ans.) ‰Lb, Awae†Gîi ˆK±`Ê =  2  2  = (12, 3)
13 13  
 (12, 3) ˆK±`ÊwewkÓ¡ wbGYÆq Awae†Gîi mgxKiY
² 49 `†kÅK͸-1: 5x2 + 9y2  30x = 0.
cÉk ( x  12)2 (y  3)2
`†kÅK͸-2: ‰KwU Awae†Gîi DcGK±`Ê«¼q (8, 3) I (16, 3) ‰es  =1
1 15
DrGKw±`ÊKZv 4 2
y  6y + 9
ev, x2  24x + 144  =1
K. ( 3 sec, 2 tan) civwgwZK Õ©vbvâwewkÓ¡ Awae†Gîi 15
mgxKiY wbYÆq Ki| 2 ev, 15x  360x + 2160  y + 6y  9 = 15
2 2

 15x2  y2  360x + 6y + 2136 = 0 (Ans.)


L. `†kÅK͸-1 ‰i AvGjvGK ˆ`LvI ˆh, mgxKiYwU ‰KwU
Dce†î wbG`Æk KGi, ‰i DcGKw±`ÊK jGÁ¼i mgxKiY wbYÆq ² 50 `†kÅK͸-1:
cÉk Y

Ki| 4
M. `†kÅK͸-2 ‰i AvGjvGK Awae†îwUi mgxKiY wbYÆq Ki| 4 X X
A S(2, 0) O S(2, 0) A
wkLbdj- 10, 22 I 23 [w`bvRcyi ˆevWÆ-2021  cÉk² bs 6]
49 bs cÉGk²i mgvavb
Y
K ˆ`Iqv AvGQ, Awae†Gîi civwgwZK

Õ©vbvâ ( 3sec, 2tan) `†kÅK͸-2: ‰KwU Awae†Gîi DcGKG±`Êi Õ©vbvâ ( 2, 3) ‰es
x Bnvi DrGKw±`ÊKZv 3.
awi, x = 3 sec ev, sec =
3 K. y2  2x2 = 2 Awae†Gîi DrGKw±`ÊKZv wbYÆq Ki| 2
y
‰es y = 2tan ev, tan = 2 L. `†kÅK͸-1 ‰ AA = 8 nGj Dce†îwUi mgxKiY wbYÆq Ki| 4
‰Lb, sec2  tan2 = 1 M. `†kÅK͸-2 ‰i mvnvGhÅ Awae†îwUi mgxKiY wbYÆq Ki| 4
wkLbdj- 10, 23 I 24 [KzwgÍÏv ˆevWÆ-2021  cÉk² bs 6]
x 2 y 2 x2 y2
ev,    2  = 1 ev, 3  4 = 1 50 bs cÉGk²i mgvavb
 3  
 4x2  3y2  12 = 0 (Ans.) y2 x2
K ˆ`Iqv AvGQ, y2  2x2 = 2 ev, 2  1 = 1

L cÉ`î mgxKiY, 5x2 + 9y2  30x = 0
 y2 x2
cÉ`î mgxKiGY x2 I y2 mÁ¼wjZ c` we`Ågvb| x2 ‰i mnM cÉ`î mgxKiYGK b2  a2 = 1 ‰i mvG^ Zzjbv KGi cvB,
5 I y2 ‰i mnM 9 Amgvb I Awf®² wPn×hyÚ| myZivs cÉ`î b2 = 2 ‰es a2 = 1
mgxKiYwU ‰KwU Dce†î wbG`Æk KGi| a2 1 3
 DrGKw±`ÊKZv, e = 1+ = 1+ = (Ans.)
‰Lb, 5x2 + 9y2  30x = 0 ev, 5 (x2  6x) + 9y2 = 0 b2 2 2
ev, 5 (x2  6x + 9) + 9y2 = 45 ev, 5 (x  3)2 + 9y2 = 45 L
 ˆ`Iqv AvGQ, Dce†Gîi DcGK±`Ê«¼q (2, 0) ‰es (2, 0)
(x  3)2 y2 (x  3)2 y2 x2 y2
ev, 9 + 5 = 1  32 + 2 = 1; BnvGK Dce†Gîi gGb Kwi, Dce†Gîi mgxKiY, a2 + b2 = 1 ... ... (i)
( 5)
(x  )2 (y  )2
mvaviY mgxKiY a2 + b2 = 1 ‰i mvG^ Zzjbv KGi ‰Lb, AA = e†n`vGÞi Š`NÆÅ = 2a
cÉk²gGZ, 2a = 8  a = 4  a2 = 16
cvB, a = 3, b = 5,  = 3,  = 0 Avevi, ae = 2 ev, a2e2 = 4
‰LvGb, a > b b2
b2 5 4 2
ev, a2 . 1  a2  = 4 ev, a2  b2 = 4
 DrGKw±`ÊKZv, e = 1 2= 1 = =  
a 9 9 3 ev, b2 = a2  4 = 16  4 = 12  b2 = 12
 DcGKw±`ÊK jGÁ¼i mgxKiY, x   =  ae x2 y2
2 a2 I b2 ‰i gvb (i) bs ‰ ewmGq cvB, + =1
ev, x  3 =  3. 3 16 12
 3x2 + 4y2 = 48 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 23
M ˆ`Iqv AvGQ, Awae†Gîi DcGKG±`Êi Õ©vbvâ ( 2, 3)
 M ˆ`Iqv AvGQ, cive†Gîi kxlÆwe±`y, A  (1, 1)

 Awae†Gîi ˆK±`Ê C
2  2 3 + 3 ‰es DcGK±`Ê, S  (2, 3)
 2  2   (0, 3) awi, ‰i wbqvgK ˆiLv I AGÞi ˆQ`we±`y Z(x1, y1)
gGb Kwi, Awae†Gîi mgxKiY: x1 + 2 y 3
(x  0)2 (y  3)2

2
=1 ‰es 1 2 = 1
 = 1 ... ... ... (i)
a2 b2  x1 =  2  2  y1 = 2 + 3
DcGK±`Ê«¼Gqi `ƒiZ½, SS = 2ae  x1 =  4  y1 = 5
=(2 + 2)2 + (3  3)2  Z we±`yi Õ©vbvâ ( 4, 5)
3 1  4 4
ev, 2.a. 3 = 4 [ˆ`Iqv AvGQ, DrGKw±`ÊKZv 3] ‰Lb, AÞGiLvi Xvj = 2  (1) = 2 + 1 = 3
4 2 4
ev, a = a=  a2 = 3
2 3 3 3  wbqvgKGiLvi Xvj =
4
b2 b2
Avevi, e2 = 1 + a2 ev, 3 = 1 + 4 3
 wbqvgK ˆiLvi mgxKiY: y  5 = (x + 4)
4
3  4y  20 = 3x + 12  3x  4y + 32 = 0
3 2.4 8 awi, cive†Gîi Dci P (x, y) ˆhGKvb ‰KwU we±`y| cive†Gîi
ev, 3  1 = b2. 4 ev, 3 = b2 b2 = 3
msævbyhvqx,
a2 I b2 ‰i gvb (i) bs ‰ ewmGq cvB, 3x  4y + 32 
(x  0)2 (y  3)2 3x2 3(y  3)2 (x  2)2 + (y + 3)2 = 
 = 1 ev,  =1  (3)2 + (4)2
4 8 4 8 2 2
3 3  x  4x + 4 + y + 6y + 9
9x2 + 16y2 + 1024  24xy  256y + 192x
 6x2  3(y  3)2 = 8 (Ans.) =
25
² 51 `†kÅK͸-1: 5x2  20x  y + 19 = 0 ‰KwU cive†î|
cÉk
  25x2  100x + 100 + 25y2 + 150y + 225
= 9x2 + 16y2 + 1024  24xy  256y + 192x
`†kÅK͸-2: M 2 2
 16x + 9y  292x + 406y + 24xy  699 = 0 (Ans.)

² 52 `†kÅK͸-1: 25x2 + ky2  25k = 0.


cÉk

Z `†kÅK͸-2: x + 2y = 1.
A (1, 1) S (2, 3)
K. 25x2 + 16y2 = 400 Dce†Gîi DrGKw±`ÊKZv I DcGKw±`ÊK
jGÁ¼i Š`NÆÅ wbYÆq Ki| 2
K. 3x2 + 5y2 = 1 ‰i DrGKw±`ÊKZv wbYÆq Ki| 2 L. `†kÅK͸-1 ‰i Dce†îwU (6, 4) we±`yMvgx nGj k-‰i gvb
L. `†kÅK͸-1 ‰i cive†îwUi kxlÆwe±`y, ˆdvKvm, DcGKw±`ÊK wbYÆq Ki| Avevi Dce†Gîi DrGKw±`ÊKZv I DcGKG±`Êi
jÁ¼ I wbqvgK ˆiLvi mgxKiY ˆei Ki| 4 Õ©vbvâ ˆei Ki| 4
M. `†kÅK͸-2 ‰i AvGjvGK cive†îwUi mgxKiY wbYÆq Ki| 4 M. `†kÅK͸-2 ‰i mgxKiYwUGK wbqvgK aGi (1, 1) DcGK±`Ê
wkLbdj- 7, 8, 9 I 15 [PëMÉvg ˆevWÆ-2021  cÉk² bs 5] I 3 DrGKw±`ÊKZv wewkÓ¡ Awae†Gîi mgxKiY wbYÆq Ki| 4
wkLbdj- 15, 16 I 23 [wmGjU ˆevWÆ-2021  cÉk² bs 6]
51 bs cÉGk²i mgvavb
52 bs cÉGk²i mgvavb
K m†Rbkxj 89(K) bs cÉGk²i mgvavb `ËÓ¡eÅ|
 x2 y2
L 5x2  20x  y + 19 = 0  5 (x2  4x + 4) = y + 1
 K 25x2 + 16y2 = 400  16 + 25 = 1

1 x2 y2
 (x  2)2 = 4.
20
(y + 1) ‰GK a2 + b2 = 1 mgxKiGYi mvG^ Zzjbv KGi cvB,
‰GK cive†Gîi mvaviY mgxKiY (x  )2 = 4a (y  ) a2 = 16 ‰es b2 = 25
1  a = 4, b = 5
‰i mvG^ Zzjbv KGi cvB, a = 20,  = 2,  =  1
ˆhGnZz, a < b
 kxlÆwe±`yi Õ©vbvâ (, )  (2,  1) (Ans.) a2 16 3
1 19
 DrGKw±`ÊKZv, e = b2
= 11 = (Ans.)
25 5
ˆdvKvm (,  + a)  2  1 +   2   (Ans.)
 20   20  16 32
DcGKw±`ÊK jGÁ¼i Š`NÆÅ = 2. 5 = 5 (Ans.)
DcGKw±`ÊK jGÁ¼i mgxKiY, y   = a
1 1 L
 ˆ`Iqv AvGQ, 25x2 + ky2  25k = 0
 y  ( 1) = y+1= ev, 25x2 + ky2 = 25 k
20 20
 20y + 20 = 1  20y + 19 = 0 (Ans.) 25x2 ky2
ev, 25k + 25k = 1
‰es wbqvgK ˆiLvi mgxKiY, y   + a = 0
1 x2 y2
 y  (1) + =0  + = 1 ... ... (i)
20 k 52

y+1+
1
=0
(i) bs Dce†îwU (6, 4) we±`y w`Gq AwZKÌg KGi|
20 (6)2 (4)2 36 16
 20y + 21 = 0 (Ans.) myZivs, k + 52 = 1 ev, k + 25 = 1
24 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
36 16 36  25 (x  )2 (y  )2
ev, k = 1 – 25 ev, k = 9
‰wUGK a2
+
b2
= 1 (hLb a < b) ‰i mvG^ wgwjGq
 k = 100 (Ans.) 1
x2 y2
cvB, a = 3, b = 2,  = 2,  = 2
mgxKiYwU `uvovq, 102 + 52 = 1
a2 3 1
 DrGKw±`ÊKZv, e = 1 2= 1 =
‰LvGb a = 10 ‰es b = 5  a > b b 4 2
b2 25 1 1
 DrGKw±`ÊKZv, e = 1 = 1  DcGK±`Ê (,  be + ) =    2. + 2
a2 100 2 2 
3 3 1 1 1
= = (Ans.) =    1 + 2    3,   1 (Ans.)
4 2 2  2  2 
 DcGK±`Ê«¼Gqi Õ©vbvâ, ( ae, 0) 2a2 2  3
DcGKw±`ÊK jGÁ¼i Š`NÆÅ, b = 2 = 3 (Ans.)
3 
  10  0  ( 5 3 0) (Ans.) b
 2  ‰es w`KvGÞi mgxKiY y   =  e
M gGb Kwi, P(x, y) Awae†Gîi Ici ˆhGKvGbv we±`y|

ev, y =  4 + 2
 DcGK±`Ê (1, 1) nGZ P(x, y) we±`yi `ƒiZ½
 y  6 = 0 ‰es y + 2 = 0 (Ans.)
= (x  1)2 + (y  1)2 x2 y2
| x + 2y  1 | M
 awi, Dce†îwUi mgxKiY a2 + b2 = 1, hLb a > b
wbqvgK nGZ P we±`yi jÁ¼ `ƒiZ½ =
12 + 22 1
x + 2y  1 ˆ`Iqv AvGQ, DrGKw±`ÊKZv, e = 2
=
5 2b2
‰es DcGKw±`ÊK jGÁ¼i Š`NÆÅ a = 6  b2 = 3a
Awae†Gîi msæv nGZ Avgiv cvB,
| x + 2y  1 | b2
(x  1)2 + (y  1)2 = 3 . Avgiv Rvwb, e = 1  a2
5
b2 b2 1 3
2 2
 (x  1) + (y  1) = 3  x + 2y  12 ev, e2 = 1  a2 ev, a2 = 1  e2 = 1  4 = 4
 5  3a 3 1 1
 5{(x  1)2 + (y 1)2} = 3(x + 2y  1)2 ev, a2 = 4 [‹ b2 = 3a] ev, a = 4  a = 4
 5(x2  2x + 1 + y2  2y + 1) = 3(x2 + 4y2  b2 = 3a = 3  4 = 12  b = 2 3
+ 1 + 4xy  4y  2x) x2 y2
 2x2  7y2  12xy  4x + 2y + 7 = 0;  wbGYÆq Dce†î, 2 + = 1
4 12
‰wUB wbGYÆq Awae†Gîi mgxKiY| (Ans.) x2 y2
A^Ævr, 16 + 12 = 1; a > b
² 53 `†kÅK͸-1: 8x2  8x + 6y2  24y + 2 = 0 ‰KwU
cÉk

 e†nr AGÞi Š`NÆÅ, 2a = 2  4 = 8 ‰KK (Ans.)
Dce†Gîi mgxKiY|
1
`†kÅK͸-2: ‰KwU Dce†Gîi DrGKw±`ÊKZv 2 ‰es DcGKw±`ÊK cÉk
 ² 54
`†kÅK͸-1: `†kÅK͸-2:
jGÁ¼i Š`NÆÅ 6| Y Y  w`KvÞ P
K. x2 =  16y cive†Gîi wbqvgGKi mgxKiY wbYÆq Ki| 2 B(0, 5) M

L. `†kÅK͸-1 ‰i Zî½ Abyhvqx Dce†îwUi DcGK±`Ê, DcGKw±`ÊK


X
jGÁ¼i Š`NÆÅ ‰es w`KvGÞi mgxKiY wbYÆq Ki| 4 O Z A SDcGK±`Ê
X
X A(3, 0)
O A(3, 0) X
M. `†kÅK͸-2 ‰i Zî½ Abyhvqx Dce†îwUi mgxKiY wbYÆqcƒeÆK
e†nr AGÞi Š`NÆÅ wbYÆq Ki| 4 B(0, 5) Y M
OZ = 3
OA = 4
wkLbdj- 9, 13 I 16 [hGkvi ˆevWÆ-2021  cÉk² bs 5] Y
53 bs cÉGk²i mgvavb K. x2 =  22(y  17) cive†Gîi kxlÆwe±`yi Õ©vbvâ wbYÆq Ki| 2
K ˆ`Iqv AvGQ, x2 =  16y
 L. `†kÅK͸-1 ‰ ewYÆZ Dce†Gîi DcGK±`Ê«¼Gqi Õ©vbvâ wbYÆq
ev, x2 = 4.(4).y Ki| 4
‰wUGK x = 4ay ‰i mvG^ wgwjGq cvB, a =  4
2
M. `†kÅK͸-2 ‰ ewYÆZ KwYKwUi Av`kÆ mgxKiY wbYÆGqi
 wbqvgK ˆiLvi mgxKiY, y  4 = 0 (Ans.) gvaÅGg DcGKw±`ÊK jGÁ¼i Š`NÆÅ wbYÆq Ki| 4
L cÉ`î Dce†î, 8x2  8x + 6y2  24y + 2 = 0
 wkLbdj- 7, 8, 9 I 16 [ewikvj ˆevWÆ-2021  cÉk² bs 5]
ev, 8(x2  x) + 6(y2  4y) + 2 = 0 54 bs cÉGk²i mgvavb
1 1 22
ev, 8x2  2.x.2 + 4  + 6(y2  4y + 4) + 2 = 2 + 24 K x2 =  22(y  17) = 4. 4  (y  17)

   
1 2 11
ev, 8x  2  + 6(y  2)2 = 24 = 4.  (y  17)
   2 
1 2
x  2   x 
1 2
  kxlÆ we±`yi RbÅ, x = 0 y  17 = 0
  (y  2)2  2  (y  2)2  y = 17
ev, 3
+
4
=1  +
22
=1
 kxlÆ we±`yi Õ©vbvâ (0, 17) (Ans.)
( 3)2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 25
L wPòvbyhvqx Dce†Gîi ˆK±`Ê gƒjwe±`yGZ, e†n`vÞ I Þz`ËvÞ
 55 bs cÉGk²i mgvavb
h^vKÌGg y AÞ I x-AÞ eivei| K ˆ`Iqv AvGQ, Dce†îwUi mgxKiY,

 e†n`vGÞi Š`NÆÅ, BB = 2b 3x2 + 5y2 = 1
2 2
= (0  0) + (5 + 5) = 10 x2 y2
b=5
ev, 1 + 1 = 1
Þz`ËvGÞi Š`NÆÅ, AA = 2a = (3 + 3)2 + 02 = 6 3 5
a=3 x2 y2
 2+ 2 =1
x2 y2 1 1
 Dce†Gîi mgxKiY, 2 + 2 = 1
3 5  3  5
a2 32 1 1
 DrGKw±`ÊKZv, e = 1 2 = 1 2 ‰LvGb, a = ‰es b= a>b
b 5 3 5
9
= 1  DrGKw±`ÊKZv,
25
2
16 4  1  1
= =  
25 5  5 5
e= 1– = 1–
 DcGK±`Ê«¼Gqi Õ©vbvâ (0,  be) 2 1
 1
4   3
 0  5.   (0,  4) (Ans.)  3
 5
3 5–3 2
M wPòwU ‰KwU cive†Gîi hvi AÞGiLv x-AÞ eivei|
 = 1– =
5 5
=
5
(Ans.)
 DcGK±`Ê, kxlÆwe±`y DfGqB x AGÞi Dci AeÕ©vb KiGQ|
wPGò, OZ = 3 ‰es OA = 4 L awi cive†Gîi kxlÆwe±`y
 P(x, y) M

 AÞGiLv w`KvÞGK ˆh we±`yGZ ˆQ` KGi H we±`yi Õ©vbvâ, A( 2, 2) ‰es DcGK±`Ê
Z(3, 0) ‰es kxlÆwe±`yi Õ©vbvâ, A(4, 0). S( 6,  6)|
gGb Kwi, cive†Gîi DcGK±`Ê, S(x, 0) gGb Kwi, cive†Gîi S(6, 6) Z(x1, y1)
A(2, 2)

x+3
=4 wbqvgKGiLv I AGÞi
2
ˆQ`we±`y (x1, y1)
ev, x + 3 = 8  x = 5 x1  6
 DcGKG±`Êi Õ©vbvâ (5, 0)  =  2 ev, x1 =  4 + 6 = 2
2
gGb Kwi, (4, 0) kxlÆwe±`y mÁ¼wjZ ‰es AÞ x-AÞ eivei y 6
AewÕ©Z ‰gb cive†Gîi mgxKiY, ‰es 1 = 2 ev, y1 = 4 + 6 = 10
2
2
y = 4a(x  4) ... ... (i)  ˆQ`we±`yi Õ©vbvâ (2, 10)
(i) bs mgxKiYGK Y2 = 4aX ‰i mvG^ Zzjbv KGi cvB, Y = y
y2 x+2
‰es X = x  4 ‰Lb, AÞGiLvi mgxKiY, 2 + 6 =  2 + 6
DcGKG±`Êi RbÅ, X = a ev, x  4 = a y2 x+2
ev, 5  4 = a  a = 1 ev, 8 = 4 ev, y  2 = 2x + 4
 cive†îwUi mgxKiY, y2 = 4.1.(x  4) ev, y = 2x + 6  2x  y + 6 = 0
 DcGKw±`ÊK jGÁ¼i Š`NÆÅ = | 4a | = | 4.1 | = 4 (Ans.) cive†îwUi wbqvgK ˆiLv nGe AÞGiLvi mvG^ jÁ¼|
cÉk
² 55 gGb Kwi, AÞGiLvi mvG^ jÁ¼GiLvi mgxKiY Z^v wbqvgGKi
`†kÅK͸-1: `†kÅK͸-2: mgxKiY, x + 2y + k = 0 ... .... (i)
M
(i) bs ˆiLvwU Z(2, 10) we±`yMvgx|
x  2y + 2 = 0

Z ZvnGj, 2 + 20 + k = 0  k =  22
S(2, 1) k ‰i gvb ewmGq wbqvgKGiLvi mgxKiY,
S( 6,  6) A( 2, 2)
x + 2y  22 = 0
M awi, cive†Gîi Dci ˆh ˆKvb we±`y P(x, y)|
cive†Gîi msævbymvGi, SP = PM
K. 3x2 + 5y2 = 1 Dce†îwUi DrGKw±`ÊKZv wbYÆq Ki| 2 x + 2y  22
L. `†kÅK͸-1 ‰ S DcGK±`Ê ‰es A kxlÆwe±`y nGj, cive†îwUi ev, (x + 6)2 + (y + 6)2 =
1+4
mgxKiY wbYÆq Ki| 4 (x + 2y  22)2
M. `†kÅK͸-2 nGZ Dce†Gîi mgxKiY wbYÆq Ki hvi ev, x2 + 12x + 36 + y2 + 12y + 36 =
5
1
DrGKw±`ÊKZv , S DcGK±`Ê ‰es MZM wbqvgK| 4 ev, 5x2 + 60x + 180 + 5y2 + 60y + 180
2
= x2 + 4y2 + 484 + 4xy  88y  44x
wkLbdj- 10, 11 I 15 [XvKv ˆevWÆ-2019  cÉk² bs 5]
 4x2 + y2 + 104x + 148y  4xy  124 = 0
26 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
M gGb Kwi, Dce†Gîi DcGK±`Ê (2,  1) wbqvgKGiLv MZM
 3
M ˆ`Iqv AvGQ, DrGKw±`ÊKZv, e = 4 ‰es ‰KwU DcGK±`Ê

‰es Dce†Gîi Dci P(x, y) ˆhGKvGbv we±`y|
a
P(x,y) I wbqvgGKi gaÅeZxÆ `ƒiZ½, e – ae = 14
M
4a 3a 16a – 9a
ev, 3 – 4 = 14 ev, 12
= 14  a = 24
Z
S(2, 1) b2 9 b2
Avevi, e2 = 1 – a2 ev, 16 = 1 – 576
b2 9 7
M ev, 576 = 1 – 16 = 16
Dce†Gîi msævbymvGi, SP = e.PM
 b2 = 252
ev, SP2 = e2 . PM2 2b2 2×252
1 x  2y + 2 2 DcGKw±`ÊK jGÁ¼i Š`NÆÅ = a = 24 = 21 ˆm.wg. (Ans.)
ev, (x  2)2 + (y + 1)2 = 2 . 
 1+4 
ev, 10{x2  4x + 4 + y2 + 2y + 1} = x2 + 4y2 + 4 cÉk
² 57 M P(x, y)
 4xy  8y + 4x
ev, 10x2  40x + 10y2 + 20y + 50 = x2 + 4y2  4xy + 4x  8y + 4 Z
ev, 9x2 + 6y2 + 4xy  44x + 28y + 46 = 0 (Ans.)
A(2,1) S(0, 0)
cÉk
² 56 `†kÅK͸-1: M

K. 9x2  4y2 + 36 = 0 Awae†Gîi DrGKw±`ÊKZv wbYÆq Ki| 2


A S(2, 3)
(5, 3) L. KwbKwU cive†î nGj MZM ‰i mgxKiY wbYÆq Ki| 4
M. SP : PM = 1 : 3 ‰es MZM ‰i mgxKiY
x + y  2 = 0 nGj, KwbKwU wPwn×Z KGi ‰i mgxKiY wbYÆq
`†kÅK͸-2: Dce†Gîi ‰KwU DcGK±`Ê I Zvi wbKUZg wbqvgGKi
`ƒiZ½ 14 ˆm.wg.| Ki| 4
wkLbdj- 10, 16 I 24 [w`bvRcyi ˆevWÆ-2019  cÉk² bs 5]
K. 16y2  9x2 = 144 Awae†Gîi AmxgZU ˆiLvi mgxKiY wbYÆq
Ki| 2 57 bs cÉGk²i mgvavb
L. `†kÅK͸-1 ‰i KwYKwUi mgxKiY wbYÆq Ki| 4 K ˆ`Iqv AvGQ, 9x2  4y2 + 36 = 0

M. `†kÅK͸-2 ‰i Dce†îwUi DrGKw±`ÊKZv 34 nGj DcGKw±`ÊK 9x2
ev, 9x2  4y2 =  36 ev,  36   36 = 1
4y2

jGÁ¼i Š`NÆÅ wbYÆq Ki| 4 y2 x2 y2 x2


wkLbdj- 15 I 20 [ivRkvnx ˆevWÆ-2019  cÉk² bs 5] ev,  = 1 ev, 2  2 = 1
9 4 3 2
56 bs cÉGk²i mgvavb a2 4 9+4
DrGKw±`ÊKZv e = 1+
b2
= 1+ =
9 9
2 2 2 2
16y 9x 144 y x
K 16y2  9x2 = 144 ev, 144  144 = 144 ev, 9  16 = 1
 13 13
= = (Ans.)
2
y x 2
y 2
x 2 9 3
  =1
32 42
ˆK Awae†Gîi Av`kÆ mgxKiY b2  a2 = 1 ‰i
L AS ˆiLvi mgxKiY,
 M P(x, y)
mvG^ Zzjbv KGi cvB, a = 4 ‰es b = 3 x  ( 2) y  ( 1)
b =
 AmxgZU ˆiLvi mgxKiY, y =  x 20 10
a
x+2 y+1 Z
3 ev,  2 =  1 A(2,1)
y= x (Ans.) S(0, 0)
4 M
ev, x + 2 = 2y + 2
L cive†îwUi kxlÆwe±`y A(5, 3) ‰es DcGK±`Ê S(2, 3) ‰i

ev, x  2y = 0 … … (i)
ˆKvwUi gvb mgvb nIqvq, AÞGiLv x AGÞi mgv¯¦ivj nGe|
MZM ˆiLvwU AS ‰i Dci jÁ¼|
gGb Kwi, A(5, 3) kxlÆwewkÓ¡ cive†îwUi mgxKiY,
(i) bs ‰i jÁ¼GiLvi mgxKiY, 2x + y + k = 0 … (ii)
(y  3)2 = 4a(x  5)
ZvnGj, (ii) bs ˆiLvwU Z we±`yMvgx| Z we±`yi Õ©vbvâ x1, y1 nGj,
AS = a 0 + x1 0 + y1
2= ‰es  1 = ev, x1 =  4, y1 =  2
ev, (5 + 1) + (3  3) = a  a = 7
2 2 2 2
 wbGYÆq cive†îwUi mgxKiY, (y  3)2 = 4.7.(x  5) (ii)bs ˆiLvwU Z( 4, 2) we±`yMvgx|
ev, y2  6y + 9 = 28x  140 myZivs 2( 4) + ( 2) + k = 0 ev, k = 10
 y2  6y  28x  131 = 0 (Ans.)  MZM ˆiLvi mgxKiY 2x + y + 10 = 0 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 27

M wPò nGZ, e = PM = 3 < 1



SP 1 ˆhLvGb, Y = y  3 ‰es X = x + 2
9 25 5
 KwYKwU ‰KwU Dce†î|  DrGKw±`ÊKZv, e = 1+
16
= =
16 4
kZÆvbymvGi, SP = e PM DcGK±`Ê (0,  be)
ev, SP2 = e2 PM2 5
(x + y  2)2
1 2  X=0 ‰es Y =  4 . 4
ev, (x  0)2 + (y  0)2 = 3  2 2
  1 +1 ev, x + 2 = 0 ev, y  3 =  5
2 2
1 x + y + 4 + 2xy  4y  4x
ev, x2 + y2 = 
9 2  x=2 ev, y = 3  5 =  2, 8
ev, 18x2 + 18y2 = x2 + y2 + 4 + 2xy  4y  4x  DcGK±`Ê«¼q, ( 2,  2), ( 2, 8) (Ans.)
ev, 18x2 + 18y2  x2  y2  2xy + 4x + 4y  4 = 0 5
DcGK±`Ê«¼Gqi gaÅeZxÆ `ƒiZ½ = 2be = 2.4 . 4 = 10 (Ans.)
 17x2 + 17y2  2xy + 4x + 4y  4 = 0 (Ans.)
2a2 2.9 9
‰es DcGKw±`ÊK jGÁ¼i Š`NÆÅ = b = 4 = 2 (Ans.)
² 58 `†kÅK͸-1: 9y2  16x2  64x  54y  127 = 0
cÉk

`†kÅK͸-2: M awi, cive†Gîi DcGK±`Ê S(3, 4) ‰es kxlÆwe±`y A(0, 0).

M P
AX-AÞ wbqvgKGK Z we±`yGZ ˆQ` KGiGQ|
Z
A(0, 0) S(3, 4)
myZivs AZ = AS
ˆhGnZy A ‰i Õ©vbvâ (0, 0) myZivs Z ‰i Õ©vbvâ (3, 4).
M cÅvivGevjv
M
K. 5x2 + 4y2 = 1 Dce†Gîi wbqvgKGiLvi mgxKiY wbYÆq Ki| 2
L. `†kÅK͸-1 ‰i AvGjvGK Awae†Gîi DcGKG±`Êi Õ©vbvâ,
DcGK±`Ê«¼Gqi gaÅeZxÆ `ƒiZ½ ‰es DcGKw±`ÊK jGÁ¼i Š`NÆÅ
X
wbYÆq Ki| 4 Z A(0,0) S(3, 4)
M. `†kÅK͸-2 nGZ MZM ‰i mgxKiY wbYÆq Ki| 4
wkLbdj- 9, 16, 25 I 26 [PëMÉvg ˆevWÆ-2019  cÉk² bs 5]
M
58 bs cÉGk²i mgvavb
4 3
K ˆ`Iqv AvGQ, 5x + 4y2 = 1
 2 ‰Lb AS ˆiLvi Xvj = 3 ; myZivs MZ ‰i Xvj =  4
x2 y2 3
1
+
1
=1  MZM ˆiLvi mgxKiY, y + 4 =  4 (x + 3)
5 4
1 2 1  4y + 16 = 3x  9
‰LvGb, a = 5 , b = 4
2
 3x + 4y + 25 = 0 ‰wUB wbGYÆq mgxKiY| (Ans.)
1 1
a= ,b= a<b cÉk
² 59
5 2
‰es, Dce†îwUi e†nr AÞ y-AGÞi Ici AewÕ©Z| M
myZivs ‰GÞGò,
1 1
2 2 –
b – a 4 5 1 1 Z A(−1, 2)
e2 = 2 = = 4= S(3, 2) S(11, 2)
b 1 20 5
4
1
AZ‰e, DrGKw±`ÊKZv, e =
5
b K. y2  2x2 = 2 Awae†Gîi DrGKw±`ÊKZv KZ? 2
myZivs, wbqvgK ˆiLvi mgxKiY, y =  e L. A ‰es S-ˆK h^vKÌGg cive†Gîi kxlÆwe±`y ‰es DcGK±`Ê aGi
1
2 5
cive†îwUi mgxKiY wbYÆq Ki| 4
A^Ævr, y = 1 =
2 M. S ‰es S DcGK±`ÊwewkÓ¡ Dce†Gîi mgxKiY wbYÆq Ki hvi
5 e†nr AGÞi Š`NÆÅ 16| 4
5 wkLbdj- 7, 10, 13 I 24 [hGkvi ˆevWÆ
- 2019  cÉ
k ² bs 5]
A^Ævr, wbqvgK ˆiLv `yBwUi mgxKiY, y =  2 (Ans.)
59 bs cÉGk²i mgvavb
L cÉ`î mgxKiY: 9y2  16x2  64x  54y  127 = 0

ev, 9(y2  6y + 9)  16(x2 + 4x + 4) = 144 K y2 – 2x2 = 2

ev, 9(y  3)2  16(x + 2)2 = 144 y2 y2 x2
ev, 2 – x2 = 1 Awae†îGK b2 – a2 = 1 mgxKiGYi
2 2
(y  3) (x + 2)
ev,  =1
16
2 2
9 mvG^ Zzjbv KGi cvB, b2 = 2 ‰es a2 = 1
Y X
‰wU b2  a2 = 1 AvKvGii mgxKiY hv ‰KwU Awae†î|  DrGKw±`ÊKZv, e = 1+
a2
=
3
(Ans.)
b2 2
28 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
L ˆ`Iqv AvGQ, cive†Gîi DcGKG±`Êi Õ©vbvâ S(3, 2) ‰es
 60 bs cÉGk²i mgvavb
kxlÆwe±`y A( 1, 2) K ˆ`Iqv AvGQ, x2 = 4(1  y)

awi, MZ cive†Gîi wbqvgK ˆiLv ‰es Z(, ) ev, x2 = 4(1) (y  1) ... ... (i)
ˆhGnZz, kxlÆwe±`y A( 1, 2),  A we±`ywU ZS ‰i gaÅw±`y awi, X = x ‰es Y = y  1
+3  (i) bs mgxKiYwU `uvovq, X2 = 4(1) Y ... ... (ii)
1=
2
ev,  =  5 P(x,y)
M (ii) bs mgxKiGYi DcGK±`Ê (0, a) ˆhLvGb, a =  1
+2
‰es 2=
2
ev,  = 2 A^Ævr DcGK±`Ê (0, 1)
‰Lb, cive†Gîi AÞGiLv ev ZS
Z A(–1, 2) S(3,2)  X=0 ‰es Y =  1
we±`yMvgx ˆiLvi mgxKiY, x=0 ev, y  1 =  1
y=0
x+1 y2
=
13 22
ev, y  2 = 0  x2 = 4(1  y) cive†Gîi DcGK±`Ê (0, 0) (Ans.)
Avevi, ˆhGnZz wbqvgK ˆiLv AÞGiLvi Ici jÁ¼| L ˆ`Iqv AvGQ, y = 4px ... ... (i)
 2

 wbqvgKGiLvi mgxKiY x + k = 0 … … (ii) (i) bs mgxKiYwU (3,  2) we±`yMvgx|


4 1
hv Z( 5, 2) we±`yMvgx| (– 2)2 = 4.p.3 ev, 4 = 12p  p = =
12 3
  5 + k = 0 ev, k = 5 1
 mgxKiYwU: y2 = 4. .x
 wbqvgK ˆiLvi mgxKiY, x + 5 = 0 3
cive†Gîi msævbymvGi, SP = PM  DcGKw±`ÊK
1
jGÁ¼i mgxKiY, x = 3 ev, 3x = 1
x+5
ev, (x  3)2 + (y  2)2 = ev, 3x  1 = 0 (Ans.)
1
1
ev, x  6x + 9 + y  4y + 4 = x + 10x + 25
2 2 2
wbqvgGKi mgxKiY, x + 3 = 0 ev, 3x + 1 = 0 (Ans.)
ev, y2  16x  4y + 13  25 = 0 1 4
ev, y2  16x  4y  12 = 0 (Ans.) ‰es DcGKw±`ÊK jGÁ¼i Š`NÆÅ = 4. 3 ‰KK = 3 ‰KK (Ans.)
3 + 11 2 + 2 M awi, Awae†îwUi DcGK±`Ê `yBwU S(6, 1) I S (10, 1)

M ˆKG±`Êi Õ©vbvâ  2  2   (7, 2)

  Avo AGÞi Š`NÆÅ = 2a, Abye®¬x AGÞi Š`NÆÅ = 2b ‰es
awi, Dce†Gîi mgxKiY:
(x  7)2 (y  2)2
+ =1
DrGKw±`ÊKZv = e ZvnGj DcGK±`Ê `yBwUi `ƒiZ½ = 2ae
a2 b2 ‰Lb DcGK±`Ê«¼Gqi `ƒiZ½,
kZÆgGZ, e†nr AGÞi Š`NÆÅ, 2a = 16 SS = (6 − 10)2 + (1 − 1)2 = 16 = 4
 a = 8 ev, a2 = 64 2 4
 2ae = 4 ev ae = 2 ev a . 3 = 2  a = 3  a2 = 9
DcGK±`Ê«¼Gqi gaÅeZÆx `ƒiZ½,
a2 + b2 b2 b2
2ae =(11  3)2 + (2  2)2 = 64 = 8 Avgiv Rvwb e2 = a2 ev, e2 = 1 + a2 ev, a2 = e2 − 1
8 1
e= = 4 32
28 2 ev, b2 = (32 − 1)  9  b2 = 9
2
b
‰Lb, DrGKw±`ÊKZv, e = 1
a2
Avevi DcGK±`Ê `yBwUi gaÅwe±`y nGjv Awae†îwUi ˆK±`Ê|
6 + 10 1 + 1
b2 b2  ˆK±`Ê =    = (8, 1)
ev, e2 = 1  a2 ev, a2 = 1  e2  2 2 
b2 1 3 (x − 8)2 (y − 1)2
ev, 64 = 1  4  b2 = 4  64 = 48  Awae†Gîi mgxKiY, − =1
4 32
9 9
(x  7)2 (y  2)2
myZivs Dce†Gîi mgxKiY: 64
+
48
= 1 (Ans.) 9(x  8)2 9(y  1)2
  = 1 (Ans.)
4 32
² 60 `†kÅK͸-1: y2 = 4px.
cÉk

x2 y2
`†kÅK͸-2: ‰KwU Awae†Gîi DcGK±`Ê `ywU (6, 1) I (10, 1) ‰es cÉk
 ² 61 `†kÅK͸-1 : 16 + 9 = 1
DrGKw±`ÊKZv 3| `†kÅK͸-2 : 4x2  5y2  16x + 10y  9 = 0
K. x2 = 4(1  y) cive†Gîi DcGK±`Ê wbYÆq Ki| A 2 K. x2 =  12y cive†Gîi wbqvgGKi mgxKiY ˆei Ki| 2
L. `†kÅK͸-1 ‰ wbG`ÆwkZ cive†îwUi (3, 2) we±`yMvgx nGj ‰i L. x  y  5 = 0 ˆiLvwU `†kÅK͸-1 ‰ ewYÆZ KwYKwUGK Õ·kÆ
DcGKw±`ÊK jGÁ¼i mgxKiY, wbqvgGKi mgxKiY I KiGj Õ·kÆ we±`yi Õ©vbvâ wbYÆq Ki| 4
DcGKw±`ÊK jGÁ¼i Š`NÆÅ wbYÆq Ki| 4 M. `†kÅK͸-2 ‰ ewYÆZ mgxKiYwU cÉwgZ AvKvGi cÉKvk KGi
M. `†kÅK͸-2 ‰i AvGjvGK KwYKwUi mgxKiY wbYÆq Ki| 4 DcGKw±`ÊK jGÁ¼i Š`NÆÅ I mgxKiY wbYÆq Ki| 4
[ewikvj ˆevWÆ-2019  cÉk² bs 5] [XvKv, w`bvRcyi, wmGjU I hGkvi ˆevWÆ-2018  cÉk² bs 5]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 29
61 bs cÉGk²i mgvavb cÉk
² 62 16x2 + 25y2 = 400.
K ˆ`Iqv AvGQ,
 K. ‰gb ‰KwU Dce†Gîi mgxKiY wbYÆq Ki hv (0, 2 2)
x2 =  12y I ( 3, 0) we±`y w`Gq hvq| 2
= 4 (3)y ... ... (i) L. DrGKw±`ÊKZvmn DóxcGKi KwYKwUi kxlÆ«¼Gqi Õ©vbvâ,
(i) bs ˆK x2 = 4ay ‰i mvG^ Zzjbv KGi cvB, ˆdvKvm I DcGKw±`ÊK jGÁ¼i Š`NÆÅ wbYÆq Ki| 4
a=3 M. wPò AsKb cƒeÆK DóxcGKi KwYKwUi DcGKw±`ÊK jÁ¼«¼q I
 wbqvgGKi mgxKiY, y =  a wbqvgK«¼q ‰i mgxKiY wbYÆq Ki| 4
ev, y =  (3) [XvKv, w`bvRcyi ˆevWÆ-2017  cÉk² bs 5]
ev, y = 3 62 bs cÉGk²i mgvavb
x2 y2
 y  3 = 0 (Ans.) K gGb Kwi, Dce†Gîi mgxKiY, a2 + b2 = 1 .... (i)

L cÉ`î ˆiLvwU, y = x – 5
 µ µ µ (i)
(i) bs mgxKiYwU (0, 2 2) I ( 3, 0) we±`yMvgx
‰es Dce†îwU, 9x + 16 y = 144 µ µ µ (ii)
2 2
0 (2 2)2
(i) bs nGZ y ‰i gvb (ii) bs ‰ ewmGq cvB 
a2
+
b2
=1
9x2 + 16 (x – 5)2 = 144 8
ev, 9x2 + 16 (x2 – 10x + 25) = 144 ev, b2 = 1
ev, 9x2 + 16x2 –160x + 400 –144 = 0  b2 = 8 ... (ii)
ev, 25x2 – 160x + 256 = 0 ( 3)2 0
Avevi, a2 + b2 = 1
ev, (5x)2 – 2.5x.16 + (16)2 = 0
9
16 16 ev, a2 = 1
ev, (5x – 16)2 = 0  x = 5 , 5
 a2 = 9 ..... (iii)
myZivs, ˆiLvwU Dce†îGK ‰KwU gvò we±`yGZ ˆQ` KGi| myZivs (ii) I (iii) bs nGZ cÉvµ¦ gvb (i) bs ‰ ewmGq cvB,
mij ˆiLvwU Dce†îwUGK Õ·kÆKGi| (cÉgvwYZ) x2 y2
+ = 1 (Ans.)
x ‰i gvb (i) bs ‰ ewmGq cvB, 9 8
16 16 – 25 9 L ˆ`Iqv AvGQ, 16x2 + 25y2 = 400

y= –5 = =–
5 5 5
16 2 25 2
16 –9 ev, x  y 1
 Õ·kÆwe±`ywUi Õ©vbvâ (

5 5 ) (Ans.) 400 400
M 4x  5y  16x + 10y  9 = 0
 2 2
x 2 y2
ev,  1
ev, 4x2  16x + 16  5 (y2  2y + 1)  20 = 0 25 16
ev, 4(x  2)2  5 (y  1)2 = 20 x2 y2
(x  2)2 (y  1)2 ev,  1
ev, 5  4 = 1 52 42
X2 Y2 ‰LvGb a = 5 b = 4 ‰es a > b
‰GK a2  b2 = 1 mgxKiGYi mvG^ Zzjbv KGi cvB, a2 = 5, x2 y2
‰wU a2 + b2 =1 AvKvGii|
b2 = 4
X = x  2, Y = y  1 e†nr AGÞi Š`NÆÅ = 2a = 2.5 = 10 ‰KK
b2 Þz`Ë ” ” = 2b = 2.4 = 8 ‰KK
DrGKw±`ÊKZv, e = 1 + a2
a2 – b2
4 5+4 ˆhGnZz, e2 = a2
= 1+ =
5 5 (5)2 – (4)2
ev, e2 = (5)2
9 3
= =
5 5 9
ev, e2 = 25
2b2 2.4 8
 DcGKw±`ÊK jGÁ¼i Š`NÆÅ = a = = 3
5 5  e = (Ans.)
5
‰es DcGKw±`ÊK jGÁ¼i mgxKiY,
DcGKw±`ÊK Õ©vbvâ, ( ae, 0)
X =  ae
3
ev, x  2 =  5 .
3
5
(
A^Ævr,  5.5 0 )
ev, x  2 =  3 A^Ævr ( 3, 0) (Ans.)
ev, x =  3 + 2 DcGKw±`ÊK jGÁ¼i Š`NÆÅ
2b2 2.(4)2 32
 x  5 = 0 ‰es x + 1 = 0 (Ans.) =
a
=
5
=
5
‰KK (Ans.)
30 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
M ‘L’ nGZ cvB, KwYKwUi mgxKiY,
 7 
=  4   0 = ( 7, 0) (Ans.)
x2 y2  4 
+ =1
y2 42 a 4 4
wbqvgK ˆiLvi mgxKiY, x =  e =  =4
3 7 7
‰es a = 5, b = 4 I e =
5 4
 DcGKw±`ÊK jGÁ¼i mgxKiY, x = ae 16
ev, x =   7x =  16 (Ans.)
3 7
A^Ævr, x =  5.
5 M ˆ`Iqv AvGQ, Awae†Gîi DcGK±`Ê«¼Gqi Õ©vbvâ ( 5, 0)

 x = 3 (Ans.) ‰es DrGKw±`ÊKZv, e = 5
a
wbqvgK ˆiLvi mgxKiY, x =  e   ae =  5
5 25 ev, a2e2 = 25 ev, 5a2 = 25  a2 = 5
A^Ævr, x =  3  x =  3 (Ans.)
b2
5 Avevi, DrGKw±`ÊKZv, e = 1+
a2
Dce†îwUi wPò Aâb wbÁ²i…c : b2
ev, 5 = 1+
5
Y
wbqvgK 5 ev, 5 = 5 + b2
ˆiLv
ev, 25 = 5 + b2 ev, b2 = 20
x2 y2
 25 (3, 0) O (3, 0) (5, 0) 25  Awae†Gîi mgxKiY, 5  20 = 1
X 3
(5, 0)
3 X
ev, 4x2  y2 = 20 (Ans.)
5
DcGKw±`ÊK
jÁ¼
Y cÉk
² 64 M
P

cÉk
² 63 `†kÅK͸-1: `†kÅK͸-2:
Y
Z
B(0, 3) A S (−2, 2)
Y

X X
M
X X C
A(4, 0) C A(4, 0) S( 5, 0) S(5, 0)

B(0, 3) Y wPòwU ‰KwU KwYK wbG`Æk KGi hvi wbqvgK ˆiLv MZM|
Y x2 y2
K. y2 + 6y  4x = 0 cive†Gîi DcGKw±`ÊK jGÁ¼i Š`NÆÅ wbYÆq K. 4 − 9 = 1 Awae†Gîi DrGKw±`ÊKZv wbYÆq Ki| 2
Ki| 2
L. A(1, −2) nGj MZM ˆiLvi mgxKiY wbYÆq Ki| 4
L. `†kÅK͸-1 ‰ DGÍÏwLZ Dce†Gîi DcGKG±`Êi Õ©vbvâ I M. SP : PM = 1 : 2 ‰es MZM ˆiLvi mgxKiY
wbqvgK ˆiLvi mgxKiY wbYÆq Ki| 4
3x + 4y = 1 nGj KwYKwUi mgxKiY wbYÆq Ki| 4
M. `†kÅK͸-2 ‰ Awae†Gîi DrGKw±`ÊKZv 5 nGj Awae†Gîi [PëMÉvg ˆevWÆ-2017  cÉk² bs 5]
mgxKiY wbYÆq Ki| 4
[ivRkvnx ˆevWÆ-2017  cÉk² bs 5] 64 bs cÉGk²i mgvavb
x2 y2
63 bs cÉGk²i mgvavb K cÉ`î Awae†Gîi mgxKiY, 4  9 = 1

K cÉ`î cive†Gîi mgxKiY, y2 + 6y  4x = 0
 x2 y2
ev, 22  32 = 1
ev, y2 + 2.3.y + 32  4x = 9
9 x2 y2
ev, (y + 3)2 = 4x + 9  (y + 3)2 = 4.1 x + 4  ‰GK, a2  b2 = 1 ‰i mvG^ Zzjbv KGi cvB,
 
a = 2, b = 3
 DcGKw±`ÊK
jGÁ¼i Š`NÆÅ = |4a| = |4  1| = 4 (Ans.)
b2 32
L `†kÅK͸-1 ‰ ewYÆZ Dce†îwUi e†nr I Þz`Ë AÞ h^vKÌGg x I y AÞ|
  DrGKw±`ÊKZv = 1+ = 1+
a2 22
Avevi, a = 4 ‰es b = 3  a > b 9 13 13
= 1+ = = (Ans.)
x2 y2 x2 y2 4 4 2
 Dce†Gîi mgxKiY, + =1 ev, 16 + 9 = 1
42 32 L ˆ`Iqv AvGQ,

b2 9 A I S ‰i Õ©vbvâ h^vKÌGg (1,  2) I ( 2, 2)
 DrGKw±`ÊKZv e = 1 2 = 1
a 16
awi, Z we±`yi Õ©vbvâ (x, y)
16  9 7
=
16
=
4 Avgiv Rvwb, cive†Gîi ˆÞGò ZA = AS
x2 y+2
 DcGK±`Ê«¼Gqi Õ©vbvâ ( ae, 0)  =1 ‰es 2 =2
2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 31
ev, x  2 = 2 ev, y + 2 =  4 9 13 13
= 1+ = = (Ans.)
x=4  y=6 4 4 2
 Z we±`yi Õ©vbvâ (4, 6) wbqvgGKi mgxKiY:
‰Lb, A I S we±`yMvgx ˆiLvi mgxKiY, cÉ`î Awae†Gîi wbqvgK ˆiLvi mgxKiY x =  e
a
x1 y+2 x1 y+2
=
1+2 22
ev, 3 =  4 13
‰LvGb, a = 2 ‰es e = 2
ev, 3y + 6 =  4x + 4
 4x + 3y + 2 = 0 ... ... ... (i) 2
x=
awi, (i) ‰i jÁ¼ ˆiLvi (MZM) mgxKiY, 13
3x  4y + k = 0 ... ... ... (ii) 2
(ii) bs ˆiLvwU Z(4,  6) we±`yMvgx 4
ev, x=
 3.4  4( 6) + k = 0 13
ev, 12 + 24 + k = 0  k =  36  13 x =  4 BnvB wbGYÆq mgxKiY|
 MZM ‰i mgxKiY 3x  4y  36 = 0 (Ans.) L

M
 ˆ`Iqv AvGQ, SP : PM = 1 : 2 P(x, y)
M
SP 1
ev, PM = 2
ev, PM = 2SP ... ... ... (i) S(0, 2) A(3, 2)
Z
awi, P we±`yi Õ©vbvâ (x, y)
Avevi, DcGKG±`Êi Õ©vbvâ S( 2, 2)
‰es MZM ˆiLvi mgxKiY, 3x + 4y = 1
3x + 4y  1 ˆ`Iqv AvGQ, DcGK±`Ê S(0, 2) ‰es kxlÆ A(3, 2)|
(i) ˆ^GK cvB, = 2. (x + 2)2 + (y  2)2 awi, cive†Gîi Dci ‰KwU we±`y P(x, y) I wbqvgK ˆiLv MZ|
32 + 42
3x + 4y  1 Avgiv Rvwb, Z I S ‰i gaÅwe±`y A| awi, Z ‰i Õ©vbvâ (x1, y1)
ev, 5
= 2 x2 + 4x + 4 + y2  4y + 4 x1 + 0 y1 + 2
 =3 =2
2 2
ev, (3x + 4y  1) = (10 x + y + 4x  4y + 8 )
2 2 2 2

ev, 9x2 + 16y2 + 1 + 24xy  6x  8y = 100(x2 ev, x1 = 6 ev, y1 + 2 = 4


+ y2 + 4x  4y + 8) ev, y1 = 2
ev, 100x + 100y + 400x  400y + 800  9x2
2 2  Z(6, 2)
 16y2  24xy + 6x + 8y  1 = 0 22
2 2
cive†Gîi AÞGiLvi Xvj, m1 = 3  0 = 0
 91x + 84y  24xy + 406x  392y + 799 = 0
hv wbGYÆq KwYGKi mgxKiY| 1
 wbqvgK ˆiLvi Xvj, m2 = 0 [‹ m1  m2 =  1]
cÉk
² 65 Y
 wbqvgK ˆiLvi mgxKiY, y  2 = 0 (x  6)
1
B
ev,  x + 6 = 0 ev, x  6 = 0
S(0, 2)

A
A(3, 2) ‰Lb, SP = PM
X
O
X ev, SP2 = PM2
B ev, x2 + (y  2)2 = (x  6)2
Y ev, x2 + (y  2)2 = x2  12x + 36
K. 9x2 − 4y2 = 36 KwYGKi wbqvgGKi mgxKiY wbYÆq Ki| 2 ev, (y  2)2 =  12(x  3), BnvB wbGYÆq cive†Gîi mgxKiY|
L. A ˆK kxlÆwe±`y ‰es S ˆK DcGK±`Ê aGi AwâZ cive†Gîi M

mgxKiY wbYÆq Ki| 4 Y
M. DóxcGK OB = 4 ‰es AS = AS nGj BB ˆK e†nr AÞ
B(0, 8)
‰es AA ˆK Þz`Ë AÞ aGi AwâZ Dce†Gîi DcGKw±`ÊK
jGÁ¼i mgxKiY wbYÆq Ki| 4
S(0, 2)

[wmGjU ˆevWÆ-2017  cÉk² bs 5]


65 bs cÉGk²i mgvavb A( 3, 2)
2 2
x y A(3, 2)
K cÉ`î Awae†Gîi mgxKiY, 4  9 = 1

X X
O
x2 y2
ev, 22  32 = 1
x2 y2 B(0, 4)
‰GK, a2  b2 = 1 ‰i mvG^ Zzjbv KGi cvB,
a = 2, b = 3 Y
b 2
32
ˆhGnZz, OB = 4 ‰KK, ˆmGnZz SB = 2 + 4 = 6 ‰KK
 DrGKw±`ÊKZv = 1+ = 1+
a2 22
 SB = 6 ‰KK A^Ævr B we±`yi Õ©vbvâ (0, 8)
32 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
Avevi, AS = AS A^Ævr S, AA ‰i gaÅwe±`y| ev, x + y + 11 = 0
 A we±`yi Õ©vbvâ ( 3, 2)
awi, cive†Gîi Dci P(x, y) ˆh ˆKvGbv ‰KwU we±`y|
BB ˆK e†nr AÞ ‰es AA ˆK Þz`Ë AÞ aGi
x2 (y  2)2 cive†Gîi msævbyhvqx,
Dce†îwUi mgxKiY, 32 + 62
=1
x + y + 11
ˆhLvGb a = 3, b = 6(a < b) (x − 5)2 + (y − 8)2 =  
 2 
b2  a2
 DrGKw±`ÊKZv, e = 1
b2 ev, x2 − 10x + 25 + y2 − 16y + 64 = 2 (x2 + y2 + 121
36  9 3 3 3
= = = + 2xy + 22x + 22y)
36 6 2
 Dce†Gîi DcGKw±`ÊK jGÁ¼i mgxKiY, y  2 =  be ev, 2x − 20x + 50 + 2y − 32y + 128 − x2 − y2 − 121 −
2 2

3
ev, y  2 =  6  2 2xy − 22x − 22y = 0

 y  2 =  3 3 (Ans.) ev, x2 + y2 − 2xy − 42x − 54y + 57 = 0

² 66 `†kÅK͸-1:
cÉk
  (x  y)2  42x  54y + 57 = 0 (Ans.)
cive†î
M

kxlÆwe±`y DcGK±`Ê Y

(−1, 2) (5, 8) 6

4
`†kÅK͸-2: ‰KwU Awae†Gîi DcGK±`Ê `yBwU (6, 1) I (10, 1) ‰es
DrGKw±`ÊKZv 3.
2
K. 3x2 + 5y2 = 1 ‰i DrGKw±`ÊKZv wbYÆq Ki| 2 (8, 1) S(10, 1)
L. `†kÅK͸-1 nGZ cive†îwUi mgxKiY wbYÆq Ki| 4 S(6, 1)

M. `†kÅK͸-2 nGZ Awae†îwUi mgxKiY wbYÆq Ki| 4 X O 2 4 6 8 10 X


[hGkvi ˆevWÆ-2017  cÉk² bs 5]
66 bs cÉGk²i mgvavb 2

K ˆ`Iqv AvGQ, Dce†îwUi mgxKiY,



3x2 + 5y2 = 1 4
x2 y2 x-AÞ eivei 5 Ni = 2 ‰KK
ev, 1 + 1 = 1 Y y-AÞ eivei 5 Ni = 2 ‰KK
3 5
x2 y2 ˆ`Iqv AvGQ, Awae†Gîi DcGK±`Ê«¼q (6, 1) I (10, 1)
 2 + 2=1
1 1 ‰es DrGKw±`ÊKZv 3|
 3  5
1 1 DcGK±`Ê `yBwUi ˆKvwU mgvb eGj Awae†îwUi Avo AÞ
‰LvGb, a = ‰es b =  a > b
3 5 x-AGÞi mgv¯¦ivj|
 DrGKw±`ÊKZv,
2
 DcGK±`Ê `yBwUi `ƒiZ½, 2ae = | 6  10 | = 4
 1  1
  ev, 2  a  3 = 4  a = 3
2
 5 5
e= 1– 2= 1–
1
 1 b2 b2
  3 ‰Lb, e2 = 1 + a2 ev, a2 = e2  1
 3
3 5–3 2 4 32
= 1–
5
=
5
=
5
(Ans.) ev, b2 = a2(e2  1) = 9 (9  1) = 9
L ˆ`Iqv AvGQ, cive†Gîi kxlÆwe±`y (−1, 2)

‰Lb, Awae†îwUi ˆK±`Ê = DcGK±`Ê«¼Gqi msGhvM ˆiLvsGki
‰es DcGK±`Ê (5, 8)| cive†Gîi mgxKiY wbYÆq KiGZ nGe|
gGb Kwi cive†îwUi wbqvgKGiLv I AGÞi ˆQ`we±`y (x1, y1) 6 + 10 1 + 1
gaÅwe±`y   2  2   (8, 1)
x1 + 5 y1 + 8  

2
=−1 ‰es 2
=2
(x  8)2 (y  1)2
 x1 = −2 − 5= −7 y1 = 4 − 8 = − 4  wbGYÆq Awae†Gîi mgxKiY,  =1
4 32
8−2
‰Lb AÞGiLvi Xvj 5 + 1 = 1 9 9

 wbqvgK ˆiLvi Xvj − 1 9(x  8)2 9(y  1)2


  = 1 (Ans.)
 wbqvgK ˆiLvi mgxKiY, y + 4 = −1 (x + 7) 4 32
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 33

² 67 `†kÅK͸-1: KwYGKi DcGK±`Ê S(5, 2) ‰es kxlÆwe±`y


cÉk
 ev, x2 – 10x + 25 + y2 – 4y + 4
A(3, 4), x2 + y2 + 25 – 2xy + 10x – 10y
=
`†kÅK͸-2: 6x + 4y – 36x – 4y + 43 = 0 ‰KwU mgxKiY|
2 2 2
K. 4x2 – 9y2 – 1 = 0 KwYKwU cÉgvY AvKvGi cÉKvk KGi mbvÚ ev, 2x2 – 20x + 50 + 2y2 – 8y + 8
Ki| 2 = x2 + y2 + 25 – 2xy + 10x – 10y
L. e = 1 nGj `†kÅK͸-1 ‰ ewYÆZ KwYGKi mgxKiY wbYÆq Ki|  x2 + y2 – 30x + 2y + 2xy + 33 = 0 (Ans.)
4
M. `†kÅK͸-2 ‰i mgxKiYwUi DcGK±`Ê ‰es wbqvgGKi M cÉ`î mgxKiY,

mgxKiY ˆei Ki| 4 6x2 + 4y2 – 36x – 4y + 43 = 0
[ewikvj ˆevWÆ-2017  cÉk² bs 5] ev, 6(x2 – 6x) + 4(y2 – y) = − 43
67 bs cÉGk²i mgvavb 1
ev, 6(x2 – 2.3.x + 9) + 4 y2 – 2. 2. y + 4 = − 43 + 54 + 1
1
K 4x – 9y – 1 = 0 ev, 4x2 – 9y2 = 1
 2 2  
2 2 2 2 2
x y x y 1
ev, 1 – 1 = 1  1 2 – 1 2 = 1 ev, 6(x – 3)2 + 4 y – 2 = 12
     
4 9  2  3 2

Bnv ‰KwU Awae†Gîi mgxKiY| (x – 3)2  y – 1


 2
L ˆ`Iqv AvGQ, KwYKwUi DrGKw±`ÊKZv e = 1
 ev, 2
+
3
=1
A^Ævr KwYKwU ‰KwU cive†î| 2

ˆ`Iqv AvGQ, cive†îwUi DcGK±`Ê S(5, 2) ‰es  y – 1


(x – 3) 2
 2
kxlÆwe±`y A(3, 4)  + =1
( 2)2 ( 3)2
M P(x, y)
Bnv ‰KwU Dce†Gîi mgxKiY|
S(5, 2)
‰LvGb, a = 2 ‰es b = 3
Z(,)
A(3, 4) b>a
a2 2 1
DrGKw±`ÊKZv = 1
b2
= 1 =
3 3
1
AS ˆiLvwU AÞGiLv, ZM Dnvi wbqvgK ˆiLv ‰es cive†îwUi awi, x − 3 = X ‰es y − 2 = Y
AÞGiLv I wbqvgK ˆiLvi ˆQ`we±`yi Õ©vbvâ Z(, )
DcGKG±`Êi RbÅ X = 0, Y =  be
ˆhGnZz kxlÆwe±`y A(3, 4), ZS ‰i gaÅwe±`y|
1 1
3=
5+
ev, 6 = 5 +    = 1 ev, x − 3 = 0, y − 2 =  3 
2 3
2+ 1
‰es 4 = 2 ev, 8 = 2 +    = 6  x = 3, y = 1
2
 Z ‰i Õ©vbvâ (1, 6) 3 1
‰Lb, cive†Gîi AÞGiLv A^Ævr SZ ˆiLvi mgxKiY, y=
2
ev, − 2
x–5 y–2 x–5 y–2
= ev, 4 = – 4 ev, x – 5 = − y + 2 3 1
5–1 2–6  DcGK±`Ê«¼Gqi Õ©vbvâ =  3 2,  3 – 2 (Ans.)
 x + y – 7 = 0 ... ... ... (i)   
Avevi, cive†Gîi wbqvgK ˆiLv AÞGiLvi Dci jÁ¼ ‰es ‰es wbqvgGKi mgxKiY,
Z we±`yMvgx| (i) bs ‰i jÁ¼GiLvi mgxKiY,
1 3 1
x – y + k = 0 ... ... ... (ii) y–
2
=
1
ev, y – 2 =  3
(ii) bs ˆiLvwU Z(1, 6) we±`yMvgx,
3
 1 – 6 + k = 0  k = 5.
k ‰i gvb (ii) bs ‰ ewmGq cvB, x – y + 5 = 0 y =3+
1
2
 wbqvgGKi mgxKiY, x – y + 5 = 0 ... ... ... (iii)
cive†Gîi Dci ˆh ˆKvGbv we±`y P(x, y) nGj 1 7
(+) wbGq, y = 3 + ev, y = 2
2
cive†Gîi msævbymvGi, PS = PM
|x – y + 5|  2y – 7 = 0 (Ans.)
ev, (x – 5)2 + (y – 2)2 = 1 –5
1+1 (–) wbGq, y = – 3 + ev, y = 2
2
(x – y + 5)2
ev, (x – 5)2 + (y – 2)2 =
2  2y + 5 = 0 (Ans.)
34 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

mµ¦g AaÅvq: wecixZ wòGKvYwgwZK dvskb I wòGKvYwgwZK mgxKiY


8 2
cÉk
² 34 f(x) = cosecx – cotx, g(x) = sinx ev, 2cos 2 sin 2 = 3 sin
x y
K. ˆ`LvI ˆh, cosec sin– 1 tan sec– 1 =
y
. 2 ev, 2cos4sin – 3sin = 0
x – y2
2

3 24 ev, sin(2cos4 – 3) = 0
L. f() = 4 nGj, ˆ`LvI ˆh,  =  sin–1  . 4
25  nq, sin = 0 A^ev, 2cos4 – 3 = 0
M. g(5) – 3g() = g(3) mgxKiYwUi mvaviY mgvavb wbYÆq   = n ev, 2cos4 = 3
Ki| 4 3
[gqgbwmsn ˆevWÆ-2021  cÉk² bs 3]
nÙ ev, cos4 = 2
wkLbdj- 1 I 3
34 bs cÉGk²i mgvavb ev, cos4 = cos 6

x
K
 cosecsin– 1 tan sec– 1
y 
x ev, 4 = 2n  6
x2 – y2 x2 – y2
= cosecsin– 1 tantan– 1  n 
y y = 
2 2 2 24
x –y
= cosecsin– 1 n 
y  wbGYÆq mgvavb:  = n,  (Ans.)
y y 2 24
–1
= coseccosec =
x2 – y2 x2 – y2
x y
cÉk
² 35 (a) = tan1a, g(a) = sina
 cosecsin– 1tansec– 1 = (ˆ`LvGbv nGjv) 1 1
y x2 – y2 K. 3  + 5  ‰i gvb wbYÆq Ki| 2
L ˆ`Iqv AvGQ, f(x) = cosecx – cotx
    

 f() = cosec – cot x + yg  
2 
L. ˆ`LvI ˆh, 2 tan  = sec1
xy 
kZÆgGZ, cosec – cot = 4 ... (i)
3
x+y 2 
4
y + xg  
1 cos 3 1  cos 3 2 
ev, sin  sin = 4 ev, sin = 4  1
M. mgvavb Ki: g2  x + g(x) = 4
 2
2sin2
2 3  3 wkLbdj- 1 I 3 [ivRkvnx ˆevWÆ-2021  cÉk² bs 3]
ev,   4
= ev, tan =
2 4
2sin cos 35 bs cÉGk²i mgvavb
2 2
 9  9 K ˆ`Iqv AvGQ, (a) = tan1a

ev, tan22 = 16 ev, sec2 2  1 = 16 1
 
3
 + 51  = tan131 + tan115
1 9 1 25    
ev, =
16
+ 1 ev, =
16 1 1 5+3
2 2
cos 1  sin +
2 2 3 5
1 1
15
= tan = tan
 16  9 1 1 15  1
ev, 1  sin2 2 = 25 ev, sin2 2 = 25 1 .
3 5 15
 3  3 8 15 4
ev, sin 2 =  5 ev, 2 = sin1  5  = tan1 
15
  = tan1 (Ans.)
14 7
   
  =  2 sin1
3 L ˆ`Iqv AvGQ, (a) = tan1a

5
  tan  = tan1 tan 
x y  xy 
 3 9
=  sin1 2. 1  [2sin1x = sin1(2x 1  x2)]  x + y 2  x+y 2
 5 25
6 16  6 4
‰es g(a) = sina
=  sin1  . =  sin1  .   
5 25  5 5   g   = sin   = cos
24
2  2 
=  sin1   (ˆ`LvGbv nGjv)
evgcÞ = 2 tan 
xy 
25  x+y 2
M ˆ`Iqv AvGQ, g(x) = sinx

= 2 tan1  tan 
xy 
cÉ`î mgxKiY, g(5) – 3g() = g(3)  x+y 2
ev, sin5 – 3sin = sin3 
ev, sin5 – sin3 = 3sin
 x  y . sin
1 
2
5 + 3 5 – 3 = 2 tan
ev, 2cos sin = 3 sin  x + y . cos 

2 2  2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 35
 36 bs cÉGk²i mgvavb
(x  y) sin2 1 3 3
2 K
 ˆ`Iqv AvGQ, x = 2 cos1 4  cos 2x = 4
1
2
(x + y) cos sinx 2sin2x
= cos1
2 ‰Lb, tanx = cosx = 2sinx cosx

(x  y) sin2 1  cos2x 1  cos2x
2 = =
1+ sin2x 1  cox22x

(x + y) cos2 3 1
2 1
4 4 1 4 1
2  = = =  = (Ans.)
(x + y) cos  (x  y) sin2 9 7 4 7 7
1 2 2 1
= cos 16 16
 
(x + y) cos2 + (x  y) sin2 L
 evgcÞ = N = tan1 (cosec tan1x  tan cot1x)
2 2
1 1 + x2 1
= . 2tan1 cosec cosec1  tan.tan1 
   
x cos  sin  + y cos + sin2 
2 2 2
 x
1  2 2  2 2 2 x
= cos 1 1 + x2 1
= . 2tan1 
   
x cos + sin  + y cos  sin 
2 2 2 2
 x  x 1 + x2
 2 2  2 2 2
x
2
x cos + y 1 1 1 + x 1
= cos1 = . 2tan 
x + y cos 2 x 1
1 x + y cos 1 + x2  1
= sec 2
y + x cos 1 x
 = tan1
2 ( 1 + x2  1)2
x + yg   1
 2     x2
= sec1 g   = cos
     2  
y + xg   2 ( 1 + x2  1)
2  x
1 1
= WvbcÞ = tan 2
2 x  (1 + x  2 1 + x2 + 1)
2

x + yg    x2
 xy  2 
 2f
 x + y tan 2 = sec
1

(ˆ`LvGbv nGjv) 2 ( 1 + x2  1)
y + xg   
2  1 1 x
= tan
M
 ˆ`Iqv AvGQ, g(a) = sina;  g(x) = sinx 2 x2  1  x2 + 2 1 + x2  1
  x2
 g  x = sin  x = cosx
2  2  2 ( 1 + x2  1)
 1
cÉ`î mgxKiY: g2  x + g(x) = 1 1 x
2 = tan
2 2 ( 1 + x2  1)
1
ev, cosx + sinx = x2
2
1 1 1 1 1 2( 1 + x2  1) x2 
ev, cosx + sinx =
2 =
2
tan 
x
´ 
2 2  2 ( 1 + x2  1)
  1 1
ev, cosx.cos 4 + sinx.sin4 = 2 = tan1 x = WvbcÞ
2
 
ev, cosx  4 = cos3 
1
 N = tan1x (ˆ`LvGbv nGjv)
2
 
 x  = 2n  ; ˆhLvGb n  Ù M ˆ`Iqv AvGQ () = cos

4 3
 
ev, x = 2n  3 + 4 cÉ`î ivwk, () +  (2) +  (3) = 0
 cos + cos2 + cos3 = 0
  7
(+) wPn× wbGq cvB, x = 2n + + = 2n + ev, cos + cos3 + cos2 = 0
3 4 12
 
() wPn× wbGq cvB, x = 2n  + = 2n 
 ev, 2cos2.cos + cos2 = 0
3 4 12
7  ev, cos2 (2cos + 1) = 0
 wbGYÆq mgvavb: 2n + , 2n  ; ˆhLvGb n  Ù (Ans.)
12 12 
‰Lb, cos2 = 0 nGj 2 = (2n + 1) 2, n  Ù
cÉk
² 36 N = tan1 (cosec tan1x  tancot1x) ‰es f() = cos 
1 3   = (2n + 1)
K. hw` x = 2 cos1 4 nq, ZGe tanx ‰i gvb KZ nGe? 2 4
1 2 2
1
L. ˆ`LvI ˆh, N = 2 tan1x. 4 2cos + 1 = 0 nGj cos =  = cos   = 2n 
2 3 3
M. mgvavb Ki: f() + f(2) + f(3) = 0, hLb  2    2. 4 n =  4 nGj,  =
7 26 22
, ,
wkLbdj- 1 I 4 [w`bvRcyi ˆevWÆ-2021  cÉk² bs 3] 4 3 3
36 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

n =  3 nGj,  =
5 20 16
, ,
ev, 3 tanx (tanx + 3)  1 (tanx + 3) = 0
4 3 3
ev, (tanx + 3) (3 tanx  1) = 0
 3 14 10
n =  2 nGj,  = , , wK¯§ tanx   3  3 tanx  1 = 0
4 3 3
1 1
  8 4 KviY x ‰KwU mƒßGKvY| ev, tanx = 3  x = tan1 3 
n =  1 nGj,  = , ,  
4 3 3
 2 2 cÉ`îivwk = cot 1 3  x
n = 0 nGj,  = , ,  1 1
4 3 3
= tan1   tan1 ; [gvb ewmGq]
3 8 4 3  3 
n = 1 nGj, = , ,
4 3 3 = 0 (Ans.)

n = 2 nGj,
5 14 10
= , ,
M cÉ`î mgxKiY: 4 cosx cos2x cos3x = 1; 0 < x < 

4 3 3
ev, (2 cos3x cosx) (2 cos2x) = 1
7 20 16
n = 3 nGj  = ,
4 3
,
3
ev, (cos4x + cos2x) (2 cos2x) = 1
 cÉ`î  2    2 mxgvi gGaÅ wbGYÆq mgvavb: ev, 2 cos4x cos2x + 2 cos22x  1 = 0
7 5 3  4 2  2 3 4 5 7 ev, 2 cos4x cos2x + cos4x = 0
= , , , , , , , , , , (Ans.) ev, cos4x (2 cos2x + 1) = 0
4 4 4 4 3 3 4 3 4 3 4 4
 nq, cos4x = 0 A^ev, 2 cos2x + 1 = 0
cÉk
² 37  ev, 2 cos2x = 1
ev, 4x = (2n+1) 2
`†kÅK͸-1: `†kÅK͸-2: ev, cos2x =  12 = cos 2
3
A 4 cosx cos2x cos3x = 1. 
 x = (2n+1)
5 8 ev, 2x = 2n  2
3 3
   
 x = (2n + 1) , n + , n   x = n 
8 3 3
B C 3

K. sin1x + sin1y = nGj ˆ`LvI ˆh, x2 + y2 = 1.
2
2 hLb, n ‰i gvb kƒbÅ ev ˆh ˆKvGbv cƒYÆ msLÅv|
L. `†kÅK͸-1 ‰ ACB = 2x nGj cot13  x ‰i gvb wbYÆq hLb n = 0, ZLb, x =
  
, ,
Ki| 4 8 3 3
M. `†kÅK͸-2 ‰i mgxKiYwU 0 < x <  eÅewaGZ mgvavb Ki| 4 3 2 4
wkLbdj- 1 I 4 [KzwgÍÏv ˆevWÆ-2021  cÉk² bs 4] hLb n = 1, ZLb, x = , ,
8 3 3
37 bs cÉGk²i mgvavb 5 7 5
K ˆ`Iqv AvGQ,
 hLb n = 2, ZLb, x = , ,
8 3 3
 7 10 8
sin1x + sin1y =
2 hLb, n = 3, ZLb, x = 8 , 3 , 3
   3 2 5 7
ev, sin1x = 2  sin1 y ev, sin1x = cos1 y  wbw`ÆÓ¡ mxgvi gGaÅ x ‰i gvbmgƒn: 8, 3, 8 , 3 , 8 , 8
ev, sin1x = sin1 1  y2 ev, x = 1  y2 ev, x2 = 1  y2 (Ans.)
 x2 + y2 = 1 (ˆ`LvGbv nGjv) ² 38 `†kÅK͸-1: a sinx + b cosx = 1
cÉk

L
 A `†kÅK͸-2:  (x) = cosx
5 K. mgvavb Ki: tan2  3 cosec2 + 1 = 0. 2
3 L. a = 3 ‰es b = 1 nGj `†kÅK͸-1 ‰i mgxKiYwU mgvavb
Ki, ˆhLvGb  2 < x < 2. 4
B
2x
C
M. `†kÅK͸-2 ‰i AvGjvGK f(x) + f(3x) + f(5x) + f(7x) = 0
mgxKiYwU mgvavb Ki, ˆhLvGb 0 < x < . 4
wkLbdj- 3 I 4 [PëMÉvg ˆevWÆ-2021  cÉk² bs 4]
‰LvGb, ACB = 2x ‰es BC = 52  32 = 4 ‰KK
3 38 bs cÉGk²i mgvavb
‰Lb, tan 2x = 4 K tan   3 cosec  + 1 = 0
 2 2

2 tanx
ev, 1  tan2x = 4
3 ev, tan2 = 3 cosec2  1
ev, tan2 = 3(1 + cot2)  1
ev, 3  3 tan2x = 8 tanx ev, tan2 = 3 + 3 cot2 1
ev, 3 tan2x + 8 tanx  3 = 0 3
ev, tan2 = 2 + tan2
ev, 3 tan2x + 9 tanx  tanx  3 = 0
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 37
ev, tan4 = 2 tan2 + 3 [tan2 «¼viv àY KGi] 
A^ev, cos4x = 0  4x = (2n + 1) 2 ev, x = (2n + 1) 8

ev, tan4  2 tan2  3 = 0  
ev, tan4  3 tan2 + tan2  3 = 0  wbGYÆq mgvavb: x = (2n + 1) 2 , (2n + 1)4
ev, tan2(tan2  3) + 1 (tan2  3) = 0 
(2n + 1) ; ˆhLvGb n ‰i gvb kƒbÅ A^ev AbÅ ˆhGKvGbv cƒYÆ
8
ev, (tan2  3) (tan2 + 1) = 0 msLÅv|
ev, tan2  3 = 0 [tan2 + 1  0]   
n=0 nGj, x = 2, 4, 8
ev, tan  = 3 ev, tan =  3
2

3 3 3

ev, tan = tan 3   = n  3
 n=1 nGj, x = 2 , 4 , 8
5 5 5
 n=2 nGj, x = 2 , 4 , 8
 wbGYÆq mgvavb:  = n  3 ; hLb n ‰i gvb kƒbÅ A^ev
7 7 7
n = 3 nGj, x = , ,
AbÅ ˆhGKvGbv cƒYÆ msLÅv| (Ans.) 2 4 8
L ˆ`Iqv AvGQ,
  cÉ`î mxgvi gGaÅ wbGYÆq gvb,
   3 3 5 7
a sinx + b cosx = 1; a = 3 ‰es b = 1 x= , , , , ,
8 4 2 8 4 8 8
, (Ans.)
ev, 3 sinx + cosx = 1; [ 2 <x <2]
cÉk
² 39 (x) = sinx I g(x) = cosx
3 1 1
ev, 2 sinx + 2 cosx = 2 K. mgvavb Ki: 2(cos2x  sin2x) = 3. 2
L. mgvavb Ki: (x) + g(x) = f(2x) + g(2x). 4
  1
ev, sin 3 sinx + cos 3. cosx = 2 M. mgvavb Ki: 4g(x) g(2x) g(3x) = 1, hLb 0 < x < 4
wkLbdj- 3 I 4 [wmGjU ˆevWÆ-2021  cÉk² bs 4]
  1
ev, cosx cos 3 + sinx sin 3 = 2 39 bs cÉGk²i mgvavb
K 2 (cos2x  sin2x) = 3

 
ev, cos x  3 = cos 3 ev, 2 cos 2x = 3
3 

ev, x  3 = 2n  3
 ev, cos2x = 2 = cos 6

   2x = 2n  ; ˆhLvGb nÙ
ev, x = 3 + 2n  3 6

 x = n  (Ans.)
 12
 x = 2 n + [(+) wPn× wbGq]
 3 L
 ˆ`Iqv AvGQ, f(x) + g(x) = f(2x) + g(2x)
‰es x = 2n [() wPn× wbGq] ev, sinx + cosx = sin2x + cos2x
ˆhLvGb, n ‰i gvb 0 A^ev ˆhGKvGbv cƒYÆmsLÅv| ev, cosx  cos2x = sin2x  sinx
x + 2x 2x  x 2x + x 2x  x
n = 0,  1,  2... ewmGq cvB, ev, 2 sin 2 . sin  2  = 2 cos 2 . sin  2 
2
   
x= , 0; [hLb n = 0] ev, 2 sin 3x sin x = 2 cos 3x sin x
3 2 2 2 2
2
‰es x =  2 + 3 [hLb n =  1] ev, sin 3x sin x = cos 3x sin x
2 2 2 2
=
 6 + 2
=
4 ev, sin 3x sin x  cos 3x sin x = 0
3 3 2 2 2 2
x 3x 3x
4
 wbGYÆq mgvavb, x =  , 0,
2
(Ans.) ev, sin sin 2  cos 2  = 0
3 3 2 
x
M ˆ`Iqv AvGQ,  (x) = cosx
  sin = 0 A^ev, sin 3x  cos 3x = 0
2 2 2
  (3x) = cos3x
 (5x) = cos5x ‰es (7x) = cos7x
ev, x = n ev, sin 3x = cos 3x
2 2 2
cÉkg² GZ, cosx + cos3x + cos5x + cos7x = 0 [0 < x < ] sin
3x
 x = 2n. 2
ev, (cos5x + cosx) + (cos7x + cos3x) = 0 ev, =1
ˆhLvGb n  Ù 3x
ev, 2 cos3x cos2x + 2 cos5x cos2x = 0 cos
2
ev, 2 cos2x (cos5x + cos 3x) = 0 ev, tan 3x = 1
ev, 2 cos2x.2 cos4x.cosx = 0 2
3x
ev, cosx.cos2x.cos4x = 0 ev, = (4n + 1) 
2 4

nq, cosx = 0  x = (2n + 1) 2 
 x = (4n + 1) (n  Ù)
6
  
A^ev, cos2x = 0  2x = (2n + 1) 2 ev, x = (2n + 1) 4  wbGYÆq mgvavb: x = 2n, (4n + 1) ; (n  Ù) (Ans.)
6
38 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
M ˆ`Iqv AvGQ, 4g(x) g(2x) g(3x) = 1; 0 < x < 
 ‰Lb, cos2 = 0 nGj, 2 = (2n + 1)2   = (2n + 1)4
 
 4 cosx cos2x cos3x = 1
ev, (2 cos3x cosx) (2 cos2x) = 1 1 2
‰es 1 + 2cos2 = 0 nGj cos2 =  2 = cos 3
ev, (cos4x + cos2x) (2 cos2x) = 1
2 
ev, 2 cos4x cos2x + 2 cos22x  1 = 0 ev, 2 = 2n  3   = n  3
ev, 2 cos4x cos2x + cos4x = 0  
A^ev, 2 cos2x + 1 = 0  wbGYÆq mgvavb:  = (2n + 1)4, n  3 (Ans.)
ev, cos4x (2 cos2x + 1) = 0
ev, 2 cos2x = 1
 nq, cos4x = 0 1
M ˆ`Iqv AvGQ, A = cosec1 5  2 sin1 5 + tan14

3 1

ev, cos2x =  12 = cos 2
3
ev, 4x = (2n+1) 2 cvGki wPò ˆ^GK cvB,
ev, 2x = 2n  2
 3 1 5
 x = (2n+1) cosec1 5 = tan1
8  x = n   2 1
3 1 3
  
 x = (2n + 1) , n + , n 
8 3 3
gGb Kwi, 2 sin15 = 
3 ( 5)2  1 = 2
ZvnGj sin2 = 5
hLb, n ‰i gvb kƒbÅ ev ˆh ˆKvGbv cƒYÆ msLÅv|
   sin 2sin2 1  cos2
hLb n = 0, ZLb, x = , ,  tan = =
cos 2sincos
=
sin2
8 3 3
9 4
3 2 4 1 1 1
hLb n = 1, ZLb, x = , , 1 1  sin22 25 5 1
8 3 3 =
sin2
=
3
=
3
=
3
5 7 5 5 5
hLb n = 2, ZLb, x = , ,
8 3 3 1 1 3 1
  = tan1
3
ev, 2 sin1 5 = tan1 3
7 10 8
hLb, n = 3, ZLb, x = 8 , 3 , 3
 cÉ`î ivwk,
  3 2 5 7 1 1 3 1
 wbw`ÆÓ¡ mxgvi gGaÅ x ‰i gvbmgƒn: , , , , , (Ans.) A = cosec1 5  sin + tan1
8 3 8 3 8 8 2 5 4
² 40 `†kÅK͸-1: () = sin
cÉk
 1 1 1
= tan1  tan1 + tan1
2 3 4
1 3 1
`†kÅK͸-2: A = cosec1 5  2 sin15 + tan14 1 1 1

1 2 3 1 1 1 6 1
K. ˆ`LvI ˆh, sec2(tan1 15) + cosec2(cot1 13) = 30. 2 = tan + tan = tan + tan1
11 4 7 4
  1+ .
23 6
L. `†kÅK͸-1 ‰i AvGjvGK 2  .   3 + 1 = 0
2   2  1 1
+
mgxKiGYi mgvavb Ki| 4 1 1 1 1 1
7 4
= tan + tan = tan
11 7 4 11
M. `†kÅK͸-2 ˆ^GK ˆ`LvI ˆh, A = tan1 .
27
4 1 .
74
wkLbdj- 1 I 3 [hGkvi ˆevWÆ-2021  cÉk² bs 3] 11
28 11
40 bs cÉGk²i mgvavb = tan1
27
= tan1
27
K evgcÞ = sec (tan1 15) + cosec2(cot1 13)
 2
28
= 1 + tan2(tan1 15) + 1 + cot2 (cot1 13) 11
 A = tan1
27
(ˆ`LvGbv nGjv)
= 1 + ( 15)2 + 1 + ( 13)2
= 1 + 15 + 1 + 13 = 30 = WvbcÞ p q
² 41 DóxcK-1: sec = x, sec = y
cÉk

 sec2(tan1 15) + cosec2(cot1 13) = 30 (ˆ`LvGbv nGjv)
L ˆ`Iqv AvGQ, f() = sin
 DóxcK-2: f(x) = secx
1
 
cÉ`î mgxKiY, 2f 2  .f 2  3 + 1 = 0 K. sec2(cot11) + sin2cos1 2  ‰i gvb wbYÆq Ki| 2
 
 
ev, 2sin2  .sin2  3 + 1 = 0 L. DóxcK-1 ‰  +  =  nGj cÉgvY Ki ˆh,
x2 y2 2xy
ev, 2cos.cos3 + 1 = 0 + 
p2 q2 pq
cos = sin2. 4
ev, cos2 + cos4 + 1 = 0 M. DóxcK-2 ‰i AvGjvGK f(x).f(3x) + 2 = 0 mgxKiGYi
ev, cos2 + 2cos22 = 0 mvaviY mgvavb wbYÆq Ki| 4
ev, cos2(1 + 2cos2) = 0 wkLbdj- 1 I 3 [ewikvj ˆevWÆ-2021  cÉk² bs 3]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 39
41 bs cÉGk²i mgvavb 2x 1  y2
1 cÉk
² 42 f(x) = 1 + x2 . g(y) = 1 + y2 ‰es h(x) = sinx.
K
 sec (cot 1) + sin cos
2 1 2 1
 2 
1
K. cos1m + cos1 n = 2 nGj, cÉgvY Ki ˆh, m2 + n2 = 1. 2
= 1 + tan (cot 1) + 1  cos cos
2 1  2 1
1 1
 2
L. cosec1 f(a) – sec1 g(b) = 2 tan1x nGj, ˆ`LvI ˆh,
1 2
= 1 + {tan(tan11)}2 + 1  cos cos1  ab
  2  x=
1 + ab
. 4
1 2
M. 0    2 eÅewaGZ 2h() . h(3) = 1 mgxKiYwUi mgvavb
= 1 + 12 + 1   
2  Ki| 4
1 11
=3 = (Ans.) wkLbdj- 1 I 4 [XvKv ˆevWÆ-2019  cÉk² bs 4]
4 4
42 bs cÉGk²i mgvavb
p p x
L ˆ`Iqv AvGQ, sec = x   = sec1 x = cos1 p
 K ˆ`Iqv AvGQ, cos1 x + cos1 y = 2


q q y
‰es sec = y   = sec1 y = cos1 q  
ev, cos1x = 2  cos1y ev, x = cos 2  cos1y
Avevi,  +  =  ev, x = sin (cos1y) ev, x2 = sin2 (cos1y) [eMÆ KGi]
x y
 cos1 + cos1 =  ev, x2 = 1  cos2 (cos1y)
p q
x y x2 y2  ev, x2 = 1  y2  x2 + y2 = 1 (ˆ`LvGbv nGjv)
ev, cos1 p . q  1  p2 1  q2  =  1 1
    L cosec1 f(a)  sec1 g(b) = 2 tan1x

x y x2 y2 x2y2
ev, p . q  1  +
p2 q2 p2q2
= cos
 cosec1
1
 sec1
1
= 2 tan1x
2a 1  b2
xy x2 y2 x2y2 1 + a2 1 + b2
ev, pq  cos = 1  p2  q2 + p2q2
2x 1  y2
x2y2 xy x2 y2 x2y2 [‹ f(x) = 2 ‰es g(y) = ]
ev, p2q2  2.pq.cos + cos2 = 1  p2  q2 + p2q2 [eMÆ KGi] 1+x 1 + y2
2 2
1 + a 1 + b
x2y2 x2 y2 x2y2 xy  cosec1  sec1 = 2 tan1x
ev, p2q2 + p2 + q2  p2q2  2.pq.cos = 1  cos2 2a 1  b2
2
2a 1 1  b
x2 y2 2xy  sin1 2  cos = 2 tan1x
 2+ 2 cos = sin2 (cÉgvwYZ) 1+a 1 + b2
p q pq  2 tan1a  2 tan1b = 2 tan1x
M
 ˆ`Iqv AvGQ, f(x) = secx  tan1x = tan1a  tan1b
 f(3x) = sec3x ab ab
 tan1x = tan1
1 + ab
x=
1 + ab
(ˆ`LvGbv nGjv)
‰es f(x).f(3x) + 2 = 0
 secx.sec3x + 2 = 0 M
 ˆ`Iqv AvGQ, g(x) = sinx
1 1 cÉ`î mgxKiY, 2g (  x) g (3x) = 1
ev, cosx . cos 3x =  2 ev, 2 sin (  x) sin (3x) = 1 ev, 2 sinx sin3x = 1
1 ev, cos2x  cos4x = 1 ev, cos2x  (1 + cos4x) = 0
ev, cosx.cos3x =  2
ev, cos2x  2cos22x = 0  cos2x (1  2cos2x) = 0
ev, 2 cos3x. cosx =  1 cos2x = 0 nGj, 2x = (2n + 1) , n  Ù

ev, cos(3x + x) + cos(3x  x) =  1 2

ev, cos4x + cos2x =  1  x = (2n + 1)
4
ev, cos4x + 1 + cos2x = 0 1 
1  2cos2x = 0 nGj, cos2x = = cos
ev, cos2.2x + 1 + cos2x = 0 2 3
ev, 2 cos22x + cos2x = 0 
 2x = 2n  A^Ævr, x = n 

 cos2x(2 cos2x + 1) = 0 3 6
 
nq, cos2x = 0 A^ev, 2 cos2x + 1 = 0  x = (2n + 1) , n 
4 6
 1
 2x = (2n + 1)
2
ev, cos2x =  2   
n = 0 nGj, x = , , 
4 6 6
 2
 x = (2n + 1)
4
ev, cos2x = cos 3 3 5 7
n = 1 nGj, x = , ,
4 6 6
2 5 13 11
 2x = 2n 
3 n = 2 nGj, x = , ,
4 6 6
 7 19 17
 x = n 
3 n = 3 nGj, x = , ,
4 6 6
 wbGYÆq mvaviY mgvavb:  cÉ`î 0  x  2 mxgvi gGaÅ wbGYÆq mgvavb:
    3 5 7 5 11 7
x = (2n + 1) , n  ; n  Ù (Ans.) x= , , , , , ,
6 4 4 6 6 4 6 4
, (Ans.)
4 3
40 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

cÉk
² 43 M ˆ`Iqv AvGQ, g(x) = cotx

 3
`†kÅK͸-1: `†kÅK͸-2: g(x) = cotx. ‰es g2  .g 2  2 = 1, 0    
12 13  3
ev, cot2  .cot  2  2 = 1

5 ev, tan.tan2 = 1 ... ... ... (i)
K. tan 4 I tan
1
3
1
‰i mgwÓ¡ wbYÆq Ki| 2 sin.sin 2
ev, cos.cos 2 = 1 ev, cos.cos2 = sin.sin2
L. `†kÅK͸-1 ‰i AvGjvGK cÉgvY Ki ˆh,
3 29 ev, cos 2. cos  sin2. sin = 0
 + sin1 = cot1 2 + cot1 . 4
5 28 ev, cos(2 + ) = 0
 3
M. mgvavb Ki: g2   . g 2  2 = 1, 0     4 ev, 3 = (2n + 1) 2

wkLbdj- 1 I 4 [w`bvRcyi ˆevWÆ-2019  cÉk² bs 4] 


  = (2n + 1) 6 ; ˆhLvGb n-‰i gvb kƒbÅ A^ev ˆhGKvGbv
43 bs cÉGk²i mgvavb
5 12 + 5 cƒYÆ msLÅv|
4+
5 3 3 17 
K
 1
tan 4 + tan
3
1
= tan1
5
= tan 1
3  20
= tan1
 17
n=0 nGj  = 6
14
3 3   
n=1 nGj  = 3.6 = 2 hv MÉnYGhvMÅ bq| KviY  = 2 ‰i
3 3
= tan1( 1) = tan1(tan ) = (Ans.)
4 4 RbÅ (i) bs mZÅ bq|
12 12 5
L
 `†kÅK͸-1 ‰ ewYÆZ wPòvbymvGi sin = 13   = sin1 13 n=2 nGj  = 6
1 1 12
awi, 2  = 2 sin1 13 =  ... ... ... (i) n=3
7
nGj  = 6 > 
5 5
ev, cos1 13 = 2 ev, cos2 = 13 wbw`ÆÓ¡ eÅewaGZ wbGYÆq mgvavb: 6 , 6
 5

1  tan2 5 13
ev, 1 + tan2 = 13 12
1 1
² 44 `†kÅK͸-1: f(a) = sec1a + sec1b
cÉk

ev, 5 + 5 tan2 = 13  13 tan2
8
 = 2
`†kÅK͸-2: g() = sin( cos)  cos( sin).
ev, 18 tan  = 8 ev, tan  = 18
2 2
5 1
K. cot sin1  ‰i gvb wbYÆq Ki| 2
4 2 2  5
ev, tan2= 9 ev, tan = 3 ev,  = tan1 3 L. `†kÅK͸-2 nGZ hw` g() = 0 nq ZGe ˆ`LvI ˆh,
1 12 2 1 3
 2 sin1 13 = tan1 3 [(i) bs nGZ] =
2
sin1 .
4
4
1
evgcÞ = 2  + sin1 5
3 M. `†kÅK͸-1 nGZ f(a) =  nGj cÉgvY Ki ˆh,
5
3
sin = a2 + b2  2ab cos . 4
1 1 12 1 3
= sin + sin
2 13 5
2 3 4 wkLbdj- 1 [PUMÉvg ˆevWÆ-2019  cÉk² bs 4]
= tan1 + tan1
3 4
2 3
+
8+9 44 bs cÉGk²i mgvavb
3 4 12 1
= tan1
2 3
= tan1
1 K
 cot sin 1 
1  1  5 5
1
3 4 2
= cot . cot12
17 = 2 (Ans.) 2
1 12 17
= tan
1
= tan1
6
L
 ˆ`Iqv AvGQ, f(x) = sinx
g(x) = cosx
2
 f(g(x)) = sin(cosx)
29 1 28
WvbcÞ = cot12 + cot1 28 = tan1 2 + tan1 29 ‰es g(f(x)) = cos(sinx)
1 28 29 + 56 ˆhGnZz, f(g(x) = g(f(x))
+  sin(cosx) = cos(sinx)
2 29 58
= tan1 = tan1 
1 28 58  28
1 
2 29
ev, sin(cosx) = sin 2  sin x
58  
1 85 1 17
 1
= tan = tan ev, cosx = 2  sinx ev, cosx = 2  sinx
30 6
1 3 29 1 1
 2  + sin1 5 = cot12 + cot1 28 (cÉgvwYZ) ev, cosx  sin x = 2 ev, (cosx  sin x)2 = 4 [eMÆ KGi]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 41
1  
1
ev, cos2x + sin2x  2cosx sinx = 4 ev, 1  sin2x = ev, tan x = – 1 = tan – 4  x = n – 4 , n  Ù
4
A^ev, cos x – sin x = sin 2x ev, (cos x – sin x)2 = sin2 2x
3  3 ev, 1 – sin 2x = sin2 2x ev, sin2 2x + sin 2x – 1 = 0
ev, sin2x =  4 ev, 2x = sin1   
 4 –1 1+4 1
ev, sin 2x = 2
= (– 1  5)
2
1 3
 x =  sin1
2 4
(ˆ`LvGbv nGjv) 1
A^Ævr, sin 2x = 2 (– 1 + 5) = sin , KviY mvBb
1 1
M ˆ`Iqv AvGQ, f(a) = sec1 a + sec1b ‰es f(a) = 
 AbycvGZi gvb 1 AGcÞv Þz`ËZi nGZ cvGi bv|
1 1  2x = n + (– 1)n, ˆhLvGb n = 0 A^ev n = 4m  1, m  Ù
myZivs sec1 a + sec1 b =  1 1 1
ev, x = 2 n + (– 1)n 2 ; hLb, sin  = 2 ( – 1 + 5)
ev, cos1 a + cos1 b = 
 n 
ev, cos1 {ab  (1  a2) (1  b2)} =   wbGYÆq mgvavb: x = n  , + (1)n ,
4 2 2
ev, ab  (1  a2) (1  b2) = cos 51
ev, ab  cos = (1  a2) (1  b2) hLb sin = 2 ‰es n ‰i gvb kƒbÅ A^ev ˆhGKvGbv cƒYÆ
ev, a2b2  2ab cos + cos2 = 1  a2  b2 + a2b2 msLÅv| (Ans.)
ev,  2ab cos = 1  cos2  a2  b2
ev, a2 + b2  2ab cos = sin2 cÉk
² 46 f(x) = sin1x ‰es g(x) = cosx.
 sin = a2 + b2  2ab cos (cÉgvwYZ) 1 1
K. tan1 2 + tan1 3 ‰i gvb KZ? 2
cÉk
² 45 f(x) = tanx. 
L. f  2g 2   + f { g(2)} ‰i gvb wbYÆq Ki| 4
5  5  
K. ˆ`LvI ˆh, tan 1
=  cos1 . 2 
3 2 34 M. mgvavb Ki: 3g(x) + g2 + x = 1
L. cÉgvY Ki ˆh, tan {(2 + 3) f(x)} + tan {(2  3)
1 1
hLb  2 < x < 2. 4
f(x)} = tan1 {2 f(2x)}. 4 wkLbdj- 1 I 4 [hGkvi ˆevWÆ-2019  cÉk² bs 4]

M. mgvavb Ki : f 2  2x = cosx + sinx. 4 46 bs cÉGk²i mgvavb
wkLbdj- 1 I 3 [wmGjU ˆevWÆ-2019  cÉk² bs 4] 1
K tan1 2 + tan1 3

1
45 bs cÉGk²i mgvavb
5 1 1 3+2 5
K awi, cos1
 = +
2 3 6 6
34 = tan1
= tan -1
= tan 1
5 34 34  25 11 61 5
  = cot1 = 9=3 1 .
23 6 6
3
5 5 
 cos1 = cot1 5 
34 3 = tan1(1) = (Ans.)
4
 5 5 
 WvbcÞ =  cot1 = tan1 ‹ tan1x + cot1 x =  L ˆ`Iqv AvGQ, f(x) = sin1x ‰es g(x) = cosx

2 3 3  2
= evgcÞ 
5  5 cÉ`î ivwk = f  2 g2   + f{ g(2)}
 tan1 =  cos1 (cÉgvwYZ)  
3 2 34   
L
 evgcÞ = tan1 {(2 + 3) tanx} + tan1 {(2  3) tanx} = f  2 cos    + f{ cos2}
 2 
(2 + 3) tanx + (2  3) tanx
= tan1 = f( 2 sin) + sin1 ( cos2)
1  (2 + 3) tanx . (2  3) tanx
2 tanx + 3 tanx + 2 tanx  3 tanx = sin1( 2 sin) + sin1( cos2)
= tan1
1  (4  3)tan2x
= sin1{ 2 sin 1  cos2 + cos2. 1  2 sin2}
4 tanx  2 tanx 
= tan1 = tan12 . 2 
1  tan2x  1  tan x = sin1{ 2 sin  2 sin + cos2. cos2}
= tan {2tan(2x)} = WvbcÞ
1
1 2
= sin {2 sin  + cos2}
 tan1 {(2 + 3) tanx} + tan1 {(2 3) tanx}

= tan1 {2tan(2x)} (cÉgvwYZ) = sin1 {2 sin2 + 1  2 sin2} = sin 1 1 = (Ans.)
2
 
M
 f   2x = cosx + sinx ev, tan  2x = cosx + sinx
2  2  
M 3g(x) + g2 + x = 1 hLb  2 < x < 2

cos 2x
ev, cot2x = cosx + sinx ev, sin 2x = cos x + sin x

ev, (cos2x – sin2x) – 2 sinx cos x (cos x + sin x) = 0 ev, 3 cosx + cos2 + x = 1 ev, 3 cosx  sinx = 1
2 2
 cos 2x = cos x  sin x  3 1 1   1
 sin2x = 2 sinx cosx  ev, 2 cosx  2 sin x = 2 ev, cosx cos 6  sinx sin 6 = 2
ev, (cos x + sin x) (cos x – sin x – 2 sin x cosx) = 0
 nq, cos x + sin x = 0
42 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
    11
ev, cos x + 6 = cos 3 ev, x + 6 = 2n  3 6 2
= tan–1 – cot–1
  2 11
 x = 2n   ; n ‰i gvb kƒbÅ A^ev ˆhGKvGbv cƒYÆmsLÅv| 6
3 6
   –1 11 11
‘+’ wbGq, x = 2n +  = 2n + = tan  tan–1
3 6 6 2 2
  = 0 = WvbcÞ
n = 0 nGj, x = 0 + =
6 6 4 2 2
 sin–1 + cos–1  cot1 = 0 (cÉgvwYZ)
 13 5 5 11
n = 1 nGj, x = 2 + = > 2
6 6 M
 4(sin2 + cos) = 5; –2 <  < 2
  11 ev, 4 sin2 + 4 cos  5 = 0
n =  1 nGj, x =  2 + =
6 6
ev, 4 – 4 cos2 + 4 cos  5 = 0
  23
n =  2 nGj, x =  4 + = <  2 ev, 4 cos2  4 cos + 1 = 0
6 6
   ev, (2 cos  1)2 = 0 ev, 2 cos  1 = 0
‘’ wbGq, x = 2n   = 2n  1 
3 6 2 ev, cos = 2 = cos 3

n = 0 nGj, x =  
2   = 2n  ; hLb n ‰i gvb kƒbÅ
3
 3
n = 1 nGj, x = 2  = ev AbÅ ˆhGKvGbv cƒYÆ msLÅv|
2 2

 7 n = 0 nGj,  = 
n = 2 nGj, x = 4  = > 2 3
2 2
5 7
  5 n = 1 nGj,  = ,
n =  1 nGj, x =  2  = <  2 3 3
2 2
5 7
11    3 n = 1 nGj,  =  ,
 cÉ`î kZÆvbymvGi wbGYÆq mgvavb, x =  6 , 2 , 6, 2 3 3
 5
4  wbw`ÆÓ¡ eÅewaGZ  ‰i gvbmgƒn :  3 ,  3
² 47 `†kÅK͸-1 : sin
cÉk
 1
( ) + cos
5
1  2   cot1 ( ) 2
11
 5 cÉk
² 48 f(x) = tanx
`†kÅK͸-2 : 4(sin  + cos) = 5,  2 <  < 2
2
3
K. cÉgvY Ki ˆh, 2 sin1 x = sin1 (2x 1  x2) 2 K. cot1 cos cosec1 2
‰i gyLÅ gvb wbYÆq Ki| 2
L. `†kÅK͸-1 ‰i gvb wbYÆq Ki| 4 L. DóxcGK DGÍÏwLZ f(x) ‰i RbÅ f 1(x) + f 1(y) = 
nGj
M. `†kÅK͸-2 ‰ ewYÆZ mgxKiYwU mgvavb Ki| 4 cÉgvY Ki ˆh, cÉvµ¦ mçvic^wU ‰KwU mijGiLv wbG`Æk KGi
[XvKv, w`bvRcyi, wmGjU I hGkvi ˆevWÆ-2018  cÉk² bs 4] hvi Xvj  1 nGe| 4
47 bs cÉGk²i mgvavb M. {f(x)}2 + f(x) = 3f(x) nGj weGkl mgvavb wbYÆq Ki hLb
K
 gGb Kwi, sin1x = A 0  x  2. 4
 sinA = x [ivRkvnx ˆevWÆ-2017  cÉk² bs 4]
‰es cosA = 1  sin2A = 1  x2 48 bs cÉGk²i mgvavb
‰Lb, sin2A = 2sinAcosA = 2x 1  x2 3
K cot1 cos cosec1
 2
 2A = sin1 (2x 1  x2 ) 1 3
= cot1 cos cos1 2
myZivs, 2sin1x = sin1 (2x 1  x2 ) (cÉgvwYZ) 3
4 2 2 1 
L
 evgcÞ = sin–1 5 + cos–1  cot1 = cot1 = (Ans.) 1
5 11 3 3

= tan –1 4 –11
+ tan – cot –1 2
[wPò 1 I 2 nGZ] L ˆ`Iqv AvGQ, f(x) = tanx

3 2 11
 f 1(x) = tan1x ‰es f 1(y) = tan1y
4 1 cÉkg² GZ, tan1x + tan1y = 
+ 4 5 x+y
= tan–1
3 2
– cot–1
2 ev, tan1 1  xy = 
4 1 11
1– . x+y
3 2 3 ev, 1  xy = tan
8+3 wPò-1
x+y
6 2 ev, 1  xy = 0
= tan–1 – cot–1
6–4 11
6 1 5 ev, x + y = 0
 y=x
2
AZ‰e, cÉvµ¦ mçvic^wU ‰KwU mijGiLv wbG`Æk KGi ‰es
mijGiLvwUi Xvj  1 (cÉgvwYZ)
wPò-2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 43
M ˆ`Iqv AvGQ, f(x) = tanx
 2 P–1 2 P–1
d
ev, P
= cos0 ev, P
=1
 f (x) = (tanx) = sec2x
dx
ev, 2 P–1=P
cÉ`î mgxKiY, {f(x)}2 + f(x) = 3 f(x)
ev, 4(P – 1) = P2
ev, tan2x + sec2x = 3 tanx
ev, tan2x + 1 + tan2x  3 tanx = 0 ev, P2 – 4P + 4 = 0

ev, 2 tan2x  3 tanx + 1 = 0 ev, P2 – 2. P. 2 + 22 = 0


ev, 2 tan2x  2 tanx  tanx + 1 = 0 ev, (P – 2)2 = 0 ev, P – 2 = 0
ev, 2 tanx (tanx  1)  1(tanx  1) = 0 ev, 2
x –y +1–2=0 2

ev, (2 tanx  1) (tanx  1) = 0


 x – y2 = 1 (ˆ`LvGbv
2
nGjv)
nq, 2 tanx  1 = 0 A^ev, tanx  1 = 0
ev, tanx = 2
1
ev, tanx = 1 M ˆ`Iqv AvGQ, A = cos,

B = sin,
1 
 x = n + tan1 ()
2
ev, tanx = tan 4 C = cos2,
D = sin2

 x = n + , hLb n  Ù  A+B=C+D
4
ev, cos + sin = cos2 + sin2
n=0 (1) 
nGj, x = tan1 2 , 4
ev, cos  cos2  (sin2  sin) = 0
1  5
n = 1 nGj, x =  + tan ( ) ‰es x =  + =
1 3  3
ev, 2 sin 2 . sin 2  2 cos 2 . sin 2 = 0

2 4 4
1
n = 2 nGj, x = 2 + tan ( ) 1  3
ev, 2 sin 2 sin 2  cos 2  = 0
3
2
 9
‰es x = 2 + 4 = 4 > 2  sin
3
 cos
3
=0 A^ev, 2 sin 2 = 0

2 2
wbw`ÆÓ¡ mxgvi gGaÅ mgvavbmgƒn, 3 3 
1 1  5 ev, sin 2 = cos 2 ev, sin 2 = 0
tan1 () 2
,  + tan1 () , ,
2 4 4
(Ans.)
3 
ev, tan 2 = 1 ev, 2 = n
cÉk
² 49 A = cos, B = sin, C = cos2, D = sin2.
3 
K. gvb wbYÆq Ki : tan1 sin cos1
2
. 2 ev, tan 2 = tan 4 ev,  = 2n
3
3 
L. A + 3B = 2 nGj mgxKiYwU mgvavb Ki| 4 ev, 2 = n + 4

M. A + B = C + D nGj, mgxKiYwUi 0 2 eÅewaGZ mgvavb 2 
ev,  = 3 n + 4
AvGQ wKbv hvPvB Ki| 4
[w`bvRcyi ˆevWÆ-2017  cÉk² bs 1] n ‰i gvb kƒbÅ A^ev ˆhGKvGbv cƒYÆ msLÅv|
49 bs cÉGk²i mgvavb 
n=0 nGj,  = 6 , 0
2
K tan1 sin cos1
 3 n=1 nGj,  = 6 , 2
5
3
1
= tan1 sin sin1 1 3
3 n=2 nGj,  = 2 , 4
1
= tan1 = 30 (Ans.) 2 
3  wbw`ÆÓ¡ mxgvi gGaÅ mgvavb we`Ågvb ‰es  = 0, 6 (Ans.)
L ˆ`Iqv AvGQ,

4
cos– 1sin 2tan– 1cot cosec– 1 P = 0 cÉk
² 50 f(x) = sinx, g(x) = cosx, sin = 5
ev, cos– 1sin 2tan– 1cotcot– 1 P – 1 = 0
3
ev, cos– 1sin 2tan– 1 P – 1 = 0 K. cosec– 1 5 + sec– 1 ‰i gvb wbYÆq Ki| 2
10
2 P–1
ev, cos– 1sinsin– 1 =0 L. DóxcGKi AvGjvGK cÉgvY Ki ˆh,
1 + ( P – 1)2
1 1
2 P–1 sec– 1 5 +  – sin– 1 = tan– 12. 4
ev, cos– 1 1 + P – 1 = 0 P
2 5
1
2 P–1 M. DóxcGKi AvGjvGK mgvavb Ki: 3 g(x) + f(x) = 3. 4
ev, cos– 1 =0
P P–1 [KzwgÍÏv ˆevWÆ-2017  cÉk² bs 4 ]
44 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
50 bs cÉGk²i mgvavb cÉk
² 51 f(x) = cot−1 y − tan−1 x ............... (i)
3
K cosec– 1 5 + sec– 1
 cos − cos9 = sin5 ................ (ii)
10 x
K. sin 3 ‰i chÆvqKvj KZ? 2

5 1
3
L. f(x) = 6 nGj cÉgvY Ki ˆh, x + y + 3xy = 3 4
M. DóxcK-2 ‰i mvaviY mgvavb wbYÆq Ki| 4
2 10 [PëMÉvg ˆevWÆ-2017  cÉk² bs 4]
51 bs cÉGk²i mgvavb
3 K Avgiv Rvwb, sinx ‰i chÆvqKvj 2

‰LvGb, sec –1
ˆK chÆvGjvPbv KGi ˆ`Lv hvq f„wg 10 I
10 x 2
 sin ‰i chÆvqKvj = 1 = 6 (Ans.)
AwZfzR 3| wK¯§ fzwg KLGbv AwZfzGRi ˆPGq eo nGZ cvGi 3
3
bv| ZvB cÉ`î ivwki gvb wbYÆqGhvMÅ bq|

1 4 1 L ˆ`Iqv AvGQ, cot y  tan x = 6
 1 1

L
 evgcÞ = sec –1
5 + sin– 1 – sin– 1
2 5 1 
5 ev, tan1 y  tan1x = 6
1
5 x
5 2 1 y 
ev, tan1
1
=
6
1 + .x
y
1 2
wPò-1 1  xy
wPò-2
y  1  xy 1
1 4 1 ev, y+x
= tan
6
ev, x + y =
= tan– 12 + sin– 1 – tan– 1 [wPò 1 I 2 nGZ] 3
2 5 2 y
1 4 1 1 ev, x + y = 3  3xy
= tan– 12 + sin– 1 – . 2 tan– 1
2 5 2 2  x + y + 3xy = 3 (cÉgvwYZ)
1
1 4 1 2
2. M cos  cos9 = sin5

= tan 2 + sin– 1 – sin– 1
–1
ev, 2 sin5 sin4 = sin5
2 5 2 1 2
1+  ev, sin5 (2 sin4  1) = 0
2
1 4 1 1 nq, sin5 = 0 A^ev, 2 sin4  1 = 0
= tan– 12 + sin– 1 – sin– 1 ev, 5 = n ev, 2 sin4 = 1
2 5 2 1
1+ n 1 
4  = ev, sin4 = 2 = sin 6
5
1 4 1 1
= tan– 12 + sin– 1 – sin– 1 
2 5 2 5 ev, 4 = n + ( 1)n 6
4
n 
1 4 1 4  =+ ( 1)n
= tan– 12 + sin– 1 – sin– 1 = tan– 12 = WvbcÞ 4 24
2 5 2 5 n n 
 wbGYÆq mgvavb, = ,
5 4
+ ( 1)n ; hLb n ‰i
24
gvb
1 4 1
 sec
–1
5 + sin1  sin1 = tan– 12 (cÉgvwYZ)
2 5 5 kƒbÅ A^ev AbÅ ˆhGKvGbv cƒYÆ msLÅv|
M sinx + 3 cosx = 3
 cÉk
² 52 C P
1 3 3
ev, 2 sinx + 2 cosx = 2 r r
y

[DfqcÞGK [ 12 + ( 3)2 = 2 «¼viv fvM KGi] B R


A x Q
  3
ev, sinx sin + cosx cos =
6 6 2 y x2 − y2
 
ev, cosx  6 = cos 6

 x  = 2n 
 (
K. ˆ`LvI ˆh, cos 2 tan−1 x = x2 + y2 ) 2
6 6 L. DóxcGK A + P =  nGj cÉgvY Ki ˆh,
  x2 − 2xy cos + y2 = r2 sin2 4
 x = 2n +  r
6 6
M. f() = nGj −   x   eÅewaGZ f(2)
x
 f() = 2

 x = 2n, (6n + 1) ; hLb x ‰i gvb kƒbÅ A^ev AbÅ ˆhGKvGbv mgxKiYwU mgvavb Ki| 4
3
cƒYÆ msLÅv| [wmGjU ˆevWÆ-2017  cÉk² bs 4]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 45
52 bs cÉGk²i mgvavb ‰Lb, cos 2 = 0
5 
Avevi, cos 2 = 0
y
K evgcÞ = cos
 ( 2 tan−1
x) 5
ev, 2 = (2n + 1) 2
 
ev, 2 = (2n + 1) 2

y
1−( )
2
x 1 − x2   = (2n + 1)

  = (2n + 1) 
= cos cos−1 [‹ 2 tan−1 x = cos−1 ] 5
y 1 + x2
1+( )
2
x 
n=0 nGj,  = 5 , 
x2 − y2
x2 x2 − y2 3
= 2 =
x + y2 x2 + y2 n = 1 nGj,  = , 3
5
x2

= WvbcÞ (ˆ`LvGbv nGjv) n=1 nGj,  =  5 ,  
x 3
L DóxcGKi wPò nGZ, cosA = r
 n=2 nGj,  =  5 ,  3
x
 A = cos−1
r  wbw`ÆÓ¡ mxgvi gGaÅ wbGYÆq mgvavb,
y   3 3
‰es cosP = r =
5
, ,  , 
5 5
,  ,
5
(Ans.)

y
 P = cos−1 6
r ² 53 `†kÅK͸-1 : cot − tan = 5
cÉk
x y
cÉkg² GZ, cos−1 r + cos−1 r =  `†kÅK͸-2 : 2 sin2 + 2 (sin + cos) + 1 = 0
xy 2 2  K. cÉgvY Ki ˆh, tan−1 (cot3x) + tan−1 (− cot5x) = 2x 2
ev, cos−1  r2 −
 (1 − xr ) (1 − yr ) = 2 2
L. `†kÅK͸-1 nGZ cÉgvY Ki
1
ˆh,  = 2 sin−1
5
4
xy x y 2 2 34
ev, r − (1 − r ) (1 − r ) = cos
2 2 2
M. `†kÅK͸-2 ‰ ewYÆZ mgxKiYwUi mvaviY mgvavb wbYÆq Ki| 4
[hGkvi ˆevWÆ-2017  cÉk² bs 4]
2 2 2 2
ev, ( r − cos) =  (1 − r ) (1 − r ) 
xy x y
2 2 2
  53 bs cÉGk²i mgvavb
2 2 2 2
xy xy x y
ev, r − 2. r cos + cos  = (1 − r ) (1 − r )
4 2
2
2 2 K ‰LvGb, tan (cot 3x) + tan−1 (− cot 5x)
 −1

x2y2 xy y2 x2 x2y2  
ev, r4 − 2. r2 cos + cos2 = 1 − r2 − r2 + r4 = tan−1 tan  − 3x − tan−1 tan  − 5x
2  2 
x2 y2 2xy  
ev, r2 + r2 − r2 cos = 1 − cos2 =
2
− 3x − + 5x = 2x
2
x2 y2 2xy  tan−1 (cot 3x) + tan−1 (−cot 5x) = 2x (cÉgvwYZ)
ev, r2 + r2  r2 cos = sin2
6
 x2 + y2 − 2xy cos = r2 sin2 (cÉgvwYZ) L ˆ`Iqv AvGQ, cot − tan = 5

M ˆ`Iqv AvGQ,
 cos sin 6
r ev, sin − cos = 5
f() = = sec
x
cos2 − sin2 6
 f(2) = sec2 ev, sin cos = 5
cÉkg² GZ, f(2) − f() = 2
ev, 5 (cos2 − sin2) = 6 sin cos
ev, sec 2 − sec = 2
1 1 ev, 5 cos2 = 3 sin2
ev, cos 2 − cos = 2 sin 2 5
34
ev, cos 2 = 3 2
5
cos − cos 2
ev, cos 2 . cos = 2 5 3
ev, tan 2 = 3
ev, cos − cos 2 = 2 cos2 . cos
ev, cos  cos2 = cos + cos (2 + ) 5
ev, sin 2 =
34
ev, cos3 + cos2 = 0
5
ev, 2 cos
3 + 2
cos
3  2
=0
ev, 2 = sin−1
2 2 34
1 5
5 
ev, cos 2 cos 2 = 0   = sin−1
2
(cÉgvwYZ)
34
46 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
M 2 sin2 + 2 (sin + cos) + 1 = 0
 x ‰i wewf®² gvGbi RbÅ cÉwZmãx y ‰i gvbàGjv wbYÆq Kwi|
ev, 2 . 2 sin cos + 2 sin + 2 cos + 1 = 0 x –1 – 0.75 – 0.5 – 0.25 0 0.25 0.5 0.75 1

ev, 2 sin (2cos + 1) + 1 (2 cos + 1) = 0 y=


1 –1
sin x – 45 – 24.29 – 15 – 7.24 0 7.24 15 24.29 45
2
ev, (2 sin + 1) (2 cos + 1) = 0
QK KvMGRi x AÞ eivei 10 Ni = 1 ‰KK ‰es y AÞ
nq, 2 sin + 1 = 0 A^ev 2 cos + 1 = 0
1 7 1 2
eivei 1 Þz`ËZg Ni = 5 ‰KK aGi cÉvµ¦ x I y ‰i gvbàwj
ev, sin = − 2 = sin 6 ev, cos = − 2 = cos 3
1
ewmGq y = 2 sin– 1x ‰i ˆjLwPò cvIqv hvq|
7
  = n + (−1)n
6 Y
2 (1, 45)
  = 2n  ,
3
ˆhLvGb n-‰i gvb kƒbÅ ev ˆhGKvGbv
cƒYÆmsLÅv| (0.75, 24.29)
(0.5, 15)
cÉk
² 54 g(x) = p sin– 1x; h(x) = cosx. O (0.25, 7.24)
X (–0.25, –7.24) (0, 0) X
5 1 3
K. cÉgvY Ki ˆh, sec– 1 2 + tan– 1 2 = cot–1 4 2 (– 0.5, – 15)

(– 0.75, – 24.29)
1
L. g(x) ‰i ˆjLwPò Aâb Ki, hLb p = , – 1  x  1.
2
4
(– 1, – 45)
M. 2{h(x)} + {h(2x)} = 2 mgxKiYwUi mvaviY mgvavb
2 2 Y

wbYÆq Ki| 4
[ewikvj ˆevWÆ-2017  cÉk² bs 4] M ˆ`Iqv AvGQ, h(x) = cosx

54 bs cÉGk²i mgvavb  h(2x) = cos2x
5 1
K
 evgcÞ = sec– 1 2
+ tan– 1
2
cÉ`î mgxKiY,
1 1 2{h(x)}2 + {h(2x)}2 = 2
= tan– 1 + tan– 1
2 2 ev, 2 cos2x + cos22x = 2
5
1 1
= 2 tan– 1 ev, 1 + cos2x + cos22x – 2 = 0
2
1 2
2. 5 1
ev, cos22x + cos 2x  1 = 0
2 –1
= tan–1
= tan– 1  sec
2 2
1 2 – 1  12 – 4 . 1 . (– 1)
1–  ev, cos2x =
 2 2.1
1
= tan– 1 –1 5
1 =
1– 2
4
1 –1– 5
= tan– 1 wK¯§, 2
MÉnYGhvMÅ bq| ˆKbbv Zv – 1 AGcÞv ˆQvU
3
4
gvb ‰es cos ‰i mxgv – 1 nGZ 1 chƯ¦|
4 3
= tan–1 = cot– 1 = WvbcÞ
3 4 –1+ 5
 cos 2x =
2
5 1 3
 sec– 1 + tan– 1 = cot– 1 (cÉgvwYZ)
2 2 4 –1+ 5
ev, cos 2x = cos [awi,  = cos– 1 2 ]
1
L ˆ`Iqv AvGQ,
 p=
2
ev, 2x = 2n   .
1
‰es g(x) = p sin x = sin– 1x
2
–1

 x = n 
2
ˆhLvGb – 1  x  1.
–1+ 5
1
awi, y = 2 sin– 1x. ˆhLvGb  = cos– 1 2  ‰es n  Ù (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 47

AÓ¡g AaÅvq: wÕ©wZwe`Åv


cÉk
² 30 M
 10 N

`†kÅK͸-1: `†kÅK͸-2: P P A 20 cm
A
10 N B
8 cm
P1 20 cm
A B
O 5N 15 N

P2 15 N A I B we±`yGZ wKÌqviZ 15N I 10N gvGbi eGji jwº¬ 5 N ej


P3
B C P we±`yGZ wKÌqviZ|
K. eGji jÁ¼vsk ‰i msæv `vI| 2  15. AP = 10. BP = 10 (AP + AB)
L. `†kÅK͸-1 ‰i AvGjvGK O, ABC wòfzGRi A¯¦tGK±`Ê ‰es ev, 15AP = 10 (20 + AP) ev, 15AP = 10AP + 200
ejòq mvgÅveÕ©vq ^vKGj ˆ`LvI ˆh, ev, 5AP = 200  AP = 40 cm
P 21 : P 22 : P 23 = (1 + cosA) : (1 + cosB) : (1 + cosC). 4 Avevi, A I B we±`yGZ wKÌqviZ eGji mvG^ k cwigvY ej ˆhvM
M. `†kÅK͸-2 ‰i AvGjvGK ej«¼Gqi cÉGZÅGKi mvG^ KiGj (15 + k) N I (10 + k) N eGji jwº¬ P we±`y nGZ 8cm
mgcwigvY KZ ej ˆhvM KiGj bZzb jwº¬ cƒGeÆi jwº¬ ˆ^GK `ƒGi P we±`yGZ wKÌqviZ|
 (15 + k). AP = (10 + k). BP
8cm `ƒGi mGi hvGe? 4
wkLbdj- 5, 9, 10 I 11 [XvKv ˆevWÆ-2021  cÉk² bs 8] ev, (15 + k) (AP + PP) = (10 + k) (AB + AP + PP)
ev, (15 + k). 48 = (10 + k) 68
30 bs cÉGk²i mgvavb ev, 720 + 48k = 680 + 68k
K ˆKvb wbw`ÆÓ¡ ejGK hw` ciÕ·i jÁ¼ `ywU ˆiLv eivei wKÌqvkxj
 ev, 20k = 40  k = 2
`ywU eGji AsGk wefÚ Kiv nq ZGe Ask `ywUi cÉwZwU H
 Dfq eGji mvG^ 2N ej ˆhvM KiGj jwº¬ 8cm `ƒGi mGi
wbw`ÆÓ¡ eGji jÁ¼vsk|
hvGe| (Ans.)
L ABC ‰i A¯¦tGK±`Ê O
 A

we±`yGZ wKÌqviZ P1, P2 ‰es cÉk


 ² 31 `†kÅK͸-1: ‰KwU KuvVvj MvGQi wZbwU WvGji A, B, C
A
P3 ejòq mvgÅveÕ©vq A 2 we±`yGZ h^vKÌGg 8kg, 7kg I 5kg IRGbi wZbwU KuvVvj SzjGQ|
^vKvq jvwgi Dccv`Å 2 P 1 `†kÅK͸-2: AB = 15 wgUvi Š`NÆÅwewkÓ¡ ‰KwU nvjKv ZÚv `yBwU
AbymvGi, B
OO
P C
LuywUi Dci Abyf„wgKfvGe AewÕ©Z| A I B cÉvG¯¦ h^vKÌGg 24kg
2 3

B
P P
2 2
PC 3
2 I 32kg IRGbi `yBRb evjK SzjGQ|
B
2 2
C K. 3N, 7N I 5N ejòq ‰KwU eÕ§i Dci wKÌqv KGi fvimvgÅ
P1 P2 P3 m†wÓ¡ KiGj 3N I 5N ej«¼Gqi gaÅeZÆx ˆKvY wbYÆq Ki| 2
= =
sin BOC sin AOC Sin AOB
P1 P2 P3
L. `†kÅK͸-1 ‰ KuvVvjàGjvi IRGbi jwº¬ ABC wòfzGRi
ev, B C
=
A C
=
A B jÁ¼we±`yMvgx nGj ˆ`LvI ˆh, cosA : cosB : cosC
sin     sin     sin     = 35 : 50 : 28 ˆhLvGb a = 4, b = 5, c = 2. 4
 2 2  2 2  2 2
P1 P2 P3 M. `†kÅK͸-2 ‰ LuywU `yBwUi gaÅeZÆx `ƒiZ½ AB ‰i
ev, B+C
=
A+C
=
A+B ‰K-Z‡Zxqvsk nGj LuywU `yBwUi AeÕ©vb wbYÆq Ki| 4
sin    sin   2  sin   2 
 2      wkLbdj- 4, 9 I 11 [gqgbwmsn ˆevWÆ-2021  cÉk² bs 8]
P1 P2 P3 31 bs cÉGk²i mgvavb
ev,   A
=
  B
=
sin    sin    sin     C K
 awi, 3N I 5N ej«¼Gqi gaÅeZÆx ˆKvY 
 2   2   2 
[ A + B + C = ] ‰Lb, 3N, 7N I 5N ejòq mvgÅeÕ©v m†wÓ¡ KiGj, 3N I 5N
P1 P2 P3 ej«¼Gqi jwº¬i gvb 7N.
ev,  A
=
 B
=
 C kZÆgGZ,
sin  +  sin  +  sin  + 
2 2  2 2  2 2  32 + 52 + 2.3.5 cos = 7 [ ejòq fvimvgÅ m†wÓ¡ KGi]
2 2 2
P P P P P P ev, 9 + 25 + 30cos = 49 ev, 30cos = 15
ev, 1A = 2B = 3C ev, 1 A = 2 B = 3 C 15 1 1
cos
2
cos
2
cos
2
cos 2
2
cos 2
2
cos 2
2
ev, cos = 30 ev, cos = 2   = cos– 1 2 = 60 (Ans.)
A
P21 P22 P23 L

ev, 1 1
= =
1 P
(1 + cosA) (1 + cosB) (1 + cosC) O
2 2 2
2 2 2
P1 P2 P3
ev, 1 + cosA = =
1 + cosB 1 + cosC
  P21 : P22 : P23 = (1 + cosA) : (1 + cosB) : (1 + cosC) B C
D
(ˆ`LvGbv nGjv) Q Q+R R
48 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
gGb Kwi, ABC ‰i jÁ¼we±`y O ‰es ewaÆZ AO, BC ˆK D  cÉk
² 32 ‰KwU we±`yGZ  ˆKvGY wKÌqviZ P I Q (P > Q) gvGbi
we±`yGZ ˆQ` KGi| ZvnGj, AD  BC. ‰Lb B I C ˆZ ej«¼Gqi e†nîg I Þz`ËZg jwº¬i gvb h^vKÌGg L I M
wKÌqviZ m`†k mgv¯¦ivj ej Q I R ‰i jwº¬ (Q + R) ejwU K. ‰K we±`yGZ 120 ˆKvGY wKÌqviZ `yBwU mgvb eGji jwº¬
BC ‰i ˆKvGbv we±`yGZ wKÌqv KiGe| Avevi cÉ`î ejòGqi wbYÆq Ki| 2
L. P ‰i w`K eivei jwº¬i jÁ¼vsGki cwigvY Q nGj, cÉgvY
jwº¬i wKÌqvwe±`y O ‰es ‰i ‰KwU AskK ej P ‰i wKÌqvwe±`y QP
A eGj, Aci AskK ej (Q + R) ‰i wKÌqvwe±`y AekÅB BC I Ki ˆh,  = cos1 Q 4
AD ‰i ˆQ`we±`y D nGe|  
M. ˆ`LvI ˆh, ej«¼Gqi jwº¬i gvb L cos2 2 + M sin2 2 4
BD CD
Q  BD = R  CD  Q 
AD
=R
AD
 Q cot B = R cotC wkLbdj- 4 I 5 [ivRkvnx ˆevWÆ-2021  cÉk² bs 7]
Z`Ë‚c cÉgvY Kiv hvq, P cot A = R cot C. 32 bs cÉGk²i mgvavb
 P cot A = Q cot B = R cot C ... (i) K awi, `yBwU mgvb ej P ‰es Zv 120 ˆKvGY wKÌqviZ

cosA cosB cosC  jwº¬, R = P2 + P2 + 2.P.P cos120
P =Q =R
sinA sinB sinC 1
PcosA QcosB RcosC = P2 + P2 + 2P2 
 = =  2
a/2r b/2r c/2r
= P2 + P2  P2 = P2 = P
ˆhLvGb ABC ‰i cwieÅvmvaÆ r.  jwº¬i gvb ‰KwU eGji mgvb| (Ans.)
PcosA : Q cos B : R cosC = a : b : c L
 gGb Kwi, O we±`yGZ  ˆKvGY wKÌqviZ P I Q
‰LvGb, P = 8kg, Q = 7 kg ‰es R = 5 kg (P > Q) ej«¼Gqi jwº¬ R hv P Q
Avevi a = 4, b = 5 ‰es c = 2 ‰i mvG^  ˆKvY Drc®² KGi|
PcosA QcosB RcosC 8cosA 7cosB 5cosC P ‰i w`K eivei jÁ¼vsk wbGq cvB, R
ZvnGj, a
=
b
=
c
ev, 4 = 5 = 2 Pcos0 + Qcos = Rcos 
cosA 7 35 cosB 25 50 ev, P + Qcos = Q [ Rcos = Q] O 
P
ZvnGj, cosB = 10 = 50 ‰es cosC = 14 = 28 ev, Qcos = Q  P
 cosA : cosB = 35 : 50 ‰es cosB : cosC = 50 : 28 QP QP
ev, cos = Q   = cos1 Q (cÉgvwYZ)
 cosA : cosB : cosC = 35 : 50 : 28 (ˆ`LvGbv nGjv) M
 P I Q (P > Q) ej«¼Gqi e†nîg I Þz`ËZg jwº¬i gvb h^vKÌGg
M [we.`Ë.: cÉkw² U mÁ·ƒYÆ bq| LyuwU
 2P L I M.
`yBwUi Ici Pvc«¼Gqi gGaÅ ˆKvGbv  e†nîg jwº¬, P + Q = L ... ... (i)
A C O D B
mÁ·KÆ DGÍÏL Kiv bv ^vKGj LyuwU Þz`ËZg jwº¬, P  Q = M ... ... (ii)
(i) I (ii) ˆhvM KGi cvB,
`yBwUi AeÕ©vb wbYÆq Kiv mÁ¿e 24 56 32 L+M
2P = L + M ev, P =
bq| ‰LvGb LyuwU `yBwUi Ici Pvc 2
mgvb aGi mgvavb ˆ`qv nGjv|] (i) ˆ^GK (ii) weGqvM KGi cvB,
LM
15 2Q = L  M ev, Q =
awi ZÚvwU 3 ev 5m eÅeavGb C I D we±`yGZ AewÕ©Z LuywU 2
ˆhGnZz P I Q,  ˆKvGY wKÌqviZ, myZivs jwº¬,
`yBwUi Dci mgvb Pvc«¼q P I P wKÌqv KGi| ZvnGj ‰G`i
R= P2 + Q2 + 2PQcos
jwº¬ 2P, hv CD ‰i gaÅwe±`y O ˆZ wKÌqv KiGe| 2
L  M 2
5 = L +2 M  + + 2.
L + M L  M 
 cos
 OC = OD = m
2
mvgÅveÕ©vi RbÅ 24 I 32 IRb«¼Gqi    2   2  2 
L2 M2 L2 M2
jwº¬ (24 + 32) = 2 +  + 2   cos
4 4  4 4 
A^Ævr 56, AekÅB O ˆZ Lvov wbÁ²w`GK KvhÆiZ nGe|
L2 M2 L2 M2
24  AO = 32  BO = + + cos  cos
2 2 2 2
AO BO AO + BO AB 15 2 2
 = = = = m L M
4 3 4+3 7 7 = (1 + cos) + (1  cos)
2 2
60 45
 AO = m ‰es BO = m L2  M2 
7 7 =  2cos2 +  2sin2
2 2 2 2
60 5 120 – 35 85
 AC = AO – CO =  –  = = m = 6.07m  
 7 2  14 14 = L2cos2 + M2sin2 (ˆ`LvGbv nGjv)
2 2
45 5 90 – 35 55
‰es BD = BO – OD =  7 – 2  = 14 = 14 m = 3.93m  
  [we.`Ë: cÉGk² fzj AvGQ, L cos2
2
+ Msin2 ‰i
2
Õ©Gj
 LuywU `yBwU A I B we±`y ˆ^GK h^vKÌGg 6.07m I 3.93m  
L2 cos2 + M2sin2 nGe|]
`ƒiGZ½ Õ©vwcZ wQj| (Ans.) 2 2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 49

² 33 DóxcK-1: wZbwU m`†k mgv¯¦ivj ej L, M, N h^vKÌGg


cÉk
 (M + N) ‰i wKÌqvwe±`y AekÅB BC I AD ‰i ˆQ`we±`y D
nGe|
ABC ‰i kxlÆwe±`y A, B, C ˆZ KvhÆiZ ‰es ‰G`i jwº¬
M CD b M N
wòfzRwUi A¯¦tGK±`ÊMvgx|  M.BD = N.CD ev, N = BD = c ev, b = c
DóxcK-2: l Š`NÆÅwewkÓ¡ ‰KwU myZvi ‰K cÉv¯¦ ‰KwU DÍÏÁ¼ L N L M
Abyi…cfvGe cÉgvY Kiv hvq, a = c  a = b = c (cÉgvwYZ)
N
ˆ`qvGj AvUKvGbv| AbÅ cÉv¯¦ 'a' eÅvmvaÆwewkÓ¡ I W IRGbi
‰KwU mylg ˆMvjGKi mvG^ hyÚ AvGQ| M BDE ˆMvjGKi ˆK±`Ê C ‰es ˆMvjKwU B we±`yGZ ˆ`IqvjGK

K. ‰KwU eÕ§i Dci A I B we±`yGZ wKÌqviZ `yBwU m`†k Õ·kÆ KGi| ‰KwU iwk AD ‰i D cÉv¯¦ ˆMvjGKi Ici I A
mgv¯¦ivj ej L I M (L > M) ciÕ·i Õ©vb wewbgq KiGj cÉv¯¦ ˆ`IqvGj AvUKvGbv AvGQ|
jwº¬i wKÌqvwe±`y AB eivei x `ƒiGZ½ mGi hvq| cÉgvY Ki ˆMvjGKi IRb W ‰i KvhÆGiLv OE, hv DÍÏÁ¼| B we±`yGZ
LM
ˆh, x = L + M AB. 2 cÉwZwKÌqv ej R, BC eivei wKÌqv KGi|
awi, iwki Uvb = T, DA eivei wKÌqvkxj|
L M N
L. DóxcK-1 ‰i mvnvGhÅ cÉgvY Ki ˆh, a = b = c 4 A
w(a + l)
M. DóxcK-2 ‰i mvnvGhÅ ˆ`LvI ˆh, myZvi Uvb = 2 4 T
l + 2al
wkLbdj- 9 I 11 [ivRkvnx ˆevWÆ-2021  cÉk² bs 8] D
33 bs cÉGk²i mgvavb
K gGb Kwi, A I B we±`yGZ h^vKÌGg F I G (F > G) ej«¼q
 R C
B
wKÌqviZ AvGQ| E
F F+G F+G G
W

A C x D B mvgÅveÕ©vi RbÅ AD myZvi UvGbi wKÌqvGiLv DA eivei wKÌqv


ZvnGj, F. AC = G. BC KiGe ‰es C we±`yMvgx nGe| KvGRB, CD ‰es DA ‰KB
ev, F.AC = G(AB  AC) ˆiLv nGe| C we±`yGZ, T, W, R mvgÅveÕ©vq AvGQ|
ev, (F + G) AC = G.AB  jvwgi Dccv`Å ˆ^GK cvB,
G
 AC = . AB ... ... ... (i) T W R
F+G = =
sin W ^ R sin R ^ T sin T ^ W
‰Lb, F I G ej«¼q ciÕ·i Õ©vb wewbgq KiGj A I B
we±`yGZ h^vKÌGg G I F ej«¼q wKÌqv KiGe ‰es gGb Kwi,  2q I 3q AbycvZ wbGq cvB,
ZvG`i jwº¬ D we±`yGZ wKÌqv KGi| R
=
W
ZvnGj, G. AD = F. BD ev, G. AD = F(AB  AD) sin (90 + ACB) sin( – ACB)
F
ev, (F + G) AD = F.AB  AD = F + G . AB ... ... (ii) ev, W = R
‰LvGb, CA = l + r
AB cos ACB
 wbGYÆq `ƒiZ½ x = CD = AD – AC CA AB = (r + l )2  r2
= 2rl + l2
=
F
. AB –
G
.AB [(i) I (ii) bs nGZ] ev, W(l + r)2 = R = R(l + r)
F+G F+G 2rl + l OB r ‰es BC = r
1 OA
= (F – G). AB
F+G Wr
R= (cÉgvwYZ)
FG 2rl + l2
x= .AB (cÉgvwYZ)
F+G
cÉk
L gGb Kwi, ABC ‰i A¯¦tGK±`Ê I ‰es ewaÆZ AI, BC ˆK D 
 ² 34
we±`yGZ ˆQ` KGi| ZvnGj BAC ‰i mgw«¼LíK AD, BC `†kÅK͸-1: `†kÅK͸-2:
ˆK D we±`yGZ AB : AC AbycvGZ A¯¦weÆfÚ KGi| 10 N
CD AC b A R
 = = 10 cm
A B
BD AB c
15 N Q
c b
L
I
P

B C
K. ˆKvGbv we±`yGZ F gvGbi `yBwU mgvb ej ciÕ·i 120
a D
ˆKvGY wKÌqviZ nGj, ‰G`i jwº¬i gvb I w`K wbYÆq Ki| 2
M M+N N
L. `†kÅK͸-1 ‰i ej `ywUi mvG^ mggvGbi KZ ej ˆhvM
‰Lb B I C wKÌqviZ m`†k mgv¯¦ivj ej M I N ‰i jwº¬ KiGj bZzb jwº¬i wKÌqvwe±`y 5cm `ƒGi mGi hvGe? 4
(M + N) ejwU BC ‰i ˆKvGbv we±`yGZ wKÌqv KiGe| Avevi M. `†kÅK͸-2 ‰ Q = 13 N ‰es P I Q ‰i jwº¬ R = 12 N
cÉ`î ejòGqi jwº¬ (L + M + N) ‰i wKÌqvwe±`y I ‰es ‰i nGj, P ‰i gvb wbYÆq Ki| 4
‰KwU AskK ej L ‰i wKÌqvwe±`y A eGj Aci AskK ej wkLbdj- 4, 9 I 11 [w`bvRcy i ˆevWÆ
- 2021  cÉ
k ² bs 8]
50 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
34 bs cÉGk²i mgvavb cÉk
² 35
K F gvGbi `yBwU mgvb ej ciÕ·i 120 ˆKvGY wKÌqv KGi|
 `†kÅK͸-1: `†kÅK͸-2:
 jwº¬, R = F2 + F2 + 2F.F cos120 ˆKvGbv we±`yGZ KvhÆiZ Q  R, A
1 Q, Q + R gvGbi ejàGjvi P
= 2F2 + 2F2  = 2F2  F2 = F2 = F w`K ‰KBKÌGg ˆKvGbv mgevü
 2 G
C
wòfzGRi evüàGjvi mgv¯¦ivj|
120 R
ˆhGnZz ej«¼q mgvb jwº¬i w`K, =
2
= 60 B
Q
 jwº¬i gvb F ‰es jwº¬i w`K ˆh ˆKvGbv eGji mvG^ 60 K. gƒj we±`yGZ 5, 8 I 10 ‰KK gvGbi wZbwU ej x-AGÞi
(Ans.) mvG^ h^vKÌGg 0, 60 I 120 ˆKvGY wKÌqv KiGQ| OX
L awi, `†kÅK͸-1 ‰i ej«¼Gqi mvG^ P gvGbi ej ˆhvM KiGj
 eivei ejàGjvi jÁ¼vsGki mgwÓ¡ wbYÆq Ki| 2
jwº¬i wKÌqvwe±`y 5cm `ƒGi mGi hvGe| L. `†kÅK͸-1 ‰i ejàGjvi jwº¬ wbYÆq Ki| 4
(10 + P)N M. `†kÅK͸-2 ‰i m`†kÅ mgv¯¦ivj ej P, Q, R ‰i jwº¬ hw`
10N
ABC wòfzGRi fiGK±`Ê G-ˆZ wKÌqv KGi ZGe cÉgvY Ki ˆh,
D 5 cm C A 10 cm B
P = Q = R. 4
15N wkLbdj- 4, 9 I 11 [KzwgÍÏv ˆevWÆ-2021  cÉk² bs 7]
(15 + P)N
5N 5N 35 bs cÉGk²i mgvavb
1g ˆÞGò, 10  BC = 15  AC K OX eivei jÁ¼vsGki mgwÓ¡

ev, 10  (AB + AC) = 15  AC = 5 cos0 + 8 cos60 + 10cos120
1 1
ev, 10 (10 + AC) = 15  AC = 5.1 + 8. + 10.  
2  2
ev, 100 + 10AC = 15AC
= 5 + 4  5 = 4 (Ans.)
ev, 5AC = 100
 AC = 20 cm L gGb Kwi, O we±`yGZ OX, OY, OZ eivei KvhÆiZ h^vKÌGg

w«¼Zxq ˆÞGò, (15 + P)  AD = (10 + P)  BD (Q  R), Q, (Q + R) ejàwji w`K ABC mgevü wòfzGRi

ev, (15 + P)  (AC + CD) = (10 + P)  (AB + AC + CD) BC, CA, AB evüi mgv¯¦ivj|

ev, (15 + P)  (20 + 5) = (10 + P)  (10 + 20 + 5) F Y


120
Q A
ev, (15 + P)  25 = (10 + P)  35

ev, (10 + P)  7 = (15 + P)  5 120
B
120
ev, 70 + 7P = 75 + 5P O
C
ev, 2P = 5  P = 2.5 N (Ans.) Z
Q+R QR X

M awi, P I Q ej«¼Gqi gaÅeZÆx ˆKvY |



awi, ejàGjvi jwº¬ = F hv O we±`yGZ OX- ‰i mvG^  ˆKvGY
R
Q wKÌqvkxj|
‰Lb, OX eivei ‰es ‰i Dci jÁ¼ eivei jÁ¼vsk wbGq cvB,
90 Fcos = (Q  R).cos0 + Q.cos120 + (Q + R). cos240
P 1 1
= (Q  R)  Q  (Q + R)
2 2
ˆ`Iqv AvGQ, Q = 13N, R = 12N
3
jwº¬ R, P eGji mvG^ jÁ¼ eivei wKÌqv KGi|  Fcos =  .R ... ... ... (i)
2
  = 90 ‰es Fsin = (Q  R).sin0 + Q.sin120 + (Q + R).sin240
Q sin 1
‰Lb, tan90 = =
P + Q cos 0 3 3
=0+ .Q  (Q + R)
2 2
ev, P + Q cos = 0  Q cos =  P
3
Avevi, R2 = P2 + Q2 + 2PQ cos  Fsin = 
2
.R ... ... ... (ii)
ev, 122 = P2 + 132 + 2P (P) ZvnGj (i)2 + (ii)2 
ev, 122 = P2 + 132  2P2 9 3
F2(cos2 + sin2) = .R2 + .R2
ev, P2 = 132  122 ev, P2 = 169  144 4 4

ev, P2 = 25  P = 5 (Ans.) ev, F2 = 3.R2  F = 3R ‰KK (Ans.)


ˆevWÆ cixÞvi cÉk²cGòi mgvavb 51
weK͸ mgvavb: L O we±`yGZ h^vKÌGg OX, OY, OZ eivei wKÌqviZ L, M, N

gGb Kwi, ABC wòfzGRi BC, CA I AB evüi mgv¯¦ivj ejòq fvimvGgÅ AvGQ|
eivei wKÌqviZ ejàwji wKÌqvwe±`y C. ˆ`Iqv AvGQ, L I N ‰i A¯¦MÆZ ˆKvY  ‰es L I M ‰i
 C we±`yGZ CX eivei Q – R, CA eivei Q ‰es CY A¯¦MÆZ ˆKvY 2.
eivei Q + R ej wKÌqviZ eGj MYÅ Kiv hvq| ˆhGnZz ejòq fvimvGgÅ AvGQ,
L M N
ZvnGj, ejòq ciÕ·Gii mvG^ 120 ˆKvGY wKÌqv KGi| awi ZvB jvwgi mƒòvbymvGi, sin(360 – 3) = sin = sin2
ejòGqi jwº¬ F| L M N
 F = (Q+R) +Q +(Q+R) +2(QR)Qcos120+2Q(Q+R)cos120+2(Q+R)(QR)cos120
2 2 2 ev, – sin3 = sin = 2sin cos
1 1 1 L M N
= (Q+R)2+(QR)2+Q2 + 2(Q2RQ) +2(Q2+RQ) +2(Q2R2)  ev, 4sin3 – 3sin = sin = 2sin cos
 2  2  2
2Q2 + 2R2 + Q2  (Q2  RQ + Q2 + RQ + Q2  R2) L M N
= ev, 4sin2 – 3 = 1 = 2cos
= 3Q2 + 2R2  3Q2 + R2 = 3R2 = 3R
L M N M–L
 ejòGqi jwº¬ 3R ‰KK| (Ans.) ev, 4(1 – cos2) – 3 = 1 = 2cos = 4cos2
M gGb Kwi, ABC wòfzGRi A, B, C wZbwU ˆKŒwYK we±`yGZ P,
 
M
=
N
... (i)
1 2cos
Q, R mggyLx mgv¯¦ivj ejàwj wKÌqvkxj| ‰G`i jwº¬ wòfzGRi
M–L N
fiGKG±`Ê wKÌqviZ| ˆhGnZz A we±`yGZ P ej ‰es G we±`yGZ ‰es 4cos2 = 2cos ... (ii)
jwº¬ ej P + Q + R wKÌqvkxj myZivs B I C we±`yGZ wKÌqviZ M.(M – L) N 2
‰Lb (i) I (ii) àY KGi cvB, 4cos2 = 2cos
Q I R mgv¯¦ivj ej«¼Gqi jwº¬ BC I AGD- ‰i ˆQ`we±`y D
ˆZ wKÌqv KiGe|  N2 = M(M – L) (cÉgvwYZ) X
A weK͸ mgvavb:
L
O we±`yGZ OX, OY, OZ
P
G eivei L, M, N ejòq 2 

B C mvgÅveÕ©v iÞv KGi| O


D M
Y N Z
R
Q P+Q+R awi, L N =   L M = 2
 

Q+R OX eivei ejàwji jÁ¼vsk wbGq,


 Q.BD = R.CD ... ... (i) L cos 0 + Mcos 2 + N cos ( ) = 0
ˆhGnZz AD gaÅgv|  BD = CD ... ... (ii) ev, L + M cos 2 + N cos = 0
(i) bs mgxKiYGK (ii)bs mgxKiY «¼viv fvM Kwi, ev, L + M (2cos2  1) + N cos = 0 ... ... ... (i)
Q = R ... ... (iii) OX ‰i Ici jÁ¼ eivei ejàwji jÁ¼vsk wbGq
Abyi…cfvGe cÉgvY Kiv hvq ˆh, P = Q ... ... (iv) L sin 0 + Msin2 + Nsin () = 0
 (iii) I (iv) bs mgxKiY nGZ cvB P = Q = R (ˆ`LvGbv nGjv) ev, M. 2sin  cos  Nsin = 0 [  sin  0]
N
cÉk
² 36 ev, 2M cos = N ev, cos = 2M
`†kÅK͸-1: `†kÅK͸-2: (i) ‰ cos ‰i gvb ewmGq,
N2 N
Y A L + M 2. 2  1 + N. =0
Q  4M  2M
2 N2 N2
P+Q P ev, L + 2M  M + 2M = 0
O X
P N2
 ev, L + M  M = 0 ev, LM + N2  M2 = 0
R B C ev, N2 = M2  LM  N2 = M(M  L) (cÉgvwYZ)
Z PQ

K. eGji jÁ¼vsGki Dccv`ÅwU wjL| 2 M


 A
L. `†kÅK͸-1 nGZ cÉgvY Ki ˆh, R2 = Q (Q  P). 4
M. `†kÅK͸-2 ‰ ABC mgevü nGj ejàGjvi jwº¬i gvb I 60 P
P+Q
w`K wbYÆq Ki| 4
wkLbdj- 4, 5 I 6 [PëMÉvg ˆevWÆ-2021  cÉk² bs 17 60
P–Q
60 120
X
36 bs cÉGk²i mgvavb B C P–Q
60
K eGji jÁ¼vsk Dccv`Å: ˆKvGbv we±`yGZ wKÌqviZ `yBwU eGji
 F
ˆKvGbv wbw`ÆÓ¡ w`GKi jÁ¼vsGki exRMvwYwZK mgwÓ¡ H ej«¼Gqi P+Q
jwº¬i ‰KB w`GK jÁ¼vsGki mgvb| Y
52 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
gGb Kwi, ABC wòfzGRi BC, CA I AB evüi mgv¯¦ivj  L gGb Kwi, A I B we±`yGZ wKÌqviZ P I Q ej«¼Gqi jwº¬ (P –
eivei wKÌqviZ ejàwji wKÌqvwe±`y C. Q) ejwU ewaÆZ BA ‰i DciÕ© C we±`yGZ wKÌqv KGi|
 C we±`yGZ CX eivei P – Q, CA eivei P ‰es CY eivei ZvnGj, P.AC = Q. BC ev, P.AC = Q. (AB + AC)
P + Q ej wKÌqviZ eGj MYÅ Kiv hvq| Q
ev, (P – Q).AC = Q. AB  AC = P  Q . AB ... ... ... (i)
awi, ejàwji jwº¬ F hv C we±`yGZ CX ‰i mvG^  ˆKvY
‰Lb, P I Q ‰i cÉGZÅKGK R cwigvGY e†w«¬ KiGj,
Drc®² KGi|
A we±`yGZ wKÌqviZ ej nGe
‰Lb CX ‰es ‰i Dci jÁ¼ ˆiLv eivei jÁ¼vsk Dccv`Å
(P + R) ‰es B we±`yGZ wKÌqviZ ej nGe
cÉGqvM KGi cvB| (Q + R) ‰es ZvG`i jwº¬ (P + R) – (Q + R)
Fcos = (P  Q).cos0 + P.cos120 + (P + Q). cos240
1 1
ev (P – Q) ejwU ewaÆZ BA ‰i DciÕ© D we±`yGZ wKÌqv
= (P  Q)  P  (P + Q)
2 2 KiGj, (P + R) . AD = (Q + R) . BD
3 ev, (P + R) . AD = (Q + R) . (AB + AD)
 Fcos =  .Q ............. (i)
2 ev, (P – Q) . AD = (Q + R) . AB
‰es Fsin = (P  Q).sin0 + P.sin120 + (P + Q).sin240  AD =
Q+R
. AB ... ... ... (ii)
PQ
3 3
=0+
2
.P  (P + Q)
2  wbGYÆq `ƒiZ½ = CD = AD – AC
3 (i) I (ii) bs nGZ cvB,
 Fsin =  .Q .................. (ii) Q+R Q 1
2 CD = .AB – . AB = (Q + R– Q). AB
PQ PQ PQ
ZvnGj (i)2 + (ii)2  R
9 3  CD = .AB (cÉgvwYZ)
F2(cos2 + sin2) = .Q2 + .Q2 PQ
4 4
M
 wPò nGZ cvB, ABC wòfzGRi A¯¦tGK±`Ê O ‰es OA, OB, OC
 F2 = 3.Q2  F = 3Q ‰KK (Ans.)
ˆiLvòq h^vKÌGgA, B, C-ˆK mgw«¼LwíZ KGi|
(ii) bs ˆK (i) bs «¼viv fvM KGi cvB  BOC = 180  (OBC + OCB)
1 B C
 tan =
3
= tan30 = tan(180 + 30) = 180   + 
2 2 
ev, tan = tan30 = tan210 A
= 180  90   = 90 + A2
  = 30 ev 210  2
ˆhGnZz sin I cos Dfq FYvñK| ˆhGnZz A + B + C = 180 B2 + C2 = 90  A2 
myZivs  = 210  
B C
 jwº¬ P  Q eGji mvG^ 210 ˆKvGY wKÌqvkxj| (Ans.) Abyi…cfvGe, COA = 90 + 2 , AOB = 90 + 2
cÉk
² 37 ‰Lb, jvwgi mƒòvbymvGi, P, Q, R ejòq fvimvgÅ m†wÓ¡ KiGj
`†kÅK͸-1: `†kÅK͸-2: Avgiv cvB,
Q A
P Q R
= =
D C A sinBOC sinCOA sinAOB
B P Q R
P>Q P ev, A
=
B
=
C
PQ P O sin90 +  sin90 +  sin90 + 
R  2  2  2
Q
B P Q R
C
ev, A
=
B
=
C
K. mvgÅveÕ©vq jvwgi mƒòwU wjL| 2 cos cos cos
2 2 2
L. `†kÅK͸-1 ‰ P I Q Dfq eGji gvb R cwigvY e†w«¬ KiGj P2 Q2 R2
jwº¬i wKÌqvwe±`y D ˆZ Õ©vbv¯¦wiZ nq| cÉgvY Ki ˆh, ev, A
=
B
=
C
R cos2 cos2 cos2
CD = AB. 4 2 2 2
PQ P2 Q2 R2
M. `†kÅK͸-2 ‰ O wòfzGRi A¯¦tGK±`Ê| P, Q I R ej wZbwU ev, s(s  a) = s(s  b) = s(s  c)
mvgÅveÕ©vq ^vKGj cÉgvY Ki ˆh, bc ca ab
P2 Q2 R2 bc.P2 ca.Q2 ab.R2
= = . 4 ev, s  a = s  b = s  c
a (b + c  a) b (c + a  b) c (a + b  c)
wkLbdj- 7, 9 I 11 [PëMÉvg ˆevWÆ-2021  cÉk² bs 8] bc.P2 ca.Q2 ab.R2
ev, 2s  2a = 2s  2b = 2s  2c
37 bs cÉGk²i mgvavb bc.P2 ca.Q2 ab.R2
K mvgÅveÕ©vq jvwgi mƒò: ˆKvGbv we±`yGZ wf®² wf®² ˆiLv eivei
 ev, a + b + c  2a = a + b + c  2b = a + b + c  2c
wKÌqviZ wZbwU mgZjxq ej mvgÅveÕ©vq ^vKGj, ZvG`i bc.P2 ca.Q2 ab.R2
ev, b + c  a = c + a  b = a + b  c
cÉGZÅKwU eGji gvb Aci `yBwU eGji wKÌqvGiLvi A¯¦MÆZ
P2 Q2 R2
ˆKvGYi mvBGbi mgvbycvwZK|   = =
a(b + c  a) b(c + a  b) c(a + b  c)
(cÉgvwYZ)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 53

² 38 `†kÅK͸-1:
cÉk
 weK͸ mgvavb: gGb Kwi, OA ‰es OB ˆiLv«¼q eivei P I Q ej
`yBwU mƒwPZ nq ‰es ‰G`i gaÅeZÆx ˆKvY  A^Ævr AOB = .
Q
3Q  P I 3Q ‰i gaÅeZÆx ˆKvY 30
 Q I 3Q ‰i gaÅeZÆx ˆKvY   30

30  eGji mvBb mƒò nGZ cvB,
P P Q 3Q
= =
`†kÅK͸-2: ABC-‰i A, B I C we±`yGZ h^vKÌGg P, Q, R m`†k sin(  30) sin30 sin
B
mgv¯¦ivj ejòq KvhÆiZ ‰es wòfzGRi cwiGK±`Ê O.
K. `ywU eGji mGeÆvœP I meÆwbÁ² jwº¬i gvb h^vKÌGg 9N I 4N Q
3Q
nGj ej«¼q wbYÆq Ki| 2
–30
L. `†kÅK͸-1 nGZ cÉgvY Ki ˆh, P = Q I P = 2Q. 4
 30
M. `†kÅK͸-2 nGZ ‰G`i jwº¬i wKÌqvGiLv O we±`yMvgx nGj,
cÉgvY Ki ˆh, P : Q : R = sin2A : sin2B : sin2C. 4 O
P A
wkLbdj- 4, 5 I9 [wmGjU ˆevWÆ-2021  cÉk² bs 17
Q 3Q
38 bs cÉGk²i mgvavb 2q I 3q AbycvZ nGZ cvB, sin30 = sin
K gGb Kwi, ej«¼q P I Q ˆhLvGb P > Q
 1 3 3
ev, 1 = sin ev, 2 = sin
 mGeÆvœP jwº¬ = P + Q
2
meÆwbÁ² jwº¬ = P  Q
3
kZÆgGZ, P + Q = 9 N ev, sin = 2 = sin60 = sin(180  60) = sin120
PQ=4N
  = 60 A^ev 120

P Q
2P = 13 N 1g I 2q AbycvZ ˆ^GK sin(60  30) = sin30
13
P= N = 6.5 N P Q
2 ev, sin30 = sin30 [hLb  = 60]
‰es Q = 9 N  P = 9 N  6.5 N = 2.5 N
ej«¼q 6.5 N ‰es 2.5 N (Ans.) P=Q (ˆ`LvGbv nGjv)

Avevi, 1g I 2q AbycvZ ˆ^GK,
L gGb Kwi, OA ‰es OB
 B P Q
ˆiLv«¼q «¼viv h^vKÌGg P I Q =
sin(120  30) sin30
[hLb  = 120]
Q
ej`yBwU mƒwPZ nq ‰es 3Q P Q P
ev, sin90 = 1 ev, 1 = 2Q
‰G`i gaÅeZÆx ˆKvY  A^Ævr
2
AOB = . ˆhGnZz ej«¼Gqi  30  P = 2Q. (ˆ`LvGbv nGjv)
jwº¬ 3Q O A
P eivei jÁ¼vsk wbGq cvB,
P M gGb Kwi, ABC wòfzGRi
 A

3Q cos 30 = Pcos0 + Qcos cwiGK±`Ê O ‰es ewaÆZ AO ˆiLv


3 BC ˆK D we±`yGZ ˆQ` KGiGQ|
ev 3 Q. 2 = P + Q cos B I C we±`yGZ wKÌqviZ Q I R P O

3
 Q cos = Q  P
‰i jwº¬ BC ˆiLvÕ© ˆKvb
2 we±`yGZ wKÌqv KiGe| B C
Avevi, mvgv¯¦wiK mƒòvbymvGi, D
2
( 3Q) = P2 + Q2 + 2PQ cos P+Q+R R
3 Q Q+R
ev, 3Q2 = P2 + Q2 + 2P  2 Q  P
 
Avevi, wZbwU eGji jwº¬ O we±`yMvgx ‰es P ejwU A we±`yGZ
ev, 3Q2 = P2 + Q2 + 3PQ  2P2
wKÌqviZ, KvGRB Q ‰es R ‰i jwº¬ BC ‰es AOD
ev, P2  3PQ + 2Q2 = 0
ˆiLv«¼Gqi ˆQ`we±`y D ˆZ wKÌqviZ nGe|
ev, P2  PQ  2PQ + 2Q2 = 0 Q CD CD/OD
ev, P(P  Q)  2Q(P  Q) = 0  Q.BD = R.CD ev, R = BD = BD/OD ... ... ... (i)
ev, (P  Q) (P  2Q) = 0 COD nGZ cvB,
PQ=0 A^ev P  2Q = 0 CD OD CD sin COD
= ev, OD = sinOCD ... ... ... (ii)
ev, P = Q ev, P = 2Q sinCOD sinOCD
BD sinBOD
 P = Q I P = 2Q (cÉgvwYZ) Abyi…cfvGe BOD ‰ OD = sinOBD
54 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
(i) bs mgxKiGY DcGivÚ gvb ewmGq cvB, A^Ævr BOD ˆiLvi DciÕ© D we±`yGZ
sinCOD wKÌqv KiGe|
Q CD/OD sinOCD
= = ... ... ... (iii) AZ‰e Q.AD = R.CD
R BD/OD sinBOD Q CD CD/OD
sinOBD ev, R = AD = AD/OD ... ... ... (i)
Avevi, ˆhGnZz OB = OC = cwieÅvmvaÆ, CD
‰Lb, COD wòfzR nGZ, sinCOD = sinOCD
OD
myZivs OCD = OBD ev, sinOCD = sinOBD.
CD sinCOD
(iii) bs mgxKiY nGZ cvB, ev, OD = sinOCD
Q sinCOD sin(π  AOC) sinAOC
= = = AD OD
R sinBOD sin(π  AOB) sinAOB Avevi, AOD wòfzR nGZ, sinAOD = sinOAD
Avevi, e†Gîi ˆK±`ÊÕ© ˆKvY cwiwaÕ© ˆKvGYi w«¼àY eGj, AD sinAOD
AOC = 2B ‰es AOB = 2C  = ... ... (ii)
OD sinOAD
 =
Q sin2B Q R
ev, sin2B = sin2C ... ... ... (iv) (i) bs mgxKiGY DcGivÚ gvbàGjv ewmGq cvB,
R sin2C Q CD/OD sinCOD/sinOCD
P Q = = ... ... ... (iii)
Abyi…cfvGe cÉgvY Kiv hvq ˆh, sin2A = sin2B = ... ... ... (v) R AD/OD sinAOD/sinOAD
ˆhGnZz OA = OC = cwieÅvmvaÆ
P Q R
ZvnGj (iv) I (v)bs mgxKiY nGZ cvB, sin2A = sin2B = sin2C myZivs, OCD = OAD
 sinOCD = sinOAD nGj,
 P : Q : R = sin2A : sin2B : sin2C. (cÉgvwYZ)
(iii) bs mgxKiY nGZ cvB,
cÉk
² 39 Q sinCOD sin(  BOC) sinBOC
= = =
`†kÅK͸-1: `†kÅK͸-2: R sinAOD sin(  BOA) sinBOA
B Avevi, e†Gîi ˆKG±`ÊÕ© ˆKvY cwiwaÕ© ˆKvGYi w«¼àY eGj,
A D C B BOC = 2A ‰es BOA = 2C
Q sin2A
 =  R : Q = sin 2C : sin 2A (cÉgvwYZ)
O R sin2C
C D A
60
ˆKwR
M
 AB = 20 wgUvi Š`NÆÅ wewkÓ¡ ZÚvwU A I C we±`yGZ `yBwU
IRb BC = 4m LyuwUi Dci Avbyf„wgKfvGe Õ©vcb KGi 60kg IRGbi eÕ§wU D
AD = 3m
P we±`yGZ Õ©vcb Kiv nGjv|
Owe±`ywU cwiGK±`Ê| A D E O C B
K. ‰KwU eÕ§i Dci ciÕ·i 20 wgUvi `ƒiGZ½ wKÌqvkxj wem`†k,
mgv¯¦ivj ej 8N I 12N ‰i jwº¬i wKÌqvwe±`y wbYÆq Ki| 2
L. `†kÅK͸-1 ‰i AvGjvGK cÉgvY Ki ˆh, C I A we±`yGZ P 60 kg 50 kg
eGji mgv¯¦ivj AskK«¼Gqi AbycvZ sin2C : sin2A. 4 AD = 3 wgUvi, BC = 4 wgUvi
M. `†kÅK͸-2 ‰ 50 ˆKwR IRGbi AB mgi…c ZÚvwUi Š`NÆÅ  AC = (20  4) wgUvi = 16 wgUvi
20 wgUvi nGj LyuwU«¼Gqi Dci PvGci cwigvY wbYÆq Ki| 4 ZÚvwUi IRb ‰i gaÅwe±`y O ˆZ wKÌqvkxj|
wkLbdj- 9 I 11 [ewikvj ˆevWÆ-2021  cÉk² bs 8]  AO = BO = 10 wgUvi|
39 bs cÉGk²i mgvavb  DO = AO  AD = (10  3) wgUvi = 7 wgUvi
K gGb Kwi, A I B we±`yGZ h^vKÌGg 12N I 8N gvGbi `ywU
 D I O we±`yGZ 60kg I 50kg IRGbi jwº¬ 110kg, hv E
wem`†k mgv¯¦ivj ej wKÌqvkxj| ej«¼Gqi jwº¬ ewaÆZ BA ‰i we±`yGZ wKÌqv KGi|
C we±`yGZ wKÌqv KGi|  60  DE = 50  EO
jwº¬ = (12  8)N = 4N ev, 60  DE = 50  (DO  DE)
AB = 20 wgUvi, awi, AC = x ev, 60  DE = 50  7  50  DE
 8  BC = 12  AC 8 ev, (60 + 50)  DE = 350
ev, 8  (20 + x) = 12x 350 35
A C  DE = =
110 11
wgUvi
ev, 160 + 8x = 12x B 35 68
ev, 4x = 160  AE = AD + DE = 3 + =
11 11
wgUvi
12
 x = 40 ‰Lb, E we±`yGZ wKÌqvkxj 110kg IRGbi RbÅ A I C we±`yGZ
jwº¬ 12N ej nGZ 40 wgUvi `ƒGi wKÌqvkxj| (Ans.)
 LyuwU«¼Gqi Dci PvGci cwigvY h^vKÌGg P I Q nGj,
L gGb Kwi, A I C we±`yGZ wKÌqviZ P eGji mgv¯¦ivj AskK«¼q
 P + Q = 110
Q I R. P  AE = Q  CE = Q  (AC  AE)
B  P  AE + Q  AE = Q  AC
‰Lb, A I C we±`yGZ wKÌqvkxj Q I R
ev, (P + Q)  AE = Q  AC
‰i jwº¬ P, AC ˆiLvi DciÕ© ˆKvGbv 68 680
‰KwU we±`yGZ wKÌqv KiGe| Avevi, O ev, 110  11 = Q  16  Q = 16 = 42.5 kg
jwº¬ ej BO eivei wKÌqv KGi KvGRB C D A  P = 110  Q = (110  42.5) = 67.5 kg
Q ‰es R ‰i jwº¬ (Q + R) ejwU BO  A we±`yi Pvc 67.5 kg IRb I C we±`yi Pvc 42.5 kg
P IRb| (Ans.)
R Q
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 55
3
² 40 `†kÅK͸-1: ˆKvGbv we±`yGZ 2P ‰es Q gvGbi `yBwU ej
cÉk
 ev, 2AC = 3AB  AC = 2 AB
wKÌqviZ AvGQ| ‰Lb, cÉGZÅK eGji gvb 3N e†w«¬ KiGj, A we±`yGZ wKÌqviZ
`†kÅK͸-2: 5N I 3N gvGbi wecixZgyLx `yBwU mgv¯¦ivj ej ej nGe (5 + 3) = 8N ‰es B we±`yGZ wKÌqviZ ej nGe (3 + 3)
h^vKÌGg A I B we±`yGZ wKÌqvkxj, ˆhLvGb AB = 10 ˆm.wg.| = 6N ‰es ZvG`i jwº¬ (8  6) = 2N ejwU ewaÆZ BA ‰i
K. ˆKvGbv we±`yGZ ciÕ·i 120 ˆKvGY wKÌqviZ ‰KB gvGbi IciÕ© D we±`yGZ wKÌqv KiGj, 8AD = 6BD
`yBwU eGji jwº¬ 4N nGj, ej«¼q wbYÆq Ki| 2 ev, 8AD = 6 (AB + AD) ev, 8AD  6AD = 6AB
L. `†kÅK͸-1: ‰ hw` Q = 3P nq ‰es 1g ejwUGK w«¼àY I 2q ev, 2AD = 6AB  AD = 3AB
ejwUi gvb 6 ‰KK KGi e†w«¬ cvq ZGe jwº¬i w`K 3
AcwiewZÆZ ^vGK| Q ‰i gvb wbYÆq Ki| 4  wbGYÆq `ƒiZ½ = CD = AD  AC = 3AB  2 AB
M. `†kÅK͸-2 ‰, cÉGZÅK eGji gvb hw` 3N KGi e†w«¬ Kiv = 3 
3
 AB = 32 AB = 32  10 = 15 ˆm.wg. (Ans.)
 2
nq, ZGe jwº¬i wKÌqvwe±`y KZ `ƒiGZ½ mGi hvGe? 4
wkLbdj- 4, 10 I 11 [ivRkvnx ˆevWÆ-2019  cÉk² bs 6] ² 41 `†kÅK͸-1:
cÉk

40 bs cÉGk²i mgvavb
R
K Avgiv Rvwb,
 R2
= P2 + Q2 + 2PQ cos Q
‰LvGb, R = 4N,  = 120 
‰es P = Q [ ej«¼q ciÕ·i mgvb]
 42 = P2 + P2 + 2P.P cos 120 P
Q>P
1 `†kÅK͸-2: 17 ˆm.wg. `xNÆ ‰KwU myZvi cÉv¯¦«¼q ‰KB Abyf„wgK
ev, 16 = 2P2 + 2P2  2  ev, 2P2  P2 = 16
ˆiLvq 13 ˆm.wg. `ƒGi AewÕ©Z `ywU we±`yGZ Ave«¬ AvGQ|
ev, P2 = 16  P = 4N (Ans.)
myZvwUi ‰K cÉv¯¦ nGZ 5 ˆm.wg. `ƒGi Zvi mvG^ 3 ˆKwR IRGbi
L gGb Kwi, 2P ‰es Q = 3P gvGbi `yBwU ej  ˆKvGY wKÌqviZ|
 ‰KwU eÕ§ mshyÚ Kiv nGjv|
ZvG`i jwº¬, 2P ‰i w`GKi mvG^  ˆKvY Drc®² KGi| K. P I Q ej«¼q mgvb nGj, R ej  ˆK mgw«¼LwíZ KGi@
Q = 3P cÉgvY Ki| 2
L. R = 15N ‰es P I Q ej«¼Gqi e†nîg jwº¬ 25N nGj,

 ej«¼q wbYÆq Ki| 4
2P M. `†kÅK͸-2 Abyhvqx myZvwUi cÉGZÅK AsGki Uvb wbYÆq Ki| 4
3P sin wkLbdj- 4, 5 I 9 [w`bvRcyi ˆevWÆ-2019  cÉk² bs 6]
 tan =
2P + 3P cos
41 bs cÉGk²i mgvavb
Avevi, ej«¼q 4P ‰es 3P + 6 nGj,
 
(3P + 6) sin 2 sin cos
tan = P sin sin 2 2
4P + (3P + 6) cos K
 tan = =
P + P cos 1 + cos
=

3P sin (3P + 6) sin 2 cos2
kZÆvbymvGi, 2P + 3P cos = 4P + (3P + 6) cos 2
 
4P + (3P + 6) cos (3P + 6) sin = tan   = (ˆ`LvGbv nGjv)
ev, 2P + 3P cos = 3P sin 2 2
L
 ˆ`Iqv AvGQ, R = 15N
4P + (3P + 6) cos  2P  3P cos
ev, 2P + 3P cos kZÆgGZ, P + Q = 25 … … (i)
(3P + 6) sin  3P sin wPòvbymvGi jwº¬ P ‰i mvG^  = 90 ˆKvY Drc®² KGi|
=  Avbyf„wgK eivei eGji Dcvsk wbGq cvB,
3P sin
2P + 6 cos 6 sin P + Qcos = R cos
ev, P(2 + 3cos) = 3P sin ev, P + Qcos = 15  sin 90 R
P + 3 cos ev, P + Qcos = 0 ... ... ... (ii) Q
ev, 2 + 3cos = 1 P
ev, cos = Q … … (iii) 
ev, P + 3cos = 2 + 3 cos
ev, P = 2 + 3 cos  3cos  P = 2 jwº¬ R2 = P2 + Q2 + 2PQ cos P
 P
 Q = 3P = 3  2 = 6N (Ans.) ev, 15 = P + Q + 2PQ.  Q  [(iii) bs ˆ^GK gvb ewmGq]
2 2 2

M gGb Kwi, A I B we±`yGZ wKÌqviZ 5N I 3N ej«¼Gqi jwº¬



ev, 225 = P2 + Q2  2P2
ejwU ewaÆZ BA ‰i DciÕ© C we±`yGZ wKÌqv KGi|
ev, Q2  P2 = 225
 jwº¬ = (5  3) N 2N
= 2N ev, (Q + P)(Q  P) = 225
5N 225
 5AC = 3BC ev, Q  P = Q + P
ev, 5AC = 3(AB + AC) D C A
B
225
ev, 5AC  3AC = 3AB 3N ev, Q  P = 25
ev, Q  P = 9 … … (iv)
56 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

(i) I (iv)
ˆhvM KGi cvB, 2Q = 25 + 9 ev, Q = 2 = 17
34 1 I 2 ,, ,, ,, ,, 180  60 = 120
2 I 3 ,, ,, ,, ,, 180  30 = 150
(i) bs ‰ Q ‰i gvb ewmGq cvB,
P + 17 = 25 ev, P = 25  17 = 8 L `†kÅK͸-2 ‰ OPRQ mvgv¯¦wiKwU cƒYÆ Kwi|

 ej«¼q P = 8N ‰es Q = 17N (Ans.) Q
O
M 17 ˆm.wg. `xNÆ ACB myZvi A A
 13 B
cÉv¯¦ nGZ 5 ˆm.wg. `ƒGi C 5 T T2
F2
1
we±`yGZ 3kg fGii ‰KwU eÕ§ A 90 B 12 F

SzjvGbv ‰es Aci cÉv¯¦ A ˆ^GK C R F1 P
13 ˆm.wg. `ƒGi ‰KB mijGiLv
eivei B we±`yGZ evav AvGQ| 3kg
awi, F1 = K cosP
 AB = 13, AC = 5 ‰es BC = 12 F2 = K cosQ
AC2 + BC2 = 52 + 122 = 169 = 132 = AC2 F1 I F2 ‰i gaÅeZxÆ ˆKvY R ‰es jwº¬ F.
 ACB = 90
 F2 = F12 + F22 + 2F1F2 cosR
gGb Kwi, CA AsGki Uvb T1 ‰es CB AsGki Uvb T2| ZvnGj
= K2 cos2P + K2 cos2Q + 2 K cosP.K cosQ.cosR
T1, T2 I 3kg IRb ejòq C we±`yGZ fvimvGgÅ AvGQ|
= K2 cos2P + K2 cos2Q + 2K2 cosP.cosQ.cosR
T T 3
jvwgi mƒòvbymvGi, sin(901 + B) = sin(902 + A) = sin 90 = K2 (cos2P + cos2Q + cos2R + 2 cosP.cosQ.cosR  cos2R)
T1 T2 T1 T2 = K2 (1  cos2R) [‹ P + Q + R =  nGj, cos2P + cos2Q
ev, cosB =
cosA
= 3 ev, =
12 5
=3
+ cos2R + 2 cosP.cosQ.cosR = 1]
13 13 2 2
= K sin R
12 36
ev, T1 = 13  3kg  T1 = 13 kg (Ans.)  F = K sinR
5 15 RP ‰i jÁ¼ eivei Dcvsk wbGq cvB,
‰es T2 = 13  3kg  T2 = 13 kg (Ans.)
F1 sin0 + F2 sinR = F sin
² 42 `†kÅK͸-1: 16N I 12N `yBwU mggyLx mgv¯¦ivj ‰KwU
cÉk
 ev, K cosQ sinR = K sinR sin
KwVb eÕ§i Dci h^vKÌGg L I M we±`yGZ wKÌqviZ AvGQ| ev, cosQ = sin [K sinR «¼viv fvM KGi]
Q 
ev, sin 2  Q = sin
F2
`†kÅK͸-2: F

ev, 2  Q = 
R P
 F1
P+Q+R
K. ˆKvb we±`yGZ 1, 2 ‰es 3 ‰KK ejòq wKÌqv KGi ev, 2
 Q =  [‹ P + Q + R = ]
mvgÅveÕ©v m†wÓ¡ KGi| ejàGjvi gaÅeZxÆ ˆKvY wbYÆq Ki| 2 P+Q+R
L. `†kÅK͸-2 ‰ F1  cosP, F2  cosQ ‰es F1, F2 ‰i jwº¬ ev,  = 2
Q
1
nGj ˆ`LvI ˆh, R   = 2 (R + Q  P). 4
F
M. `†kÅK͸-1 nGZ ej«¼q AeÕ©vb wewbgq KiGj LM eivei
R=R (P + Q2 + R  Q)
P+Q+R
ZvG`i jwº¬i miY wbYÆq Ki| 4 =R
2
+Q
wkLbdj- 5, 9, 10 I 11 [PëMÉvg ˆevWÆ-2019  cÉk² bs 6] 2R  P  Q  R + 2Q
42 bs cÉGk²i mgvavb =
2
K ˆhGnZz ejòq mvgÅveÕ©v m†wÓ¡ KGi ZvB ‰G`iGK KÌgv®¼Gq gvb
 1
= (R + Q  P) (ˆ`LvGbv
nGjv)
2
I w`K Abyhvqx wòfzR AvKvGi cÉKvk Kiv hvq| ABC ‰i
AB, BC, CA «¼viv h^vKÌGg 1, 3 I 2 gvGbi ej cÉKvk Kiv  M gGb Kwi, L I M we±`yGZ 16N I 12N gvGbi `ywU mggyLx
nj| mgv¯¦ivj ej wKÌqv KiGQ| ‰G`i jwº¬ C we±`yGZ wKÌqv KiGQ|
L C C M
A
 ( 3)2 + 12 = 4= 2 (16)
(12)
A^Ævr ABC mgGKvYx wòfzR 2

1 16 12
ˆhLvGb ABC = 90
3  16.LC = 12.MC
ACB = cos1 = 30 B
3
C
2 ev, 16.LC = 12.(LM  LC)
‰es BAC = 90  30 = 60 ev, (16 + 12) . LC = 12.LM
 1 I 3 gvGbi eGji A¯¦MÆZ ˆKvY 180  90 = 90 12.LM
ev, LC = 28
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 57
3
 LC = .LM ... ... ... (i) M
 A
7
Avevi, ej«¼q Õ©vb wewbgq KiGj hw` jwº¬ C we±`yGZ wKÌqv
KGi, ZvnGj- 12 . LC = 16.MC X O

ev, 12 . LC = 16 . (LM  LC)


ev, (12 + 16).LC = 16.LM B C
D
4
ev, LC = .LM ... ... ... (ii)
7 Y X+Y+ Z Y+Z Z
4 3 1
(i) I (ii) ˆ^GK cvB, CC = LC  LC = LM  LM = .LM
7 7 7 gGb Kwi, ABC wòfzGRi cwiGK±`Ê O ‰es ewaÆZ AO ˆiLv
1
 LM eivei jwº¬i miY LM (Ans.) BC ˆK D we±`yGZ ˆQ` KGiGQ|
7 B I C we±`yGZ wKÌqviZ Y I Z ‰i jwº¬ BC ˆiLvÕ© ˆKvb
cÉk
² 43 A we±`yGZ wKÌqv KiGe|
Avevi, wZbwU eGji jwº¬ O we±`yMvgx ‰es X ejwU A we±`yGZ
X wKÌqviZ, KvGRB Y ‰es Z ‰i jwº¬ AO ˆiLvÕ© ˆKvb we±`yGZ
Y
O
Z wKÌqviZ nGe|
B C AZ‰e Y I Z ‰i jwº¬ BC ‰es AOD ˆiLv«¼Gqi ˆQ`we±`y D
ˆZ wKÌqviZ nGe|
nGjv e†îwUi ˆK±`Ê Y CD CD/OD
O  Y.BD = Z.CD ev, = = ... ... ... (1)
Z BD BD/OD
K. S gvGbi `yBwU mgvb ej ciÕ·i 120 ˆKvGY wKÌqviZ nGj,
COD nGZ cvB,
‰G`i jwº¬i gvb wbYÆq Ki| 2 CD OD CD sin COD
L. X, Y, Z ejòq mvgÅveÕ©vq ^vKGj DóxcGKi AvGjvGK =
sinCOD sinOCD
ev, OD = sinOCD ... ... ... (2)
ˆ`LvI ˆh, BD sinBOD
Abyi…cfvGe BOD ‰ OD = sinOBD
X : Y : Z = a cosA : b cosB : c cosC. 4
(1)bs mgxKiGY DcGivÚ gvb ewmGq cvB,
M. hw` X, Y, Z gvGbi ejòq h^vKÌGg A, B, C we±`yGZ m`†k sinCOD
mgv¯¦ivjfvGe wKÌqv KGi, ZGe ‰G`i jwº¬ O we±`yMvgx nq| Y CD/OD sinOCD
= = ... ... ... (3)
ˆ`LvI ˆh, Z BD/OD sinBOD
sinOBD
X cosec2A = Y cosec2B = Z cosec2C. 4
wkLbdj- 4, 9 I 11 [wmGjU ˆevWÆ-2019  cÉk² bs 6 Avevi, ˆhGnZz OB = OC = cwieÅvmvaÆ,
myZivs OCD = OBD ev, sinOCD = sinOBD.
43 bs cÉGk²i mgvavb (3) bs mgxKiY nGZ cvB,
K S gvGbi `yBwU mgvb ej ciÕ·i 120 ˆKvGY wKÌqviZ nGj,
 Y sinCOD sin(180  AOC) sinAOC
= = =
Z sinBOD sin(180  AOB) sinAOB
‰G`i jwº¬,
Avevi, e†Gîi ˆK±`ÊÕ© ˆKvY e†îÕ© ˆKvGYi w«¼àY eGj,
R= S2 + S2 + 2S2. cos 120
AOC = 2B, ‰es AOB = 2C
= 2S2 + 2S2 cos 120 = 2S2 + 2S2 (12) 
Y sin2B
=
Z sin2C
Y Z
ev, sin2B = sin2C ... ... ... (4)
= 2
2S  S 2
= 2
S = S (Ans.) X Y
A
Abyi…cfvGe cÉgvY Kiv hvq ˆh, sin2A = sin2B = ... ... (5)
L gGb Kwi, O we±`yGZ wKÌqviZ
 ZvnGj (4) I (5)bs mgxKiY nGZ cvB,
X
‰KZjxq X, Y, Z ej wZbwU X Y Z
= =
fvimvgÅ m†wÓ¡ KGi| O
Z
sin2A sin2B sin2C
ZvnGj jvwgi mƒò nGZ cvB,  X cosec2A = Y cosec2B = Z cosec 2C (ˆ`LvGbv nGjv)
Y
X Y Z
= = B C
cÉk
² 44 P I Q `yBwU ej ˆhLvGb P > Q
sinBOC sinCOA sinAOB
X Y Z K. hw` P, Q, R ejòq mvgÅveÕ©vq ^vGK ‰es 2P = 2Q = R
ev, sin2A = sin2B = sin2C nq ZGe P, Q ‰es R, P ‰i gaÅeZÆx ˆKvY wbYÆq Ki| 2
(ˆhGnZz BOC = 2A, COA = 2B, AOB = 2C, KviY L. hw` DóxcGK DwÍÏwLZ ejàGjv mgwe±`yMvgx nq ‰es
DnvG`i jwº¬ A¯¦fzÆÚ ˆKvYGK mgwòLwíZ KGi ZGe ej
e†Gîi ‰KB PvGci Dci `´£vqgvb ˆK±`ÊÕ© ˆKvY e†îÕ©
`yBwUi gaÅeZÆx ˆKvY I jwº¬ wbYÆq Ki| 4
ˆKvGYi w«¼àY) M. DóxcGK DwÍÏwLZ ej«¼Gqi e†nîg I Þz`ËZg jwº¬ h^vKÌGg F
X Y Z
ev, 2 sinAcosA = 2 sinB.cosB = 2 sinC.cosC I G nq ‰es Dnviv ciÕ·i ‰KwU we±`yGZ  ˆKvGY

X Y Z a b c wKÌqvkxj nq ZGe ej `yBwUi jwº¬GK F, G I 2 ‰i gvaÅGg
[
ev, a cosA = b cosB = c cosC ‹ sinA = sinB = sinC ] cÉKvk Ki| 4
A^Ævr X : Y : Z = a cosA : b cosB : c cosC (ˆ`LvGbv nGjv) wkLbdj- 4, 6 I 8 [hGkvi ˆevWÆ-2019  cÉk² bs 16]
58 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
44 bs cÉGk²i mgvavb M P I Q (P > Q) ej«¼Gqi e†nîg I Þz`ËZg jwº¬i gvb h^vKÌGg

K ˆ`Iqv AvGQ, 2P = 2Q = R
 L I M.
 e†nîg jwº¬, P + Q = L ... ... (i)
ev, 2P2 = 2Q2 = R2  P = Q
Þz`ËZg jwº¬, P  Q = M ... ... (ii)
ˆhGnZz P, Q, R ejòq mvgÅveÕ©vq ^vGK, (i) I (ii) ˆhvM KGi cvB,
myZivs P I Q ej«¼Gqi jwº¬ R ‰i mgvb| L+M
2P = L + M ev, P =
‰Lb, P I Q ‰i gaÅeZÆx ˆKvY  nGj 2
R2 = P2 + Q2 + 2PQ cos (i) ˆ^GK (ii) weGqvM KGi cvB,
LM
ev, 2P2 = P2 + P2 + 2P2 cos 2Q = L  M ev, Q =
2
ev, cos = 0   = 90 (Ans.) ˆhGnZz P I Q,  ˆKvGY wKÌqviZ, myZivs jwº¬,
Avevi, R I P ‰i gaÅeZÆx ˆKvY  nGj R= P2 + Q2 + 2PQcos
Q2 = R2 + P2 + 2RP cos 2
L  M 2
ev, Q = 2Q + Q + 2. 2Q.Q cos
2 2 2 = L +2 M  + + 2.
L + M L  M 
 cos
   2   2  2 
ev, 2 2Q2.cos2Q2 L2 M2 2 2

1 = 2
4
+
4
 + 2L4  M4  cos
ev, cos =  = cos 135    
2 L2 M2 L2 M2
  = 135 (Ans.) = + + cos  cos
2 2 2 2
 2 2
L M
L
 ˆ`Iqv AvGQ,  = 3 = (1 + cos) + (1  cos)
2 2
  = 3 L2  M2 
=  2cos2 +  2sin2
gGb Kwi, 3 ˆKvGY wKÌqviZ P I Q ej«¼Gqi jwº¬ R, P eGji 2 2 2 2
mwnZ  ˆKvGY bZ| ZvnGj jwº¬ ej R, Q eGji mwnZ 2  
= L2cos2
2
+ M2sin2
2
(ˆ`LvGbv nGjv)
ˆKvGY wKÌqviZ|
 
 ejàwjGK R eivei wefvRb KGi cvB, [we.`Ë: cÉGk² fzj AvGQ, L cos2 + Msin2 ‰i Õ©Gj
2 2
Rcos0 = Pcos() + Q.cos2
 
ev, R = Pcos + Q(2cos2  1) ......... (i) L2 cos2 + M2sin2 nGe|]
2 2
Avevi, Rsin0 = Psin() + Qsin2 ² 45 `†kÅK͸-1:
cÉk

ev, 0 = Psin + Q.2sin.cos B C

ev, 0 = (P + 2Qcos)sin Q


R
ev, 0 = P + 2Qcos Q
ev, 2Qcos = P 90
P R
ev, cos = 2Q O P A
2

  = cos1
P 3 `†kÅK͸-2: P I Q `ywU m`†k mgv¯¦ivj eGji mvG^ ‰KB mgZGj
2Q h^vKÌGg r `ƒiGZ½ X gvGbi `ywU wem`†k mgv¯¦ivj ej wKÌqviZ|
 K. jvwgi mƒòwU eYÆbv Ki| 2
P P 2
myZivs 3 = 3cos1 = 
2Q L. `†kÅK͸-1 nGZ hw` R = 3 Q nq, ZGe P I Q eGji
‰Lb, (i) bs mgxKiGY cos ‰i gvb ewmGq cvB, AbycvZ wbYÆq Ki| 4
P P 2 rX
R = P  + Q.2. 4Q 
2  1
M. `†kÅK͸-2 nGZ ˆ`LvI ˆh, ‰G`i jwº¬ P + Q `ƒiGZ½ mGi
2Q   
P2 P2
hvGe| 4
ev, R = 2Q + 2Q  Q wkLbdj- 4, 9 I 11 [ewikvj ˆevWÆ-2019  cÉk² bs 6]
2P2 45 bs cÉGk²i mgvavb
ev, R = 2Q  Q
K eYÆbv: ˆKvGbv we±`yGZ wf®² wf®² ˆiLv eivei wKÌqviZ wZbwU

2P2  2Q2
ev, R = mgZjxq ej mvgÅveÕ©vq ^vKGj, ZvG`i cÉGZÅKwU eGji gvb
2Q Aci `yBwU eGji wKÌqvGiLvi A¯¦MÆZ ˆKvGYi mvBGbi
P  Q2
2
mgvbycvwZK|
 R=
Q L gGb Kwi, O we±`yGZ  ˆKvGY wKÌqviZ P I Q ej«¼Gqi jwº¬

P2  Q2 2
myZivs ej«¼Gqi jwº¬ R = Q R= Q, P eGji mvG^ 90 ˆKvY Drc®² KGi|
3
P 2 2
‰es A¯¦fzÆÚ ˆKvY,  = 3cos1 | (Ans.)   Q = P2 + Q2 + 2PQ.cos
2Q 3 
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 59
4
ev, 9 Q2  Q2 = P2 + 2PQ cos 46 bs cÉGk²i mgvavb
K gGb Kwi, P ‰KK gvGbi `yBwU mgvb ej O we±`yGZ ciÕ·i

5Q2
ev,  9 = P2 + 2PQ cos ... ... (i) 60 ˆKvGY wKÌqviZ| ‰B ej«¼Gqi jwº¬ R ‰KK nGj eGji
Q sin  mvgv¯¦wiK mƒòvbymvGi Avgiv cvB,
Avevi, tan 90 = P + Q cos R2 = P2 + P2 + 2.P.P cos 60
1 Q sin  1 R
ev, 0 = P + Q cos R= 2P2 + 2P2 .
2 P
2 2
ev, Q cos + P = 0 = 2P + P 60

P = 3P2
O
ev, cos =  Q ... ... (ii) = 3P ‰KK (Ans.) P
 5Q2 P L
 A
myZivs (i)  = P2 + 2PQ  
9 Q
 
P
5Q2 P2 5
ev, 9 = P2  2P2 ev, 5Q2 = 9P2 ev, Q2 = 9 F E
I
P 5
ev, =
Q 3
 P : Q = 5 : 3 (Ans.)
D
M gGb Kwi, AB ˆiLvi A I B we±`yGZ wKÌqviZ P I Q m`†k
 B
Q+R
C

mgv¯¦ivj eGji jwº¬ (P + Q), C we±`yGZ wKÌqviZ| Q R


X
ABC wòfzGRi A, B, C we±`yGZ h^vKÌGg P, Q, R gvGbi wZbwU
A D G F C B
E mggyLx mgv¯¦ivj ej wKÌqviZ AvGQ| A, B, C ˆKvYàwji
A¯¦w«¼ÆLíK wZbwU ciÕ·i I we±`yGZ ˆQ` KGiGQ| ZvnGj, I
nGjv, ABC wòfzGRi A¯¦tGK±`Ê|
P X P + Q P+Q+X P + Q Q ‰Lb, B I C we±`yGZ wKÌqviZ Q I R eGji jwº¬
(Q + R) ejwU BC ˆiLvÕ© D we±`yGZ wKÌqv KiGe|
Avevi, D I E we±`yGZ X gvGbi wecixZgyLx `yBwU mgv¯¦ivj Avevi, ej wZbwUi jwº¬ A¯¦tGK±`Ê I we±`yMvgx| myZivs, I we±`y
ej wKÌqviZ| ‰Lb D we±`yGZ X ‰es C we±`yGZ (P + Q) AD ˆiLvi Ici AeÕ©vb KiGe|
ej«¼Gqi jwº¬ (P + Q + X), F we±`yGZ wKÌqviZ| AD ˆiLv A ˆKvGYi mgw«¼LíK eGj|
(P + Q).CF = X.DF ... ... ... (1) BD AB
= ... ... ... (i)
Avevi, F we±`yGZ (P + Q + X) ‰es E we±`yGZ X gvGbi CD AC
wecixZ gyLx ej«¼Gqi jwº¬ (P + Q), G we±`yGZ wKÌqviZ| wK¯§ Q I R ‰i jwº¬ D we±`yMvgx nIqvq,
 (P + Q + X).GF = X.EG Q.BD = R.CD
BD R
ev, (P + Q).GF = X.EG  X.GF = X.(EG  GF) ev, CD = Q ... ... ... (ii)
ev, (P + Q).GF = X.EF ... ... ... (2) R AB Q R
‰Lb, (1) I (2)bs mgxKiY ˆhvM KGi cvB, (i) I (ii) bs nGZ cvB, Q = AC ev, AC = AB
(P + Q).CF + (P + Q).GF = X.DF + X.EF P Q
Abyi…cfvGe cÉgvY Kiv hvq ˆh, BC = AC
ev, (P + Q) (CF + GF) = X.(DF + EF)
P Q R P Q R
ev, (P + Q).CG = X.DE [‰LvGb DE = r]  = = ev, a = b = c  (iii)
BC AC AB
Xr
ev, (P + Q).CG = Xr  CG = P + Q Avevi, ABC nGZ mvBb mƒGòi mvnvGhÅ cvB,
rX a b c
myZivs jwº¬ P + Q `ƒiGZ½ mGi hvGe| (ˆ`LvGbv nGjv) =
sinA sinB sinC
=  (iv)
P Q R
(iii) I (iv) bs nGZ cvB, = =
cÉk
² 46 A
sinA sinB sinC
P ev, P : Q : R = sinA : sinB : sinC (ˆ`LvGbv nGjv)
M gGb Kwi, AB `G´£i C I D we±`yGZ `yBRb ˆjvK h^vKÌGg P

C
B I Q IRb enb KGi| mylg `´£wUi IRb 85 ˆKwR AB ‰i
Q R
P, Q, Rejòq mggyLx mgv¯¦ivjfvGe wKÌqviZ| gaÅwe±`y O ˆZ wKÌqv KGi|
AB = 5 wgUvi
K. 60 ˆKvGY wKÌqviZ `yBwU mgvb eGji jwº¬ KZ? 2 1
P Q
L. ejòGqi jwº¬ ABC ‰i A¯¦tGK±`ÊMvgx nGj, ˆ`LvI ˆh, AC =
2
wgUvi C O D
A B
P : Q : R = sinA : sinB : sinC 4 1
BD = wgUvi
M. ejòGqi jwº¬ ABC ‰i fiGK±`ÊMvgx nGj P, Q ‰es R 4
85
5
eGji gGaÅ mÁ·KÆ Õ©vcb Ki| 4 AO = BO = wgUvi ˆKwR
2
[ XvKv, w`bvRcyi, wmGjU I hGkvi ˆevWÆ-2018  cÉk² bs 6]
60 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
P + Q = 85 1g wPGò, OX eivei mKj jÁ¼vskàwjB abvñK wK¯¦y 2q wPGò,
P.CO = Q.DO
Q ‰i jÁ¼vsk FYvñK hv 'OM' ‰i mgvb|
ev, P(AO  AC) = Q(BO  BD) myZivs 1g wPòvbymvGi, OX eivei P I Q eGji jÁ¼vsGki
5 1 5 1
( ) ( )
ev, P 2  2 = Q 2  4 exRMvwYwZK mgwÓ¡ = OL + OM
= OL + LN = ON, hv, OX eivei jwº¬ R ‰i jÁ¼vsk|
9
ev, 2P = Q.4 ev, 8P = 9Q 2q wPòvbymvGi, OX eivei P I Q eGji jÁ¼vsGki
P Q P + Q 85 exRMvwYwZK mgwÓ¡ = OL  OM = OL  LN = ON, hv OX
ev, 9 = 8 = 9 + 8 = 17 = 5
eivei jwº¬ R ‰i jÁ¼vsk|
 P = 45 ˆKwR AZ‰e ˆKvGbv wbw`ÆÓ¡ w`GK `yBwU eGji jÁ¼vsGki exRMvwYwZK
Q = 40 ˆKwR| mgwÓ¡ H ‰KB w`GK ZvG`i jwº¬i jÁ¼vsGki mgvb|
 Cwe±`yGZ ˆjvKwU 45 ˆKwR ‰es D we±`yGZ ˆjvKwU 40 ˆKwR L
 B
R1
IRb enb KiGe| (Ans.) C 
90° F1
² 47 `†kÅK͸-1: W IRGbi ‰KwU KuvVvj  ˆKvGY ˆnjvGbv
cÉk

WvGj SzjwQj|
`†kÅK͸-2: 8 wgUvi `xNÆ I 42 ˆKwR IRGbi AB ‰KwU ZÚv
`yBwU LywUi Dci Avbyf„wgKfvGe Õ©vwcZ| ‰KwU LywU A cÉvG¯¦,
AciwU B cÉv¯¦ nGZ 2 wgUvi wfZGi AewÕ©Z| 
K. eGji jÁ¼vsGki Dccv`ÅwU cÉgvY Ki| 2 A

L. `†kÅK͸-1 nGZ ˆnjvGbv WvGji f„wg I Š`GNÆÅi mgv¯¦ivGj W


wKÌqviZ F1 ‰es F2 ej `yBwU c†^KfvGe KuvVvjwUGK ZGji wPò-1
Dci wÕ©i ivGL| cÉgvY Ki ˆh, 1g wPGò,  ˆKvGY ˆnjvGbv Wvj AB ‰i Ici C we±`yGZ W
F1F2 IRGbi KuvVvjGK f„wgi mgv¯¦ivGj wKÌqviZ F1 ej wÕ©i
W= , hLb F1 > F2. 4
F12 – F22 AeÕ©vq ivGL| ˆnjvGbv WvjwUi Ici KuvVvjwUi Pvc R1 aiv
M. `†kÅK͸-2 nGZ 55 ˆKwR IRGbi ‰KwU evjK ZÚvwUGK bv nGj ej R1, F1, W fvimvgÅ m†wÓ¡ KiGe|
DwΟGq B cÉvG¯¦i w`GK KZ `ƒi ˆhGZ cviGe? 4 R1 Pvc AB ‰i mvG^ jwÁ¼K w`GK nGe|
[ivRkvnx, KzwgÍÏv, PëMÉvg I ewikvj ˆevWÆ-2018  cÉk² bs 6] jvwgi mƒòvbyhvqx,
R1 F1 W
47 bs cÉGk²i mgvavb
sin90 = sin(90 + 90 – ) = sin(90  )
K eYÆbv: ˆKvGbv we±`yGZ wKÌqviZ `yBwU eGji ˆKvGbv wbw`ÆÓ¡

R F1 W
w`GKi jÁ¼vsGki exRMvwYwZK mgwÓ¡ H ‰KB w`GKi ej«¼Gqi ev, 11 = sin =
cos
jwº¬i jÁ¼vsGki mgvb| W sin
 F1 =
Y Y C cos
C
cos W
B
R ev, sin = F
B R 1
Q E A
E W2
P
A Q P
ev, cot  = F 2 ... (i)
2
X 1
X
O M L N X M O N L
1g wPò 2q wPò B F2
R2
cÉgvY: gGb Kwi, O we±`yGZ wKÌqviZ P I Q ej `yBwU h^vKÌGg C
90°
OA ‰es OB «¼viv mƒwPZ| ZvnGj OACB mvgv¯¦wiGKi KYÆ
OC «¼viv DÚ ej«¼Gqi jwº¬ R mƒwPZ nGe|
awi, OX ˆiLvwU wbw`ÆÓ¡ w`K wbG`Æk KGi, A^Ævr OX eivei
ejàwji jÁ¼vsk wbYÆq KiGZ nGe|
A, B I C we±`y ˆ^GK OX ev OX (2q wPGò) ‰i Ici 
A
h^vKÌGg AL, BM I CN jÁ¼ Aâb Kwi| ZvnGj OX eivei
P, Q ‰es R eGji jÁ¼vsk h^vKÌGg OL, OM ‰es ON nGe| W
cÉgvY KiGZ nGe ˆh, OL + OM = ON 2q wPGò, wPò-2
‰Lb A nGZ CN ‰i Dci AE jÁ¼ AsKb Kwi| ˆnjvGbv WvjwUi Š`GNÆÅi w`GK F2 ej, Szj¯¦ W IRGbi
ACE I OBM meÆmg| KviY OBM I ACE mgGKvYx KuvVvjwUGK ˆnjvGbv WvjwUi Ici wÕ©i AeÕ©vq ivGL| ‰
wòfzR«¼Gqi gGaÅ OB = AC mvgv¯¦wiGKi wecixZevü ‰es KuvVvjwUi Pvc R2 aiGj R2, F2, W ej wZbwU fvimvgÅ m†wÓ¡
Abyi…c ˆKvY, BOM = CAE [ AE || OX] KiGe ‰es R2 Pvc ˆnjvGbv ZGji mvG^ jwÁ¼K w`GK wKÌqvkxj
 OM = AE = LN ^vKGe|
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 61
jvwgi mƒòvbyhvqx, cÉk
² 48 A C B
R2 F2 W
= = P Q
sin(90 + ) sin(90 + 90 – ) sin90
R2
ev, cos =
F2
=
W K. 100N I 70N gvGbi `yBwU eGji jwº¬ ˆKvGbv we±`yGZ wKÌqv
sin l
KGi| ‰G`i gaÅeZxÆ ˆKvGYi cwigvY 62 nGj ej `yBwUi
 F2 = W sin
jwº¬i gvb I w`K wbYÆq Ki| 2
F2
ev, sin =W L. P ˆK (R + 3) cwigvGY ‰es Q ˆK (S + 2) cwigvGY e†w«¬
W KiGjI jwº¬ C we±`yGZ wKÌqv KGi| Avevi P, Q ‰i
ev, F = cosec
2 cwieGZÆ h^vKÌGg Q, (R + 3) wKÌqv KiGjI jwº¬ C we±`yGZ
W2 (Q  R  3)2
ev, F 2 = cosce2 ... ... ... (ii) wKÌqv KGi| cÉgvY Ki ˆh, R = S + − 1. 4
2 PQ
(ii) bs nGZ (i) bs weGqvM KGi cvB, M. DóxcGK DwÍÏwLZ ej«¼Gqi mgZGj x `ƒiGZ½i eÅeavGb R
W2  W2 gvGbi `yBwU Am`†k mgv¯¦ivj ej cÉGqvM Kiv nGjv| cÉgvY
= cosec2  cot2
F22 F12
xR
1  1 Ki ˆh, ‰G`i jwº¬ P + Q `ƒiGZ½ mGi hvGe| 4
ev, W 2
(
F22 F12 )=1 [XvKv I w`bvRcyi ˆevWÆ-2017  cÉk² bs 6]
1 1 1
ev, W2 = F 2  F 2 48 bs cÉGk²i mgvavb
2 1

1 F 2F 2 K gGb Kwi, ej«¼q h^vKÌGg P I Q, jwº¬ R ‰es ej«¼Gqi



ev, W2 = F1 2 F 22
1 2 A¯¦MÆZ ˆKvY .
W=
F1F2
(cÉgvwYZ) ZvnGj, P = 100N
F12  F22 Q = 70N
M gGb Kwi, 42 ˆKwR IRGbi AB mgi…c ZÚvi IRb ‰i
  = 62

gaÅwe±`y O ˆZ wKÌqv KGi| ‰KwU LyuwU A we±`yGZ ‰es Aci  R= P2 + Q2 + 2PQ cos
= (100)2 + (70)2 + 2  100  70  cos 62
LyuwU B we±`y ˆ^GK 2 wgUvi wfZGi C we±`yGZ AewÕ©Z|
= 21472.60188
8
AB = 8 wgUvi, AO = BO = = 4 wgUvi = 146.535N (Ans.)
2
BC = 2 wgUvi
awi, ej P, jwº¬ R ‰i mvG^  ˆKvY Drc®² KGiGQ|
Q sin
OC = OB – BC = 4 – 2 = 2 wgUvi  tan =
P + Q cos
AC = AO + OC = 4 + 2 = 6 wgUvi 70 sin62
ev, tan =
evjKwUi IRb 55 ˆKwR, hv B we±`yGZ wKÌqvkxj| 100 + 70 cos62

awi, evjKwU C we±`y ˆ^GK B cÉvG¯¦i w`GK AMÉmi nGq x `ƒiZ½ ev,  = tan1 (0.465)
  = 24.94
AwZKÌg KGi ZÚvwU bv DwΟGq B we±`yGZ ˆcuŒQvGZ mÞg nq|
jwº¬ P eGji mvG^ 24.94 ˆKvY Drc®² KGi| (Ans.)
ZÚvwU mywÕ©Z ^vKGe hw` IRb«¼Gqi jwº¬ C we±`yGZ wKÌqv
L
 A C B
KGi ‰es A we±`yGZ ZÚvi Dci ˆKvY Pvc ^vKGe bv| P Q
P+R+3 Q+S+2
A O C B B
Q
R+3
42 ˆKwR 55 ˆKwR
gGb Kwi, P, Q mggyLx mgv¯¦ivj ej«¼q h^vKÌGg A, B we±`yGZ
42.OC = 55.BC
wKÌqv KiGQ ‰es jwº¬ C we±`yGZ wKÌqvkxj| ZvnGj,
42  2
ev, BC = 55 P.AC = Q.BC ... ... ... (i)
Avevi, P ˆK (R + 3) cwigvGY I Q ˆK (S + 2) cwigvGY e†w«¬
 x = 1.53 wgUvi (cÉvq)
KiGjI jwº¬ C we±`yGZ wKÌqvkxj|
 evjKwU ZÚvwUGK bv DwΟGq C we±`y ˆ^GK B cÉvG¯¦i w`GK  (P + R + 3).AC = (Q + S + 2).BC ... ... ... (ii)
cÉvq 1.53 wgUvi ˆhGZ cviGe| (Ans.) Avevi, P, Q ‰i cwieGZÆ h^vKÌGg Q, (R + 3) wKÌqv KiGjI
A^ev, evjKwU ZÚvwUGK bv DwΟGq A we±`y ˆ^GK B cÉvG¯¦i jwº¬ C we±`yGZ wKÌqvkxj|
w`GK (6 + 1.53) = 7.53 wgUvi ˆhGZ cviGe| (Ans.)  Q.AC = (R + 3) BC ... ... ... (iii)
62 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
‰Lb, (i) bs mgxKiYGK (iii) bs mgxKiY «¼viv fvM KGi cvB, ² 49 `†kÅK͸-1:
cÉk
 `†kÅK͸-2:
P Q PQ L
= = ... (iv) B C
Q R+3 QR3
W3 n m W2
Avevi, (ii) bs mgxKiY nGZ (i) bs mgxKiY weGqvM KGi cvB, 1
P F I E
2
(R + 3) AC = (S + 2) BC ... ... ... (v) 

‰Lb, (iii) bs mgxKiYGK (v) bs «¼viv fvM KGi cvB, O P A M D l
N
Q R+3 LD, ME I NF h^vKÌGg MN, NL I LM ‰i Dci
W1 jÁ¼|
=
R+3 S+2
K. eGji AskK I jwº¬ eÅvLÅv Ki| 2
QR3 QR3
= = ... (vi) 1 
R+3S2 RS+1 L. `†kÅK͸-1 ‰ 2 P ejGK ˆKvb evü eivei Õ©vbv¯¦i Kiv
‰Lb, (iv) I (vi) bs nGZ cvB, 5
hvGe? hw` ej«¼Gqi jwº¬ P eGji 2 àY nq ZGe ej«¼Gqi
PQ QR3
=
QR3 RS+1 A¯¦MÆZ ˆKvY I jwº¬i w`K wbYÆq Ki| 4
ev, (P  Q) (R  S + 1) = (Q  R  3)2 M. `†kÅK͸-2 ‰ DwÍÏwLZ ejàwji jwº¬ kƒbÅ nGj cÉgvY Ki ˆh,
(Q  R  3)2 W1 = W2 = W3 hLb l = m = n. 4
ev, R  S + 1 = PQ [ivRkvnx ˆevWÆ-2017  cÉk² bs 6]
(Q  R  3)2 49 bs cÉGk²i mgvavb
ev, R=
PQ
+S1
K ˆKvGbv eÕ§KYvi Dci ‰KB mgGq ‰KvwaK ej KvhÆiZ nGj,

(Q  R  3)2
R=S+  1 (cÉgvwYZ) ‰G`i mwÁÃwjZ wKÌqvdj, hw` eÕ§KYvi Dci wbw`ÆÓ¡ w`GK ‰KwU
PQ
gvò eGji wKÌqvdGji mgvb nq, ZGe 
M gGb Kwi, AB ˆiLvi A I B we±`yGZ wKÌqviZ P I Q m`†k
 Q 
H ‰KwUgvò ejGK DcGivÚ ‰KvwaK R
mgv¯¦ivj eGji jwº¬ (P + Q), C we±`yGZ wKÌqviZ| eGji jwº¬ eGj ‰es ‰KvwaK eGji 
P
R cÉGZÅKwUGK jwº¬ eGji AskK ev O
A D G F C B
E Dcvsk eGj| wPGò O we±`yGZ wKÌqviZ
  
PIQ ej `yBwUi mwÁÃwjZ wKÌqvdj ‰KwU gvò R eGji
    
P R P + Q P+Q+R P + Q Q
wKÌqvdGji mgvb nGj, R ˆK P I Q ‰i jwº¬ ‰es P I Q ˆK

R ‰i AskK ev Dcvsk eGj|
Avevi, D I E we±`yGZ R gvGbi wecixZgyLx `yBwU mgv¯¦ivj ˆfÙi msGKGZ jwº¬ R = P + Q
  

ej wKÌqviZ| ‰Lb D we±`yGZ R ‰es C we±`yGZ (P + Q) 1


L `†kÅK͸-1 ‰ 2 P ejGK AC evü eivei Õ©vbv¯¦i Kiv hvGe

ej«¼Gqi jwº¬ (P + Q + R), F we±`yGZ wKÌqviZ|
ˆhGnZz OACB ‰KwU mvgv¯¦wiK|
(P + Q).CF = R.DF ... ... ... (1)
5P
Avevi, F we±`yGZ (P + Q + R) ‰es E we±`yGZ R gvGbi cÉkg² GZ, jwº¬i gvb = 2
wecixZ gyLx ej«¼Gqi jwº¬ (P + Q), G we±`yGZ wKÌqviZ| 1 5P
PI P ej `yBwUi jwº¬ = 2
2
 (P + Q + R).GF = R.EG
 5 P2 1 2
1
ev, (P + Q).GF = R.EG  R.GF = R.(EG  GF)  2 
= P2 +
2 ( )
P + 2.P. P cos
2
ev, (P + Q).GF = R.EF ... ... ... (2) 5P2 P2
ev, 4 = P + 4 + P cos
2 2

‰Lb, (1) I (2)bs mgxKiY ˆhvM KGi cvB,


5P2 5P2
(P + Q).CF + (P + Q).GF = R.DF + R.EF ev, 4 = 4 + P2 cos
ev, (P + Q) (CF + GF) = R.(DF + EF) ev, P2 cos = 0
ev, (P + Q).CG = R.DE [‰LvGb DE = x] ev, cos = 0
ev, (P + Q).CG = Rx   = 90
Rx  ej«¼Gqi A¯¦MÆZ ˆKvY  = 90 (Ans.)
 CG =
P+Q awi, jwº¬, P eGji mvG^  ˆKvY Drc®² KGi|
xR
myZivs jwº¬ P + Q `ƒiGZ½ mGi hvGe| (ˆ`LvGbv nGjv)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 63
P
sin 50 bs cÉGk²i mgvavb
2
 tan =
P K `ywU ej P I Q ‰es ‰G`i gaÅeZÆx ˆKvY  nGj ‰es jwº¬ R

P + cos I Q ‰i gaÅeZxÆ ˆKvY  nGj,
2
P P P sin sin 
sin 90 tan = =
2 2 P 1 P + P cos 1 + cos
ev, tan = P
= = 
P+0 2 P  
P + cos90 2 sin cos
2 2 2  
= = tan   =
1  2 2
ev, tan = 2 2cos 2
2
myZivs ˆKvGbv we±`yGZ ‰KB mgGq wKÌqvkxj `yBwU mgvb eGji
  = tan1 (12) = 26.6 jwº¬ ej«¼Gqi A¯¦MÆZ ˆKvYGK mgw«¼LwíZ KiGe| (cÉgvwYZ)
 jwº¬ P eGji mvG^ 26.6 ˆKvY Drc®² KGi| (Ans.) L

M
 L X
W3 n m W2 X
I F E
F E O
z Q y
R
P
M D N
l Y Y Z Z
W1 D x

XYZ-‰i jÁ¼GK±`Ê O we±`y ˆ^GK YZ, ZX, XY evüi Dci


LMN wòfzGRi L, M, N ˆKŒwYK we±`y nGZ wecixZ evüi Dci OD, OE, OF jÁ¼ wZbwU eivei wKÌqvkxj wZbwU ej h^vKÌGg
jÁ¼fvGe wKÌqviZ wZbwU ej W1, W2, W3 ‰i jwº¬ kƒbÅ| P, Q, R| ejòq mvgÅeÕ©vq ^vKGj jvwgi mƒò ˆ^GK Avgiv
jvwgi mƒò ˆ^GK cvB, cvB,
W1 W2 W3 P Q R
= = = =
sinFIE sinDIF sinEID sin EOF sin DOF sin EOD
W W W P Q R
ev, sin ( 1 L) = sin ( 2 M) = sin ( 3 N) ev, sin ( – X) = sin( – Y) = sin( – Z)
W W2 W3 P Q R
ev, sinL1 = sinM =
sinN
... ... ... (i) ev, sin X = sin Y = sin Z ... ... (i)
wòfzGRi mvBb mƒò ˆ^GK cvB, wòfzGRi mvBb mƒò ˆ^GK,
l m n x y z
= = ... ... ... (ii) = =
sinL sinM sinN sin X sin Y sin Z
W1 W2 W3 P Q R
(i) I (ii) nGZ cvB, = = (i) ˆ^GK cvB, = =
l m n x y z
Avevi, ˆ`Iqv AvGQ, l = m = n  P : Q : R = x : y : z (cÉgvwYZ)
 W1 = W2 = W3 (cÉgvwYZ) M
 X

cÉk
² 50 X
x P
y
z F
E
I
y z
Y Z
x
P, Q, R ejòq XYZ ‰i jÁ¼ ˆK±`Ê nGZ h^vKÌGg YZ, ZX I
Y Z
XY evüi Dci jÁ¼fvGe wKÌqv KGi mvgÅveÕ©vq ^vGK| Avevi Q
W
Q+R R
ejòq h^vKÌGg X, Y, Z we±`yGZ m`†k mgv¯¦ivjfvGe wKÌqv KiGj
ZvG`i jwº¬ wòfzRwUi A¯¦tGKG±`Ê wKÌqv KGi| XYZ wòfzGRi X, Y, Z we±`yGZ h^vKÌGg P, Q, R gvGbi wZbwU
K. “`yBwU mgvb eGji jwº¬ ZvG`i A¯¦fÆyÚ ˆKvYGK mgw«¼LwíZ mggyLx mgv¯¦ivj ej wKÌqviZ AvGQ| X, Y, Z ˆKvYàwji
KGi”@DwÚwUi mZÅZv hvPvB Ki| 2 A¯¦w«¼ÆLíK wZbwU ciÕ·i I we±`yGZ ˆQ` KGiGQ| ZvnGj, I
L. DóxcGKi ejòGqi mvgÅveÕ©vq ^vKvi ˆÞGò cÉgvY Ki ˆh, nGjv, XYZ wòfzGRi A¯¦tGK±`Ê|
P: Q: R=x: y: z 4 ‰Lb, Y I Z we±`yGZ wKÌqviZ Q I R eGji jwº¬
M. DóxcGKi ejòq m`†k mgv¯¦ivjfvGe wKÌqv Kivi ˆÞGò (Q + R) ejwU YZ ˆiLvÕ© W we±`yGZ wKÌqv KiGe|
cÉgvY Ki ˆh, P : Q : R = x : y : z 4 Avevi, ej wZbwUi jwº¬ A¯¦tGK±`Ê I we±`yMvgx| myZivs, I we±`y
[KzwgÍÏv ˆevWÆ-2017  cÉk² bs 7] XW ˆiLvi Ici AeÕ©vb KiGe|
64 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
A^Ævr, XW ˆiLv X ˆKvYGK mgw«¼LwíZ KiGe| M gGb Kwi, 12 ˆKwR IRGbi AB mgi…c ZÚvi IRb ‰i


YW XY
= ... ... ... (i) gaÅwe±`y O ˆZ wKÌqv KGi| ‰KwU LyuwU A we±`yGZ ‰es Aci B
ZW XZ
we±`y ˆ^GK 1 wgUvi wfZGi C we±`yGZ AewÕ©Z|
wK¯§ jwº¬ W we±`yMvgx nIqvq, Q.YW = R.ZW 8
YW R  AB = 8 wgUvi, AO = BO = 2 = 4 wgUvi
ev, =
ZW Q
... ... ... (ii)
BC = 1 wgUvi|
R XY Q R
(i) I (ii) bs nGZ cvB, Q = XZ ev, XZ = XY OC = OB  BC = 4  1= 3 wgUvi|
P Q A
Abyi…cfvGe cÉgvY Kiv hvq ˆh, YZ = XZ O C 1 wg. B
R
P Q R P Q R
 = =
YZ XZ XY
ev, x = y = z
12 ˆKwR
 P : Q : R = x : y : z (cÉgvwYZ) W
awi, evjKwUi IRb W, hv B we±`yGZ wKÌqvkxj|
cÉk
 ² 51 `†kÅK͸-1: ABC mgevü wòfzGRi BC, CA, AB evüi ˆhGnZy evjKwU ZÚvwUGK bv DwΟGq B we±`yGZ ˆcuŒQvGZ mÞg|
mgv¯¦ivGj h^vKÌGg 5, 7, 9 ‰KK gvGbi wZbwU ej wKÌqviZ| ZÚvwU mywÕ©Z ^vKGe hw` 12 ˆKwR I W IRb«¼Gqi jwº¬ C
`†kÅK͸-2: 8 wgUvi `xNÆ 12kg IRGbi ‰KwU mylg ZÚv `yBwU we±`yGZ wKÌqv KGi|
LyuwUi Dci Avbyf„wgKfvGe wÕ©i AvGQ| ‰KwU LyuwU A cÉv¯¦ ‰es  12.OC = W.BC ev, 12  3 = W.1 ev, W = 36 ˆKwR
AbÅwU B cÉv¯¦ nGZ 1 wgUvi wfZGi AewÕ©Z|  evjKwUi IRb 36 ˆKwR| (Ans.)
K. 8N I 5N gvGbi `yBwU ej 60 ˆKvGY wKÌqviZ| ej«¼Gqi
jwº¬i gvb KZ? 2 cÉk
² 52
L. `†kÅK͸-1 nGZ ejòGqi jwº¬ wbYÆq Ki| 4 `†kÅK͸-1: Q `†kÅK͸-2:
M. `†kÅK͸-2 nGZ ‰KRb evjK ZÚvwUGK bv DwΟGq ‰i Dci
w`Gq B cÉvG¯¦ ˆcuŒQvGj evjGKi IRb KZ? 4 F2 Q
[PëMÉvg ˆevWÆ-2017  cÉk² bs 6]
2
51 bs cÉGk²i mgvavb  F 
S
R P O
K ˆ`Iqv AvGQ, 8N I 5N gvGbi ej `ywUi gaÅeZxÆ ˆKvY 60|
 F1
R
ej«¼Gqi jwº¬ R nGj, K. eGji jÁ¼vsk Kx eÅvLÅv Ki| 2
R= 82 + 52 + 2  8  5  cos 60 L. `†kÅK͸-1 ‰ F1  cosP, F2  cosQ ‰es F1, F2 ‰i jwº¬
1 1
= 64 + 25 + 80 
2
F nGj ˆ`LvI ˆh, R −  = 2 (R + Q − P) 4
= 64 + 25 + 40 = 129N (Ans.) M. `†kÅK͸-2 ‰ Q, R, S ej wZbwU mvgÅveÕ©vq ^vKGj ˆ`LvI
L gGb Kwi, mgevü wòfzR ABC ‰i BC,
 A ˆh, S2 = R(R − Q) 4
CA I AB evüi mgv¯¦ivGj wKÌqviZ [wmGjU ˆevWÆ-2017  cÉk² bs 6]
R
h^vKÌGg 5, 7 I 9 ‰KK gvGbi ej 9 7
52 bs cÉGk²i mgvavb
wZbwUi jwº¬ R ej 5 ‰KK gvGbi B

C K jÁ¼vsk: ˆKvb wbw`ÆÓ¡ ejGK hw` ciÕ·i jÁ¼ `ywU ˆiLv eivei

5
eGji mvG^  ˆKvY Drc®² KGi| wKÌqvkxj `ywU eGji AsGk wefÚ Kiv nq ZGe Ask `yBwUi
‰Lb 5 ‰KK gvGbi ej eivei ‰es ‰i Dci jÁ¼GiLv eivei cÉwZwU H wbw`ÆÓ¡ eGji jÁ¼vsk|
jÁ¼vsk wbGq cvB, x AGÞi mvG^  ˆKvGY wKÌqviZ ˆKvGbv ej F ‰i jÁ¼vsk
R cos = 5 cos 0 + 7 cos(180  60) + 9 cos(180 + 60)
= 5  7 cos 60  9 cos 60
h^vKÌGg F cos I Fsin.
1 1 L
 `†kÅK͸-1 ‰ OPRQ mvgv¯¦wiKwU cƒYÆ Kwi|
= 5  7.  9. =  3 ... ... ... (i)
2 2 Q
O
‰es R sin = 5 sin 0 + 7 sin (180  60) + 9 sin (180 + 60)
= 7 sin 60  9 sin 60 F2
3 3 F
=7. 9. =  3 .....(ii) 
2 2 R P
F1
‰Lb, (i)2 + (ii)2 ˆ^GK cvB,
awi, F1 = K cosP
R2 (sin2 + cos2) = (  3)2 + (  3)2
F2 = K cosQ
ev, R2 = 9 + 3 ev, R2 = 12  R = 12 = 2 3 F1 I F2 ‰i gaÅeZxÆ ˆKvY R ‰es jwº¬ F.
 wbGYÆq jwº¬, R = 2 3 ‰KK (Ans.)  F2 = F12 + F22 + 2F1F2 cosR
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 65
2 2 2 2
= K cos P + K cos Q + 2 K cosP.K cosQ.cosR
cÉk
 ² 53 `†kÅK͸-1: L, M, N gvGbi mywÕ©Z wZbwU eGji
= K2 cos2P + K2 cos2Q + 2K2 cosP.cosQ.cosR
wKÌ q vGiLv ABC wòfzGRi BC, CA, AB evüi mgv¯¦ivj| evü
= K2 (cos2P + cos2Q + cos2R + 2cosP.cosQ.cosR  cos2R) wZbwUi Š`NÆÅ 25, 60, 65 ˆm.wg.| L I M gvGbi ej«¼Gqi mgwÓ¡
= K2 (1  cos2R) [‹ P + Q + R =  nGj, cos2P 51 MÉvg IRb|
2 2
+ cos Q + cos R + 2 cosP.cosQ.cosR = 1] `†kÅK͸-2: 20 ˆm.wg. eÅeavGb ‰KwU mylg nvjKv `Gíi `yB
2
= K sin R2 cÉvG¯¦ 8N I 4N gvGbi wecixZgyLx `yBwU mgv¯¦ivj ej wKÌqv
KGi|
 F = K sinR
K. 4N I 2 3N gvGbi ej«¼q 30 ˆKvGY wKÌqv KGi| 4N
RP ‰i jÁ¼ eivei Dcvsk wbGq cvB, gvGbi ej eivei ej«¼Gqi jÁ¼vsGki mgwÓ¡ wbYÆq Ki| 2
F1sin0 + F2sinR = F sin L. `†k ÅK͸
- 1 nGZ ejàwji gvb wbYÆ q Ki| 4
ev, K cosQ sinR = K sinR sin M. `†kÅK͸-2 ‰ cÉGZÅK eGji gvb 4N KGi e†w«¬ Kiv nGj
jwº¬i wKÌqvwe±`y KZ `ƒiGZ½ mGi hvGe? 4
ev, cosQ = sin [K sinR «¼viv fvM KGi] [hGkvi ˆevWÆ-2017  cÉk² bs 6]

ev, sin 2  Q = sin ev, 2  Q = 
 53 bs cÉGk²i mgvavb
K 4N gvGbi ej eivei 2 3N eGji jÁ¼vsk

P+Q+R
ev, 2
 Q =  [‹ P + Q + R = ] F1 = 2 3 cos 30 = 2 3 .
3
= 3N
2
P+Q+R  4N gvGbi ej eivei ej«¼Gqi jÁ¼vsGki mgwÓ¡
ev,  = 2
Q
= 4N + 3N
= 7N (Ans.)
 R   = R (P + Q2 + R  Q) L
 L I M gvGbi ej«¼Gqi mgwÓ¡ 51 MÉvg IRb
ˆhGnZz ABC wòfzGR 252 + 602 = 652
P+Q+R 2R  P  Q  R + 2Q ev, BC2 + CA2 = AB2
=R +Q =
2 2
 ABC ‰i C = 90
=
1
(R + Q  P) (ˆ`LvGbv nGjv) ˆhGnZz ejàwj mywÕ©Z ‰es ABC
2
‰i evüàwji mgv¯¦ivj KvGRB jvwgi DccvG`Åi wecixZ
M
 awi, QOS =  Q
cÉwZæv nGZ cvB
L M N A
QOR = 2 = =
2 
25 60 65
ROS =  O L M N L + M 51
 S
ev, 5 = 12 = 13 = 5 + 12 = 17 = 3 65
‰LvGb,  +  + 2 = 2 60
R  L = 15 MÉvg IRb
ev,  = 2  3 M = 36 MÉvg IRb
‰es N = 39 MÉvg IRb (Ans.) B 25 C

ˆhGnZz Q, R, S ejòq O we±`yGZ wKÌqviZ ˆ^GK fvimvgÅ M


 gGb Kwi ‰KwU 20 ˆm.wg. mylg nvjKv `Gíi A I B cÉvG¯¦ 8N
I 4N gvGbi wecixZgyLx ej cÉGqvM Kiv nGjv|
Q R S
m†wÓ¡ KGiGQ, ˆmGnZz jvwgi Dccv`Å AbymvGi, sin = sin = sin2 A I B we±`yGZ wKÌqviZ ej«¼Gqi jwº¬ (8 − 4)N = 4N ewaÆZ
BA ‰i DciÕ© C we±`yGZ wKÌqv KGi|
Q R S
ev, sin (2  3) = sin = sin2 ZvnGj 8  AC = 4  BC
ev, 8AC = 4(AB + AC)
Q
ev,  sin3 = sin = sin2
R S ev, 8AC = 4 (20 + AC)
8N
ev, 8AC = 80 +4AC
B
Q
ev,  (3 sin  4 sin3) = sin = sin2
R S ev, 4AC = 80 D C A
80 4N
AC = = 20 cm
Q R S 4
ev, sin (4 sin2  3) = sin = 2 sin cos ‰Lb A I B we±`yGZ wKÌqviZ eGji gvb 4N e†w«¬ Kiv nGj
gGb Kwi jwº¬ D we±`yGZ mGi hvq|
Q R S RQ
ev, 4 sin2  3 = 1 = 2 cos = 4  4sin2  (8 + 4) AD = (4 + 4) BD
ev, 12AD = 8 (AB + AD)
S
ev, R = 2cos = 4cos2
RQ ev, 12AD = 8(20 + AD)
ev, 12AD = 160 + 8AD
S 2
R(R  Q) S 160
ev, R2 = 4cos2 = 4cos2  R = 2cos ev, 4AD = 160  AD = 4 = 40 cm
 jwº¬i wKÌqvwe±`y mGi hvGe DC `ƒiGZ½i mgvb
 S2 = R(R  Q) (ˆ`LvGbv nGjv)  DC = AD − AC = 40 − 20 = 20 cm (Ans.)
66 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
3P +18 cos 18
² 54 `†kÅK͸-1: ˆKvGbv we±`yGZ P ‰es 3P `yBwU ej
cÉk ev, P(1 + 3cos) = 3P
wKÌqvkxj| 3P + 18cos
ev, 1 + 3cos = 6
`†kÅK͸-2: P1 ‰es P2 `yBwU m`†k mgv¯¦ivj ej h^vKÌGg A I B
we±`yGZ wKÌqvkxj| ev, 3P + 18cos = 6 + 18cos
K. ‰KwU we±`yi Dci wKÌqviZ ej wZbwU mvgÅveÕ©vq ^vKGj ev, 3P = 6
‰es ˆkl ej `yBwUi gaÅeZx ˆKvY 45 nGj ej wZbwUi  P = 2 (Ans.)

gGaÅ mÁ·KÆ cÉwZÓ¤v Ki| 2 M


 A D C B

L. `†kÅK͸-1 ‰, cÉ^gwUGK PviàY I w«¼ZxqwUi gvb 18 ‰KK d


P1 = 4 P1 + P2 P2 = 6
e†w«¬ KiGj DfqGÞGò jwº¬i w`K AcwiewZÆZ ^vGK| P ‰i
gvb wbYÆq Ki| 4
M. `†kÅK͸-2 ‰, P1 = 4, P2 = 6 nGj ‰es ej `yBwUi A we±`yGZ P1 = 4 ‰KK I B we±`yGZ P2 = 6 ‰KK ej wKÌqv
cÉGZÅKGK 2 ‰KK cwigvGY e†w«¬ KiGj jwº¬i miY wbYÆq KiGQ|
Ki| 4 awi, ZvG`i jwº¬ C we±`yGZ wKÌqviZ hvi gvb P1 + P2
[ewikvj ˆevWÆ-2017  cÉk² bs 6]  P1 AC = P2 BC.
ev, 4AC = 6BC.
54 bs cÉGk²i mgvavb
 2AC = 3BC ... ... (i)
K gGb Kwi, ˆKvb we±`yGZ wKÌqviZ wZbwU ej R, P, Q| P, Q ‰i
 Avevi, P1 I P2 ej«¼Gqi mvG^ 2 ‰KK ej ˆhvM Kiv nGj
gaÅeZÆx ˆKvb 45| ej wZbwU mvgÅveÕ©vq ^vKGj R nGe P I bZzb ej«¼q nGe, 6 ‰KK I 8 ‰KK| awi, ‰i dGj ej
Q eGji jwº¬i mgvb ‰es ‰i w`K nGe P I Q eGji jwº¬i `yBwUi jwº¬ C we±`y nGZ d `ƒiGZ½ D we±`yGZ mGi hvq|
wecixZ w`K|  CD = d
 R2 = P2 + Q2 + 2PQ cos45  6AD = 8BD.

ev, R2 = P2 + Q2 + 2PQ.
1 ev, 6(AC – CD) = 8(BC + CD)
2
ev, 6(AC – d) = 8(BC + d)
 R2 = P2 + Q2 + 2PQ ev, 6AC – 6d = 8BC + 8d
BnvB wbGYÆq mÁ·KÆ| (Ans.)
ev, 6AC – 8BC = 8d + 6d
L gGb Kwi, P ‰es 3P ej«¼q  ˆKvGY wKÌqviZ ‰es ZvG`i jwº¬
 ev, 3. 2AC – 8BC = 14d
P ‰i mvG^  ˆKvY Drc®² KGi| ev, 3. 3BC – 8BC = 14d. [(i) bs nGZ]
3Psin
 tan =
P + 3P cos ev, 9BC – 8BC = 14d
Avevi, ej«¼q 4P ‰es 3P + 18 nGj, ev, BC = 14d
BC
(3P + 18) sin d= ... ... ... (ii)
tan = 14
4P + (3P + 18)cos
3P sin (3P + 18) sin Avevi, (i) nGZ cvB,
kZÆgGZ, P + 3P cos = 4P + (3P + 18) cos 2AC = 3BC
3P 3P + 18 ev, 2(AB – BC) = 3BC
ev, P + 3P cos = 4P + 18cos + 3Pcos
ev, 2AB – 2BC = 3BC
4P + 18cos + 3Pcos 3P + 18
ev, P + 3P cos
=
3P ev, 2AB = 5BC  BC = 5 AB
2

4P + 18 cos + 3Pcos – P – 3P cos


ev, P + 3P cos
BC
‰B gvb (ii) ‰ ewmGq, d = 14 = 14  5 AB = 35
1 2 AB

3P + 18 – 3P ej«¼Gqi gaÅeZÆx `ƒiZ½


=
3P
[weGqvRb KGi]
= 35
3P + 18 cos 18
ev, = ej«¼Gqi gaÅeZÆx `ƒiZ½
P + 3P cos 3P  jwº¬i miY = 35 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 67

beg AaÅvq: mgZGj eÕ¦yKYvi MwZ


A
cÉk
² 26 50 dzU DuPz UvIqvGii Qv` ˆ^GK Bgb ‰KwU ˆUwbm ej u
wbGP ˆdGj w`j| ejwU 8 dzU wbGP bvgvi ci mygb Aci ‰KwU
ˆUwbm ej y dzU wbP nGZ ˆdGj w`j| Dfq ej wÕ©iveÕ©v ˆ^GK 49m
‰KB mvG^ f„wgGZ cwZZ nGjv| wKQyÞY ci Bgb ‰KwU wKÌGKU
ej Abyf„wgGKi mvG^ 30 ˆKvGY wbGÞc KGi| 45
O 49m B
K. 9.8 m/s ˆeM ‰es  ˆKvGY cÉwÞµ¦ eÕ§i ˆÞGò Kx kGZÆ
cvÍÏv meÆvwaK nGe ‰es Zv KZ wbYÆq Ki| (g = 9.8 m/s2) 2
30  ( 30)2  4.( 50) . 16
L. mygb KZ DœPZv ˆ^GK ˆUwbm ejwU ˆdGjwQj? 4 t=
32
M. wKÌGKU ejwU hw` 60 dzU/ˆm. ˆeGM wbwÞµ¦ nq ZGe Zv
30  4100 30 + 64.03
UvIqvGii cv`we±`y nGZ KZ `ƒGi f„wgGK AvNvZ KiGe? 4 = = [(+) wbGq]
32 32
wkLbdj- 8 I 9 [KzwgÍÏv ˆevWÆ-2019  cÉk² bs 7]
 t = 2.94 ˆmGK´£ (cÉvq)
26 bs cÉGk²i mgvavb  ejwUi Õ¦GÁ¿i cv`G`k nGZ ˆh we±`yGZ f„wgGK AvNvZ KiGe
u2 Zvi `ƒiZ½ = u cost = 60  cos 30  2.94
K
 Avgiv Rvwb, u Avw`GeGM  ˆKvGY cÉwÞµ¦ eÕ§i cvÍÏv, R = g sin2
= 152.77 dzU (cÉvq) (Ans.)
cvÍÏv, meÆvwaK nGe hLb sin2 ‰i gvb meÆvwaK nq|
sin2 ‰i meÆvwaK gvb 1| cÉk
² 27 `†kÅK͸-1: ‰KwU cÉwÞµ¦ eÕ§i `ywU MwZcG^i e†nîg
 sin2 = 1 DœPZv h^vKÌGg 4m I 6m.
ev, sin2 = sin90   = 45 `†kÅK͸-2: mylg Z½iGY mijGiLv eivei Pj¯¦ ‰KwU we±`yKYv
  = 45 nGj cvÍÏv meÆvwaK nGe| cici p, q, r mgGq h^vKÌGg mgvb wZbwU KÌwgK `ƒiZ½ AwZKÌg
u2 (9.8)2 KGi|
meÆvwaK cvÍÏv, Rmax = g = 9.8 m = 9.8m (Ans.)
K. ‰KwU eÕ§ 20 wg./ˆm. Avw`GeGM 2 wg./ˆm.2 Z½iGY PjGj,
L Bgb ejwU wÕ©i AeÕ©vb nGZ 50 dzU DœPZv nGZ ˆdGj
 Dnvi 5g ˆmGKG´£ AwZKÌv¯¦ `ƒiZ½ wbYÆq Ki| 2
w`j| 8 dzU wbGP bvgvi ci ejwUi ˆeM v nGj, L. `†
k ÅK͸-1 nGZ wbwÞµ¦ eÕ§ w Ui cvÍÏ v wbYÆ q Ki| 4
v2 = 2gh ‰LvGb, 1 1 1 3
ev, v2 = 2  32  8 M. `†kÅK͸-2 nGZ cÉgvY Ki ˆh, p  q + r = p + q + r 4
g = 32 dzU/ (ˆmGK´£)2

 v = 22.627 dzU/ˆmGK´£ wkLbdj- 4, 5 I 9 [PëMÉvg ˆevWÆ-2019  cÉk² bs 7]


v ˆeGM ejwU AewkÓ¡ 42 dzU c^ cvwo w`GZ ˆh mgq ˆbq 27 bs cÉGk²i mgvavb
mygGbi ˆdGj ˆ`Iqv ejwU ((50  y) dzU DœPZv nGZ f„wgGZ
K ‰LvGb, eÕ§i Avw`GeM, u = 20 wg./ˆm.

ˆcŒQGZ ‰KB mgq ˆbq|
1 2
Z½iY, f = 2 wg./ˆm.2
‰Lb, h = vt + 2 gt 5g ˆmGKG´£ AwZKÌv¯¦ `ƒiZ½ S nGj
1 1
ev, 42 = 22.627t + 16t ev, 16t + 22.627t  42 = 0
2 2
S = u + f(2t  1) = 20 + .2 (10  1)
2 2
 22.627  (22.627)2  4.(42).16
t= = 29 wgUvi (Ans.)
2  16
 22.627  56.5685 L ‰KB MwZGeGM wbwÞµ¦ `yBwU cÉGÞcGKi Avbyf„wgK cvÍÏvi gvb ‰KB

ev, t = 32
 t = 1.06067
nGe hw` ‰KwUi wbGÞcY ˆKvY  ‰es AciwUi (90  ) nq|
A^ev, t =  2.4749 Bnv MÉnYGhvMÅ bq KviY mgq FYvñK ‰GÞGò, awi, wbGÞcY ˆeM = u
nGZ cvGi bv|   ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv,
 mygGbi ˆdGj ˆ`Iqv eGji DœPZv (50  y) nGj, u2 sin2 u2 sin2
1 2 h=  = 4 ... ... ... (i)
2g 2g
50  y = gt
2 ‰es (90  ) ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv,
1 u2 sin2 (90  )
y = 50   32  (1.06067)2 h =
2 2g
 y = 32 dyU u2 cos2
 mygGbi ejwU Qv` nGZ cÉvq 32 dzU wbP nGZ ˆdGjwQj  = 6 ... ... ... (ii)
2g
A^ev f„wg nGZ (50  32) ev 18 dzU DPz ˆ^GK ejwU ˆdGj Avevi, Avbyf„wgK cvÍÏv, R = g
u2 sin2
ˆ`Iqv nGqwQj| (Ans.)
M gGb Kwi,
 ‰Lb, (i) I (ii) àY KGi cvB,
u4 sin2 cos2 u4 (sin cos)2
wKÌGKU ejwUi cZbKvj t ˆmGK´£ = 24 ev, = 24
4g2 4g2
1
‰Lb, h =  u sin t + 2 gt2 1 4
u (2 sin cos)2
4 u4 (sin2)2
ev, 50 =  60  sin 30  t + 16t2 ev, 4g2
= 24 ev,
16g2
= 24
ev, 50 =  30t + 16t2 2
u sin2 2
ev, 16t2  30t  50 = 0 ev,  g  = 384 ev, R2 = 384  R = 8 6 (Ans.)
68 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
M gGb Kwi, p1 weiwZi AviGÁ¿i ˆeM = u
 M gGb Kwi, ˆÕ¡kb `yBwUi gaÅeZÆx `ƒiZ½ s = AD

p weiwZi ˆkGl ˆeM = v A u=0 v B v C v=0
D
q weiwZi ˆkGl ˆeM = w mgZ½iGb mgGeGM mgg±`GY
r weiwZi ˆkGl ˆeM = x t1 t2 t3
u p v q w r x

s s s s
s s s s 
m m n n
awi, Z½iY = f ‰es mgvb mgvb KÌwgK `ƒiZ½ = s s
s u +v awi, ˆijMvwowU t1 mgGq mgZ½iGY PGj m `ƒiZ½ AwZKÌg KGi
 MoGeM = .................. (i)
p 2
s v +w mGeÆvœP v ˆeM cÉvµ¦ nq| Avevi t2 mgGq v mgGeGM PGj
= ................. (ii)
q 2 s  s  s  `ƒiZ½ AwZKÌg KGi ‰es t3 mgGq mgg±`Gb PGj
s w+x
= ............... (iii)  m n
r 2 s
(i) bs I (iii) bs ˆhvM AZtci (ii) bs weGqvM KGi, n
`ƒiZ½ AwZKÌg KGi|
s s s 1 u+v
p q
– + = (u + v  v  w +w +x)
r 2 cÉ^g ˆÞGò, s = 2 .t mƒò nGZ cvB,
1 1 1 1
ev, s p  q + r = 2 (u + x) s 0+v
=
v
.t = t .......... (i)
  m 2 1 2 1
1 1 1 1 s s
ev, s p  q + r  = 2 (u + x) w«¼Zxq ˆÞGò, s = vt mƒGòi mvnvGhÅ, s  m  n = vt2
 
ˆgvU `ƒiZ½ 3s u+x s s s v
ev, 2  2m  2n = 2 t2 ................. (ii)
mgMÉ mgGqi MoGeM = ˆgvU mgq = p + q + r = 2
s v+0 v
1 1 1
s  + =
3s Z‡Zxq ˆÞGò, n = 2 .t3 = 2t3 .................. (iii)
p q r  p + q + r
1 1 1 3 (i), (ii) I (iii) ˆhvM KGi cvB,
 –
p q
+ =
r p+q+r
(cÉgvwYZ) s s s s s v
+   + = (t +t +t )
m 2 2m 2n n 2 1 2 3
cÉk
² 28 `†kÅK͸-1: Avbyf„wgGKi mvG^  ˆKvGY wbwÞµ¦ ‰KwU s s s v
eÕ§ wbGÞcY we±`y nGZ h^vKÌGg q I p `ƒiGZ½ AewÕ©Z p I q ev, + + = (t +t +t )
2m 2 2n 2 1 2 3
DœPZvwewkÓ¡ `yBwU ˆ`qvj ˆKvGbv iKGg AwZKÌg KGi| s 1
 + 1 + 1n  = v2(t1 + t2 + t3)
ev,
`†kÅK͸-2: 2 m 
s 1 1
A B C D ev, t + t + t m + 1 + n  = v
1 2 3 
1 1
AB = AD CD = AD 1 1
m n ev, Mo ˆeM  1 + m + n  = mGeÆvœP ˆeM
 
K. ˆ`LvI ˆh, mggvGbi `yBwU ‰Kwe±`yMvgx ˆeGMi jwº¬ ‰G`i
A¯¦MÆZ ˆKvYGK mgvb `yBfvGM wefÚ KGi| 2 1 1 mGeÆvœP ˆeM
ev, 1 + m + n = Mo ˆeM
L. `†kÅK͸-1 ‰ ewYÆZ eÕ§wUi Avbyf„wgK cvÍÏv R nGj, ˆ`LvI
1 1
ˆh, R(p + q) = p2 + pq + q2. 4  Mo ˆeM : mGeÆvœP ˆeM = 1 : 1 + m + n  (cÉgvwYZ)
M. ‰KLvbv ˆijMvwo A ˆÕ¡kb nGZ ˆQGo D ˆÕ¡kGb wMGq  
^vGg| MvwoLvbv AB Ask mgZ½iGY, CD Ask mgg±`Gb cÉk
 ² 29 ‰KwU ˆUÇb ‰K ˆÕ¡kb nGZ hvòv ÷i‚ KGi t wgwbU ci s
‰es BC Ask mgGeGM PGj| cÉgvY Ki ˆh, Dnvi MoGeM wK.wg. `ƒiZ½ AwZKÌg KGi Aci ‰KwU ˆÕ¡kGb ^vGg| ˆUÇbwU
1 1
I mGeÆvœP ˆeGMi AbycvZ 1 : 1 + m + n  4 hvòvi cÉ^g Ask x mgZ½iGY ‰es w«¼Zxq Ask y mgg±`Gb PGj|
 
wkLbdj- 2, 4 I 9 [wmGjU ˆevWÆ-2019  cÉk² bs 7] f„wg ˆ^GK cÉwÞµ¦ ‰KwU wKÌGKU ej cÉwÞµ¦ we±`y nGZ h^vKÌGg
1 1 1 1
28 bs cÉGk²i mgvavb b
‰es a `ƒGi AewÕ©Z a ‰es b DœPZvi `yBwU ˆ`Iqvj ˆKvGbv
K awi, O we±`yGZ ‰KB mgGq wKÌqviZ `ywU ˆeM
 iKGg AwZKÌg KGi|
P I P ‰i jwº¬ ˆeM R K. mgZGj ‰KwU eÕ§KYv u Avw`GeGM a mgZ½iGY t mgGq s
2 sin

cos
 `ƒiZ½ AwZKÌg KGi ZvnGj t Zg mgGq KZ `ƒiZ½ AwZKÌg
P sin 2 2  
 tan  = = = tan   =
2 2
KiGe? 2
P + P cos 2
2 cos 1 1 t2
2 L. DóxcK nGZ cÉgvY Ki ˆh, x + y = 2s 4
 jwº¬ mggvGbi ˆeM«¼Gqi gaÅeZxÆ ˆKvYGK mgw«¼Lw´£Z 2 2
a + ab + b
KiGe| (Ans.) M. DóxcK nGZ ˆ`LvI ˆh, Avbyf„wgK cvÍÏv R = ab(a + b) 4
L m†Rbkxj 10(M) bs cÉGk²i mgvavb `ËÓ¡eÅ| c†Ó¤v-257|
 wkLbdj- 4 I 9 [hGkvi ˆevWÆ-2019  cÉk² bs 7]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 69
29 bs cÉGk²i mgvavb L gGb Kwi,
 A C
B
K ‰KwU eÕ§KYv u Avw`GeGM a mgZ½iGY t mgGq S `ƒiZ½ AwZKÌg KGi|

myZivs t Zg mgGq AwZKÌv¯¦ `ƒiZ½ = u + 2 a(2t  1)
1 A we±`yGZ weovjwU wÕ©iveÕ©vq AvGQ| A ˆ^GK 12 wgUvi `ƒGi
B we±`yGZ Bu`yiwUGK ˆ`LGZ ˆcGq weovjwU ˆ`Œo ÷i‚ KGi t
L m†Rbkxj 1(L) bs cÉGk²i mgvavb `ËÓ¡eÅ| c†Ó¤v-347|
 ˆmGKG´£ C we±`yGZ Bu`iy GK aGi|
M
 u
‰LvGb, AB = 12 wgUvi
1 1
awi, BC = x wgUvi  AC = x + 12 wgUvi

a b Bu`yGii ˆÞGò, BC = 4t [ S = vt]
1
ev, x = 4t
b 1
1
‰es weovGji ˆÞGò, AC = 0 + 2  2  t2 = t2
a
ev, x + 12 = t2 ev, 4t + 12 = t2 ev, t2  4t  12 = 0
gGb Kwi, ejwUi cÉGÞc ˆeM u ‰es cÉGÞc ˆKvY | ev, t2  6t + 2t  12 = 0 ev, (t  6) (t + 2) = 0
Avgiv Rvwb, evqykƒbÅ Õ©vGb cÉwÞµ¦ KYvi MwZGeGMi mgxKiY,  t = 6 [ t =  2 MÉnYGhvMÅ bq]
x
y = x tan 1   ‰es AC = t2 = 36
 R
1 1  6 ˆmGK´£ cGi 36 wgUvi `ƒiGZ½ aiGZ cviGe| (Ans.)
cÉ^g ˆ`IqvGji ˆÞGò, y = a , x = b
M ‰KB MwZGeGM wbwÞµ¦ `yBwU cÉGÞcGKi Avbyf„wgK cvÍÏvi gvb ‰KB

1 1 1
 = tan 1 
a b
 … … (i) nGe hw` ‰KwUi wbGÞcY ˆKvY  ‰es AciwUi (90  ) nq|
 bR 
1 1
‰GÞGò, awi, wbGÞcY ˆeM = u
w«¼Zxq ˆ`IqvGji ˆÞGò, y = b , x = a   ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv,
1 1 1 u2 sin2 u2 sin2
ev, b = a tan 1  aR  … … (ii) h=
2g

2g
= 4 ... ... ... (i)
 
(i)  (ii) nGZ cvB, ‰es (90  ) ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv,
1 u2 sin2 (90  )
1  bR  h =
2g
b a  a bR  1 aR a2 bR  1
=
a b 1
=
b bR
 = 2.
aR  1 b aR  1 u2 cos2
1  aR   = 6 ... ... ... (ii)
2g
 
u2 sin2
ev, ab3R  b3 = ba3R  a3 Avevi, Avbyf„wgK cvÍÏv, R = g
ev, ab3R  ba3R = b3  a3 ev, abR(b2  a2) = b3  a3 ‰Lb, (i) I (ii) àY KGi cvB,
b3  a3 a2 + ab + b2 u4 sin2 cos2 u4 (sin cos)2
ev, R= 2
ab(b  a )2 R=
ab (a + b)
(ˆ`LvGbv nGjv) 2 = 24 ev, = 24
4g 4g2
1 4
cÉk
² 30 `†kÅK͸-1: ‰KwU weovj 12 wgUvi `ƒGi ‰KwU Bu`yiGK u (2 sin cos)2
4 u4 (sin2)2
ˆ`LGZ ˆcGq wÕ©iveÕ©v ˆ^GK 2wg/ˆm2 Z½iGY ˆ`Œovj ‰es Bu`yiwU ev, 4g2
= 24 ev,
16g2
= 24
4 wgUvi/ˆm mgGeGM ˆ`Œovj| u2 sin22
ev,  = 384 ev, R2 = 384  R = 8 6 (Ans.)
`†kÅK͸-2: ‰KwU cÉwÞµ¦ eÕ§KYvi `ywU MwZcG^i e†nîg DœPZv g 
h^vKÌGg 4 wgUvi I 6 wgUvi|
cÉk
 ² 31 `†kÅK͸-1: ‰KwU ˆijMvox cvkvcvwk `yBwU ˆÕ¡kGb
K. gaÅvKlÆGYi cÉfvGe 100 wgUvi DuPz Õ©vb nGZ co¯¦ eÕ§i 2
^vGg| ˆÕ¡kb `yBwUi gaÅeZxÆ `ƒiZ½ 4 wK.wg. ‰es ‰K ˆÕ¡kb
sec ‰ cÉvµ¦ ˆeM wbYÆq Ki| (g = 9.8 ms2). 2
ˆ^GK Aci ˆÕ¡kGb ˆhGZ mgq jvGM 8 wgwbU|
L. weovjwU KZ mgq cGi ‰es KZ `ƒGi Bu`yiwUGK aiGZ
`†kÅK͸-2: ˆKvGbv eÕ§KYv ˆKvGbv mijGiLv eivei mgZ½iGY PGj
cviGe? 4
t1, t2 ‰es t3 mgGq avivevwnK MoGeM h^vKÌGg v1, v2 ‰es v3.
M. `†kÅK͸-2 nGZ ˆ`LvI ˆh, R = 8 6| 4
wkLbdj- 4, 8 I 9 [ewikvj ˆevWÆ-2019  cÉk² bs 7] K. AvGcwÞK ˆeM eÅvLÅv Ki| 2
30 bs cÉGk²i mgvavb L. `†kÅK͸-1 ‰ ˆijMvoxwU hw` Zvi MwZcG^i 1g Ask
x mgZ½iGY ‰es w«¼Zxq Ask y mgg±`Gb PGj ZGe ˆ`LvI
K ‰LvGb, u = 0

h = 100 wgUvi
ˆh x + y = 8xy 4
2 t +t t +t
g = 9.8 wgUvi/ˆm M. `†kÅK͸-2 nGZ cÉgvY Ki ˆh, v1  v2 = v2  v3 4
1 2 2 3
2 sec cGi cÉvµ¦ ˆeM v nGj, wkLbdj- 3 I 4 [XvKv, w`bvRcyi, wmGjU I hGkvi ˆevWÆ-
v = u + g  t = 0 + 2  9.8 = 19.6 wgUvi/ˆm. (Ans.) 2018  cÉk² bs 7]
70 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
31 bs cÉGk²i mgvavb cÉk
² 32 ˆÕ¡kb ˆÕ¡kb
K `yBwU MwZkxj eÕ¦yKYvi cÉ^gwUi mvGcGÞ w«¼ZxqwUi miGYi
 A B
cwieZÆGbi nviGK cÉ^g eÕ¦yKYvi mvGcGÞ w«¼Zxq eÕ¦yKYvi S
AvGcwÞK ˆeM ejv nq| gGb Kwi, A I B `yBwU MwZkxj K. mPivPi msGKZgvjvq cÉgvY Ki ˆh, v = u + ft. 2
eÕ¦yKYv| A eÕ¦yKYv nGZ B eÕ¦yKYvGK chÆGeÞY KiGj ˆh ˆeM L. wÕ©iveÕ©v nGZ ‰KwU ˆUÇb A ˆÕ¡kb nGZ 4 wgwbGU B
cwijwÞZ nq Zv nGe A eÕ¦yKYvi mvGcGÞ B eÕ¦yKYvi
ˆÕ¡kGb wMGq ^vGg| hw` Dnv cG^i cÉ^g Ask x mgZ½iGY
AvGcwÞK ˆeM|
‰es w«¼Zxq Ask y mgg±`Gb PGj ZGe cÉgvY Ki ˆh,
L gGb Kwi, ˆijMvoxi meÆvwaK ˆeM = v wK.wg./wgwbU

1 1
awi, t1 I t2 wgwbU aGi h^vKÌGg x mgZ½iGY I y mgg±`Gb + = 4 hLb S = 2. 4
x y
PGj ‰es s1 ‰es s2 wK.wg. `ƒiZ½ AwZKÌg KGi|
u=0 v v=0
M. hw` `yBwU ˆijMvwo A I B ‰i wecixZ w`K nGZ u1 I u2
A
x B y C
MwZGeGM AMÉmi nIqvi mgq ‰GK AciGK ˆ`LGZ cvq
ZLb ZvG`i gaÅeZxÆ `ƒiZ½ x| msNlÆ ‰ovGbvi RbÅ ˆijMvwo
t1 t2
`yBwU mGeÆvœP g±`b h^vKÌGg a1 I a2 cÉGqvM KGi| ZvnGj
s2
s1 ˆ`LvI ˆh, ˆKvGbv iKGg msNlÆ ‰ovGbv mÁ¿e hw` u12a2 +
ZvnGj, s1 + s2 = 4 wK. wg. ‰es t1 + t2 = 8 wgwbU| u22a1  2a1a2x nq| 4
s1 0 + v v
 AB AsGk = ev, s1 = 2 t1 wkLbdj- 1, 4 I 5 [XvKv ˆevWÆ-2017  cÉk² bs 7]
t 12
BC AsGk =
s2 v + 0 v
ev, s2 = 2 t2 32 bs cÉGk²i mgvavb
t2 2
v K awi, ˆKvb mijGiLv eivei mgZ½iGY Pj¯¦ ‰KwU KYvi

 s1 + s2 = (t1 + t2)
2 mgZ½iY f ‰es t mgq cGi ˆeM v.
v
ev, 4 = 2 8 [ s1 + s2 = 4] 
dv
=f
dv
ev,  dt dt =  f dt [t-‰i mvGcGÞ ˆhvMRxKiY KGi]
dt
ev, 4v = 4  v = 1 wK.wg./wgwbU
[ˆhLvGb c ˆhvMRxKiY aËe‚ K]
 v = f t + c ... ... ... (i)
Avevi, v = u + ft mƒò eÅenvi KGi
1 Avw` AeÕ©vq t = 0, v = u
v = 0 + xt1 ev, t1 = [ v = 1]
x (i) bs nGZ, u = 0 + c  c = u
1
0 = v  yt2 ev, t2 = [ v = 1] (i) bs mgxKiGY c ‰i gvb ewmGq, v = f t + u
y
1 1  v = u + f t (cÉgvwYZ)
 t 1 + t2 = +
x y ˆÕ¡kb ˆÕ¡kb
1 1 L
 A B
ev, 8 = x + y [ t1 + t2 = 8]
S=2
x+y
ev, xy = 8  x + y = 8xy (ˆ`LvGbv nGjv)
gGb Kwi, ˆUÇbwUi meÆvwaK ˆeM = v ‰KK
M gGb Kwi, f mgZ½iGY Pjgvb ‰KwU eÕ§KYv A we±`y ˆ^GK u
 awi, t1 I t2 wgwbU aGi h^vKÌGg mgZ½iGY I mgg±`Gb PGj
Avw`GeGM hvòv KGi t1, t2, t3 mgGq h^vKÌGg B, C, D we±`yGZ ‰es s1 ‰es s2 `ƒiZ½ AwZKÌg KGi|
u1, u2, u3 ˆeMcÉvµ¦ nq|
ZvnGj, s1 + s2 = 2 ‰es t1 + t2 = 4 wgwbU|
u u1 u2 u3
s1 0 + v v
A t1 B t2 C t3 D  MoGeM = = ev, s1 = 2 t1
t1 2
u1 = u + ft1 s2 v + 0 v v
u2 = u1 + ft2 = u + ft1 + ft2 t2
=
2
ev, s2 = 2 t2  s1 + s2 = 2 (t1 + t2)
u3 = u2 + ft3 = u + ft1 + ft2 + ft3 v
u + u1 u1 + u2 u2 + u3 ev, 2 = 2 4 ev, 4v = 4  v = 1
 v1= ; v2 = ; v3 =
2 2 2
u + u 1 u1 + u2 u + u 1  u1  u2 u  u2
Avevi, v = u + ft mƒò eÅenvi KGi
 v1  v2 =  = = 1
2 2 2 2 v = 0 + xt1 ev, t1 = [ v = 1]
x
u1 + u2 u2 + u3 u1 + u2  u2  u3 u1  u3
v2  v3 =  = = 1
2 2 2 2 0 = v  yt2 ev, t2 = [ v = 1]
v1  v2 u  u2 u  u  ft1  ft2 y
 = = 1 1
v2  v3 u1  u3 u + ft1  u  ft1  ft2  ft3  t 1 + t2 = +
f(t1 + t2) t1 + t2 x y
= = 1 1
 f(t2 + t3) t2 + t3 ev, 4 = x + y [ t1 + t2 = 4]
v1 – v2 t1 + t2 t +t t +t
 =
v2 – v3 t2 + t3
AZ‰e, v1  v2 = v2  v3 (cÉgvwYZ) 1 1
1 2 2 3
 + = 4 (cÉgvwYZ)
x y
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 71
M gGb Kwi, ˆeËK cÉGqvM Kivi gyn„GZÆ wecixZ w`K nGZ AMÉmigvb 
 L gGb Kwi, ˆÕ¡kb `ywUi gaÅeZxÆ `ƒiZ½ S
Mvwo `yBwUi AeÕ©vb wQj h^vKÌGg A ‰es B we±`yGZ| u=0 v v v=0
myZivs, AB = x
A x1 x2 B mgZ½iY mgGeM mgg±`b
t1 t2 t3
x S S S S
S 
2 2 3 3
awi, Dfq MvwoGZ ˆeËK cÉGqvGMi ci ‰iv h^vKÌGg x1 ‰es x2 S
`ƒiZ½ AwZKÌg KGi ˆ^Gg hvq| awi, ˆijMvwowU t1 mgGq mgZ½iGY PGj 2
`ƒiZ½ AwZKÌg KGi
cÉ^g Mvwoi ˆÞGò, Avw`GeM = u1 ‰es g±`b = a1
mGeÆvœP v ˆeM cÉvµ¦ nq| Avevi t2 mgGq v mgGeGM PGj
 u12  2a1x1 = 0
u12
 x1 =
2a1
... ... ... (i)
2
(S  S2  S3 ) `ƒiZ½ AwZKÌg KGi ‰es t mgGq mgg±`Gb 3

u
w«¼Zxq Mvwoi ˆÞGò, u22  2a2x2 = 0  x2 = 2a2 ... ... ... (ii) S
2 PGj 3 `ƒiZ½ AwZKÌg KGi|
‰G`i msNlÆ ˆKvGbv iKGg ‰ovGbv mÁ¿e hw` x1 + x2  x nq
2 2 S u+v 0+v
u u
A^Ævr, hw` 2a1 + 2a2  x nq cÉ^g ˆÞGò, 2 = 2  t1 = 2  t1
1 2

A^Ævr, hw` u12a2 + u22a1  2a1a2x nq| (ˆ`LvGbv nGjv) S v


= t ... ... ... (i)
2 2 1
² 33 `†kÅK͸-1: gnvbMi ‰ÝGcÉm AvLvDov Rskb ˆ^GK
cÉk S S
1 w«¼Zxq ˆÞGò, S  2  3 = vt2
ˆQGo XvKv ˆÕ¡kGb ^vGg| Zvi MwZcG^i 1g 2 Ask mgZ½iGY,
1 S S S v
ˆkl 3 Ask mgg±`Gb I AewkÓ¡ c^ mgGeGM PGj| ev, 2  4  6 = 2 t2 ... ... ... (ii)
`†kÅK͸-2: S v+0 S v
u Z‡Zxq ˆÞGò, 3 = 2 t3  3 = 2 t3 ... ... ... (iii)

(i), (ii) I (iii) ˆhvM KGi cvB,


H
S S S S S v
60
A +   + = (t + t + t )
O 2 2 4 6 3 2 1 2 3
S S 2S
K. ˆKvGbv KYv f mylg Z½iGY PjGQ| MwZ ÷i‚i mµ¦g I `kg ev, S + S  2  3 + 3 = v(t1 + t2 + t3)
ˆmGKG´£ h^vKÌGg 36 wgUvi I 48 wgUvi `ƒiZ½ AwZKÌg
KGi| f ‰i gvb wbYÆq Ki|
L. 1 bs DóxcGKi AvGjvGK gnvbMGii mGeÆvœP ˆeM I Mo
2 ev, S {1 + 1  12  13 + 23} = v(t + t + t ) 1 2 3

ˆeGMi AbycvZ 11 : 6 mwVK Kx bv hvPvB Ki| 4 S 12  3  2 + 4


ev, t + t + t  6
=v
3 
M. 2bs `†kÅKG͸ KYvwUi meÆvwaK DœPZv 4.9 wgUvi nGj ‰i 1 2

Avbyf„wgK cvÍÏv wbYÆq Ki| [g = 9.8 wg./ˆm.2] 4 11


ev, Mo ˆeM  6 = mGeÆvœP ˆeM
[ivRkvnx ˆevWÆ-2017  cÉk² bs 7]
33 bs cÉGk²i mgvavb  mGeÆvœP ˆeM : Mo ˆeM = 11 : 6 (mZÅZv hvPvB Kiv nGjv)
1 M ‰LvGb,  = 60

K t Zg ˆmGKG´£ AwZKÌv¯¦ `ƒiZ½ St = u + 2 f (2t  1)

1 u2sin2
mµ¦g ˆmGKG´£ AwZKÌv¯¦ `ƒiZ½ S7 = u + 2 f (2  7  1) H=
2g
1 u2  (sin60)2
= u + f  13
2 ev, 4.9 = 2g
13
 36 = u + f ... ... ... (i) 9.8g
2 ev, u2 = 2 ev, u2 = 128.05
1  3
`kg ˆmGKG´£ AwZKÌv¯¦ `ƒiZ½ S10 = u + 2 f (2  10  1)  2 
19  u = 11.32 ms1
 48 = u + f ... ... ... (ii)
2
19 13 Avbyf„wgK cvÍÏv,
(ii) nGZ (i) weGqvM KGi cvB, 12 = f f
2 2 u2sin 2 (11.32)2  sin 120
6 R= = = 11.32m (Ans.)
ev, 12 = f  2 ev, 12 = f  3  f = 4 ms2 (Ans.) g 9.8
72 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
v2 1 1
cÉk
² 34 2 ( )+
a b
= 200

45 1 1
O
A B
y
C  v2
( )+
a b
= 400 ... ... (vii)

Kwig O we±`y nGZ Abyf„wgi mvG^ 45 ˆKvGY e±`yGKi àwj Kij| iwng v
mgxKiY (ii) nGZ, a = t ... ... (viii)
‰KB mgGq wÕ©iveÕ©v O nGZ ˆ`ŒGo 20 ˆmGKG´£ 200 wgUvi `ƒGi
v
AewÕ©Z ‰KwU Lvov ˆ`qvGji cv`G`k B we±`yGZ ^vGg| iwng hvòv cG^i mgxKiY, (iv) nGZ, b = 20 – t ... ... (ix)
OA Ask a mgZ½iGY ‰es AB Ask b mgg±`Gb hvq| Aciw`GK àwjwU
mgxKiY (viii) I (ix) ˆhvM Kwi,
ˆ`qvGji wVK Dci w`Gq ˆMj ‰es ˆ`qvGji Aci cvGk¼Æ y `ƒiGZ½ C 1 1
we±`yGZ coj| (‰LvGb ˆ`qvGji cyi‚Z½ AMÉvnÅ Kiv nGqGQ)
K. ‰KwU ˆbŒKv 10 wK. wg. ˆeGM PGj N¥Ÿvq 6 wK. wg. ˆeGM cÉevwnZ
v
( )+
a b
= 20 ... ... (x)

mgxKiY (vii) ˆK (x) w`Gq fvM KGi,


500 wgUvi PIov ‰KwU b`x cvwo w`GZ Pvq| ˆbŒKvwUi bƒÅbZg cG^
v = 20
b`xwU cvwo w`GZ KZ mgq jvMGe? 2 ‰Lb, mgxKiY (x) nGZ,
1 1
L. DóxcGKi AvGjvGK cÉgvY Ki ˆh, a + b = 1. 4 1 1

M. DóxcGKi AvGjvGK cÉgvY Ki ˆh, ˆ`qvGji DœPZv =


200y
4
20
( )+
a b
= 20

200 + y 1 1
 + = 1 (cÉgvwYZ)
wkLbdj-== [KzwgÍÏv ˆevWÆ-2017  cÉk² bs 6] a b

34 bs cÉGk²i mgvavb M

K
 A
O
45
C
200 m B
B D y

gGb Kwi, O we±`yGZ ‰KwU eÕ§ f„wgi mvG^ 45 ˆKvGY wbGÞc KiGj Zv
10 B we±`yGZ AewÕ©Z ˆ`qvjGK AwZKÌg KGi C we±`yGZ cwZZ nq| ‰LvGb,
OB = 200 wgUvi I BC = y wgUvi| Avbyf„wgK cvÍÏv, R = 200 + y
ˆ`qvGji DœPZv h nGj,
O 6 C
200 x
wPGò b`xi cÉÕ© OA = 500 wg. = 0.5 wK. wg.| gGb Kwi, ˆbŒKvwU O h = 200 tan45
( 1–
200 + y )   y = xtan
( )
1–
R
we±`y nGZ OB «¼viv mƒwPZ ˆeGM hvòv KGi ‰es ˆmÉvGZi ˆeM OC «¼viv 200 + y – 200
mƒwPZ| ˆbŒKvwU bƒbÅZg c^ cvwo w`Gj Zvi jwº¬ ˆeM OA eivei = 200
( 200 + y )
wKÌqvkxj ‰es OBDC mvgv¯¦wiGKi KYÆ «¼viv mƒwPZ| 200y
= (cÉgvwYZ)
‰Lb, OBD-‰, OB2 = BD2 + OD2 200 + y
ev, OD2 = OB2 – BD2 = OB2 – OC2 ² 35 `†kÅK͸-1: ‰KwU UvIqvGii P„ov nGZ ‰KLí cv^i 2
cÉk

= 102 – 62 = 100 – 36 = 64
wgUvi wbGP bvgvi ci Aci ‰KLí cv^i P„ovi 6 wgUvi wbP nGZ
 OD = 8 [eMÆgƒj KGi]
ZvnGj, bābZg c^ cvwo w`GZ mgq jvMGe
ˆdGj ˆ`Iqv nGjv|
0.5 5 1 `†kÅK͸-2: ˆKvGbv cÉwÞµ¦ eÕ§i `yBwU MwZcG^ e†nîg DœPZv
= = = N¥Ÿv (Ans.)
8 10  8 16 h^vKÌGg 8m ‰es 10m.
L
 d 200 – d K. ‰KwU eÕ§ 15m/sec ˆeGM Avbyf„wgGKi mvG^ 30 ˆKvGY
O
t A 20 – t
B
wbwÞµ¦ nGj eÕ§wUi ögYKvj KZ? 2
gGb Kwi, cÉ^gvsGk Kwig O ˆ^GK ˆ`ŒGo d `ƒiZ½ t ˆmGKG´£ AwZKÌg L. `†kÅK͸-1 nGZ hw` `yBwU cv^iB wÕ©i AeÕ©v nGZ cGo
KGi A AeÕ©vGb AvGm ‰es w«¼ZxqvsGk (200 – d) wgUvi (20 – t) ‰es ‰KB mvG^ f„wgGZ cwZZ nq ZGe UvIqvGii DœPZv
ˆmGKG´£ AwZKÌg KGi B ˆZ ^vGg| A AeÕ©vGb Zvi ˆeM v.
wbYÆq Ki| 4
M. `†kÅK͸-2 nGZ ˆ`LvI ˆh, R = 16 5 4
cÉ^gvsGk, Z½iGYi mƒò eÅeni KGi cvB,
[PëMÉvg ˆevWÆ-2017  cÉk² bs 7]
v2 = 2ad ... ... (i)
v = at ... ... (ii) 35 bs cÉGk²i mgvavb
w«¼ZxqvsGk, g±`Gbi mƒò eÅenvi KGi cvB, K ‰LvGb, u = 15 m/s,  = 30, g = 9.8 m/s2

2 2
0 = v – 2b(200 – d) ... ... (iii) 2u sin 2  15  sin 30
0 = v – b (20 – t) ... ... (iv)  eÕ§wUi ögYKvj = =
g 9.8
v2 1
mgxKiY (i) nGZ 2a = d ... ... (v) 2  15 
2 15
v2 = = = 1.53s (Ans.)
mgxKiY (iii) nGZ, 2b = 200 – d ... ... (vi) 9.8 9.8

mgxKiY (v) + (vi) nGZ.


ˆevWÆ cixÞvi cÉk²cGòi mgvavb 73
L gGb Kwi, AB UvIqvGii B ˆ^GK ‰KL´£ cv^i BC = 2 wgUvi
 cÉk
² 36 wPGò O we±`y nGZ evqykƒbÅ Õ©vGb cÉwÞµ¦ ‰KwU eÕ§i
wbGP C ˆZ bvgvi ci Aci ‰KL´£ cv^i 6 wg. wbGPi D we±`y
MwZc^ ˆ`LvGbv nGqGQ|
ˆ^GK ˆdjv nGjv| Y
(p, q)
awi, UvIqvGii DœPZv AB = h wg. B
2 wg. V (q, p)
 CD = BD  BC = 6  2 = 4 wg. C
AC = AB  BC = (h  2) wg. O 
6 wg. X X
AD = AB  BD = (h  6) wg. A(R, 0)
C we±`yGZ cÉ^g cv^i L´£wUi ˆeM v nGj, D Y
2 2 A
v = 0 + 2g  2
 v = 6.26 wg./ˆm. K. ˆKvGbv we±`yGZ wKÌqviZ u1 I u2 gvGbi `yBwU ˆeGMi jwº¬i
awi w«¼Zxq cv^iwUi cZbKvj t gvb u ‰es u1 ‰i w`K eivei u ‰i jÁ¼vsGki cwigvY u2
2 2
1
cÉ^g L´£wUi ˆÞGò, h  2 = vt + 2 gt2 ... ... ... (i) nGj ˆ`LvI ˆh, u = u 2 − u1 + 2u1u2 2
1 L. cÉwÞµ¦ eÕ§wUi Avbyf„wgK cvÍÏv p, q ‰i gvaÅGg cÉKvk Ki| 4
w«¼Zxq ,, ,, h  6 = 2 gt2 ... ... ... (ii) v
M. ˆ`LvI ˆh, g cosec mgq cGi cÉwÞµ¦ eÕ§wU Zvi cÉGÞcY
(i)  (ii)ˆ^GK cvB, 4 = vt
4 w`GKi mvG^ jÁ¼fvGe PjGe| 4
ev, t = 6.26  t = 0.64 ˆm. [wmGjU ˆevWÆ-2017  cÉk² bs 7]
v I t ‰i gvb (ii) ‰ ewmGq cvB, 36 bs cÉGk²i mgvavb
1
h  6 =  9.8  (0.64)2 K gGb Kwi, u1 I u2 ˆeM«¼Gqi gaÅeZÆx ˆKvY 

2
ev, h = 6 + 2 myZivs, u1 ˆeGMi wKÌqvGiLv eivei u1 I u2 ˆeGMi jÁ¼vsGki
 h = 8 wg. (Ans.) exRMwYZxq ˆhvMdj
M ‰KB MwZGeGM wbwÞµ¦ `yBwU cÉGÞcGKi Avbyf„wgK cvÍÏvi gvb
 = u1cos 0 + u2cos = u1 + u2 cos

‰KB nGe hw` ‰KwUi wbGÞcY ˆKvY  ‰es AciwUi u1 ‰i w`K eivei u ˆeGMi jÁ¼vsk =u2 [kZÆ Abyhvqx]
(90  ) nq| ˆhGnZz ˆh ˆKvGbv ˆiLv
‰GÞGò, awi, wbGÞcY ˆeM = u eivei jwº¬i jÁ¼vsk ‰es
  ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv, AskK ˆeMàGjvi jÁ¼vsGki u2 u

u2 sin2 exRMwYZxq ˆhvMdj 


h=
2g ciÕ·i mgvb|
u1
u2 sin2

2g
= 8 ... ... ... (i) AZ‰e, u1 + u2 cos = u2
‰es (90  ) ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv, ev, u2 cos = u2  u1
u2 sin2 (90  ) Avevi, cÉ`î ˆeM `yBwUi jwº¬i gvb
h =
2g u = u12 + u22 + 2u1u2 cos
u2 cos2 = u12 + u22 + 2u1(u2  u1)
 = 10 ... ... ... (ii)
2g
= u12 + u22 + 2u1u2 – 2u12
u2 sin2
Avevi, Avbyf„wgK cvÍÏv, R = g u= u22 – u12 + 2u1u2 (ˆ`LvGbv nGjv)
‰Lb, (i) I (ii) àY KGi cvB, L ˆ`Iqv AvGQ, cÉwÞµ¦ eÕ§wU p I q `ƒiGZ½ AewÕ©Z h^vKÌGg q I

4 2
u sin  cos  2
p DœPZvGK ˆKvGbv iKGg AwZKÌg KGi|
= 80
4g2 Avgiv Rvwb, cÉGÞcY ˆKvY , cÉGÞcY ˆeM v ‰es Avbyf„wgK
u4 (sin cos)2
ev,
1 4
4g2
= 80
( x)
cvÍÏv R nGj y = x tan 1  R
u (2 sin cos)2 p
4  q = p tan (1  ) ... ... ... (i)
ev, 4g2
= 80 R
q
4
u (sin2) 2 ‰es p = q tan (1  R) ... ... ... (ii)
ev, 16g2
= 80
2
u sin2 2
ev,  g  = 1280 (i) bs ˆK (ii) bs «¼viv fvM Kwi,
q
=
p (1  Rp )
p q
ev, R2 = 1280 q (1  )
R
 R = 16 5 (ˆ`LvGbv nGjv) q2 Rp
ev, p2 = R  q ev, q2R  q3 = p2R  p3
74 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
ev, p3  q3 = R(p2  q2) 1
mvBGKj AvGivnxi ˆÞGò AC = 2 ft2 [‹ wÕ©iveÕ©vq, u = 0]
ev, (p  q) (p2 + pq + q2) = R(p  q) (p + q)
p2 + pq + q2 1
R=
p+q
(Ans.) ev, AB + BC = 2 ft2
M t mgGq eÕ¦yKYvwUi Avbyf„wgK ˆeM = vcos
 1
ev, 15 + 12.5t = 2  5t2
t mgGq eÕ¦yKYvwUi DÍÏÁ¼ ˆeM = vsingt
ˆhGnZy eÕ¦yKYvwU cÉGÞcY w`GKi mvG^ jÁ¼fvGe PGj KvGRB ev, 30 + 25t − 5t2 = 0
‰wU Avbyf„wgGKi mvG^ (90+ ) ˆKvY Drc®² KiGe|
ev, t2 − 5t − 6 = 0
t mgGq DÍÏÁ¼ ˆeM
tan(90+ ) = ev, t2 − 6t + t − 6 = 0
t mgGq Avbyf„wgK ˆeM
v sin  gt ev, t(t − 6) + 1(1 − 6) = 0
ev,  cot = v cos 
cos v sin gt ev, (t − 6) (t + 1) = 0
ev,  sin  = v cos 
nq t = 6 A^ev t = −1
ev, v sin2gt sin =  v cos2
ev, v(sin2 + cos2) = gt sin t ‰i gvb FYvñK nGZ cvGi bv|
v  t = 6s
ev, v = gt sin  ev, t = g sin
1
vcosec  mvBGKj AvGivnxi AwZKÌv¯¦ `ƒiZ½ AC = 2 ft2
t=
g
(ˆ`LvGbv nGjv)
1
² 37 `†kÅK͸-1: ‰KRb ˆgvUi mvBGKj AvGivnx 15 wgUvi
cÉk
 =  5  62 = 90 m
2
`ƒGi ‰KRb Ak¼vGivnxGK ˆ`LGZ ˆcGq wÕ©iveÕ©v nGZ 5m/sec2
A^Ævr gUi mvBGKj AvGivnx 90m `ƒGi wMGq Ak¼vGivnxGK
Z½iGY Ak¼vGivnxi cøvGZ ˆgvUi mvBGKj PvjvGZ jvMj|
Ak¼vGivnx 12.5 m/sec mgGeGM hvwœQj| aiGZ cviGe| (Ans.)
`†kÅK͸-2: 60 wgUvi DœP Õ¦GÁ¿i kxlÆ nGZ Avbyf„wgGKi mvG^ 30 M gGb Kwi eÕ§wUi cZbKvj t ˆmGK´£

ˆKvGY 100 m/sec Avw`GeGM ‰KwU eÕ§ wbwÞµ¦ nGjv| 1
K. ‰KwU KYv wÕ©iveÕ©v nGZ 7m/sec2 Z½iGY PjGZ ^vKGj ‰Lb h = − usint + 2 gt2 mƒò nGZ cvB,
Z‡Zxq ˆmGKG´£ KZ `ƒiZ½ AwZKÌg KiGe? 2 1 2
L. `†kÅK͸-1 nGZ ˆgvUi mvBGKj AvGivnx KZ `ƒGi wMGq 60 = − 100 sin 30  t +
2
gt
Ak¼vGivnxGK aiGZ cviGe? 4 1 1
M. `†kÅK͸-2 AbymvGi eÕ§wU Õ¦Á¿ nGZ KZ `ƒGi f„wgGK AvNvZ ev, 60 = − 100  2 t + 2  9.8t2
KiGe? 4
ev, 4.9t2 − 50t − 60 = 0
[hGkvi ˆevWÆ-2017  cÉk² bs 7]
−(−50)  (−50)2 − 44.9(−60)
37 bs cÉGk²i mgvavb t=
2  4.9
K Avgiv Rvwb, t Zg ˆmGKG´£ AwZKÌv¯¦ `ƒiZ½

50  60.63
1 =
9.8
= 11.29 ˆmGK´£ (cÉvq) (+ wPn× wbGq)
Sth = u + f(2t − 1)
2
 eÕ§wUÕ¦Á¿ nGZ ˆh `ƒiGZ½ f„wgGK
‰LvGb, u = 0, f = 7 ms−2 , t = 3s
1
AvNvZ KiGe Zvi `ƒiZ½ = u cos t
 S3 = 0 +  7 (2  3 − 1) 3
2 = 100   11.29 m
7 35 2
=  5m = m = 17.5 m (Ans.) = 977.74 m (cÉvq) (Ans.)
2 2

L gGb Kwi A we±`yGZ AeÕ©vbKvGj gUi mvBGKj AvGivnx B


 ² 38 `†kÅK͸-1:
cÉk
 Y
30 m/s

we±`yGZ Ak¼vGivnxGK ˆ`LGZ ˆcj ‰es t mgq ci C we±`yGZ


wMGq Ak¼vGivnxGK aiGZ cviGe|
30
O X
A B C A
`†kÅK͸-2: B

Ak¼vGivnxi ˆÞGò BC = 12.5t [‹ s = vt] d

A d d C
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 75
muvZvi‚i ˆeM u1, ˆmÉvGZi ˆeM u2, AB = d, AC = 2d 0. 668
= = 0.068
9.8
K. u ˆeGM f„wg nGZ Lvov DcGii w`GK wbwÞµ¦ KYvi DïvbKvj
wbYÆq Ki| 2  1 wgUvi DœPZvq AeÕ©vGbi mgGqi cv^ÆKÅ:
L. `†kÅK͸-1 ‰ wbwÞµ¦ KYvwU 1 wgUvi DœPZvq ˆcuŒQvi mgGqi (2.993 – 0.068) ˆmGK´£ = 2.925 ˆmGK´£ (cÉvq) (Ans.)
cv^ÆKÅ wbYÆq Ki| 4
M. `†kÅK͸-2 ‰ AC eivei cÉevwnZ b`x ‰KRb muvZvi‚ t1 M gGb Kwi, AB cG^ hvòvKvGj muvZvi‚i ˆeM u1 ‰es ˆmÉvGZi

mgGq AB `ƒiZ½ ‰es t2 mgGq AC `ƒiZ½ AwZKÌg KiGj t1 ˆeM u2 ‰i gaÅeZÆx ˆKvY  ‰es jwº¬ ˆeM v
‰es t2 ‰i AbycvZ wbYÆq Ki| 4
[ewikvj ˆevWÆ-2017  cÉk² bs 7]  ˆeGMi mvgv¯¦wiK mƒò Abyhvqx,
38 bs cÉGk²i mgvavb v = u12 + u22 + 2u1u2 cos ... ... (i)
2

K u Avw`GeGM ‰KwU eÕ§KYvGK f„wg ˆ^GK Lvov DcGii w`GK


 u sin
wbGÞc KiGj AwfKlÆR Z½iY cÉwZK„Gj KvR KGi eGj g Avevi, tan 90 = u +1 u cos
2 1

g±`Gbi m†wÓ¡ nq ‰es ˆeM KÌgk KgGZ ^vGK| meÆvwaK u2 + u1 cos


DœPZvq DVGZ t mgq jvMGj, ev, cot 90 = u1 sin
v = u – gt
ev, 0 = u – gt [ meÆvwaK DœPZvq ˆeM kƒbÅ] ev, u2 + u1 cos = 0
u
t=  u1 cos = – u2
g

 DïvbKvj = g (Ans.)
u (i) bs ‰ ‰B gvb ewmGq cvB,

L Avgiv Rvwb, cÉwÞµ¦ eÕ§ KYvi DÍÏwÁ¼K miY,


 v2 = u12 + u22 + 2u2.(– u2)

y = ut sin –
1 2
gt ev, v2 = u12 – u22
2
1 v = u12 – u22
 1 = 30. t. sin 30 –  9. 8  t2
2
1 ˆ`Iqv AvGQ, b`xi weÕ¦vi d.
ev, 1 = t  30  2 – 4.9t2 ‰LvGb,
 d = vt1
ev, 4.9t2 + 1 = 15t Avw`GeM, u = 30 ms– 1
d d
wbGÞcb ˆKvY,  = 30  t1 = =
v
2 u12 – u22
 4.9t – 15t + 1 = 0

t=
15  (– 15)2 – 4  1  4 . 9 Avevi, ˆmÉvGZi AbyK„Gj AC cG^ cÉK‡Z ˆeM, u1 + u2
2  4.9
kZÆgGZ, 2d = (u1 + u2)t2
15  225 – 19.6
= 2d
9.8
 t2 =
u1 + u2
15  205.4 15  14.332
= = d 2d
9.8 9.8  t1 : t 2 = :
u12 – u22 u1 + u2
(+) wPn× wbGq,
= (u1 + u2) : 2 u12  u22
15 + 14.332 29.332
t= = = 2.993 2
9.8 9.8 = ( u1 + u2) : 2 (u1 + u2)(u1  u2)
15 – 14.332
(–) wPn× wbGq, t = = u1 + u2 : 2 u1 – u2 (Ans.)
9.8
76 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY

`kg AaÅvq: weÕ¦vi cwigvc I mÁ¿vebv


cÉk
 ² 14 `†kÅK͸-1: 15 bs cÉGk²i mgvavb
ˆkÉwYeÅvwµ¦ 21-30 31-40 41-50 51-60 61-70 K AeRÆbkxj NUbv: `yB ev ZGZvwaK NUbv hw` ‰i…Gc ciÕ·i

MYmsLÅv 10 15 20 17 8 mÁ·KÆhyÚ nq ˆh ZvG`i gGaÅ ˆh ˆKvGbv `yBwU NUbv ‰KGò
`†kÅK͸-2: ‰KwU eÅvGM 7wU jvj, 5wU KvGjv ‰es 4wU mv`v ej NUGZ cvGi| ZvnGj ‰B NUbvmgƒnGK AeRÆbkxj NUbv eGj|
AvGQ| 3wU ej Š`efvGe ˆbIqv nGjv| ‰K cÅvGKU Zvm ‰i gvGS ˆh ˆKvGbv Zvm wbGj ZvmwU jvj
1 1 nIqvi NUbv I ˆUØv nIqvi NUbv `ywU AeRÆbkxj NUbv|
K. P(A) = 3 , P(B) = 6 , A I B Õ¼vaxb nGj P(A / B) wbYÆq Ki| 2
L SzwoGZ 4wU mv`v ej I 5wU KvGjv ej ˆgvU 9wU ej AvGQ|

L. `†kÅK͸-1 ‰i Z^Åvw`i MYmsLÅv wbGekb mviwY ˆ^GK
9wU ej ˆ^GK 3wU ej evQvB Kiv hvq 9C3 DcvGq|
ˆf`vâ wbYÆq Ki| 4
M. `†kÅK͸-2 ‰i AvGjvGK KgcGÞ 2wU jvj ej nIqvi Avevi, 4wU mv`v ej ˆ^GK 3wU ej evQvB Kiv hvq 4C3 DcvGq
mÁ¿veÅZv wbYÆq Ki| 4 wbiGcÞfvGe wZbwU ej ˆZvjv nGj wZbwU ejB mv`v nIqvi
4
wkLbdj- 3, 6 I 7 [PëMÉvg ˆevWÆ -2019  cÉk² bs 8] C 4 1
mÁ¿vebv = 9C3 = 84 = 21 (Ans.)
3
14 bs cÉGk²i mgvavb M ‰LvGb, xi = 5, 9, 8, 11, 20, 23, 24, 14, 15, 21

1 1
K ˆ`Iqv AvGQ, P(A) = 3 , P(B) = 6
  xi = 5 + 9 + 8 + 11 + 20 + 23 + 24 + 14 + 15 + 21 = 150
1 1 1 ‰es xi2 = 52 + 92 + 82 + 112 + 202 + 232 + 242 + 142
AI B Õ¼vaxb nGj, P(A  B) = P(A) . P(B) = 3 . 6 = 18 + 152 + 212 = 2658
2
1 xi xi2 2658 150 2
‰Lb, P(A | B) =
P(A  B) 18 1
P(B)
= 1 = (Ans.)
3
 ˆf`vâ, 2 =
n

 n  = 10  10 ( )
= 265.8  225 = 40.8 (Ans.)
6
L ˆf`vâ wbYÆGqi mviwY:
 cÉk
² 16
ˆkÉwY eÅvwµ¦ MYmsLÅv gaÅwe±`y (xi) fixi fixi2 bÁ¼i 51-60 61-70 71-80 81-90 91-100
(fi)
21-30 10 25.5 255 6502.5
wkÞv^xÆ 10 20 15 10 5

31-40 15 35.5 532.5 18903.75 K. cÉ`î mviwYi RbÅ cwimi KZ? 2


41-50 20 45.5 910 41405 L. DóxcGK ewYÆZ Z^Åvw`i mviwY ˆ^GK cwiwgZ eÅeavb wbYÆq
51-60 17 55.5 943.5 52364.25 Ki| 4
61-70 8 65.5 524 34322
N = 70 n n M. DóxcGKi AvGjvGK Mo eÅeavb wbYÆq Ki| 4
 fixi  fixi2 [w`bvRcyi ˆevWÆ-2017  cÉk² bs 8]
i=1 i=1 16 bs cÉGk²i mgvavb
= 3165 = 153497.5
n K DœPmxgv = 100, wbÁ²mxgv = 51

fixi2 fixi2 153497.2 3165 2
 ˆf`vâ,  =  2

i=1
N

 N 
=
70

70 ( )  cwimi, R = 100  51 = 49 (Ans.)
= 148.4898 (Ans.) L cwiwgZ eÅeavb wbYÆGqi ZvwjKv:

M eÅvGM 7wU jvj, 5wU KvGjv ‰es 4wU mv`v ej AvGQ| ˆgvU ej
 di =
xia
msLÅv 16wU| 16wU ej nGZ 3wU ej 16C3 DcvGq ˆbqv hvq| gaÅwe±`y MYmsLÅv c
ˆkÉYx mxgv fidi fidi2
‰Lb, KgcGÞ 2wU jvj ej nIqvi mÁ¿vebv xi fi a=75.5
c=10
= P{(2wU jvj I ‰KwU wf®²) A^ev (wZbwUB jvj)}
51-60 55.5 10 –2 – 20 40
= P(2wU jvj I ‰KwU wf®²) + P (wZbwUB jvj) 61-70 65.5 20 –1 – 20 20
7
C2  9C1 7C3 21  9 35 224 2 71-80 75.5 15 0 0 0
= 16 + 16 = + = = (Ans.)
C3 C3 560 560 560 5
81-90 85.5 10 1 10 10
cÉk
 ² 15 `†kÅK͸-1: ‰KwU SzwoGZ 4wU mv`v ej ‰es 5wU KvGjv 91-100 95.5 5 2 10 20
ej AvGQ| fiidi fiidi2
ˆgvU N=60
= 20 = 90
`†kÅK͸-2: cÉ`î Dcvî : 5, 9, 8, 11, 20, 23, 24, 14, 15, 21. 2 2
K. D`vniYmn AeRÆbkxj NUbvi msæv `vI| 2 cwiwgwZ eÅeavb,  = fidi fidi
    c2
 N  N  
L. `†kÅK͸-1 nGZ wbiGcÞfvGe wZbwU ej DVvGbv nGj ej 2
wZbwU mv`v nIqvi mÁ¿vebv wbYÆq Ki| 4 = 90  20   102
60  60  
M. `†kÅK͸-2 ‰i Z^Åmvwi ˆ^GK ˆf`vâ wbYÆq Ki| 4
[ewikvj ˆevWÆ -2019  cÉk² bs 8] = 138.89
wkLbdj- 2, 3 I 6
= 11.785 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb 77
M Mo eÅeavb wbYÆGqi ZvwjKv:
 M eÅvGM ˆgvU ej AvGQ (9 + 7)wU = 16wU

gaÅwe±`y MYmsLÅv   16wU ˆ^GK 6wU ej 16C6 cÉKvGi ˆZvjv hvq|
ˆkÉYx mxgv |xi – x| fi|xi  x|
xi fi myZivs 3wU ej jvj I 3wU ej mv`v nIqvi mÁ¿vebv
51-60 55.5 10 16.66 166.7 = P(3wU jvj ej I 3wU mv`v ej)
61-70 65.5 20 6.66 133.3 9
C3  7C3 84  35 105
71-80 75.5 15 3.33 49.95 = 16 = = (Ans.)
C6 8008 286
81-90 85.5 10 13.33 133.4
91-100 95.5 5 23.33 116.65 cÉk
² 18 `†kÅK͸-1: ‰KwU QØv ‰es `yBwU gy`Ëv ‰KGò wbGÞc
fi|xi – x| Kiv nj|
ˆgvU N=60
=600 `†kÅK͸-2: wbGÁ² ‰KwU MYmsLÅv wbGekb ˆ`Iqv nj:
 ˆkÉwY eÅeavb 10-14 15-19 20-24 25-29 30-34 35-39
fi |xi  x| 600
 Mo eÅeavb, MD = = = 10 (Ans.)
N 60 MYmsLÅv 5 8 14 12 9 6
[e. ˆev. 17  cÉk² bs 8]
cÉk
 ² 17 `†kÅK͸-1 : «¼v`k ˆkÉwYi 55 Rb QvGòi MwYGZi bÁ¼Gii
K. eRÆbkxj ‰es AeRÆbkxj NUbvi msæv `vI| 2
‰KwU WvUv wbGÁ² ˆ`Iqv nj :
L. bgybvGÞGòi mvnvGhÅ 2wU ˆnW I weGRvo msLÅv nIqvi mÁ¿vebv
bÁ¼i 51−60 61−70 71−80 81−90 91−100
ˆei Ki| 4
Qvò msLÅv 7 18 15 10 5
M. wbGekbwUi cwiwgZ eÅeavb wbYÆq Ki| 4
`†kÅK͸-2: ‰KwU eÅvGM 9wU jvj I 7wU mv`v ej AvGQ| [ewikvj ˆevWÆ-2017  cÉk² bs 8]
wbiGcÞfvGe 6wU ej ˆZvjv nGjv| 18 bs cÉGk²i mgvavb
1 3
K. P(A) = 3, P(B) = 4, A I B Õ¼vaxb nGj P(A  B) ‰i gvb K eRÆbkxj NUbv (Mutually Exclusive Events): `yBwU NUbv

wbYÆq Ki| 2 ZLbB eRÆbkxj nq hLb ZvG`i gGaÅ ˆKvGbv mvaviY bgybv we±`y
L. `†kÅK͸-1 nGZ cwiwgZ eÅeavb wbYÆq Ki| 4 ^vGK bv| `yB ev ZGZvwaK NUbv hw` ciÕ·i ‰i…Gc mÁ·wKÆZ
M. `†kÅK͸-2 nGZ 3wU ej jvj I 3wU ej mv`v nIqvi mÁ¿vebv ^vGK hvGZ ZvG`i ˆh ˆKvGbv `yBwU NUbv ‰KB mvG^ NUv mÁ¿e
bq ZvnGj DÚ NUbv mgƒnGK ciÕ·i eRÆbkxj ev wewœQ®² NUbv
wbYÆq Ki| 4
[PëMÉvg ˆevWÆ-2017  cÉk² bs 8]
eGj|
17 bs cÉGk²i mgvavb S

1 3
K ˆ`Iqv AvGQ, P(A) = 3 ‰es P(B) = 4
 A B

‰LvGb, A I B Õ¼vaxb|
1 3 1 wPò : A I B eRÆbkxj NUbv
myZivs P(A  B) = P(A). P(B) = 3 . 4 = 4
AeRÆbkxj NUbv (Not mutually Exlusive Events): `yB ev
myZivs P(A  B) = P(A) + P(B)  P(A  B) ZGZvwaK NUbv hw` ‰i…Gc ciÕ·i mÁ·KÆ hyÚ nq ˆh ZvG`i
1 3 1 4 + 9  3 13  3 10 5
= +  = = = = gGaÅ ˆh ˆKvGbv `yBwU NUbv ‰KGò NUGZ cvGi ZvnGj ‰B
3 4 4 12 12 12 6
NUbvmgƒnGK ciÕ·i AeRÆbkxj NUbv eGj| ‰i…c NUbv«¼Gqi
(Ans.)
gGaÅ AekÅB mvaviY bgybv we±`y ^vKGe|
L cwiwgZ eÅeavb wbYÆGqi QK :

S
u =
Qvò gaÅwe±`y x  i75.5 2 3
bÁ¼i i fiui fiui2 A B
msLÅv (fi) (xi) 10
6
4
51-60 7 55.5 2  14 28
61-70 18 65.5 1  18 18 (A  B)
71-80 15 75.5 = a 0 0 0 wPò : A I B AeRÆbkxj NUbv
81-90 10 85.5 1 10 10
L `yBwU gy`Ëv I ‰KwU QØv wbGÞc KiGj bgybv ˆÞòwU wbÁ²i…cfvGe

91-100 5 95.5 2 10 20
fi = N = fiui = fiui2 ˆ`LvGbv ˆhGZ cvGi:
‰KwU QØvi bgybv ˆÞGòi bgybvwe±`y
`ywU gy`Ëvi bgybv ˆÞGòi

55 12 = 76
fiui2 fiui2 1 2 3 4 5 6
 cwiwgZ eÅeavb = c 
bgybv we±`y

N N H (HH1) (HH2) (HH3 (HH4) (HH5) (HH6)


76  122 H )
= 10  HT (HT1) (HT2) (HT3) (HT4) (HT5) (HT6)
55  55 
TH (TH1) (TH2) (TH3) (TH4) (TH5) (TH6)
= 10 1.3818  0.0476
TT (TT1) (TT2) (TT3) (TT4) (TT5) (TT6)
= 10 1.3342
= 10  1.155 bgybv ˆÞGòi ˆgvU bgybv we±`yi msLÅv, n(S) = 24
= 11.55 (cÉvq) (Ans.) awi, A `yBwU ˆnW I weGRvo msLÅv cvevi NUbv
78 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
A NUbvi AbyK„j bgybvGÞò : {HH1, HH3, HH5} fiui2 fiui2
 cwiwgZ eÅeavb,  = –
 N  c
 A NUbvi AbyK„j bgybvwe±`yi msLÅv, n(A) = 3 N
AZ‰e wbGYÆq mÁ¿vebv, 130 30 2
n(A) 3 1 = –  5
P(A) = =  . 54  54
n(S) 24 8
= 2.4074 – 0.3086  5
M wbGekbwUi cwiwgZ eÅeavb wbYÆq KiGZ wbÁ²wjwLZ QKwU ŠZwi Kiv

= 2.0988  5
nGjv:
= 1.4487  5
ˆkÉwY gaÅwe±`y MYmsLÅv ui = xia
c fiui fiui2 = 7.2435 (cÉvq) (Ans.)
eÅeavb xi fi
a=22, c=5
10-14 12 5 –2 – 10 20
15-19 17 8 –1 –8 8
20-24 22 14 0 0 0
25-29 27 12 1 12 12
30-34 32 9 2 18 36
35-39 37 6 3 18 54
ˆgvU N = 54 fiui=30 fiui2 = 130

You might also like