Panjeree Math
Panjeree Math
‰Kv`k-«¼v`k ˆkÉwY
w«¼Zxq cò
                                                             m†Rbkxj iPbvgƒjK
                                                       Z‡Zxq AaÅvq: RwUj msLÅv
                                                                                                   2x + 3     x+3
cÉk
² 21 wbGPi DóxcKwU jÞÅ Ki :                                              M cÉ`î AmgZv: x  3 < x  1
                                                                            
 z = x + iy; |z + 5| + |z − 5| = 15 .................. (i)
                                                                                      2x + 3       x+3
 2x + 3 x + 3                                                                  ev, x  3  x  1 < 0
        <                 ........................... (ii)
  x−3 x−1
                                                                                     (2x2 + 3x  2x  3)  (x2  9)
 K. ‰KGKi Nbgƒjmgƒn wbYÆq Ki|                                          2       ev,           (x  3) (x  1)
                                                                                                                    <0
 L. DóxcK-1 nGZ, mÂvicG^i mgxKiY wbYÆq Ki|                             4             2x2 + x  3  x2 + 9
 M. DóxcK-2 ‰ ewYÆZ AmgZvwUi mgvavb Ki ‰es                                     ev,     (x  3) (x  1)
                                                                                                          <0
    msLÅvGiLvq ˆ`LvI|                                                  4               x2 + x + 6
                                                                               ev, (x  3) (x  1) < 0
                                         [PëMÉvg ˆevWÆ-2017  cÉk² bs 1]
                                                                                            1        1 2     1
                          21 bs cÉGk²i mgvavb
                                                                               ev,
                                                                                     x2 + 2. .x +
                                                                                            2        ()
                                                                                                     2
                                                                                                         +6
                                                                                                             4
                                                                                                               <0
                     3                                                                      (x  3) (x  1)
K gGb Kwi, 1 = x ZvnGj, x3 = 1 ev, x3  1 = 0
                                                                                      1    23  2
  ev, (x  1) (x2 + x + 1) = 0
   x  1 = 0 A^ev x2 + x + 1 = 0                                              ev,
                                                                                   (x+ ) +
                                                                                      2    4
                                                                                              < 0 ... ... ... (i)
                                                                                     (x  3) (x  1)
  ‰Lb, x  1 = 0 nGj, x = 1
                                                                                         ( 1) + 234 > 0
                                                                                                     2
                                            1       14
                                                                               ‰LvGb, x + 2
     Avevi, x2 + x + 1 = 0 nGj, x =          2
                                                                                (x  3) I (x  1)‰i gGaÅ ‰KwUi wPn× abvñK ‰es
                                        1
                                      = ( 1  i 3)                            AciwUi wPn× FYvñK nGj (i) AmgZvwUi kZÆ wm«¬ KGi|
                                        2
                                     1                                             kZÆ      (x  1) ‰i (x  3) ‰i (x  3) (x  1) ‰i
     myZivs, ‰KGKi       Nbgƒjàwj 1, 2 ( 1 + i 3)
                                                                                                wPn×       wPn×           wPn×
                                 1
                             ‰es 2 ( 1  i 3) (Ans.)                                 x<1                                           +
                                                                                     1<x<3               +                           
L ˆ`Iqv AvGQ, z = x + iy
                                                                                     x>3                +            +               +
  ‰Lb, |z + 5| + |z  5| = 15                                                   (i) AmgZvwU  mZÅ nGe hw` 1 < x < 3 nq|
  ev, |x + iy + 5| + |x + iy  5| = 15
                                                                                wbGYÆq mgvavb : 1 < x < 3
  ev, |x + 5 + iy| + |x  5 + iy| = 15
                                                                               msLÅvGiLv :
  ev, (x + 5)2 + y2 + (x  5)2 + y2 = 15                                                            1 0 1 2 3 4
                                                                  Y                                  (ii)             (i)
             = 4 cos2 + 4 sin2 = 4 (cos2 + sin2) = 4
     x + y2 = 4
         2
                (cÉgvwYZ)                                   ˆjLwPGò ˆ`Lv hvq, (i) bs ‰i mKj we±`y ‰es ‰i ˆh cvGk
M `†kÅK͸ 2 nGZ cvB, F = y − 2x
                                                           gƒjwe±`y ˆmB cvGki mKj we±`yi RbÅ mZÅ|
  kZÆàwj : x + 2y  6, x + y  4, x, y  0                  (ii) bs ‰i mKj we±`y ‰es ‰i ˆh cvGk gƒjwe±`y Zvi wecixZ
  F ‰i mGeÆvœP gvb wbYÆq KiGZ nGe|                          cvGki mKj we±`yi RbÅ mZÅ|
  cÉ`î AmgZvàwjGK mgZv aGi mgxKiYàwji ˆjLwPò Aâb            Avevi (i) I (ii) ‰i ˆQ`we±`y P(2, 2)
  Kwi ‰es mgvavGbi mÁ¿veÅ ‰jvKv wPwn×Z Kwi|                 (iv) I (ii) ‰i ˆQ`we±`y Q(4, 0)
                                       x    y
    Avgiv cvB, x + 2y = 6 ev, 6 + 3 = 1... ... ... (i)      (iv) I (i) ‰i ˆQ`we±`y R (6, 0)
                                                             wbGYÆq ˆKŒwYK we±`y P(2, 2), Q(4, 0) I R(6, 0)
                       x    y
    x+y=4          ev, 4 + 4 = 1 ... ... ... (ii)           ‰Lb P(2, 2) we±`yGZ F = 2 − 2.2 = 2 − 4 = − 2
    x = 0 ... ... ... (iii),     y = 0 ... ... ... (iv)     Q (4, 0) we±`yGZ F = 0 − 2.4 = 0 − 8 = − 8
                                                            R (6, 0) we±`yGZ F = 0 − 2.6 = 0 − 12 = − 12
                                                             wbGYÆq mGeÆvœP gvb −2 (Ans.)
4                                                                                    cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
cÉk
² 31 (x) = ax3 + bx2 + cx + d; (x) = x2  mx + l.                      (i) bs   mgxKiGYi gƒj«¼Gqi RbÅ,
 K. a ‰i gvb KZ nGj (a  1)x2  (a + 2)x + 4 = 0                            +=l
    +=
                            b
                                ‰es  = 2
                                                      3                               cÉ`î mgxKiY: b(x2 + 1)  (c2  2b)x = 0
                            2
                                                                                      ev, (x2 + 1)  {( + )2  2}x = 0
    Avevi, (ii) bs mgxKiGYi gƒj«¼q  I                                               ev, x2 +   (2 + 2)x = 0
                            q                     7
    +=
                            5
                                ‰es  = 5                                            ev, x2 +   2x  2x = 0
                                      +               +                         ev, x2  2x  2x +  = 0
    cÉkg² GZ,  =  ev,    =                                                    ev, x(x  )  (x  ) = 0
                  +              +                                                ev, (x  )(x  ) = 0
    ev,                      =
              ( + )2  4   ( + )2  4                                          x   = 0      A^ev x   = 0
                     b                 4                                                                              
                   
                     2
                                    
                                       5                                              ev, x =             ev, x = 
    ev,                      =
                   b 2     3
                 2   4.2      5   4.75
                                     q 2                                                        
                                                                                       gƒj«¼q: , (Ans.)
                                                                                            
              b2                q2                                              M ‘L’ nGZ cvB,  +  =  c ‰es  = b
                                                                                
              4                 25                                                                 1               1
    ev, b2              =
                            q2 28                                                     ‰Lb,  +  ‰es  +  gƒjwewkÓ¡ mgxKiY:
              6              
          4                 25 5                                                                                     1
                   b2   q2                                                            x2  +  +  +  x +  +
                                                                                           (       1       1
                                                                                                               )        + 1  = 0
                                                                                                                       
                                                                                                                            
                   4    25
    ev, b2         =
                b2 q2 28 q2
                                                                                                        1 1                       1
                                                                                      ev, x   +  +  + x +  + 1 + 1 +  = 0
                                                                                           2 
           6            
        4        4 25 5 25
                                                                                                         +                    1
        b2 q2                                                                         ev, x2   +  +  x + 2 +  +  = 0
        4 25
    ev, 6 = 28                                                                                          c                1
                                                                                      ev, x2   c + b x + 2 + b + b  = 0
              5                                                                                                            
        b2 q2                                                                                          c                   1
    ev, 24 = 140                                                                      ev, x2 + c + b x + 2 + b + b  = 0
                                                                                                                 
                                                                                                                  2
        b2 24      6                                                                             bc + c    2b + b   + 1
    ev, q2 = 140 = 35                                                                 ev, x2 +  b x +                =0
                                                                                                         b           
          b
    ev, q =
                     6                                                                ev, bx2 + (bc + c)x + (b2 + 2b + 1) = 0
                    35                                                                ev, bx2 + c(b + 1)x + (b + 1)2 = 0
     b : q = 6 : 35 (ˆ`LvGbv                              nGjv)                       wbGYÆq mgxKiY, bx2 + c(b + 1)x + (b + 1)2 = 0 (Ans.)
6                                                                             cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
cÉk
² 34 `†kÅK͸-1: (x) = x4  3x3  11x2 + 23x  10.                 ² 35 `†kÅK͸: f(x) = ax2 + bx + c, a  0 ‰KwU w«¼NvZ
                                                                   cÉk
                                                                   
 `†kÅK͸-2: g (x) = x3  3x2  8x + 30.                            dvskb|
                                                   1     1          K. a = 1, b =  2, c = 1 nGj, (x) = 0 mgxKiGYi gƒGji
 K. x2 + 5x + 3 = 0 mgxKiGYi gƒj«¼q ,  nGj,    ‰i gvb
                                                                        cÉK‡wZ wbYÆq Ki|                                    2
   wbYÆq Ki|                                                   2    L. `†kÅKG͸i AvGjvGK (x) = 0 mgxKiGYi gƒj«¼q ,  nGj,
L. `†kÅK͸-2 ‰i AvGjvGK g (x) = 0 mgxKiGYi ‰KwU gƒj 3 +                        b2
                                                                        cx2      2c x + c = 0 mgxKiGYi    gƒj«¼q
   i nGj, Aci gƒjàwj wbYÆq Ki|                                 4              a      
                                                                      ,  ‰i gvaÅGg cÉKvk Ki|                                    4
M. `†kÅK͸-1 ‰i AvGjvGK (x) = 0 mgxKiGYi ‰KwU gƒj 1
                                                                   M. `†kÅKG͸ a = 1, b =  2n, c = n2  m2 nGj ‰gb ‰KwU
   ‰es Aci gƒjàwj , ,  nGj
                                                                      mgxKiY MVb Ki hvi gƒj«¼q, (x) = 0 mgxKiGYi
   3 + 3 + 3 wbYÆq Ki|                                      4      gƒj«¼Gqi ˆhvMdj I A¯¦idGji ˆhvMGevaK gvb nGe|               4
wkLbdj- 3, 7 I 9              [w`bvRcyi ˆevWÆ-2021  cÉk² bs 1]   wkLbdj- 3, 4, 5, 6 I 7         [w`bvRcyi ˆevWÆ-2021  cÉk² bs 2]
                     34 bs cÉGk²i mgvavb                                                35 bs cÉGk²i mgvavb
K ˆ`Iqv AvGQ, x + 5x + 3 = 0 mgxKiGYi gƒj«¼q , 
                 2
                                                                   K ˆ`Iqv AvGQ, (x) = ax2 + bx + c
                                                                   
     +  =  5 ‰es   = 3                                          a = 1, b =  2 ‰es c = 1 nGj (x) = 0
                  1    1
     cÉ`î ivwk =    = 
                                                                   mgxKiYwUi wbøvqK, D = b2 4ca
                                                                                               = (2)2  4.1.1 = 4  4 = 0
                      (  ) 2              2
                                       ( + )  4                     (x) = 0 mgxKiGYi gƒj«¼q evÕ¦e, gƒj` I mgvb nGe| (Ans.)
                 =            =
                                                               L cÉ`î f(x) = 0 ev ax2 + bx + c = 0 mgxKiGYi gƒj«¼q , 
                                                                   
                      (5)2  4.3   13                                             b             c
                 =
                         3
                                  =
                                    3
                                       (Ans.)                           +=
                                                                                    a
                                                                                        ‰es  = a
                                                                                                 2
L ˆ`Iqv AvGQ, g(x) = x3  3x2  8x + 30
                                                                       cÉ`î mgxKiY: cx2   b  2c x + c = 0
                                                                                              a       
  cÉkg² GZ, x3  3x2  8x + 30 = 0 mgxKiGYi ‰KwU gƒj                        c 2       2            c
                                                                        ev, a x   b2  2 c x + a = 0
  3 + i| ZvnGj Aci ‰KwU gƒj nGe 3  i; KviY RwUj gƒjàwj                           a       a
  ˆRvovq ˆRvovq ^vGK|                                                   ev, x2  {( + )2  2} x +  = 0
  awi, Aci gƒj                                                         ev, x2  (2 + 2)x +  = 0
  gƒjòGqi àYdj (3 + i) (3  i).  =  30                                ev, x2  2x  2x +  = 0
              ev, (9  i2).  =  30 ev, (9 + 1)  =  30               ev, x (x  )   (x  ) = 0
                                                                         (x  ) (x  ) = 0
              ev, 10  =  30   =  3
                                                                        nq x   = 0 A^ev x   = 0
   g (x) = 0 mgxKiGYi Aci gƒjàwj 3  i,  3. (Ans.)
                                                                                               
                                                                        ev, x =        ev, x = 
M ˆ`Iqv AvGQ, f(x) = x4  3x3  11x2 + 23x  10
                 x4  3x3  11x2 + 23x  10 = 0 ... ... ... (i)                
                                                                        x = , (Ans.)
                                                                                
     ˆ`Iqv AvGQ, cÉ`î (i) bs mgxKiGYi ‰KwU gƒj 1 ‰es Aci
                                                         M cÉ`î mgxKiY, (x) = 0
                                                         
     gƒjàwj , , 
                                                           ev, ax2 + bx + c = 0
       = 1 +  +  +  = 3   +  +  = 2 ... (ii)
                                                                        a = 1, b =  2n, c = n2  m2 nGj mgxKiYwU      nGe,
      = 1. + 1. + 1. + . + . +  = 11
                                                                        x2  2nx + n2  m2 = 0 ... ... ... (i)
     ev,  +  +  +  +  +  =  11                                awi, (i) bs mgxKiGYi gƒj«¼q  ‰es 
     ev,  +  +  = 11  2 [‹  +  +  = 2]                        +  = 2n ‰es  = n2  m2
       +  +  =  13 ... ... (iii)                                cÉkg² GZ, wbGYÆq mgxKiGYi gƒj«¼q  +  ‰es |  |
     ‰es  =  10 ... ... ... (iv)                                    ‰Lb, (  )2 = ( + )2  4
     cÉ`î ivwk = 3 + 3 + 3                                           ev,    =  ( + )2  4 =  (2n)2  4 (n2  m2)
     = 3 + 3 + 3  3 + 3                                                   =  4n2  4n2 + 4m2 =  4m2 =  2m
     = ( +  + ) {2 + 2 + 2      } + 3                  |  | = 2m
     = ( +  + ) {( +  + )2  2 ( +  + )                      wbGYÆq mgxKiY:
                                       ( +  + )} + 3          x2  {( + ) + | |} x + ( + ) |  | = 0
                               2
     = ( +  + ) {( +  + )  3 ( +  + )} + 3              ev, x2  (2n + 2m)x + 2n.2m = 0
     = 2 {22  3 (13)} + 3. (10) = 56 (Ans.)                           x2  2 (m + n)x + 4mn = 0 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                7
   ² 36 `†kÅK͸-1: x2  px + pq = 0.
cÉk
                                                                             ˆhGnZz,  mgxKiY«¼Gqi mvaviY gƒj ˆmGnZz (i) I (ii) bs nGZ
 `†kÅK͸-2: x2 + ax + b = 0 ‰es x2 + bx + a = 0.                                cvB,
 K. x3 + qx + r = 0 mgxKiGYi gƒjàGjv a, b, c nGj (b + c  a)                             2 + a + b = 0
     (c + a  b) (a + b  c) ‰i gvb wbYÆq Ki|                          2                 2 + b + a = 0
                   q+       2
                            q  4pr         q    q2  4pr                           ( 4)     ( 4)2  4.1.1
                           2p
                                      ‰es         2p
                                                           ,                    x=
                                                                                                 2.1
     ˆhLvGb p, q, r evÕ¦e msLÅv|                                   4  16  4 4  2 3
                                                                 =               =           =2 3
     ‰LvGb jÞYxq ˆh, Dfq gƒGjB ‰KwU ivwk q  4pr      2                  2           2
     we`Ågvb| myZivs ‘ ’ ‰i gGaÅi ivwk (q2  4pr) ‰i wewf®²     Aci gƒj `yBwU nGjv 2 + 3 I 2  3 (Ans.)
                                                             M (x) = x3  3x2 + 5x  8
     gvGbi RbÅ gƒj«¼Gqi cÉK‡wZI cwiewZÆZ nGe| A^Ævr, q  4pr 
                                                      2
     (iii) hw` q2  4pr FYvñK A^Ævr, q2  4pr < 0 nq, ZGe                                                   + ca(c2 + a2 + b2)  abc(c + a + b)
           gƒj«¼q RwUj I Amgvb nGe| RwUj gƒj«¼q ‰KwU                                2     2    2
                                                                                = (a + b + c )(ab + bc + ca)  abc(a + b + c)
           AciwUi Abye®¬x nGe|                                                  = {(a + b + c)2  2(ab + bc + ca)}(ab + bc + ca)  abc(a + b + c)
     (iv) hw` q2  4pr abvñK A^Ævr, q2  4pr > 0 ‰es cƒYÆeMÆ                    = (32  2.5).5  8.3 = (9  10).5  24
           msLÅv ‰es p, q, r gƒj` msLÅv nq, ZGe gƒj«¼q gƒj` I                   =  5  24 =  29 (Ans.)
           Amgvb nGe|
                                                                           cÉk²43 F(x) = 27x2 + 6x  (m + 2), P(x) = rx2  2nx + 4m
                                                                           
cÉk
² 42 (x) = x  9x + 21x  5; (x) = x  3x + 5x  8.
                       3     2                      3      2
                                                                            ‰es Q(x) = mx2 + nx + r.
 K. ‰KwU w«¼NvZ mgxKiY wbYÆq Ki hvi ‰KwU gƒj 2  3i.   2                    K. (2 + 2 3i) gƒjwewkÓ¡ w«¼NvZ mgxKiY wbYÆq Ki|              2
 L. (x) = 0 mgxKiGYi ‰KwU gƒj 5 nGj Aci gƒj«¼q wbYÆq                       L. F(x) = 0 mgxKiYwUi ‰KwU gƒj Aci gƒjwUi eGMÆi mgvb
     Ki|                                               4                        nGj, m ‰i gvb wbYÆq Ki|                                  4
 M. (x) = 0 mgxKiGYi gƒjòq a, b, c nGj a3b ‰i gvb                         M. P(x) = 0 ‰es Q(x) = 0 mgxKiY `ywUi ‰KwU mvaviY gƒj
     wbYÆq Ki|                                         4                        ^vKGj, cÉgvY Ki ˆh, (2m  r)2 + 2n2 = 0
                                                                                A^ev 2m + r = 0                                          4
wkLbdj- 6, 7 I 9                        [ewikvj ˆevWÆ-2021  cÉk² bs 2]   wkLbdj- 4, 5, 6 I 7              [XvKv ˆevWÆ-2019  cÉk² bs 2]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                11
                    43 bs cÉGk²i mgvavb                                                  44 bs cÉGk²i mgvavb
K wbGYÆq w«¼NvZ mgxKiYwUi ‰KwU gƒj (2 + 2 3i) nGj Aci
                                                                     K (m  1)x  (m + 2)x + 4 = 0 mgxKiGYi gƒjàGjv evÕ¦e I mgvb
                                                                                     2
cÉk
² 45 P(x) = mx3 + nx2 + qx + r.                                            ² 46 `†kÅK͸-1: g(x) = 1  9x + 20x2
                                                                           cÉk
                                                                           
                                                                                                                  1
             1      1           a+b
   ‰Lb, a + b + b + a = a + b + ab                                                  msLÅv| wK¯§ RwUj gƒj ˆRvovq ^vGK| myZivs w«¼Zxq gƒjwU  2i|
         3                                                                          awi, Z‡Zxq gƒj 
     3 4 3 3
   = + = + 8
                                                                                    cÉ`î mgxKiY nGZ cvB,
     4 1 4 4                                                                                    2i + ( 2i) +  =  1
         8
                                                                                     ev,  =  1
     3 + 24 27
   =
       4
            =
               4                                                                      gƒjòq, h^vKÌGg  2i,  1 (Ans.)
             1         1                                                          L lx2 + mx + n = 0 mgxKiYwUi gƒj«¼q a I b nGj,
                                                                                  
        ( )( )
   ‰es a + b b + a
                                                                                                           m                  n
                   1 1            1 + 80 81                                                     a+b=
                                                                                                            l
                                                                                                                 ‰es ab = l
   = ab + 1 + 1 + = + 2 + 8 =            =
                  ab 8              8      8
                                                                                      ‰Lb, nl(x2 + 1) + (2nl  m2)x = 0
                             27       81
    wbGYÆq mgxKiY: x2 
                              4
                                   x+
                                       8  ( )
                                         =0                                           ev, ln (x2 + 1)  (m2  2nl)x = 0
                                                                                           ln(x2 + 1) 1 2
                        ev, 8x  54x + 81 = 0 (Ans.)
                                 2
                                                                                     ev,       l2
                                                                                                      2 (m  2nl)x = 0 [l2
                                                                                                      l
                                                                                                                                              «¼viv fvM KGi]
14                                                                                          cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
         n                       2
                                                                                                             49 bs cÉGk²i mgvavb
      ev, l (x2 + 1)    (ml  2 nl )x = 0
                             2
                                                                              K 4x + 2x  1 = 0
                                                                                     2
         n                   m        2    n
      ev, l (x2 + 1)   l   2 l x = 0                                  wbøvqK = (2)2  4.(1).4 = 4 + 16 = 20
                                       
      ev, ab(x + 1)  {(a + b)  2ab}x = 0
              2                 2                                               ˆhGnZz mgxKiYwUi wbøvqK abvñK wK¯§ cƒYÆeMÆ bq| AZ‰e
      ev, abx2 + ab  a2x  b2x = 0                                             mgxKiYwUi gƒj«¼q, evÕ¦e Amgvb I Agƒj`|
      ev, abx2  a2x + ab  b2x = 0                                           L px2 + qx + r = 0 ‰i RbÅ cÉk²wU mgvavb Kiv mÁ¿e bq| r ‰i
                                                                              
      ev, ax(bx  a)  b(bx  a) = 0                                            Õ©Gj q nGj Zv cÉgvY Kiv mÁ¿e|
      ev, (bx  a) (ax  b) = 0                                                 gGb Kwi, px2 + qx + q = 0
       bx  a = 0           A^ev, ax  b = 0                                   cÉ`î mgxKiGYi gƒj«¼q, u ‰es v
               a                            b
      ev, x = b                      ev, x = a                                                               q                        q
                                                                                          u + v = –
                                                                                                             p
                                                                                                                 ‰es u.v = p
                   a             b
       gƒj
        `yBwU: b ‰es a (Ans.)                                                                         q
                                                                                  u+v=–                ... ... ... (i)
                                                                                                     p
M ˆ`Iqv AvGQ, l = 42, m =  13, n = 1
                                                                                              q
       {(x)}1 = (42x2  13x + 1)1                                              uv =             ... ... ... (ii)
                                                                                              p2
                    = (42x2  7x  6x + 1)1                                                     u       v          q u+v                    q
                    = {7x (6x  1)  1 (6x  1)}1                                ‰Lb,           v
                                                                                                   +
                                                                                                         u
                                                                                                            +
                                                                                                                    p
                                                                                                                      =    +
                                                                                                                                             p
                                                                                                                        uv
                    = {(6x  1) (7x  1)}1
                              1                                                                     q
                    =                                                                          –
                      (6x  1) (7x  1)                                                            p            q
                                                                                          =              +
                                                                                                                 p
                                                                                                                               [(i) I (ii) bs nGZ]
                    1              A          B                                                     q
      awi, (6x  1) (7x  1)  6x  1 + 7x  1                                                     p2
      Dfq cÞGK (6x  1) (7x  1) «¼viv àY KGi cvB,                                              q p                q
                                                                                          =–         +
      1  A(7x  1) + B(6x  1)                                                                p q                  p
          1                    1                   1
          7                  ( 7   ) (
      x = nGj, 1 = A 7   1 + B 6   1 )         7                                      =–
                                                                                               q
                                                                                               p
                                                                                                 +
                                                                                                     q
                                                                                                     p
                                                                                                       =0
                            1
                             ( )
      ev, 1 = A  0 + B  7  B =  7
                                                                                 
                                                                                           u
                                                                                           v
                                                                                             +
                                                                                                 v
                                                                                                 u
                                                                                                   +
                                                                                                        q
                                                                                                        p
                                                                                                          =0                  (cÉgvwYZ)
                  1                   1              1
                                 (   ) (   )
      Avevi, x = 6 nGj, 1 = A 7  6  1 + B 6  6  1
                                                                                              ( 1)
                                                                              M cÉ`î ivwk = 3x2  x
                                                                              
                                                                                                                     n
                   1
      ev, 1 = A  6 + B  0  A = 6                                                                1             9
                                                                                  n = 9 nGj, (3x  ) ‰i gaÅc` nGe 2wU ‰es Zv nGe,
                                                                                                         2
                    1              6          7                                                    x
                             =          
           (6x  1) (7x  1) 6x  1 7x  1
           =
                  6
                         
                                7
              (1  6x)  (1  7x)
                                                                                  ( 2 ) Zg c` = (9 +2 1) Zg c` = 5 Zg c` ‰es
                                                                                    n+1
           =
                7
                      
             1  7x 1  6x
                          6                                                       (n +2 1 + 1) Zg c` = (9 2+ 1 + 1) Zg c` = 6 Zg c`|
                                                                                                                                                    1   4
           = 7(1 – 7x)–1 – 6(1 – 6x)–1                                            5   Zg c` = (4 + 1) Zg c` = 9C4 (3x2)9  4 .  x 
           = 7{1 + 7x + 49x2 + .... + 7r . xr + ...}
            6{1 + 6x + 36x2 + ..... + 6r.xr + ... }                                                                                     1
                                                                                                                         = 126.35. x10.      = 30618 x6
                                                                                                                                         x4
       r = 99 nGj, Avgiv cvB,
                                                                                                                                                  1 5
           7(1 + 7x + 49x2 + ..... + 799.x99)
            6(1 + 6x + 36x2 + .... + 699.x99)
                                                                                  6   Zg c` = (5 + 1) Zg c`                   = 9C5 (3x2)9  5. ( )
                                                                                                                                                  x
       x99 ‰i mnM = 7100  6100 (Ans.)                                                                                                 1
                                                                                                                          = 126. 34. x8. 5 = 10206 x3
                                                                                                                                        x
² 49 `†kÅK͸-1: px2 + qx + r = 0 mgxKiGYi gƒj `ywUi AbycvZ
cÉk                                                                              n=9         nGj gaÅc`«¼q 30618 x6,  10206 x3 (Ans.)
u : v|                                                                                                                   12
cÉk
² 52 z =  + i, ˆhLvGb  I  evÕ¦e msLÅv|                                               L cÉ`î mgxKiY x2 + bx + c = 0 ‰i gƒj«¼q , 
                                                                                            
                                                                                                                                                  +=b
      x3 – 8
 K.   x–2
             eüc`xi             NvZ wbYÆq Ki|                                           2       ‰es  = c
                                                                                                ‰Lb, c(x2 + 1)  (b2  2c)x = 0
 L. DóxcGK  = 2,  = 3 nGj, z gƒjwewkÓ¡ w«¼NvZ mgxKiY                                          ev, cx2  (b2  2c)x + c = 0
    wbYÆq Ki|                                          4                                        ev, x2  {( + )2  2}x +  = 0
 M. DóxcGK  = 0 ‰es  I  ‰i mnM ciÕ·i mgvb nGj
                      5    15
                                                                                                ev, x2  (2 + 2 + 2  2)x +  = 0
                          10                                                                    ev, x2  (2 + 2)x +  = 0
       2z2 + R3 ‰i weÕ¦‡wZ ˆ^GK R ‰i gvb wbYÆq Ki|                                    4
             z                                                                                ev, x2  2x  2x +  = 0
                                                      [KzwgÍÏv ˆevWÆ-2017  cÉk² bs 3]          ev, x(x  )  (x  ) = 0
                                   52 bs cÉGk²i mgvavb                                          ev, (x  ) (x  ) = 0
                                                                                                                 
       3
      x –8            3
                     x –2      3
                                    (x – 2)(x2 + 2x + 4)                                        x=         ‰es 
K x–2 = x–2 =
                                           x–2
                                                                                                        
                                                                                                                         
                                                                                                 gƒj
                                                                                                    `yBwU  ‰es  (Ans.)
                 = x2 + 2x + 4 ‰LvGb x ‰i                  mGeÆvœP NvZ 2 (Ans.)
L ˆ`Iqv AvGQ, z =  + i
                                                                                           M x2 + bx + c = 0 mgxKiGYi gƒj«¼q , 
                                                                                            
  hLb,  = 2,  = 3 nq ZLb, z = 2 + i 3                                                                                                +=b
                                                                                                                                         = c
  z ˆKvb mgxKiGYi gƒj nGj, x = 2 + i 3 ev, x  2 = i 3                                         wbGYÆq mgxKiGYi gƒj«¼Gqi ˆhvMdj
                    ev, x2  4x + 4 =  3  x2  4x + 7 = 0                                          1        1                1 1
                                                                                               =+      +  + = ( + ) +  + 
  BnvB wbGYÆq mgxKiY| (Ans.)                                                                                                 
                                                                                                                       +             b  bc  b
M  = 0 nGj, z = 
                                                                                                             =b+
                                                                                                                        
                                                                                                                               =b+
                                                                                                                                       c
                                                                                                                                          =
                                                                                                                                               c
                                     10                     10
                                                                                                                           1       1                   1
      ZvnGj,          2z + R3 =  22 + R3
                          2                                                                    ‰es gƒj«¼Gqi àYdj =  +   +  =  + 1 + 1 + 
                           z           
                                                                                                                             1 c2 + 2c + 1 (c + 1)2
                                    10
                                                                                                                  =c+2+ =                   =
                               R                                                                                             c       c           c
      ‰Lb,  22 + 3 ‰i weÕ¦‡wZGZ, (r + 1)Zg c`                                                      1           1
                                                                                                                
                                         r                                                         I  +  gƒjwewkÓ¡ wbGYÆq mgxKiY,
                                                                                                +
        10
      = Cr (2 )       2 10 – r     R3                            1
                                              = 10Cr . 210 – r 20 – 2r. Rr.                              bc  b     (c + 1)2
                                                                3r                             x2            x+           =0
                                                                                                            c            c
      = 10Cr. 210 – r  20 – 2r – 3r. Rr = 10Cr. 210 – r 20 – 5r. Rr                              2                       2
                                                                                                cx + b(c + 1)x + (c + 1) = 0 (Ans.)
      5 ‰i      mnGMi RbÅ 20 – 5r = 5 5r = 20 – 5
                                5r = 15  r = 3                                            cÉk
                                                                                            ² 54 z = −2 −2 3i ‰KwU RwUj ivwk|
         ‰i mnM = C3 2 . R = C3 2 . R
             5                     10        10 – 3    3   10     7   3
                                                                                             K. x + iy =
                                                                                                                p + iq
                                                                                                                 nGj ˆ`LvI (x2 + y2)2 = r2 + s2
                                                                                                                                                      p2 + q2
                                                                                                                                                        2
                                                                                                                r + is
      Avevi, 15 ‰i mnGMi RbÅ, 20 – 5r = 15
                                              5r = 5  r = 1                               L. Arg ( z) wbYÆq Ki|                                       4
       15 ‰i         mnM = 10C1 210 – 1. R = 10C1. 29 R                                   M. ˆKvGbv wòNvZ mgxKiGYi ‰KwU gƒj z ‰es gƒjàwji àYdj
                                                                 R3                            80 nGj mgxKiYwU wbYÆq Ki|                                4
                                                                      10
                                                                           C   29
      cÉkg² GZ, 10C3 27 . R3 = 10C1 . 29. R  R = 10C1 . 27
                                                     3                                      AaÅvq-3 I 4 ‰i mg®¼Gq         [wmGjU ˆevWÆ-2017  cÉk² bs 2]
           10               4         1
       R2 =
          120
               . 2 2  R2 =
                            12
                                R2 =
                                      3
                                                                                                               54 bs cÉGk²i mgvavb
                                                                                                                                                          p − iq
      R=
            1
               (Ans.)                                                                       K x + iy ‰i RwUj Abye®¬x x – iy  x − iy =
                                                                                                                                                         r − is
             3
                                                                                                                               p + iq        p − iq
                                                                                                 (x + iy) (x − iy) =                 .
cÉk
² 53 x2 + bx + c = 0 mgxKiGYi gƒj«¼q ,                                                                                    r + is        r − is
 K. DóxcGKi mgxKiYwUi wbøvqK KZ?                          2                                     ev, x2 − i2y2 =
                                                                                                                       (p + iq) (p − iq)
                                                                                                                        (r + is) (r − is)
 L. c(x + 1) − (b − 2c) x = 0 ‰i gƒj `yBwU ,  ‰i gvaÅGg
        2        2
                                                                                                                      p 2 − i 2q 2
     cÉKvk Ki|                                            4                                     ev, x2 + y2 =         r2 − i2s2
                                                                                                                                   [‹ i2 = −1]
                                                                       1            1
 M. ‰i…c ‰KwU mgxKiY wbYÆq Ki hvi gƒj«¼q  +  I  +  4                                                        p2 + q2
                                                                                                ev, x2 + y2 =    r2 + s2
wkLbdj- 4 I 5                                        [PëMÉvg ˆevWÆ-2017  cÉk² bs 2]                         p + q2
                                                                                                                2
                                                                             ‰es (x) = 0
               =  (Ans.)                           =
                  3                                      3
                                                                                  x4 – 13x3 + 61x2 – 107x + 58 = 0 ... ... (i)
                                                      2
                                                    =
                                                       3
                                                         (Ans.)                  mgxKiYwUi ‰KwU gƒj 5 + 2i nGj Aci ‰KwU gƒj nGe 5 – 2i.
M ˆ`Iqv AvGQ, ‰KwU gƒj z
                                                                                gGb Kwi, mgxKiYwUi AewkÓ¡ gƒj `yBwU , 
                                                                                  gƒjàwji ˆhvMdj, 5 + 2i + 5 – 2i +  +  = 13
   Aci gƒjwU nGe z = − 2 + 2 3i                                                                ev,  +  + 10 = 13   +  = 3 ... ... (ii)
  awi, Z‡Zxq gƒj = t                                                             Avevi, gƒjàwji àYdj, (5 + 2i) (5 – 2i)  = 58
  cÉkg² GZ, z−zt = 80                                                            ev, (25 – 4i2)  = 58 ev, {25 – 4(– 1)}  = 58
  ev, (−2 − 2 3i) . (−2 + 2 3i) . t = 80                                         ev, 29 = 58   = 2 ... ... (iii)
  ev, {(−2)2 − (2 3i)2} . t = 80 ev, (4 − 4.3i2) . t = 80                        ‰Lb, ( – )2 = ( + )2 – 4 = 32 – 4.2 = 1
                                      80
     ev, (4 + 12) . t = 80  t = 16 = 5                                           –  =  1.
                                                                                 (+) wPn× eÅenvi KGi cvB,  –  = 1 ... ... (iv)
     ‰Lb, z + −z + t = −2 − 2 3i − 2 + 2 3i + 5 = 5 − 4 = 1                      (ii) I (iv) ˆhvM KGi cvB, 2 = 4   = 2
     z−
      z +− zt + tz                                                                ‰i gvb (ii) bs ‰ ewmGq cvB, 2 +  = 3   = 1
     = (−2 − 2 3i) (−2 + 2 3i) + (−2 + 2 3i).5 + 5 (−2 − 2 3i)                   (–) wPn× eÅenvi KGiI ‰KB gƒj cvIqv hvq|
     = (4 − 4.3i2) + 10 3i − 10 − 10 − 10 3i = 16 − 20 = − 4                      wbGYÆq Aci gƒjàwj 5 – 2i, 2, 1(Ans.)
      wbGYÆq mgxKiYwU
                                                                                                                  x
     x3 − (z + −
               z + t) x2 + (z−
                             z+−
                               zt + tz) x − z−
                                             zt = 0                          M ˆ`Iqv AvGQ, g(x) = 1 – 4x + 3x2
                                                                             
      x3 − x2 − 4x − 80 = 0 (Ans.)                                                       x                 x
                                                                                 =                 =
                                                                                   1 – 3x – x + 3x2 (1 – 3x)(1 – x)
                                                                        x
cÉk
² 55 (x) = x4 – 13x3 + 61x2 – 107x + 58, g(x) = 1 – 4x + 3x2                           1
                                                                                           3                 1
 K. D`vniYmn c†^vqGKi msæv `vI| B                              2                 =
                                                                                                 1
                                                                                                    +
                                                                                                      (1  x) (1  3)
 L. (x) = 0 mgxKiGYi ‰KwU gƒj 5 + 2i nGj Aci gƒjàGjv                              (1  3x) 1 ( )
                                                                                                 3
     wbYÆq Ki|                                                 4                                                            [cover-up rule ‰i mvnvGhÅ]
 M. g(x) ‰i weÕ¦‡wZGZ x ‰i mnM wbYÆq Ki|
                       r
                                                               4                     1
                                                                                            –
                                                                                              1
                                                                                     2        2 1
                                           [ewikvj ˆevWÆ-2017  cÉk² bs 3]      =        +       = {(1 – 3x)– 1 – (1 – x)– 1}
                                                                                  1 – 3x 1 – x 2
                             55 bs cÉGk²i mgvavb                                  1
                                                                                = [{1 + 3x + (3x)2 + ... + (3x)r + ...} – {1+ x + x2 +... + xr + ...}]
K c†^vqK: ax + bx + c = 0 ‰KwU w«¼NvZ mgxKiY|
                 2                                                               2
                  – b  b2 – 4ac                                                  1
     ‰i gƒj«¼q,                                                                 = [1 + 3x + 9x2 + ... ... + 3r. xr + ... ... – 1 – x – x2 – ... ... – xr  ...]
                          2a                                                      2
                                                                                               1
     ˆhLvGb,   a, b, c evÕ¦e msLÅv|                                              xr ‰i mnM = (3r – 1) (Ans.)
                                                                                               2
18                                                                                              cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
                                                                                                             (2 x)
                                                                                                                       n
     cÉkg² GZ, x   12  3r
                     = x0                                                         cÉk
                                                                                  ² 7 `†kÅK͸-1: A = x + 2
     ev, 12  3r = 0
                                                                                  `†kÅK͸-2: B = (1  9x + 20x2)1
     ev, 12 = 3r
                                                                                  K. 6x2  5x  1 = 0 mgxKiGYi gƒj«¼Gqi cÉK‡wZ wbYÆq Ki| 2
              12
     ev, r = 3                                                                    L. n ‰i RbÅ ˆKvb kZÆ AvGivc KiGj `†kÅK͸ A ‰i ‰KwU gaÅc`
      r=4                                                                            ^vKGe?
     x   ewRÆZ c`wUi gvb = 12Cr 212  r (3)r                                        n = 21 nGj gaÅc` ev (c`mgƒGni) gvb wbYÆq Ki|        4
                                        = 12C4.2124 . (3)4 [ r = 4]            M. `†kÅK͸ B ‰i RbÅ cÉgvY Ki ˆh, x ‰i mnM 5  4 | 4
                                                                                                                       9           10 10
                   =
                              1                                             M  = 0 nGj, z = 
                                                                            
                     20x2  4x  5x + 1                                                                              10                      10
                                                                                                             R                       R
                                1                                                 ZvnGj,  2z2 + z3 =  22 + 3
                   =
                     4x(5x  1) 1 (5x  1)
                                                                                                                                      
                                                                                                                 10
                             1                                                                           R
                   =                                                              ‰Lb,  22 + 3 ‰i weÕ¦‡wZGZ, (r + 1)Zg c`
                     (4x  1) (5x  1)                                                                       
                                                                                                                    r
   awi,
                  1
                            
                                A
                                     +
                                        B                                           10
                                                                                  = Cr (2 )     2 10 – r      R3
          (4x  1) (5x  1) 4x  1 5x  1                                                                      
   (4x  1) (5x  1) «¼viv DfqcÞGK àY KGi cvB,                                                                     1
                                                                                  = 10Cr . 210 – r 20 – 2r. Rr.
                                                                                                                  3r
   1  A(5x  1) + B(4x  1)
                                                                                  = 10Cr. 210 – r  20 – 2r – 3r. Rr
       1                    1        4
       5              (     ) ( )
   x = nGj, 1 = A 5   1 + B
                            5        5
                                       1                                         = 10Cr. 210 – r 20 – 5r. Rr
                                                                                  5 ‰i mnGMi RbÅ 20 – 5r = 5
                         1
   ev,    1 = A  0 + B( )                                                                        5r = 20 – 5  5r = 15
                         5
                                                                                                   r=3
       B=5
                                                                                   ‰i mnM = 10C3 210 – 3. R3 = 10C3 27. R3
                                                                                      5
      1                5                     1
   x = nGj, 1 = A
       4               4      ( ) (
                          1 +B 4 1
                                             4          )                         Avevi, 15 ‰i mnGMi RbÅ, 20 – 5r = 15
                                                                                                                     5r = 5
                 1
   ev, 1 = A  4 + B  0                                                                                            r=1
    A=4                                                                           15 ‰i        mnM         = 10C1 210 – 1. R = 10C1. 29 R
                1               4           5                                     cÉkg² GZ, C3 27 . R3 = 10C1 . 29. R
                                                                                             10
                          =                                                                R3   C1 29  10
                                                                                                               10
        (4x  1) (5x  1) 4x  1 5x  1
                                                                                               =     .  R2 =
                                                                                                         10        . 22
          4             5            5            4                                          R    C3 27        120
   =                           =                                                              4           1
      (1  4x)  (1  5x) 1  5x 1  4x                                                  R2 =      R2 =
   = 5(1  5x)1  4(1  4x)1                                                                  12          3
                                                                                                 1
   = 5{1 + 5x + 25x2 + ... ... + 5r.xr + ... ...}  4{1 + 4x                             R=        (Ans.)
                                    + 16x2 + ... ... + 4r.xr + ... ...}                            3
    x ‰i mnM = 5  4
         r            r +1    r+1
                                                                                                                     3    11
                                                                                  (3)
                                                                                          r                      2a
     (x) ‰i          weÕ¦‡wZGZ (r + 1) Zg c` = 11Cr (x2)11  r x
                                                                                                           ˆhLvGb, a, b, c evÕ¦e msLÅv|
                                                                              3r                           ‰LvGb, ' ' ‰i wfZGii ivwk b2 – 4ac ‰i    gvGbi Dci wfwî
                                                         = 11Cr x22  2r
                                                                              xr
                                                                                                           KGi gƒj«¼Gqi cÉK‡wZ cwiewZÆZ nq| ‰i gvb chÆvGjvPbv KGi
                                                         = 11Cr . 3r . x22  3r                            gƒGji cÉK‡wZ wbwøZ fvGe wbi…cY Kiv hvq| ‰ KviGY ‰GK
                                                                     3 r+1                                 c†^vqK ejv nq|
     ‰es (r + 2) Zg c` =                     11
                                                                  ()
                                               Cr + 1 (x2)11  r  1
                                                                     x
                                                                                                           ax2 + bx + c = 0 ‰i c†^vqK, b2 – 4ac
                                                               r+1
                                                             3
                                   = 11Cr + 1 x22  2r  2
                                                             xr + 1
                                                                                                           D`vniY: x2 − x − 6 ivwkwUi c†^vqK (−1)2 − 4.1(−6)
                                                                                                                                                = 1 + 24 = 25
                                   = 11Cr + 1 . 3r + 1 . x22  3r  3
                                                                                                      L ˆ`Iqv AvGQ, (x) = x – 13x + 61x2 – 107x + 58
                                                                                                                                  4        3
     ˆhGnZz (r + 1) Zg c` I (r + 2) Zg cG`i mnM mgvb|
            11
                                                                                                        ‰es (x) = 0
             Cr . 3r = 11Cr + 1 . 3r + 1                                                                   x4 – 13x3 + 61x2 – 107x + 58 = 0 ... ... (i)
                 11!                       11!                                                             mgxKiYwUi ‰KwU gƒj 5 + 2i nGj Aci ‰KwU gƒj nGe 5 – 2i.
     ev,    r! (11  r)!
                         .3r =
                                (r + 1)! (11  r  1)!
                                                        . 3r + 1
                                                                                                           gGb Kwi, mgxKiYwUi AewkÓ¡ gƒj `yBwU , 
                         1                            3
     ev,                                  =                                                                 gƒjàwji ˆhvMdj, 5 + 2i + 5 – 2i +  +  = 13
            r! (11  r) (11  r  1)! (r + 1) r! (11  r  1)!
               1         3
                                                                                                                            ev,  +  + 10 = 13
     ev,             =
            11  r r + 1
                                                                                                                              +  = 3 ... ... (ii)
                                                                                                           Avevi, gƒjàwji àYdj, (5 + 2i) (5 – 2i)  = 58
     ev, r + 1 = 33  3r                                                                                   ev, (25 – 4i2)  = 58 ev, {25 – 4(– 1)}  = 58
     ev, r + 3r = 33  1                                                                                   ev, 29 = 58
     ev, 4r = 32                                                                                             = 2 ... ... (iii)
           r = 8 (Ans.)                                                                                   ‰Lb, ( – )2 = ( + )2 – 4 = 32 – 4.2 = 1
                                                                                                            –  =  1.
M g(x) = (1 + px)m
                                                                                                          (+) wPn× eÅenvi KGi cvB,  –  = 1 ... ... (iv)
                                                                          1
     p=8
                                   1
            ‰es m = 2 nGj g(x) = (1  8x)
                                                                      
                                                                          2                                (ii) I (iv) ˆhvM KGi cvB,
                                                                                                           2 = 4   = 2
     ‰Lb, g(x) ‰i weÕ¦‡wZGZ (r + 1) Zg c`                                                                   ‰i gvb (ii) bs ‰ ewmGq cvB,
                                                                                                                 2+=3=1
     ( 12) ( 12  1) ... ... ( 12  r + 1) ( 8x)                              r
                                                                                                           (–) wPn× eÅenvi KGiI ‰KB gƒj cvIqv hvq|
                                        r!                                                                  wbGYÆq Aci gƒjàwj 5 – 2i, 2, 1(Ans.)
                1        1                             1
     =
         ( 1)r
                2      ( ) ... ... (
                         2
                           +1                     r1+
                                                       2     ) ( 1) .8 .xr   r       r
                                                                                                                                        x
                                                                                                      M ˆ`Iqv AvGQ, g(x) = 1 – 4x + 3x2 = 1 – 3x – x + 3x2
                                                                                                      
                                                                                                                                                           x
                             r!                                                                                                   1         1
                 2r
       ( 1) 1.3.5 ... (2r  1) 3r r                                                                                x          3–1 1–3
     =                                .2 . x                                                               =                 =         +          [cover-up rule ‰i mvnvGhÅ]
                  2r . r!                                                                                    (1 – 3x)(1 – x) 1 – 3x 1 – x
                                                                                                                1        1
       {1.3.5 ....... (2r  1)} {2.4.6 ......2r} 2r r                                                                  –
     =                                           2 .x                                                           2        2 1
                  r! {2.4.6 ...... 2r}                                                                     =        +       = {(1 – 3x)– 1 – (1 – x)– 1}
                                                                                                             1 – 3x 1 – x 2
         1.2.3.4 ....... 2r
     =                          .22r . xr                                                                    1
       r! 2r (1.2.3.........r)                                                                             = [{1 + 3x + (3x)2 + ... + (3x)r + ...}
                                                                                                             2
       (2r)! r r (2r)! 2r r                                                                                                        – {1+ x + x2 + ... + xr + ...}]
     =        .2 . x =                x
       r! r!                (r!)2                                                                            1
                                             (2r)! . 2r                                                    = [1 + 3x + 9x2 + ... + 3r. xr + ... – 1 – x – x2 – ... – xr  ...]
                                                                                                             2
      g(x) ‰i weÕ¦‡wZGZ xr ‰i mnM
                                               (r!)2
                                                        (ˆ`LvGbv                              nGjv)
                                                                                                                           1
                                                                                                            xr ‰i mnM = (3r – 1) (Ans.)
                                                                                                                           2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                          21
     ev,
           (x  1)2 (y + 2)2
                            =1
                                                                                                           ev, x  3 =  2
              9        4                                                                                    x=2+3
     ev,
                  2
           (x  1) (y + 2)
                    
                           2
                             =1
                                                                    (+) wbGq, x = 2 + 3  x = 5 (Ans.)
              32       22                                           () wbGq, x =  2 + 3  x = 1 (Ans.)
     ‰wU ‰KwU Awae†Gîi mgxKiY ‰es                                 M ˆ`Iqv AvGQ, Awae†Gîi DcGK±`Ê«¼q (8, 3) I (16, 3) ‰es
                                                                  
     (x  )2 (y  )2                                              DrGKw±`ÊKZv 4| DcGK±`Ê `yBwUi ˆKvwU mgvb eGj Awae†îwUi
        a2
             
                 b2
                       =1     ‰i mvG^ wgwjGq cvB,
                                                                    Avo AÞ x AGÞi mgv¯¦ivj|
     a = 3, b = 2,  = 1,  = 2 ‰es a > b.                          DcGK±`Ê `yBwUi `ƒiZ½, 2ae = |8  16| = 8
                                   b2     4   13                                         ev, 2a  4 = 8 [ DrGKw±`ÊKZv, e = 4]
          DrGKw±`ÊKZv, e =   1+
                                   a2
                                      =
                                      1+ =
                                          9   3                                           a=1
                                        3                                               b2          a2 + b2
      wbqvgK ˆiLvi mgxKiY: x  1 =                                  Avevi, e =     1 + 2 ev, e2 =
                                        13                                              a              a2
                                        3                                  ev, a + b = e a  b = a (e2  1) = 1 (42  1) = 15
                                                                                2   2   2 2     2    2
                   9            9                                                             8 + 16 3 + 3
     ev, x  1 =     ev, x =     + 1 (Ans.)                         ‰Lb, Awae†Gîi ˆK±`Ê =  2  2  = (12, 3)
                   13           13                                                                         
                                                                       (12, 3) ˆK±`ÊwewkÓ¡ wbGYÆq Awae†Gîi mgxKiY
² 49 `†kÅK͸-1: 5x2 + 9y2  30x = 0.
cÉk                                                                                ( x  12)2 (y  3)2
`†kÅK͸-2: ‰KwU Awae†Gîi DcGK±`Ê«¼q (8, 3) I (16, 3) ‰es                                                =1
                                                                                         1         15
DrGKw±`ÊKZv 4                                                                                           2
                                                                                                      y  6y + 9
                                                                                 ev, x2  24x + 144             =1
 K. ( 3 sec, 2 tan) civwgwZK Õ©vbvâwewkÓ¡ Awae†Gîi                                                       15
     mgxKiY wbYÆq Ki|                                         2                  ev, 15x  360x + 2160  y + 6y  9 = 15
                                                                                          2                  2
     Ki|                                                      4
 M. `†kÅK͸-2 ‰i AvGjvGK Awae†îwUi mgxKiY wbYÆq Ki| 4                     X                                                 X
                                                                               A   S(2, 0)       O S(2, 0)       A
wkLbdj- 10, 22 I 23          [w`bvRcyi ˆevWÆ-2021  cÉk² bs 6]
                    49 bs cÉGk²i mgvavb
                                                                                                Y
K ˆ`Iqv AvGQ, Awae†Gîi civwgwZK
     Õ©vbvâ ( 3sec, 2tan)                                       `†kÅK͸-2: ‰KwU Awae†Gîi DcGKG±`Êi Õ©vbvâ ( 2, 3) ‰es
                                 x                                Bnvi DrGKw±`ÊKZv 3.
     awi, x = 3 sec ev, sec =
                                  3                                K. y2  2x2 = 2 Awae†Gîi DrGKw±`ÊKZv wbYÆq Ki|                  2
                              y
     ‰es y = 2tan ev, tan = 2                                    L. `†kÅK͸-1 ‰ AA = 8 nGj Dce†îwUi mgxKiY wbYÆq Ki| 4
     ‰Lb, sec2  tan2 = 1                                        M. `†kÅK͸-2 ‰i mvnvGhÅ Awae†îwUi mgxKiY wbYÆq Ki|             4
                                                                  wkLbdj- 10, 23 I 24              [KzwgÍÏv ˆevWÆ-2021  cÉk² bs 6]
                 x 2      y 2        x2 y2
            ev,    2  = 1 ev, 3  4 = 1                                          50 bs cÉGk²i mgvavb
                 3  
             4x2  3y2  12 = 0 (Ans.)                                                                        y2       x2
                                                                  K ˆ`Iqv AvGQ, y2  2x2 = 2 ev, 2  1 = 1
                                                                  
L cÉ`î mgxKiY, 5x2 + 9y2  30x = 0
                                                                                         y2         x2
  cÉ`î mgxKiGY x2 I y2 mÁ¼wjZ c` we`Ågvb| x2 ‰i mnM                   cÉ`î mgxKiYGK b2  a2 = 1 ‰i mvG^ Zzjbv KGi cvB,
  5 I y2 ‰i mnM 9 Amgvb I Awf®² wPn×hyÚ| myZivs cÉ`î                   b2 = 2 ‰es a2 = 1
  mgxKiYwU ‰KwU Dce†î wbG`Æk KGi|                                                                              a2                     1     3
                                                                       DrGKw±`ÊKZv, e =                  1+      =              1+     =     (Ans.)
  ‰Lb, 5x2 + 9y2  30x = 0 ev, 5 (x2  6x) + 9y2 = 0                                                           b2                     2     2
  ev, 5 (x2  6x + 9) + 9y2 = 45 ev, 5 (x  3)2 + 9y2 = 45   L
                                                                     ˆ`Iqv AvGQ, Dce†Gîi DcGK±`Ê«¼q (2, 0) ‰es (2, 0)
      (x  3)2 y2        (x  3)2    y2                                                                        x2       y2
  ev, 9 + 5 = 1  32 +                  2 = 1; BnvGK Dce†Gîi          gGb Kwi, Dce†Gîi mgxKiY, a2 + b2 = 1 ... ... (i)
                                     ( 5)
                     (x  )2 (y  )2
     mvaviY mgxKiY a2 + b2 = 1 ‰i mvG^ Zzjbv               KGi        ‰Lb, AA = e†n`vGÞi Š`NÆÅ = 2a
                                                                      cÉk²gGZ, 2a = 8  a = 4  a2 = 16
     cvB, a = 3, b = 5,  = 3,  = 0                                  Avevi, ae = 2 ev, a2e2 = 4
     ‰LvGb, a > b                                                                         b2
                                b2           5   4 2
                                                                           ev, a2 . 1  a2  = 4 ev, a2  b2 = 4
      DrGKw±`ÊKZv, e =     1 2=        1 =     =                                            
                                a            9   9 3                      ev, b2 = a2  4 = 16  4 = 12  b2 = 12
      DcGKw±`ÊK jGÁ¼i mgxKiY, x   =  ae                                                              x2 y2
                                               2                      a2 I b2 ‰i gvb (i) bs ‰ ewmGq cvB,     +    =1
                              ev, x  3 =  3. 3                                                         16 12
                                                                                                                         3x2 + 4y2 = 48 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                     23
M ˆ`Iqv AvGQ, Awae†Gîi DcGKG±`Êi Õ©vbvâ ( 2, 3)
                                                                 M ˆ`Iqv AvGQ, cive†Gîi kxlÆwe±`y, A  (1, 1)
                                                                  
     Awae†Gîi     ˆK±`Ê   C
                               2  2 3 + 3                         ‰es DcGK±`Ê, S  (2, 3)
                              2  2   (0, 3)                     awi, ‰i wbqvgK ˆiLv I AGÞi ˆQ`we±`y Z(x1, y1)
    gGb Kwi, Awae†Gîi mgxKiY:                                             x1 + 2                  y 3
               (x  0)2 (y  3)2
                                                                       
                                                                            2
                                                                                 =1        ‰es 1 2 = 1
                                = 1 ... ... ... (i)
                  a2       b2                                           x1 =  2  2        y1 = 2 + 3
    DcGK±`Ê«¼Gqi `ƒiZ½, SS = 2ae                                       x1 =  4            y1 = 5
                                =(2 + 2)2 + (3  3)2                    Z we±`yi Õ©vbvâ ( 4, 5)
                                                                                             3 1       4 4
    ev, 2.a. 3 = 4 [ˆ`Iqv AvGQ, DrGKw±`ÊKZv 3]                         ‰Lb, AÞGiLvi Xvj = 2  (1) = 2 + 1 = 3
              4           2          4
    ev, a =       a=          a2 =                                                        3
            2 3            3         3                                  wbqvgKGiLvi Xvj =
                                                                                            4
                     b2             b2
    Avevi, e2 = 1 + a2 ev, 3 = 1 + 4                                                                    3
                                                                        wbqvgK ˆiLvi mgxKiY: y  5 = (x + 4)
                                                                                                        4
                                    3                                   4y  20 = 3x + 12  3x  4y + 32 = 0
                        3    2.4              8                        awi, cive†Gîi Dci P (x, y) ˆhGKvb ‰KwU we±`y|     cive†Gîi
        ev, 3  1 = b2. 4 ev, 3 = b2 b2 = 3
                                                                       msævbyhvqx,
    a2 I b2 ‰i gvb (i) bs ‰ ewmGq cvB,                                                       3x  4y + 32 
              (x  0)2 (y  3)2          3x2 3(y  3)2                   (x  2)2 + (y + 3)2 = 
                                = 1 ev,              =1                                   (3)2 + (4)2
                 4          8             4      8                        2            2
                 3         3                                            x  4x + 4 + y + 6y + 9
                                                                                      9x2 + 16y2 + 1024  24xy  256y + 192x
     6x2  3(y  3)2 = 8 (Ans.)                                                    =
                                                                                                         25
   ² 51 `†kÅK͸-1: 5x2  20x  y + 19 = 0 ‰KwU cive†î|
cÉk
                                                                     25x2  100x + 100 + 25y2 + 150y + 225
                                                                                    = 9x2 + 16y2 + 1024  24xy  256y + 192x
`†kÅK͸-2: M                                                                2     2
                                                                        16x + 9y  292x + 406y + 24xy  699 = 0 (Ans.)
                 y+1+
                           1
                              =0
                                                                       (i)   bs Dce†îwU (6, 4) we±`y w`Gq AwZKÌg KGi|
                           20                                                       (6)2   (4)2         36   16
                  20y + 21 = 0 (Ans.)                                 myZivs, k + 52 = 1 ev, k + 25 = 1
24                                                                                cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
         36       16            36  25                                          (x  )2 (y  )2
     ev, k = 1 – 25 ev, k =        9
                                                                         ‰wUGK      a2
                                                                                          +
                                                                                               b2
                                                                                                     = 1 (hLb a < b) ‰i mvG^                 wgwjGq
      k = 100 (Ans.)                                                                              1
                           x2   y2
                                                                         cvB, a = 3, b = 2,  = 2,  = 2
     mgxKiYwU `uvovq, 102 + 52 = 1
                                                                                                       a2          3 1
                                                                          DrGKw±`ÊKZv, e =        1 2=       1 =
     ‰LvGb a = 10 ‰es b = 5  a > b                                                                    b           4 2
                                     b2            25                                                    1    1
        DrGKw±`ÊKZv, e =        1      =    1                          DcGK±`Ê (,  be + ) =    2. + 2
                                     a2           100                                                 2      2     
                                  3     3                                    1                1        1
                            =       =      (Ans.)                        =    1 + 2    3,   1 (Ans.)
                                  4    2                                   2            2  2 
        DcGK±`Ê«¼Gqi     Õ©vbvâ, ( ae, 0)                                                       2a2 2  3
                                                                         DcGKw±`ÊK jGÁ¼i Š`NÆÅ, b = 2 = 3 (Ans.)
                                        3 
                                10     0  ( 5 3 0) (Ans.)                                            b
                                      2                                ‰es w`KvGÞi mgxKiY y   =  e
M gGb Kwi, P(x, y) Awae†Gîi Ici ˆhGKvGbv we±`y|
                                                                                 ev, y =  4 + 2
   DcGK±`Ê (1, 1) nGZ P(x, y) we±`yi `ƒiZ½
                                                                                  y  6 = 0 ‰es y + 2 = 0 (Ans.)
                  =  (x  1)2 + (y  1)2                                                           x2 y2
                                       | x + 2y  1 |                M
                                                                        awi, Dce†îwUi mgxKiY a2 + b2 = 1, hLb a > b
     wbqvgK nGZ   P we±`yi jÁ¼ `ƒiZ½ =
                                            12 + 22                                                       1
                                       x + 2y  1                        ˆ`Iqv AvGQ, DrGKw±`ÊKZv, e = 2
                                    =
                                             5                                                        2b2
                                                                         ‰es DcGKw±`ÊK jGÁ¼i Š`NÆÅ a = 6  b2 = 3a
     Awae†Gîi msæv nGZ Avgiv cvB,
                                 | x + 2y  1 |                                                   b2
       (x  1)2 + (y  1)2 = 3 .                                         Avgiv Rvwb, e = 1  a2
                                        5
                                                                                      b2     b2                1 3
              2         2
      (x  1) + (y  1) = 3   x + 2y  12                             ev, e2 = 1  a2 ev, a2 = 1  e2 = 1  4 = 4
                                     5                                     3a 3                    1 1
      5{(x  1)2 + (y 1)2} = 3(x + 2y  1)2                            ev, a2 = 4 [‹ b2 = 3a] ev, a = 4  a = 4
      5(x2  2x + 1 + y2  2y + 1) = 3(x2 + 4y2                          b2 = 3a = 3  4 = 12  b = 2 3
                                           + 1 + 4xy  4y  2x)                            x2 y2
      2x2  7y2  12xy  4x + 2y + 7 = 0;                                wbGYÆq Dce†î, 2 + = 1
                                                                                           4 12
     ‰wUB wbGYÆq Awae†Gîi mgxKiY| (Ans.)                                                   x2 y2
                                                                                    A^Ævr, 16 + 12 = 1; a > b
   ² 53 `†kÅK͸-1: 8x2  8x + 6y2  24y + 2 = 0 ‰KwU
cÉk
                                                                          e†nr AGÞi Š`NÆÅ, 2a = 2  4 = 8 ‰KK (Ans.)
Dce†Gîi mgxKiY|
                                              1
`†kÅK͸-2: ‰KwU Dce†Gîi DrGKw±`ÊKZv 2 ‰es DcGKw±`ÊK                  cÉk
                                                                      ² 54
                                                                       `†kÅK͸-1:                                `†kÅK͸-2:
jGÁ¼i Š`NÆÅ 6|                                                                            Y                                Y  w`KvÞ    P
K. x2 =  16y cive†Gîi wbqvgGKi mgxKiY wbYÆq Ki|                2                              B(0, 5)                      M
      AÞGiLv w`KvÞGK ˆh we±`yGZ ˆQ` KGi H we±`yi Õ©vbvâ,    A(   2, 2) ‰es  DcGK±`Ê
     Z(3, 0) ‰es kxlÆwe±`yi Õ©vbvâ, A(4, 0).                 S( 6,  6)|
     gGb Kwi, cive†Gîi DcGK±`Ê, S(x, 0)                      gGb Kwi, cive†Gîi                S(6, 6)             Z(x1, y1)
                                                                                                           A(2, 2)
     
         x+3
              =4                                             wbqvgKGiLv I AGÞi
           2
                                                             ˆQ`we±`y (x1, y1)
     ev, x + 3 = 8  x = 5                                       x1  6
      DcGKG±`Êi Õ©vbvâ (5, 0)                                          =  2 ev, x1 =  4 + 6 = 2
                                                                   2
     gGb Kwi, (4, 0) kxlÆwe±`y mÁ¼wjZ ‰es AÞ x-AÞ eivei            y 6
     AewÕ©Z ‰gb cive†Gîi mgxKiY,                             ‰es 1         = 2 ev, y1 = 4 + 6 = 10
                                                                      2
       2
     y = 4a(x  4) ... ... (i)                                ˆQ`we±`yi Õ©vbvâ (2, 10)
     (i) bs mgxKiYGK Y2 = 4aX ‰i mvG^ Zzjbv KGi cvB, Y = y
                                                                                         y2       x+2
     ‰es X = x  4                                           ‰Lb, AÞGiLvi mgxKiY, 2 + 6 =  2 + 6
     DcGKG±`Êi RbÅ, X = a ev, x  4 = a                                                 y2 x+2
                ev, 5  4 = a  a = 1                                               ev, 8 = 4 ev, y  2 = 2x + 4
      cive†îwUi mgxKiY, y2 = 4.1.(x  4)                                           ev, y = 2x + 6  2x  y + 6 = 0
      DcGKw±`ÊK jGÁ¼i Š`NÆÅ = | 4a | = | 4.1 | = 4 (Ans.)   cive†îwUi wbqvgK ˆiLv nGe AÞGiLvi mvG^ jÁ¼|
cÉk
² 55                                                      gGb Kwi, AÞGiLvi mvG^ jÁ¼GiLvi mgxKiY Z^v wbqvgGKi
        `†kÅK͸-1:                 `†kÅK͸-2:                mgxKiY, x + 2y + k = 0 ... .... (i)
                                                        M
                                                             (i) bs ˆiLvwU Z(2, 10) we±`yMvgx|
                                                              x  2y + 2 = 0
                                                         Z   ZvnGj, 2 + 20 + k = 0  k =  22
                                           S(2, 1)          k ‰i gvb ewmGq wbqvgKGiLvi mgxKiY,
   S( 6,  6)           A( 2, 2)
                                                                                                           x + 2y  22 = 0
                                                        M                         awi, cive†Gîi Dci ˆh ˆKvb we±`y P(x, y)|
                                                                                   cive†Gîi msævbymvGi, SP = PM
 K. 3x2 + 5y2 = 1 Dce†îwUi DrGKw±`ÊKZv wbYÆq Ki|         2                                                           x + 2y  22
 L. `†kÅK͸-1 ‰ S DcGK±`Ê ‰es A kxlÆwe±`y nGj, cive†îwUi                                ev, (x + 6)2 + (y + 6)2 =
                                                                                                                         1+4
    mgxKiY wbYÆq Ki|                                     4                                                                    (x + 2y  22)2
 M. `†kÅK͸-2 nGZ Dce†Gîi mgxKiY wbYÆq Ki hvi                                           ev,   x2 + 12x + 36 + y2 + 12y + 36 =
                                                                                                                                    5
                  1
    DrGKw±`ÊKZv      , S DcGK±`Ê   ‰es MZM wbqvgK|                       4             ev, 5x2 + 60x + 180 + 5y2 + 60y + 180
                   2
                                                                                         = x2 + 4y2 + 484 + 4xy  88y  44x
wkLbdj- 10, 11 I 15                 [XvKv ˆevWÆ-2019  cÉk² bs 5]
                                                                                         4x2 + y2 + 104x + 148y  4xy  124 = 0
26                                                                                                      cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
M gGb Kwi, Dce†Gîi DcGK±`Ê (2,  1) wbqvgKGiLv MZM
                                                                                                                                     3
                                                                                           M ˆ`Iqv AvGQ, DrGKw±`ÊKZv, e = 4 ‰es ‰KwU DcGK±`Ê
                                                                                           
  ‰es Dce†Gîi Dci P(x, y) ˆhGKvGbv we±`y|
                                                                                                                                 a
                                      P(x,y)                                                   I wbqvgGKi gaÅeZxÆ `ƒiZ½, e – ae = 14
                                                          M
                                                                                                                    4a    3a   16a – 9a
                                                                                                               ev, 3 – 4 = 14 ev,  12
                                                                                                                                        = 14  a = 24
                                                          Z
                         S(2, 1)                                                                              b2      9        b2
                                                                                               Avevi, e2 = 1 – a2 ev, 16 = 1 – 576
                                                                                                        b2        9    7
                                                          M                                       ev, 576 = 1 – 16 = 16
     Dce†Gîi msævbymvGi, SP = e.PM
                                                                                                    b2 = 252
     ev, SP2 = e2 . PM2                                                                                                 2b2 2×252
                               1     x  2y + 2                  2                            DcGKw±`ÊK jGÁ¼i Š`NÆÅ = a = 24 = 21 ˆm.wg. (Ans.)
     ev, (x  2)2 + (y + 1)2 = 2 . 
                                                    1+4      
     ev, 10{x2  4x + 4 + y2 + 2y + 1} = x2 + 4y2 + 4                                      cÉk
                                                                                           ² 57         M                         P(x, y)
                                                                       4xy  8y + 4x
     ev, 10x2  40x + 10y2 + 20y + 50 = x2 + 4y2  4xy + 4x  8y + 4                                       Z
     ev, 9x2 + 6y2 + 4xy  44x + 28y + 46 = 0 (Ans.)
                                                                                                                A(2,1)              S(0, 0)
cÉk
² 56 `†kÅK͸-1:                                                                                        M
cÉk
² 63           `†kÅK͸-1:                                         `†kÅK͸-2:
                       Y
                                                                                                                              Z
                           B(0, 3)                                                                                                     A S (−2, 2)
                                                                               Y
                                                             X                                     X
                                                                                                                             M
 X                                               X                        C
      A(4, 0)            C            A(4, 0)              S( 5, 0)                   S(5, 0)
                            B(0, 3)                                            Y                         wPòwU ‰KwU KwYK wbG`Æk KGi hvi wbqvgK ˆiLv MZM|
                      Y                                                                                    x2    y2
 K. y2 + 6y  4x = 0 cive†Gîi DcGKw±`ÊK jGÁ¼i Š`NÆÅ wbYÆq                                                K. 4 − 9 = 1 Awae†Gîi DrGKw±`ÊKZv wbYÆq Ki|                               2
    Ki|                                                   2
                                                                                                         L. A(1, −2) nGj MZM ˆiLvi mgxKiY wbYÆq Ki|                               4
 L. `†kÅK͸-1 ‰ DGÍÏwLZ Dce†Gîi DcGKG±`Êi Õ©vbvâ I                                                       M. SP : PM = 1 : 2 ‰es MZM ˆiLvi mgxKiY
    wbqvgK ˆiLvi mgxKiY wbYÆq Ki|                         4
                                                                                                            3x + 4y = 1 nGj KwYKwUi mgxKiY wbYÆq Ki|                               4
 M. `†kÅK͸-2 ‰ Awae†Gîi DrGKw±`ÊKZv 5 nGj Awae†Gîi                                                                                                  [PëMÉvg ˆevWÆ-2017  cÉk² bs 5]
    mgxKiY wbYÆq Ki|                                      4
                                                      [ivRkvnx ˆevWÆ-2017  cÉk² bs 5]                                             64 bs cÉGk²i mgvavb
                                                                                                                                              x2     y2
                     63 bs cÉGk²i mgvavb                                                                K cÉ`î Awae†Gîi mgxKiY, 4  9 = 1
                                                                                                        
K cÉ`î cive†Gîi mgxKiY, y2 + 6y  4x = 0
                                                                                                                x2     y2
                                                                                                           ev, 22  32 = 1
  ev, y2 + 2.3.y + 32  4x = 9
                                                                             9                                    x2     y2
      ev, (y + 3)2 = 4x + 9  (y + 3)2 = 4.1 x + 4                                                       ‰GK, a2  b2 = 1 ‰i mvG^ Zzjbv KGi cvB,
                                                                                
                                                                                                           a = 2, b = 3
       DcGKw±`ÊK
               jGÁ¼i Š`NÆÅ = |4a| = |4  1| = 4 (Ans.)
                                                                                                                                              b2               32
L `†kÅK͸-1 ‰ ewYÆZ Dce†îwUi e†nr I Þz`Ë AÞ h^vKÌGg x I y AÞ|
                                                                                                           DrGKw±`ÊKZv =              1+       =        1+
                                                                                                                                              a2               22
  Avevi, a = 4 ‰es b = 3  a > b                                                                                                             9           13   13
                                                                                                                              =         1+     =            =    (Ans.)
                                            x2 y2                  x2 y2                                                                     4            4   2
        Dce†Gîi           mgxKiY,            +   =1           ev, 16 + 9 = 1
                                            42 32                                                       L ˆ`Iqv AvGQ,
                                                                                                        
                                               b2                       9                                 A I S ‰i Õ©vbvâ h^vKÌGg (1,  2) I ( 2, 2)
        DrGKw±`ÊKZv e =                     1 2 =                  1
                                               a                        16
                                                                                                          awi, Z we±`yi Õ©vbvâ (x, y)
                                                  16  9    7
                                        =
                                                    16
                                                         =
                                                           4                                              Avgiv Rvwb, cive†Gîi ˆÞGò ZA = AS
                                                                                                                 x2                               y+2
        DcGK±`Ê«¼Gqi            Õ©vbvâ ( ae, 0)                                                                   =1                   ‰es 2               =2
                                                                                                                  2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                              31
    ev, x  2 = 2             ev, y + 2 =  4                                                        9           13   13
                                                                                         =      1+     =            =    (Ans.)
    x=4                       y=6                                                                 4           4    2
     Z we±`yi Õ©vbvâ (4, 6)                                                            wbqvgGKi mgxKiY:
    ‰Lb, A I S we±`yMvgx ˆiLvi mgxKiY,                                                   cÉ`î Awae†Gîi wbqvgK ˆiLvi mgxKiY x =  e
                                                                                                                                                  a
    x1       y+2           x1 y+2
           =
    1+2 22
                      ev, 3 =  4                                                                                               13
                                                                                         ‰LvGb, a = 2 ‰es e = 2
    ev, 3y + 6 =  4x + 4
     4x + 3y + 2 = 0 ... ... ... (i)                                                              2
                                                                                         x=
    awi, (i) ‰i jÁ¼ ˆiLvi (MZM) mgxKiY,                                                           13
    3x  4y + k = 0 ... ... ... (ii)                                                               2
    (ii) bs ˆiLvwU Z(4,  6) we±`yMvgx                                                               4
                                                                                         ev,   x=
     3.4  4( 6) + k = 0                                                                           13
    ev, 12 + 24 + k = 0  k =  36                                                         13 x =  4          BnvB wbGYÆq mgxKiY|
     MZM ‰i mgxKiY 3x  4y  36 = 0 (Ans.)                                        L
                                                                                    
M
   ˆ`Iqv AvGQ, SP : PM = 1 : 2                                                                                   P(x, y)
                                                                                                                                              M
         SP 1
    ev, PM = 2
    ev, PM = 2SP ... ... ... (i)                                                                            S(0, 2)              A(3, 2)
                                                                                                                                            Z
    awi, P we±`yi Õ©vbvâ (x, y)
    Avevi, DcGKG±`Êi Õ©vbvâ S( 2, 2)
    ‰es MZM ˆiLvi mgxKiY, 3x + 4y = 1
                   3x + 4y  1                                                           ˆ`Iqv AvGQ, DcGK±`Ê S(0, 2) ‰es kxlÆ A(3, 2)|
    (i) ˆ^GK cvB,                  = 2. (x + 2)2 + (y  2)2                              awi, cive†Gîi Dci ‰KwU we±`y P(x, y) I wbqvgK ˆiLv MZ|
                      32 + 42
         3x + 4y  1                                                                     Avgiv Rvwb, Z I S ‰i gaÅwe±`y A| awi, Z ‰i Õ©vbvâ (x1, y1)
    ev,       5
                     = 2 x2 + 4x + 4 + y2  4y + 4                                          x1 + 0                          y1 + 2
                                                                                                   =3                              =2
                                                                                              2                                2
    ev, (3x + 4y  1) = (10 x + y + 4x  4y + 8 )
                       2                    2         2               2
                           A
                                                  A(3, 2)                                ‰Lb, SP = PM
             X
                                O
                                                            X                            ev, SP2 = PM2
                                          B                                             ev, x2 + (y  2)2 = (x  6)2
                                           Y                                            ev, x2 + (y  2)2 = x2  12x + 36
 K. 9x2 − 4y2 = 36 KwYGKi wbqvgGKi mgxKiY wbYÆq Ki| 2                                    ev, (y  2)2 =  12(x  3), BnvB wbGYÆq cive†Gîi mgxKiY|
 L. A ˆK kxlÆwe±`y ‰es S ˆK DcGK±`Ê aGi AwâZ cive†Gîi                               M
                                                                                    
    mgxKiY wbYÆq Ki|                                  4                                                                     Y
 M. DóxcGK OB = 4 ‰es AS = AS nGj BB ˆK e†nr AÞ
                                                                                                                            B(0, 8)
    ‰es AA ˆK Þz`Ë AÞ aGi AwâZ Dce†Gîi DcGKw±`ÊK
    jGÁ¼i mgxKiY wbYÆq Ki|                            4
                                                                                                                  S(0, 2)
                                                              3
                                           ev, y  2 =  6  2                    2xy − 22x − 22y = 0
   ² 66 `†kÅK͸-1:
cÉk
                                                                                (x  y)2  42x  54y + 57 = 0 (Ans.)
                             cive†î
                                                                              M
                                                                              
              kxlÆwe±`y                 DcGK±`Ê                                               Y
(−1, 2) (5, 8) 6
                                                                                          4
 `†kÅK͸-2: ‰KwU Awae†Gîi DcGK±`Ê `yBwU (6, 1) I (10, 1) ‰es
 DrGKw±`ÊKZv 3.
                                                                                          2
 K. 3x2 + 5y2 = 1 ‰i DrGKw±`ÊKZv wbYÆq Ki|                 2                                                                       (8, 1)       S(10, 1)
 L. `†kÅK͸-1 nGZ cive†îwUi mgxKiY wbYÆq Ki|               4                                                       S(6, 1)
               3                                     24                          ev, sin(2cos4 –          3) = 0
 L. f() = 4 nGj, ˆ`LvI ˆh,              =  sin–1  .                 4
                                                    25                         nq, sin = 0               A^ev, 2cos4 – 3 = 0
M. g(5) – 3g() = g(3) mgxKiYwUi mvaviY mgvavb wbYÆq                             = n                     ev, 2cos4 = 3
   Ki|                                                    4                                                                     3
                           [gqgbwmsn ˆevWÆ-2021  cÉk² bs 3]
                                                                                    nÙ                          ev, cos4 = 2
wkLbdj- 1 I 3
                  34 bs cÉGk²i mgvavb                                                                            ev, cos4 = cos 6
                                                                                                                                    
                            x
K
    cosecsin– 1 tan sec– 1
                            y                                                                                                       
                                                                   x                                             ev, 4 = 2n  6
                                       x2 – y2         x2 – y2
     = cosecsin– 1 tantan– 1                                                                                       n 
                                         y                         y                                             =   
                           2       2                                                                                 2 24
                     x –y
     = cosecsin– 1                                                                                               n 
                      y                                                           wbGYÆq     mgvavb:     = n,    (Ans.)
                         y          y                                                                             2 24
                   –1
     = coseccosec              =
                       x2 – y2    x2 – y2
                            x      y
                                                                             cÉk
                                                                             ² 35 (a) = tan1a, g(a) = sina
      cosecsin– 1tansec– 1 =            (ˆ`LvGbv                nGjv)              1           1
                            y    x2 – y2                                      K. 3  + 5  ‰i gvb wbYÆq Ki|                                      2
L ˆ`Iqv AvGQ, f(x) = cosecx – cotx
                                                                                    
                                                                                                                                        
      f() = cosec – cot                                                                                                      x + yg  
                                                                                                                                       2 
                                                                              L. ˆ`LvI ˆh, 2                tan  = sec1
                                                                                                           xy    
     kZÆgGZ, cosec – cot = 4 ... (i)
                                            3
                                                                                                           x+y    2                    
                                                                                                                                                     4
                                                                                                                                 y + xg  
           1        cos       3       1  cos    3                                                                                   2 
     ev, sin  sin = 4 ev, sin = 4                                                                                    1
                                                                              M. mgvavb Ki: g2  x + g(x) =                                      4
                                                                                                                          2
           2sin2
                     2    3          3                                      wkLbdj- 1 I 3                            [ivRkvnx ˆevWÆ-2021  cÉk² bs 3]
     ev,             4
                        = ev, tan =
                                    2 4
         2sin cos                                                                              35 bs cÉGk²i mgvavb
               2      2
               9                      9                                    K ˆ`Iqv AvGQ, (a) = tan1a
                                                                             
     ev, tan22 = 16 ev, sec2 2  1 = 16                                                  1
                                                                                  
                                                                                         3
                                                                                            + 51  = tan131 + tan115
            1       9              1        25                                             
     ev,         =
                   16
                       + 1 ev,            =
                                            16                                                             1 1           5+3
             2                        2
         cos                   1  sin                                                                      +
               2                        2                                                                  3 5
                                                                                                           1         1
                                                                                                                           15
                                                                                                    = tan       = tan
                    16             9                                                                      1 1          15  1
     ev, 1  sin2 2 = 25 ev, sin2 2 = 25                                                                  1 .
                                                                                                            3 5            15
                   3                  3                                                                         8 15          4
     ev, sin 2 =  5 ev, 2 = sin1  5                                                            = tan1 
                                                                                                                  15
                                                                                                                       = tan1 (Ans.)
                                                                                                                      14        7
                                                                                                                      
       =  2 sin1
                           3                                                 L ˆ`Iqv AvGQ, (a) = tan1a
                                                                             
                           5
                                                                                                tan  = tan1              tan 
                                                                                              x y                        xy    
                      3                9
           =  sin1 2.               1  [2sin1x = sin1(2x 1  x2)]                     x + y 2                    x+y    2
                      5                25
                      6            16             6 4
                                                                                 ‰es g(a) = sina
           =  sin1  .                =  sin1  .                                          
                     5            25            5 5                           g   = sin   = cos
                          24
                                                                                    2         2 
           =  sin1         (ˆ`LvGbv nGjv)
                                                                                 evgcÞ = 2                tan 
                                                                                                         xy    
                         25                                                                            x+y    2
M ˆ`Iqv AvGQ, g(x) = sinx
                                                                                 = 2 tan1                 tan 
                                                                                                     xy       
  cÉ`î mgxKiY, g(5) – 3g() = g(3)                                                                x+y       2
  ev, sin5 – 3sin = sin3                                                                                    
  ev, sin5 – sin3 = 3sin
                                                                                                  x  y . sin
                                                                                         1 
                                                                                                               2
                   5 + 3     5 – 3                                           = 2 tan
     ev, 2cos              sin         = 3 sin                                                   x + y . cos 
                                                                                                               
                      2           2                                                                           2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                       35
                                                                                             36 bs cÉGk²i mgvavb
                 (x  y) sin2                                                             1       3              3
                               2                                     K
                                                                        ˆ`Iqv AvGQ, x = 2 cos1 4  cos 2x = 4
             1
                              2
                 (x + y) cos                                                           sinx       2sin2x
    = cos1
                                2                                        ‰Lb, tanx = cosx = 2sinx cosx
                               
                 (x  y) sin2                                                          1  cos2x      1  cos2x
                               2                                                     =             =
             1+                                                                           sin2x        1  cox22x
                                
                 (x + y) cos2                                                                 3         1
                                2                                                         1
                                                                                              4         4     1    4      1
                           2                                                       =             =        =         =      (Ans.)
              (x + y) cos  (x  y) sin2                                                        9         7 4        7     7
          1                2                 2                                             1
    = cos                                                                                       16       16
                                              
              (x + y) cos2 + (x  y) sin2                            L
                                                                        evgcÞ = N = tan1 (cosec tan1x  tan cot1x)
                            2                  2
                                                                           1                           1 + x2             1
                                                                         = . 2tan1 cosec cosec1             tan.tan1 
                                                    
             x cos  sin  + y cos + sin2 
                    2         2               2
                                                                                                                         x
          1    2              2        2           2                  2                             x
    = cos                                                                  1            1 + x2 1
                                                                         = . 2tan1 
                                                    
             x cos + sin  + y cos  sin 
                    2         2               2      2
                                                                                     x  x                           1 + x2
                2              2        2           2                  2
                                                                                                                                   x
                                                                                            2
             x cos  +  y                                                  1      1 1 + x 1
    = cos1                                                              = . 2tan                                          
             x + y cos                                                    2              x                                   1
          1 x + y cos                                                                 1 + x2  1
    = sec                                                                           2
             y + x cos                                                    1                x
                                                                        = tan1
                                                                           2          ( 1 + x2  1)2
             x + yg                                                          1
                     2                                                                 x2
    = sec1                       g        = cos
                                   2           
             y + xg                                                                2 ( 1 + x2  1)
                    2                                                                    x
                                                                          1 1
    = WvbcÞ                                                              = tan 2
                                                                          2    x  (1 + x  2 1 + x2 + 1)
                                                                                         2
                                               
                                      x + yg                                           x2
               xy                        2 
     2f
           x + y tan 2 = sec
                                   1
                                               
                                                    (ˆ`LvGbv nGjv)                        2 ( 1 + x2  1)
                                      y + xg   
                                             2                             1 1               x
                                                                         =     tan
M
   ˆ`Iqv AvGQ, g(a) = sina;  g(x) = sinx                                   2     x2  1  x2 + 2 1 + x2  1
                                                                                              x2
     g  x = sin  x = cosx
         2             2                                                        2 ( 1 + x2  1)
                                           1
    cÉ`î mgxKiY: g2  x + g(x) =                                         1   1       x
                                             2                           =     tan
                                                                             2     2 ( 1 + x2  1)
                          1
    ev, cosx + sinx =                                                                    x2
                           2
         1             1           1                                      1 1 2( 1 + x2  1)          x2       
    ev,      cosx +        sinx =
                                   2                                     =
                                                                          2
                                                                            tan 
                                                                                        x
                                                                                                ´                
          2             2                                                                        2 ( 1 + x2  1)
                                1                                       1
    ev, cosx.cos 4 + sinx.sin4 = 2                                       = tan1 x = WvbcÞ
                                                                          2
                           
    ev, cosx  4 = cos3                                          
                                                                               1
                                                                          N = tan1x (ˆ`LvGbv nGjv)
                                                                               2
                       
     x  = 2n  ; ˆhLvGb n  Ù                                     M ˆ`Iqv AvGQ () = cos
                                                                     
            4           3
                     
    ev, x = 2n  3 + 4                                                cÉ`î ivwk, () +  (2) +  (3) = 0
                                                                          cos + cos2 + cos3 = 0
                                                  7
    (+) wPn× wbGq cvB, x = 2n + + = 2n +                               ev, cos + cos3 + cos2 = 0
                                      3 4           12
                                       
    () wPn× wbGq cvB, x = 2n  + = 2n 
                                                                        ev, 2cos2.cos + cos2 = 0
                                      3 4           12
                                 7                                     ev, cos2 (2cos + 1) = 0
     wbGYÆq mgvavb: 2n + , 2n  ; ˆhLvGb n  Ù (Ans.)
                                 12         12                                                                 
                                                                         ‰Lb, cos2 = 0 nGj 2 = (2n + 1) 2, n  Ù
cÉk
² 36 N = tan1 (cosec tan1x  tancot1x) ‰es f() = cos                              
             1       3                                                     = (2n + 1)
 K. hw` x = 2 cos1 4 nq, ZGe tanx ‰i gvb KZ nGe?              2                          4
                                                                                                   1      2             2
                    1
 L. ˆ`LvI ˆh, N = 2 tan1x.                                    4         2cos + 1 = 0 nGj cos =  = cos      = 2n 
                                                                                                   2       3              3
M. mgvavb Ki: f() + f(2) + f(3) = 0, hLb  2    2. 4             n =  4 nGj,  =
                                                                                              7 26 22
                                                                                                 ,    ,
wkLbdj- 1 I 4                  [w`bvRcyi ˆevWÆ-2021  cÉk² bs 3]                              4   3    3
36                                                                                        cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
      n =  3 nGj,  =
                                 5 20 16
                                    ,    ,
                                                                                   ev, 3 tanx (tanx + 3)  1 (tanx + 3) = 0
                                  4   3    3
                                                                                   ev, (tanx + 3) (3 tanx  1) = 0
                                      3 14 10
      n =  2 nGj,  =                   ,    ,                                    wK¯§ tanx   3               3 tanx  1 = 0
                                       4   3    3
                                                                                                                            1               1
                                       8 4                                   KviY x ‰KwU mƒßGKvY|         ev, tanx = 3  x = tan1 3 
      n =  1 nGj,  =                 ,    ,                                                                                               
                                      4 3     3
                     2 2                                                        cÉ`îivwk = cot 1 3  x
      n = 0 nGj,  = , ,                                                                              1          1
                    4 3    3
                                                                                               = tan1   tan1 ; [gvb   ewmGq]
                          3 8 4                                                                    3        3 
      n = 1 nGj,        = , ,
                           4 3 3                                                               = 0 (Ans.)
      n = 2 nGj,
                          5 14 10
                        = ,    ,
                                                                              M cÉ`î mgxKiY: 4 cosx cos2x cos3x = 1; 0 < x < 
                                                                              
                           4 3    3
                                                                                ev, (2 cos3x cosx) (2 cos2x) = 1
                             7 20 16
      n = 3 nGj  =            ,
                              4 3
                                   ,
                                     3
                                                                                ev, (cos4x + cos2x) (2 cos2x) = 1
       cÉ`î  2    2 mxgvi                gGaÅ wbGYÆq mgvavb:             ev, 2 cos4x cos2x + 2 cos22x  1 = 0
         7 5 3  4 2  2 3 4 5 7                                ev, 2 cos4x cos2x + cos4x = 0
      =    ,   ,   , ,    ,   , ,     , , ,     (Ans.)                         ev, cos4x (2 cos2x + 1) = 0
          4 4 4 4 3 3 4 3 4 3 4 4
                                                                                 nq, cos4x = 0                 A^ev, 2 cos2x + 1 = 0
cÉk
² 37                                                                                                        ev, 2 cos2x = 1
                                                                                ev, 4x = (2n+1) 2
        `†kÅK͸-1:                              `†kÅK͸-2:                                                      ev, cos2x =  12 = cos 2
                                                                                                                                        3
       A                                        4 cosx cos2x cos3x = 1.                          
                                                                                    x = (2n+1)
                    5                                                                             8               ev, 2x = 2n  2
        3                                                                                                                         3
                                                                                                                           
                                                                                    x = (2n + 1) , n + , n      x = n 
                                                                                                 8      3       3
        B                              C                                                                                           3
                       
 K.   sin1x + sin1y = nGj ˆ`LvI ˆh, x2 + y2 = 1.
                       2
                                                                          2        hLb, n ‰i gvb kƒbÅ ev ˆh ˆKvGbv cƒYÆ msLÅv|
 L.   `†kÅK͸-1 ‰ ACB = 2x nGj cot13  x ‰i gvb    wbYÆq                         hLb n = 0, ZLb, x =
                                                                                                          
                                                                                                         , ,
   Ki|                                                        4                                         8 3 3
M. `†kÅK͸-2 ‰i mgxKiYwU 0 < x <  eÅewaGZ mgvavb Ki| 4                                                3 2 4
wkLbdj- 1 I 4                  [KzwgÍÏv ˆevWÆ-2021  cÉk² bs 4]                   hLb n = 1, ZLb, x =    ,  ,
                                                                                                        8 3 3
                   37 bs cÉGk²i mgvavb                                                                 5 7 5
K ˆ`Iqv AvGQ,
                                                                                  hLb n = 2, ZLb, x =    ,  ,
                                                                                                        8 3 3
                                                                                                           7 10 8
      sin1x + sin1y =
                                  2                                                hLb, n = 3, ZLb, x = 8 , 3 , 3
                                                                                                                          3 2 5 7
      ev, sin1x = 2  sin1 y ev, sin1x = cos1 y                                 wbw`ÆÓ¡   mxgvi gGaÅ x ‰i gvbmgƒn: 8, 3, 8 , 3 , 8 , 8
      ev, sin1x = sin1 1  y2 ev, x = 1  y2 ev, x2 = 1  y2                                                                             (Ans.)
       x2 + y2 = 1 (ˆ`LvGbv nGjv)                                               ² 38 `†kÅK͸-1: a sinx + b cosx = 1
                                                                              cÉk
                                                                              
L
           A                                                                  `†kÅK͸-2:  (x) = cosx
                                 5                                             K. mgvavb Ki: tan2  3 cosec2 + 1 = 0.                        2
            3                                                                  L. a = 3 ‰es b = 1 nGj `†kÅK͸-1 ‰i mgxKiYwU mgvavb
                                                                                   Ki, ˆhLvGb  2 < x < 2.                                   4
            B
                                           2x
                                                   C
                                                                               M. `†kÅK͸-2 ‰i AvGjvGK f(x) + f(3x) + f(5x) + f(7x) = 0
                                                                                   mgxKiYwU mgvavb Ki, ˆhLvGb 0 < x < .                       4
                                                                              wkLbdj- 3 I 4                      [PëMÉvg ˆevWÆ-2021  cÉk² bs 4]
      ‰LvGb, ACB = 2x ‰es BC = 52  32 = 4 ‰KK
                             3                                                                       38 bs cÉGk²i mgvavb
      ‰Lb, tan 2x = 4                                                         K tan   3 cosec  + 1 = 0
                                                                                     2            2
                2 tanx
      ev, 1  tan2x = 4
                              3                                                    ev, tan2 = 3 cosec2  1
                                                                                   ev, tan2 = 3(1 + cot2)  1
      ev, 3  3 tan2x = 8 tanx                                                     ev, tan2 = 3 + 3 cot2 1
      ev, 3 tan2x + 8 tanx  3 = 0                                                                    3
                                                                                   ev, tan2 = 2 + tan2
      ev, 3 tan2x + 9 tanx  tanx  3 = 0
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                   37
    ev, tan4 = 2 tan2 + 3 [tan2 «¼viv àY KGi]                                                          
                                                                      A^ev, cos4x = 0  4x = (2n + 1) 2 ev, x = (2n + 1) 8
                                                                                                                           
    ev, tan4  2 tan2  3 = 0                                                                                 
    ev, tan4  3 tan2 + tan2  3 = 0                                wbGYÆq   mgvavb: x = (2n + 1) 2 , (2n + 1)4
    ev, tan2(tan2  3) + 1 (tan2  3) = 0                                  
                                                                      (2n + 1) ;    ˆhLvGb n ‰i gvb kƒbÅ A^ev AbÅ ˆhGKvGbv cƒYÆ
                                                                              8
    ev, (tan2  3) (tan2 + 1) = 0                                   msLÅv|
    ev, tan2  3 = 0      [tan2 + 1  0]                                                 
                                                                      n=0   nGj, x = 2, 4, 8
    ev, tan  = 3 ev, tan =  3
           2
                                                                                         3 3 3
                             
    ev, tan = tan 3   = n  3
                                                                     n=1   nGj, x = 2 , 4 , 8
                                                                                         5 5 5
                                                                     n=2   nGj, x = 2 , 4 , 8
     wbGYÆq     mgvavb:  = n  3 ; hLb n ‰i gvb kƒbÅ A^ev
                                                                                    7 7 7
                                                                      n = 3 nGj, x = , ,
  AbÅ ˆhGKvGbv cƒYÆ msLÅv| (Ans.)                                                    2 4 8
L ˆ`Iqv AvGQ,
                                                                      cÉ`î mxgvi gGaÅ wbGYÆq gvb,
                                                                              3 3 5 7
  a sinx + b cosx = 1; a = 3 ‰es b = 1                                x=    , , ,  ,  ,
                                                                           8 4 2 8 4 8 8
                                                                                         ,   (Ans.)
  ev, 3 sinx + cosx = 1; [ 2 <x <2]
                                                                 cÉk
                                                                 ² 39 (x) = sinx I g(x) = cosx
         3               1           1
    ev, 2 sinx + 2 cosx = 2                                       K. mgvavb Ki: 2(cos2x  sin2x) = 3.                          2
                                                                  L. mgvavb Ki: (x) + g(x) = f(2x) + g(2x).                   4
                                               1
    ev, sin 3 sinx + cos 3. cosx = 2                              M. mgvavb Ki: 4g(x) g(2x) g(3x) = 1, hLb 0 < x <            4
                                                                 wkLbdj- 3 I 4                    [wmGjU ˆevWÆ-2021  cÉk² bs 4]
                                               1
    ev, cosx cos 3 + sinx sin 3 = 2                                                   39 bs cÉGk²i mgvavb
                                                                 K 2 (cos2x  sin2x) = 3
                                                                 
                                    
    ev, cos x  3 = cos 3                                         ev, 2 cos 2x = 3
                                                                                     3         
             
    ev, x  3 = 2n  3
                                                                     ev, cos2x = 2 = cos 6
                                                                                       
                                                                     2x = 2n  ; ˆhLvGb nÙ
    ev, x = 3 + 2n  3                                                                6
                                                                                     
                                                                       x = n         (Ans.)
                                                                                  12
     x = 2 n +           [(+) wPn×        wbGq]
                        3                                      L
                                                                     ˆ`Iqv AvGQ, f(x) + g(x) = f(2x) + g(2x)
    ‰es x = 2n [() wPn× wbGq]                                       ev, sinx + cosx = sin2x + cos2x
    ˆhLvGb, n ‰i gvb 0 A^ev ˆhGKvGbv cƒYÆmsLÅv|                       ev, cosx  cos2x = sin2x  sinx
                                                                                 x + 2x        2x  x           2x + x   2x  x
    n = 0,  1,  2... ewmGq cvB,                                     ev, 2 sin 2 . sin  2  = 2 cos 2 . sin  2 
       2
                                                                                                                    
    x=    , 0; [hLb n = 0]                                            ev, 2 sin 3x sin x = 2 cos 3x sin x
        3                                                                         2     2           2     2
                    2
    ‰es x =  2 + 3 [hLb n =  1]                                    ev, sin 3x sin x = cos 3x sin x
                                                                               2      2        2       2
           =
              6 + 2
                        =
                           4                                         ev, sin 3x sin x  cos 3x sin x = 0
                  3         3                                                  2      2        2       2
                                                                               x 3x           3x
                           4
     wbGYÆq mgvavb, x =  , 0,
                                2
                                   (Ans.)                             ev, sin sin 2  cos 2  = 0
                            3    3                                             2                  
                                                                              x
M ˆ`Iqv AvGQ,  (x) = cosx
                                                                      sin = 0             A^ev, sin 3x  cos 3x = 0
                                                                              2                           2       2
      (3x) = cos3x
     (5x) = cos5x ‰es (7x) = cos7x
                                                                      ev, x = n            ev, sin 3x = cos 3x
                                                                          2                           2      2
    cÉkg² GZ, cosx + cos3x + cos5x + cos7x = 0 [0 < x < ]                                       sin
                                                                                                     3x
                                                                       x = 2n.                      2
    ev, (cos5x + cosx) + (cos7x + cos3x) = 0                                                ev,          =1
                                                                      ˆhLvGb n  Ù                   3x
    ev, 2 cos3x cos2x + 2 cos5x cos2x = 0                                                        cos
                                                                                                      2
    ev, 2 cos2x (cos5x + cos 3x) = 0                                                        ev, tan 3x = 1
    ev, 2 cos2x.2 cos4x.cosx = 0                                                                      2
                                                                                                 3x
    ev, cosx.cos2x.cos4x = 0                                                                ev, = (4n + 1) 
                                                                                                  2           4
                                                 
    nq, cosx = 0  x = (2n + 1) 2                                                                           
                                                                                             x = (4n + 1) (n  Ù)
                                                                                                            6
                                                                                                          
    A^ev, cos2x = 0  2x = (2n + 1) 2 ev, x = (2n + 1) 4               wbGYÆq mgvavb: x = 2n, (4n + 1) ; (n  Ù) (Ans.)
                                                                                                            6
38                                                                                    cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
M ˆ`Iqv AvGQ, 4g(x) g(2x) g(3x) = 1; 0 < x < 
                                                                              ‰Lb, cos2 = 0 nGj, 2 = (2n + 1)2   = (2n + 1)4
                                                                                                                                                           
      4 cosx cos2x cos3x = 1
     ev, (2 cos3x cosx) (2 cos2x) = 1                                                                                            1            2
                                                                               ‰es 1 + 2cos2 = 0 nGj cos2 =  2 = cos 3
     ev,   (cos4x + cos2x) (2 cos2x) = 1
                                                                                                                                 2                         
     ev,   2 cos4x cos2x + 2 cos22x  1 = 0                                                               ev, 2 = 2n  3   = n  3
     ev,   2 cos4x cos2x + cos4x = 0                                                                                                
                                               A^ev, 2 cos2x + 1 = 0              wbGYÆq mgvavb:  = (2n + 1)4, n  3 (Ans.)
     ev,   cos4x (2 cos2x + 1) = 0
                                               ev, 2 cos2x = 1
      nq, cos4x = 0                                                                                                    1
                                                                           M ˆ`Iqv AvGQ, A = cosec1 5  2 sin1 5 + tan14
                                                                           
                                                                                                                                     3             1
                     
                                               ev, cos2x =  12 = cos 2
                                                                       3
     ev, 4x = (2n+1) 2                                                       cvGki wPò ˆ^GK cvB,
                                    ev, 2x = 2n  2
                                                   3                                                1                                    5
      x = (2n+1)                                                              cosec1 5 = tan1
                   8                 x = n                                                       2                                                      1
                                                3                                       1      3
                                
      x = (2n + 1) , n + , n 
                   8      3       3
                                                                               gGb Kwi, 2 sin15 = 
                                                                                             3                                        ( 5)2  1 = 2
                                                                               ZvnGj sin2 = 5
     hLb, n ‰i gvb kƒbÅ ev ˆh ˆKvGbv cƒYÆ msLÅv|
                                                                                      sin   2sin2    1  cos2
     hLb n = 0, ZLb, x =   , ,                                                  tan =        =
                                                                                          cos 2sincos
                                                                                                         =
                                                                                                             sin2
                          8 3 3
                                                                                                                                              9             4
                         3 2 4                                                                                           1           1            1
     hLb n = 1, ZLb, x =    ,  ,                                                                1    1  sin22                              25            5       1
                          8 3 3                                                             =
                                                                                                     sin2
                                                                                                                 =
                                                                                                                                     3
                                                                                                                                                   =
                                                                                                                                                        3
                                                                                                                                                                =
                                                                                                                                                                    3
                         5 7 5                                                                                                    5                  5
     hLb n = 2, ZLb, x =    ,  ,
                          8 3 3                                                              1       1          3            1
                                                                                 = tan1
                                                                                             3
                                                                                                 ev, 2 sin1 5 = tan1 3
                          7 10 8
    hLb, n = 3, ZLb, x = 8 , 3 , 3
                                                                                  cÉ`î ivwk,
                                    3 2 5 7                                                     1 1 3               1
 wbw`ÆÓ¡ mxgvi gGaÅ x ‰i gvbmgƒn: , , , , ,      (Ans.)                           A = cosec1 5        sin      + tan1
                                  8 3 8 3 8 8                                                         2        5           4
   ² 40 `†kÅK͸-1: () = sin
cÉk
                                                                                           1          1           1
                                                                                     = tan1  tan1 + tan1
                                                                                              2          3           4
                                 1        3         1
 `†kÅK͸-2: A = cosec1 5  2 sin15 + tan14                                                  1 1                          1
                                                                                                 
                                                                                           1 2    3         1 1        1 6         1
 K. ˆ`LvI ˆh, sec2(tan1 15) + cosec2(cot1 13) = 30.                  2             = tan             + tan       = tan      + tan1
                                                                                                  11            4           7         4
                                                                                            1+ .
                                                                                                  23                        6
 L. `†kÅK͸-1 ‰i AvGjvGK        2  .   3 + 1 = 0
                                  2   2                                                                           1 1
                                                                                                                       +
     mgxKiGYi mgvavb Ki|                                               4                   1 1       1 1        1
                                                                                                                      7 4
                                                                                     = tan      + tan       = tan
                                              11                                              7          4               11
 M. `†kÅK͸-2 ˆ^GK ˆ`LvI ˆh,         A = tan1 .
                                              27
                                                                       4                                             1 .
                                                                                                                         74
wkLbdj- 1 I 3                            [hGkvi ˆevWÆ-2021  cÉk² bs 3]                      11
                                                                                              28           11
                      40 bs cÉGk²i mgvavb                                            = tan1
                                                                                              27
                                                                                                 = tan1
                                                                                                           27
K evgcÞ = sec (tan1 15) + cosec2(cot1 13)
                 2
                                                                                              28
     = 1 + tan2(tan1 15) + 1 + cot2 (cot1 13)                                                      11
                                                                                      A = tan1
                                                                                                     27
                                                                                                          (ˆ`LvGbv nGjv)
     = 1 + ( 15)2 + 1 + ( 13)2
     = 1 + 15 + 1 + 13 = 30 = WvbcÞ                                                                         p               q
                                                                              ² 41 DóxcK-1: sec = x, sec = y
                                                                           cÉk
                                                                           
      sec2(tan1 15) + cosec2(cot1 13) = 30 (ˆ`LvGbv nGjv)
L ˆ`Iqv AvGQ, f() = sin
                                                                           DóxcK-2: f(x) = secx
                                                                                                                1
                                     
     cÉ`î mgxKiY, 2f 2  .f 2  3 + 1 = 0                         K. sec2(cot11) + sin2cos1 2  ‰i gvb wbYÆq Ki|                                       2
                                                                                                                   
                                          
                 ev, 2sin2  .sin2  3 + 1 = 0                    L. DóxcK-1 ‰  +  =  nGj cÉgvY Ki ˆh,
                                                                               x2 y2 2xy
                 ev, 2cos.cos3 + 1 = 0                                         + 
                                                                               p2 q2 pq
                                                                                         cos = sin2.                                                              4
                 ev, cos2 + cos4 + 1 = 0                                 M. DóxcK-2 ‰i AvGjvGK f(x).f(3x) + 2 = 0 mgxKiGYi
                 ev, cos2 + 2cos22 = 0                                      mvaviY mgvavb wbYÆq Ki|                                4
                 ev, cos2(1 + 2cos2) = 0                                 wkLbdj- 1 I 3               [ewikvj ˆevWÆ-2021  cÉk² bs 3]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                39
                            41 bs cÉGk²i mgvavb                                            2x             1  y2
                           1                                         cÉk
                                                                     ² 42 f(x) = 1 + x2 . g(y) = 1 + y2 ‰es h(x) = sinx.
K
   sec (cot 1) + sin cos
       2      1            2      1
                          2                                                                     
                                     1
                                                                      K. cos1m + cos1 n = 2 nGj, cÉgvY Ki ˆh, m2 + n2 = 1.                 2
    = 1 + tan (cot 1) + 1  cos cos
               2       1               2   1
                                                                                      1               1
                                    2
                                                                      L. cosec1 f(a) – sec1 g(b) = 2 tan1x nGj, ˆ`LvI ˆh,
                                           1          2
    = 1 + {tan(tan11)}2 + 1  cos cos1                                   ab
                                         2                              x=
                                                                                1 + ab
                                                                                       .                                                     4
                    1   2
                                                                      M.    0    2 eÅewaGZ 2h() . h(3) = 1       mgxKiYwUi mgvavb
    = 1 + 12 + 1   
                   2                                                      Ki|                                                        4
       1 11
    =3 =   (Ans.)                                                   wkLbdj- 1 I 4                              [XvKv ˆevWÆ-2019  cÉk² bs 4]
       4 4
                                                                                                42 bs cÉGk²i mgvavb
                                p                 p       x
L ˆ`Iqv AvGQ, sec = x   = sec1 x = cos1 p
                                                                    K ˆ`Iqv AvGQ, cos1 x + cos1 y = 2
                                                                     
                                                                                                                
                   q                     q        y
    ‰es sec = y   = sec1 y = cos1 q                                                                               
                                                                            ev, cos1x = 2  cos1y ev, x = cos 2  cos1y
    Avevi,  +  =                                                         ev, x = sin (cos1y) ev, x2 = sin2 (cos1y) [eMÆ KGi]
             x        y
     cos1 + cos1 =                                                      ev, x2 = 1  cos2 (cos1y)
             p        q
              x y          x2       y2                                   ev, x2 = 1  y2  x2 + y2 = 1 (ˆ`LvGbv nGjv)
    ev, cos1 p . q  1  p2 1  q2  =                                        1                1
                                                               L cosec1 f(a)  sec1 g(b) = 2 tan1x
                                                                     
        x y             x2 y2 x2y2
    ev, p . q         1   +
                        p2 q2 p2q2
                                      = cos
                                                                            cosec1
                                                                                           1
                                                                                                 sec1
                                                                                                              1
                                                                                                                     = 2 tan1x
                                                                                          2a               1  b2
        xy                  x2 y2 x2y2                                                  1 + a2             1 + b2
    ev, pq  cos = 1  p2  q2 + p2q2
                                                                                                                      2x                1  y2
        x2y2     xy                      x2 y2 x2y2                                                   [‹ f(x) =           2 ‰es g(y) =         ]
    ev, p2q2  2.pq.cos + cos2 = 1  p2  q2 + p2q2 [eMÆ    KGi]                                                  1+x                 1 + y2
                                                                                            2                    2
                                                                                      1 +  a              1 + b
        x2y2 x2 y2 x2y2           xy                                        cosec1            sec1             = 2 tan1x
    ev, p2q2 + p2 + q2  p2q2  2.pq.cos = 1  cos2                                   2a                1  b2
                                                                                                            2
                                                                                     2a           1 1  b
       x2 y2 2xy                                                            sin1       2  cos                = 2 tan1x
     2+ 2           cos = sin2 (cÉgvwYZ)                                       1+a               1 + b2
       p q        pq                                                        2 tan1a  2 tan1b = 2 tan1x
M
   ˆ`Iqv AvGQ, f(x) = secx                                                 tan1x = tan1a  tan1b
     f(3x) = sec3x                                                                            ab                 ab
                                                                            tan1x = tan1
                                                                                              1 + ab
                                                                                                        x=
                                                                                                                  1 + ab
                                                                                                                           (ˆ`LvGbv nGjv)
    ‰es f(x).f(3x) + 2 = 0
     secx.sec3x + 2 = 0                                             M
                                                                          ˆ`Iqv AvGQ, g(x) = sinx
          1      1                                                         cÉ`î mgxKiY, 2g (  x) g (3x) = 1
    ev, cosx . cos 3x =  2                                                ev, 2 sin (  x) sin (3x) = 1 ev, 2 sinx sin3x = 1
             1                                                             ev, cos2x  cos4x = 1 ev, cos2x  (1 + cos4x) = 0
    ev, cosx.cos3x =  2
                                                                           ev, cos2x  2cos22x = 0  cos2x (1  2cos2x) = 0
    ev, 2 cos3x. cosx =  1                                                cos2x = 0 nGj, 2x = (2n + 1) , n  Ù
                                                                                                                
    ev, cos(3x + x) + cos(3x  x) =  1                                                                         2
                                                                                                               
    ev, cos4x + cos2x =  1                                                                x = (2n + 1)
                                                                                                               4
    ev, cos4x + 1 + cos2x = 0                                                                                   1        
                                                                           1  2cos2x = 0 nGj, cos2x = = cos
    ev, cos2.2x + 1 + cos2x = 0                                                                                 2        3
    ev, 2 cos22x + cos2x = 0                                                               
                                                                            2x = 2n  A^Ævr, x = n 
                                                                                                                    
     cos2x(2 cos2x + 1) = 0                                                               3                        6
                                                                                                      
    nq, cos2x = 0            A^ev, 2 cos2x + 1 = 0                          x = (2n + 1) , n 
                                                                                             4          6
                                            1
     2x = (2n + 1)
                      2
                             ev, cos2x =  2                                                  
                                                                           n = 0 nGj, x = , , 
                                                                                            4 6 6
                                              2
     x = (2n + 1)
                    4
                             ev, cos2x = cos 3                                              3 5 7
                                                                           n = 1 nGj, x = , ,
                                                                                             4 6 6
                                             2                                             5 13 11
                              2x = 2n 
                                              3                            n = 2 nGj, x = ,           ,
                                                                                             4 6          6
                                                                                           7 19 17
                              x = n 
                                           3                               n = 3 nGj, x = ,           ,
                                                                                             4 6          6
     wbGYÆq mvaviY mgvavb:                                                 cÉ`î 0  x  2 mxgvi gGaÅ wbGYÆq mgvavb:
                                                                               3 5 7 5 11 7
    x = (2n + 1) , n  ; n  Ù (Ans.)                                     x= , , , , , ,
                                                                               6 4 4 6 6 4 6 4
                                                                                                              ,      (Ans.)
                 4        3
40                                                                                            cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
cÉk
² 43                                                                        M ˆ`Iqv AvGQ, g(x) = cotx
                                                                               
                                                                                                            3
         `†kÅK͸-1:                              `†kÅK͸-2: g(x) = cotx.              ‰es g2  .g 2  2 = 1, 0    
                            12          13                                                                          3
                                                                                      ev, cot2  .cot  2  2 = 1
                                    
                  5                                                                   ev, tan.tan2 = 1 ... ... ... (i)
K.    tan 4 I tan
         1
                  3
                       1
                            ‰i mgwÓ¡ wbYÆq Ki|                             2              sin.sin 2
                                                                                      ev, cos.cos 2 = 1 ev, cos.cos2 = sin.sin2
L. `†kÅK͸-1 ‰i AvGjvGK cÉgvY Ki ˆh,
                3                    29                                               ev, cos 2. cos  sin2. sin = 0
        + sin1  = cot1 2 + cot1 .                                      4
                5                    28                                               ev, cos(2 + ) = 0
                                 3
M. mgvavb     Ki: g2   . g 2  2 = 1, 0                     4          ev, 3 = (2n + 1) 2
                                                                                                                 
           1  tan2 5                                     13
      ev, 1 + tan2 = 13                          12
                                                                                                                             1          1
                                                                                  ² 44 `†kÅK͸-1: f(a) = sec1a + sec1b
                                                                               cÉk
                                                                               
      ev, 5 + 5 tan2 = 13  13 tan2
                                        8
                                                              = 2
                                                                                `†kÅK͸-2: g() = sin( cos)  cos( sin).
      ev, 18 tan  = 8 ev, tan  = 18
                   2                2
                                                         5                                            1
                                                                                K. cot sin1               ‰i gvb wbYÆq Ki|                                 2
                   4               2                2                                                 5
      ev, tan2= 9 ev, tan = 3 ev,  = tan1 3                                 L. `†kÅK͸-2 nGZ hw` g() = 0 nq ZGe ˆ`LvI ˆh,
          1         12          2                                                          1        3
       2 sin1 13 = tan1 3 [(i) bs nGZ]                                             =
                                                                                            2
                                                                                               sin1 .
                                                                                                    4
                                                                                                                                                              4
               1
     evgcÞ = 2  + sin1 5
                             3                                                  M.    `†kÅK͸-1 nGZ f(a) =               nGj cÉgvY Ki ˆh,
                                                5
                                                           3
                                                                                      sin =        a2 + b2  2ab cos .                                      4
              1      1 12        1 3
            = sin           + sin
              2         13           5
                     2          3                  4                           wkLbdj- 1                                        [PUMÉvg ˆevWÆ-2019  cÉk² bs 4]
            = tan1 + tan1
                     3          4
                        2 3
                          +
                                          8+9                                                                44 bs cÉGk²i mgvavb
                        3   4              12                                                    1
            = tan1
                          2 3
                                 = tan1
                                              1                                K
                                                                                    cot sin  1   
                     1                  1                                                     5                        5
                                                                                                                                   1
                          3 4                 2
                                                                                     = cot . cot12
                     17                                                              = 2 (Ans.)                               2
                  1 12           17
            = tan
                      1
                         = tan1
                                   6
                                                                               L
                                                                                     ˆ`Iqv AvGQ, f(x) = sinx
                                                                                                      g(x) = cosx
                      2
                                                                                       f(g(x)) = sin(cosx)
                                29          1         28
     WvbcÞ = cot12 + cot1 28 = tan1 2 + tan1 29                                   ‰es g(f(x)) = cos(sinx)
                        1 28                29 + 56                                   ˆhGnZz, f(g(x) = g(f(x))
                          +                                                            sin(cosx) = cos(sinx)
                        2    29                58
            = tan1                 = tan1                                                                    
                          1 28              58  28
                      1 
                          2 29
                                                                                      ev, sin(cosx) = sin 2  sin x
                                               58                                                                      
                   1 85        1 17
                                                                                                                         1
            = tan         = tan                                                       ev, cosx = 2  sinx ev, cosx = 2  sinx
                      30            6
        1            3                    29                                                               1                     1
      2  + sin1 5 = cot12 + cot1 28 (cÉgvwYZ)                                    ev, cosx  sin x = 2 ev, (cosx  sin x)2 = 4                [eMÆ KGi]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                     41
                                                                1                                                               
                                              1
       ev, cos2x + sin2x  2cosx sinx = 4 ev, 1  sin2x =                     ev, tan x = – 1 = tan – 4  x = n – 4 , n  Ù
                                                                4
                                                                              A^ev, cos x – sin x = sin 2x ev, (cos x – sin x)2 = sin2 2x
                       3                  3                                 ev, 1 – sin 2x = sin2 2x ev, sin2 2x + sin 2x – 1 = 0
       ev, sin2x =  4 ev, 2x = sin1   
                                          4                                               –1 1+4 1
                                                                              ev, sin 2x =        2
                                                                                                         = (– 1  5)
                                                                                                           2
              1      3
        x =  sin1
              2      4
                             (ˆ`LvGbv nGjv)                                                   1
                                                                              A^Ævr, sin 2x = 2 (– 1 + 5) = sin , KviY mvBb
                                     1     1
M ˆ`Iqv AvGQ, f(a) = sec1 a + sec1b ‰es f(a) = 
                                                                             AbycvGZi gvb 1 AGcÞv Þz`ËZi nGZ cvGi bv|
                   1             1                                             2x = n + (– 1)n, ˆhLvGb n = 0 A^ev n = 4m  1, m  Ù
      myZivs sec1 a + sec1 b =                                                      1            1                 1
                                                                              ev, x = 2 n + (– 1)n 2 ; hLb, sin  = 2 ( – 1 + 5)
         ev, cos1 a + cos1 b = 
                                                                                                          n           
         ev, cos1 {ab  (1  a2) (1  b2)} =                                 wbGYÆq mgvavb: x = n  ,       + (1)n ,
                                                                                                         4 2            2
         ev, ab  (1  a2) (1  b2) = cos                                                   51
         ev, ab  cos = (1  a2) (1  b2)                                    hLb sin = 2 ‰es n ‰i gvb kƒbÅ A^ev ˆhGKvGbv cƒYÆ
         ev, a2b2  2ab cos + cos2 = 1  a2  b2 + a2b2                     msLÅv| (Ans.)
         ev,  2ab cos = 1  cos2  a2  b2
         ev, a2 + b2  2ab cos = sin2                                    cÉk
                                                                           ² 46 f(x) = sin1x ‰es g(x) = cosx.
          sin = a2 + b2  2ab cos (cÉgvwYZ)                                         1               1
                                                                            K. tan1 2 + tan1 3 ‰i gvb KZ?                                          2
cÉk
² 45 f(x) = tanx.                                                                       
                                                                            L. f  2g 2   + f { g(2)} ‰i gvb wbYÆq Ki|                     4
                       5                     5                                                 
 K. ˆ`LvI ˆh,      tan 1
                        =  cos1                .                   2                                                 
                       3 2                    34                            M. mgvavb Ki: 3g(x) + g2 + x = 1
 L. cÉgvY Ki ˆh, tan {(2 + 3) f(x)} + tan {(2  3)
                            1                       1
                                                                              hLb  2 < x < 2.                                        4
       f(x)} = tan1 {2 f(2x)}.                                      4     wkLbdj- 1 I 4                  [hGkvi ˆevWÆ-2019  cÉk² bs 4]
                        
 M.    mgvavb Ki : f 2  2x = cosx + sinx.                       4                       46 bs cÉGk²i mgvavb
wkLbdj- 1 I 3                           [wmGjU ˆevWÆ-2019  cÉk² bs 4]             1
                                                                           K tan1 2 + tan1 3
                                                                           
                                                                                                   1
                            45 bs cÉGk²i mgvavb
                    5                                                               1 1            3+2          5
K awi, cos1
                        =                                                           +
                                                                                    2 3             6           6
                     34                                                       = tan1
                                                                                          = tan -1
                                                                                                       = tan 1
                       5                          34           34  25                 11          61          5
         = cot1                                            = 9=3                 1 .
                                                                                       23           6           6
                      3
                  5            5               
        cos1          = cot1                    5                                           
                   34          3                                              = tan1(1) =       (Ans.)
                                                                                               4
                              5        5                        
        WvbcÞ =  cot1 = tan1 ‹ tan1x + cot1 x =                    L ˆ`Iqv AvGQ, f(x) = sin1x ‰es g(x) = cosx
                                                                           
                     2         3        3                       2
                    = evgcÞ                                                                                    
               5                 5                                           cÉ`î ivwk = f  2 g2   + f{ g(2)}
       tan1 =  cos1               (cÉgvwYZ)                                                            
               3 2                34                                                          
L
      evgcÞ = tan1 {(2 + 3) tanx} + tan1 {(2  3) tanx}                    = f  2 cos    + f{ cos2}
                                                                                         2 
                           (2 + 3) tanx + (2  3) tanx
                = tan1                                                       = f( 2 sin) + sin1 ( cos2)
                         1  (2 + 3) tanx . (2  3) tanx
                         2 tanx + 3 tanx + 2 tanx  3 tanx                    = sin1( 2 sin) + sin1( cos2)
                = tan1
                                    1  (4  3)tan2x
                                                                              = sin1{ 2 sin              1  cos2 +     cos2. 1  2 sin2}
                           4 tanx                 2 tanx 
                = tan1             = tan12 .          2 
                         1  tan2x           1  tan x                      = sin1{ 2 sin  2 sin +                   cos2. cos2}
                = tan {2tan(2x)} = WvbcÞ
                      1
                                                                                    1             2
                                                                              = sin {2 sin  + cos2}
        tan1 {(2 + 3) tanx} + tan1 {(2 3) tanx}
                                                                                                                                     
          = tan1 {2tan(2x)} (cÉgvwYZ)                                        = sin1 {2 sin2 + 1  2 sin2} = sin 1 1 =             (Ans.)
                                                                                                                                     2
                                           
M
     f   2x = cosx + sinx ev, tan  2x = cosx + sinx
        2                                2                                                 
                                                                           M 3g(x) + g2 + x = 1 hLb  2 < x < 2
                                                                           
                                    cos 2x
      ev, cot2x = cosx + sinx ev, sin 2x = cos x + sin x
                                                                                                           
      ev, (cos2x – sin2x) – 2 sinx cos x (cos x + sin x) = 0                  ev, 3 cosx + cos2 + x = 1 ev, 3 cosx  sinx = 1
                                                            2       2
                                          cos 2x = cos x  sin x                3                   1           1                           1
                                             sin2x  = 2 sinx cosx           ev, 2 cosx  2 sin x = 2 ev, cosx cos 6  sinx sin 6 = 2
      ev, (cos x + sin x) (cos x – sin x – 2 sin x cosx) = 0
       nq, cos x + sin x = 0
42                                                                                              cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
                                                                                              11
     ev, cos x + 6 = cos 3 ev, x + 6 = 2n  3                                                 6          2
                                                                                          = tan–1     – cot–1
                                                                                                 2          11
      x = 2n      ; n ‰i gvb kƒbÅ A^ev ˆhGKvGbv cƒYÆmsLÅv|                                     6
                   3 6
                                                                                             –1 11          11
     ‘+’ wbGq, x = 2n +  = 2n +                                                        = tan         tan–1
                         3 6            6                                                           2          2
                                                                                        = 0 = WvbcÞ
     n = 0 nGj, x = 0 + =
                        6 6                                                                     4          2         2
                                                                                        sin–1    + cos–1      cot1 = 0 (cÉgvwYZ)
                          13                                                                  5           5        11
     n = 1 nGj, x = 2 + =        > 2
                         6     6                                                  M
                                                                                      4(sin2 + cos) = 5; –2 <  < 2
                               11                                                   ev, 4 sin2 + 4 cos  5 = 0
     n =  1 nGj, x =  2 + =
                             6      6
                                                                                       ev, 4 – 4 cos2 + 4 cos  5 = 0
                               23
     n =  2 nGj, x =  4 + =          <  2                                         ev, 4 cos2  4 cos + 1 = 0
                             6      6
                                                                                    ev, (2 cos  1)2 = 0 ev, 2 cos  1 = 0
     ‘’ wbGq, x = 2n   = 2n                                                                  1        
                         3 6            2                                              ev, cos = 2 = cos 3
                      
     n = 0 nGj, x =                                                                                 
                      2                                                                  = 2n  ; hLb n ‰i gvb kƒbÅ
                                                                                                     3
                          3
     n = 1 nGj, x = 2  =                                                             ev AbÅ ˆhGKvGbv cƒYÆ msLÅv|
                         2 2
                                                                                                        
                          7                                                          n = 0 nGj,  = 
     n = 2 nGj, x = 4  =       > 2                                                                   3
                         2 2
                                                                                                      5 7
                               5                                                    n = 1 nGj,  =    ,
     n =  1 nGj, x =  2  =         <  2                                                          3 3
                             2     2
                                                                                                          5 7
                                             11    3                              n = 1 nGj,  =      ,
      cÉ`î kZÆvbymvGi wbGYÆq mgvavb, x =  6 , 2 , 6, 2                                                   3    3
                                                                                                                                        5
                                    4                                                   wbw`ÆÓ¡   eÅewaGZ  ‰i gvbmgƒn :  3 ,  3
   ² 47 `†kÅK͸-1 : sin
cÉk
                           1
                                   ( ) + cos
                                    5
                                             1    2   cot1      ( ) 2
                                                                         11
                                                   5                            cÉk
                                                                                  ² 48 f(x) = tanx
 `†kÅK͸-2 : 4(sin  + cos) = 5,  2 <  < 2
                      2
                                                                                                               3
 K. cÉgvY Ki ˆh, 2 sin1 x = sin1 (2x 1  x2)                                2    K. cot1 cos cosec1        2
                                                                                                                 ‰i gyLÅ gvb wbYÆq Ki|              2
 L. `†kÅK͸-1 ‰i gvb wbYÆq Ki|                                                4    L. DóxcGK DGÍÏwLZ       f(x) ‰i RbÅ f 1(x) + f 1(y) = 
                                                                                                                                       nGj
 M. `†kÅK͸-2 ‰ ewYÆZ mgxKiYwU mgvavb Ki|                                     4       cÉgvY Ki ˆh, cÉvµ¦ mçvic^wU ‰KwU mijGiLv wbG`Æk KGi
              [XvKv, w`bvRcyi, wmGjU I hGkvi ˆevWÆ-2018  cÉk² bs 4]                  hvi Xvj  1 nGe|                                      4
                       47 bs cÉGk²i mgvavb                                         M. {f(x)}2 + f(x) = 3f(x) nGj weGkl mgvavb wbYÆq Ki hLb
K
      gGb Kwi, sin1x = A                                                            0  x  2.                                           4
        sinA = x                                                                                                     [ivRkvnx ˆevWÆ-2017  cÉk² bs 4]
       ‰es cosA = 1  sin2A = 1  x2                                                                      48 bs cÉGk²i mgvavb
       ‰Lb, sin2A = 2sinAcosA = 2x 1  x2                                                                      3
                                                                                  K cot1 cos cosec1
                                                                                                              2
        2A = sin1 (2x 1  x2 )                                                                          1                      3
                                                                                      = cot1 cos cos1                                       2
       myZivs, 2sin1x = sin1 (2x 1  x2 ) (cÉgvwYZ)                                                      3
                          4       2           2                                                 1 
L
      evgcÞ = sin–1 5 + cos–1         cot1                                         = cot1     = (Ans.)                           1
                                   5         11                                                  3 3
       = tan –1 4      –11
                  + tan – cot –1 2
                                     [wPò 1 I 2          nGZ]                     L ˆ`Iqv AvGQ, f(x) = tanx
                                                                                  
                3        2      11
                                                                                     f 1(x) = tan1x ‰es f 1(y) = tan1y
                4 1                                                                 cÉkg² GZ, tan1x + tan1y = 
                 +                                   4               5                             x+y
       = tan–1
                3 2
                        – cot–1
                                2                                                     ev, tan1 1  xy = 
                   4 1          11
               1– .                                                                          x+y
                   3 2                                       3                        ev, 1  xy = tan
               8+3                                        wPò-1
                                                                                             x+y
                 6            2                                                       ev, 1  xy = 0
       = tan–1        – cot–1
               6–4           11
                 6                                   1               5                ev, x + y = 0
                                                                                           y=x
                                                               2
                                                                                      AZ‰e, cÉvµ¦ mçvic^wU ‰KwU mijGiLv wbG`Æk KGi ‰es
                                                                                      mijGiLvwUi Xvj  1 (cÉgvwYZ)
                                                             wPò-2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                       43
M ˆ`Iqv AvGQ, f(x) = tanx
                                                                                  2 P–1                           2 P–1
              d
                                                                            ev,      P
                                                                                         = cos0              ev,     P
                                                                                                                         =1
    f (x) =    (tanx) = sec2x
              dx
                                                                            ev,    2 P–1=P
   cÉ`î mgxKiY, {f(x)}2 + f(x) = 3 f(x)
                                                                            ev,    4(P – 1) = P2
   ev, tan2x + sec2x = 3 tanx
   ev, tan2x + 1 + tan2x  3 tanx = 0                                       ev,    P2 – 4P + 4 = 0
L
       evgcÞ = sec         –1
                                     5 + sin– 1 – sin– 1
                                        2      5                                                  1               
                                                          5                           ev, tan1 y  tan1x = 6
                                                                                                   1
                                               5                                                      x
                   5             2                         1                                       y          
                                                                                      ev,   tan1
                                                                                                      1
                                                                                                            =
                                                                                                              6
                                                                                                  1 + .x
                                                                                                      y
                        1                          2
                   wPò-1                                                                    1  xy
                                              wPò-2
                                                                                               y                  1  xy  1
                1       4        1                                                    ev,    y+x
                                                                                                     = tan
                                                                                                           6
                                                                                                               ev, x + y =
     = tan– 12 +  sin– 1 – tan– 1 [wPò 1                             I 2 nGZ]                                               3
                2       5        2                                                             y
                1       4  1          1                                               ev, x + y = 3  3xy
     = tan– 12 + sin– 1 – . 2 tan– 1
                2       5 2           2                                                x + y + 3xy = 3 (cÉgvwYZ)
                                       1
              1      4 1               2
                                                                2.              M cos  cos9 = sin5
                                                                                
     = tan 2 + sin– 1 – sin– 1
           –1
                                                                                  ev, 2 sin5 sin4 = sin5
              2      5 2               1 2
                                  1+                                            ev, sin5 (2 sin4  1) = 0
                                      2
                 1      4   1       1                                             nq, sin5 = 0            A^ev, 2 sin4  1 = 0
     = tan– 12 + sin– 1 – sin– 1                                                  ev, 5 = n              ev, 2 sin4 = 1
                 2      5 2           1
                                  1+                                                              n                                       1       
                                      4                                                     =                           ev, sin4 = 2 = sin 6
                                                                                                   5
                 1      4 1       1
     = tan– 12 + sin– 1 – sin– 1                                                                                                                       
                 2      5 2       5                                                                                       ev, 4 = n + ( 1)n 6
                                  4
                                                                                                                          n           
                 1      4 1       4                                                                                        =+ ( 1)n
     = tan– 12 + sin– 1 – sin– 1 = tan– 12 = WvbcÞ                                                                         4           24
                 2      5 2       5                                                                                n n         
                                                                                       wbGYÆq mgvavb,          =   ,
                                                                                                                    5 4
                                                                                                                         + ( 1)n ; hLb n ‰i
                                                                                                                                 24
                                                                                                                                                             gvb
                   1      4      1
      sec
           –1
                5 + sin1  sin1 = tan– 12 (cÉgvwYZ)
                   2      5       5                                                   kƒbÅ A^ev AbÅ ˆhGKvGbv cƒYÆ msLÅv|
M sinx + 3 cosx = 3
                                                                               cÉk
                                                                                ² 52                           C                                P
      1         3        3
  ev, 2 sinx + 2 cosx = 2                                                                              r                               r
                                                                                                                                                   y
                y
     P = cos−1                                                                                                                                                  6
                 r                                                                                             ² 53 `†kÅK͸-1 : cot − tan = 5
                                                                                                               cÉk
                             x            y
    cÉkg² GZ, cos−1 r + cos−1 r =                                                                              `†kÅK͸-2 : 2 sin2 + 2 (sin + cos) + 1 = 0
                   xy                        2                         2                                      K. cÉgvY Ki ˆh, tan−1 (cot3x) + tan−1 (− cot5x) = 2x                         2
    ev, cos−1  r2 −
                    (1 − xr ) (1 − yr ) = 2                         2
                                                                                                                L. `†kÅK͸-1 nGZ cÉgvY Ki
                                                                                                                                                                1
                                                                                                                                                        ˆh,  = 2 sin−1
                                                                                                                                                                        5
                                                                                                                                                                                             4
        xy          x         y      2                    2                                                                                                             34
    ev, r − (1 − r ) (1 − r ) = cos
         2                           2                    2
                                                                                                                M. `†kÅK͸-2 ‰ ewYÆZ mgxKiYwUi mvaviY mgvavb wbYÆq Ki| 4
                                                                                                                                                                 [hGkvi ˆevWÆ-2017  cÉk² bs 4]
                                 2                             2                     2          2
    ev, ( r − cos) =  (1 − r ) (1 − r ) 
          xy                    x          y
              2                                                2                     2
                                                                                                                                             53 bs cÉGk²i mgvavb
         2 2                                                                2                   2
        xy      xy                    x         y
    ev, r − 2. r cos + cos  = (1 − r ) (1 − r )
          4              2
                                              2
                                                                            2                   2              K ‰LvGb, tan (cot 3x) + tan−1 (− cot 5x)
                                                                                                                                −1
       x2y2            xy                                          y2           x2       x2y2                                                      
    ev, r4 − 2. r2 cos + cos2 = 1 − r2 − r2 + r4                                                                 = tan−1 tan  − 3x − tan−1 tan  − 5x
                                                                                                                               2                 2    
       x2         y2     2xy                                                                                                  
    ev, r2 + r2 − r2 cos = 1 − cos2                                                                              =
                                                                                                                       2
                                                                                                                         − 3x − + 5x = 2x
                                                                                                                               2
       x2         y2     2xy                                                                                        tan−1 (cot 3x) + tan−1 (−cot 5x) = 2x (cÉgvwYZ)
    ev, r2 + r2  r2 cos = sin2
                                                                                                                                                         6
     x2 + y2 − 2xy cos = r2 sin2 (cÉgvwYZ)                                                                  L ˆ`Iqv AvGQ, cot − tan = 5
                                                                                                               
M ˆ`Iqv AvGQ,
                                                                                                                       cos     sin          6
          r                                                                                                        ev, sin − cos = 5
    f() = = sec
          x
                                                                                                                        cos2 − sin2            6
     f(2) = sec2                                                                                                ev, sin cos = 5
    cÉkg² GZ, f(2) − f() = 2
                                                                                                                   ev, 5 (cos2 − sin2) = 6 sin cos
    ev, sec 2 − sec = 2
             1            1                                                                                        ev, 5 cos2 = 3 sin2
    ev, cos 2 − cos = 2                                                                                              sin 2 5
                                                                                                                                                                           34
                                                                                                                   ev, cos 2 = 3                                          2
                                                                                                                                                                                      5
        cos − cos 2
    ev, cos 2 . cos = 2                                                                                                             5                                         3
                                                                                                                   ev, tan 2 = 3
    ev, cos − cos 2 = 2 cos2 . cos
    ev, cos  cos2 = cos + cos (2 + )                                                                                                5
                                                                                                                   ev, sin 2 =
                                                                                                                                          34
    ev, cos3 + cos2 = 0
                                                                                                                                           5
    ev, 2 cos
             3 + 2
                     cos
                         3  2
                                 =0
                                                                                                                   ev, 2 = sin−1
                2           2                                                                                                              34
                                                                                                                        1      5
           5     
    ev, cos 2 cos 2 = 0                                                                                              = sin−1
                                                                                                                        2
                                                                                                                                                 (cÉgvwYZ)
                                                                                                                               34
46                                                                                               cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
M 2 sin2 + 2 (sin + cos) + 1 = 0
                                                                                      x ‰i     wewf®² gvGbi RbÅ cÉwZmãx y ‰i gvbàGjv wbYÆq Kwi|
     ev, 2 . 2 sin cos + 2 sin + 2 cos + 1 = 0                                       x          –1        – 0.75 – 0.5 – 0.25 0 0.25 0.5                      0.75       1
                                                                                                                (– 0.75, – 24.29)
                                                        1
 L. g(x) ‰i ˆjLwPò Aâb Ki, hLb                       p = , – 1  x  1.
                                                        2
                                                                              4
                                                                                                     (– 1, – 45)
 M. 2{h(x)} + {h(2x)} = 2 mgxKiYwUi mvaviY mgvavb
              2                    2                                                                                                 Y
     wbYÆq Ki|                                                                4
                                               [ewikvj ˆevWÆ-2017  cÉk² bs 4]    M ˆ`Iqv AvGQ, h(x) = cosx
                                                                                  
                              54 bs cÉGk²i mgvavb                                       h(2x) = cos2x
                                5          1
K
     evgcÞ = sec– 1           2
                                  + tan– 1
                                           2
                                                                                       cÉ`î mgxKiY,
                      1          1                                                              2{h(x)}2 + {h(2x)}2 = 2
           = tan– 1     + tan– 1
                      2          2                                                           ev, 2 cos2x + cos22x = 2
                                                                     5
                      1                               1
           = 2 tan– 1                                                                        ev, 1 + cos2x + cos22x – 2 = 0
                      2
                       1                                         2
                          2.                                  5         1
                                                                                             ev, cos22x + cos 2x  1 = 0
                       2                                –1
                                                                = tan–1
           = tan– 1                              sec
                                                             2          2
                        1 2                                                                                   – 1  12 – 4 . 1 . (– 1)
                    1–                                                                     ev, cos2x =
                       2                                                                                             2.1
                          1
           = tan– 1                                                                                             –1 5
                              1                                                                           =
                      1–                                                                                          2
                              4
                      1                                                                        –1– 5
           = tan– 1                                                                    wK¯§,     2
                                                                                                     MÉnYGhvMÅ                bq| ˆKbbv Zv – 1 AGcÞv ˆQvU
                      3
                      4
                                                                                       gvb ‰es cos ‰i mxgv – 1 nGZ 1 chƯ¦|
                      4         3
           = tan–1      = cot– 1 = WvbcÞ
                      3         4                                                                         –1+ 5
                                                                                        cos 2x =
                                                                                                            2
                    5         1        3
      sec– 1         + tan– 1 = cot– 1 (cÉgvwYZ)
                   2          2        4                                                                                                        –1+ 5
                                                                                       ev, cos 2x = cos [awi,  = cos– 1                       2  ]
                         1
L ˆ`Iqv AvGQ,
                     p=
                         2
                                                                                       ev, 2x = 2n   .
                           1
     ‰es   g(x) = p sin x = sin– 1x
                           2
                              –1
                                                                                                          
                                                                                        x = n 
                                                                                                          2
     ˆhLvGb – 1  x  1.
                                                                                                                    –1+ 5
               1
     awi, y = 2 sin– 1x.                                                               ˆhLvGb  = cos– 1            2   ‰es n  Ù (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                     47
       `†kÅK͸-1:                              `†kÅK͸-2:                                     P        P    A       20 cm
                       A
                                                                            10 N                                                 B
                                                                                                8 cm
                       P1                                     20 cm
                                                A                           B
                      O                                                                                 5N   15 N
                                                    B
                                                        P P
                                                          2   2
                                                                    PC  3
                                                                         2       I 32kg IRGbi `yBRb evjK SzjGQ|
                                           B
                                                     2               2
                                                                              C  K. 3N, 7N I 5N ejòq ‰KwU eÕ§i Dci wKÌqv KGi fvimvgÅ
       P1              P2           P3                                                 m†wÓ¡ KiGj 3N I 5N ej«¼Gqi gaÅeZÆx ˆKvY wbYÆq Ki| 2
               =              =
  sin BOC sin AOC Sin AOB
                P1                   P2                      P3
                                                                                 L.    `†kÅK͸-1 ‰ KuvVvjàGjvi IRGbi jwº¬ ABC wòfzGRi
  ev,             B C
                            =
                                       A C
                                                 =
                                                              A B                      jÁ¼we±`yMvgx nGj ˆ`LvI ˆh, cosA : cosB : cosC
      sin     sin     sin                                               =  35 : 50 : 28 ˆhLvGb a = 4, b = 5, c = 2.                  4
            2 2                 2 2                  2 2
                 P1                    P2                        P3              M. `†kÅK͸-2 ‰ LuywU `yBwUi gaÅeZÆx `ƒiZ½ AB ‰i
  ev,              B+C
                             =
                                         A+C
                                                   =
                                                                  A+B                  ‰K-Z‡Zxqvsk nGj LuywU `yBwUi AeÕ©vb wbYÆq Ki|                4
       sin               sin   2  sin   2 
                      2                                                   wkLbdj- 4, 9 I 11                  [gqgbwmsn ˆevWÆ-2021  cÉk² bs 8]
                 P1                    P2                     P3                                         31 bs cÉGk²i mgvavb
  ev,                  A
                             =
                                             B
                                                  =
       sin               sin              sin     C               K
                                                                                      awi,  3N I 5N ej«¼Gqi gaÅeZÆx ˆKvY 
                      2                  2                      2 
                                                       [ A + B + C = ]               ‰Lb, 3N, 7N I 5N ejòq mvgÅeÕ©v m†wÓ¡ KiGj, 3N I 5N
              P1                P2               P3                                    ej«¼Gqi jwº¬i gvb 7N.
  ev,          A
                         =
                                 B
                                        =
                                                  C                                   kZÆgGZ,
       sin  +  sin  +  sin  + 
            2 2              2 2            2 2                                    32 + 52 + 2.3.5 cos = 7 [ ejòq fvimvgÅ m†wÓ¡ KGi]
                                             2            2            2
         P            P        P           P            P           P                  ev, 9 + 25 + 30cos = 49 ev, 30cos = 15
  ev, 1A = 2B = 3C ev, 1 A = 2 B = 3 C                                                              15            1                1
       cos
             2
                   cos
                         2
                             cos
                                 2
                                        cos  2
                                               2
                                                    cos  2
                                                            2
                                                                 cos  2
                                                                         2
                                                                                       ev, cos = 30 ev, cos = 2   = cos– 1 2 = 60 (Ans.)
                                                                                                                     A
                     P21                 P22        P23                            L
                                                                                   
        ev, 1                  1
                                 =            =
                                                1                                                                P
                (1 + cosA)       (1 + cosB)       (1 + cosC)                                                          O
           2                   2                2
                 2              2           2
                P1            P2          P3
        ev, 1 + cosA    =            =
                           1 + cosB 1 + cosC
        P21 : P22 : P23 = (1 + cosA) : (1 + cosB) : (1 + cosC)                                B                                C
                                                                                                                    D
                                                                  (ˆ`LvGbv nGjv)                    Q            Q+R         R
48                                                                               cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
     gGb Kwi, ABC ‰i jÁ¼we±`y O ‰es ewaÆZ AO, BC ˆK D     cÉk
                                                                 ² 32 ‰KwU we±`yGZ  ˆKvGY wKÌqviZ P I Q (P > Q) gvGbi
     we±`yGZ ˆQ` KGi| ZvnGj, AD  BC. ‰Lb B I C ˆZ ej«¼Gqi e†nîg I Þz`ËZg jwº¬i gvb h^vKÌGg L I M
     wKÌqviZ m`†k mgv¯¦ivj ej Q I R ‰i jwº¬ (Q + R) ejwU K. ‰K we±`yGZ 120 ˆKvGY wKÌqviZ `yBwU mgvb eGji jwº¬
     BC ‰i ˆKvGbv we±`yGZ wKÌqv KiGe| Avevi cÉ`î ejòGqi            wbYÆq Ki|                                                  2
                                                               L. P ‰i w`K eivei jwº¬i jÁ¼vsGki cwigvY Q nGj, cÉgvY
     jwº¬i wKÌqvwe±`y O ‰es ‰i ‰KwU AskK ej P ‰i wKÌqvwe±`y                        QP
     A eGj, Aci AskK ej (Q + R) ‰i wKÌqvwe±`y AekÅB BC I           Ki ˆh,  = cos1 Q                                        4
     AD ‰i ˆQ`we±`y D nGe|                                                                                             
                                                               M. ˆ`LvI ˆh, ej«¼Gqi jwº¬i gvb L cos2 2 + M sin2 2 4
                              BD       CD
     Q  BD = R  CD  Q 
                              AD
                                  =R
                                       AD
                                            Q cot B = R cotC wkLbdj- 4 I 5                   [ivRkvnx ˆevWÆ-2021  cÉk² bs 7]
     Z`Ë‚c cÉgvY Kiv hvq, P cot A = R cot C.                                       32 bs cÉGk²i mgvavb
             P cot A = Q cot B = R cot C ... (i)             K awi, `yBwU mgvb ej P ‰es Zv 120 ˆKvGY wKÌqviZ
                                                              
                 cosA      cosB      cosC                           jwº¬, R = P2 + P2 + 2.P.P cos120
            P         =Q        =R
                   sinA     sinB    sinC                                                                         1
                 PcosA QcosB RcosC                                                      =         P2 + P2 + 2P2 
                       =       =                                                                               2
                  a/2r    b/2r    c/2r
                                                                                        =  P2 + P2  P2 = P2 = P
     ˆhLvGb ABC ‰i cwieÅvmvaÆ r.                                          jwº¬i gvb ‰KwU eGji mgvb| (Ans.)
     PcosA : Q cos B : R cosC = a : b : c                             L
                                                                         gGb Kwi, O we±`yGZ  ˆKvGY wKÌqviZ P I Q
     ‰LvGb, P = 8kg, Q = 7 kg ‰es R = 5 kg                                (P > Q) ej«¼Gqi jwº¬ R hv P              Q
     Avevi a = 4, b = 5 ‰es c = 2                                         ‰i mvG^  ˆKvY Drc®² KGi|
           PcosA QcosB RcosC        8cosA 7cosB 5cosC                     P ‰i w`K eivei jÁ¼vsk wbGq cvB,                               R
     ZvnGj,  a
                 =
                     b
                         =
                             c
                                 ev, 4 = 5 = 2                            Pcos0 + Qcos = Rcos                 
            cosA 7 35          cosB 25 50                                 ev, P + Qcos = Q [ Rcos = Q] O         
                                                                                                                                        P
     ZvnGj, cosB = 10 = 50 ‰es cosC = 14 = 28                             ev, Qcos = Q  P
      cosA : cosB = 35 : 50 ‰es cosB : cosC = 50 : 28                                QP                 QP
                                                                          ev, cos = Q   = cos1 Q (cÉgvwYZ)
      cosA : cosB : cosC = 35 : 50 : 28 (ˆ`LvGbv    nGjv)            M
                                                                         P I Q (P > Q) ej«¼Gqi e†nîg I Þz`ËZg jwº¬i gvb           h^vKÌGg
M [we.`Ë.: cÉkw² U mÁ·ƒYÆ bq| LyuwU
                                                      2P                 L I M.
  `yBwUi Ici Pvc«¼Gqi gGaÅ ˆKvGbv                                          e†nîg jwº¬, P + Q = L ... ... (i)
                                            A    C    O      D   B
  mÁ·KÆ DGÍÏL Kiv bv ^vKGj LyuwU                                          Þz`ËZg jwº¬, P  Q = M ... ... (ii)
                                                                          (i) I (ii) ˆhvM KGi cvB,
  `yBwUi AeÕ©vb wbYÆq Kiv mÁ¿e              24         56        32                             L+M
                                                                          2P = L + M ev, P =
  bq| ‰LvGb LyuwU `yBwUi Ici Pvc                                                                  2
  mgvb aGi mgvavb ˆ`qv nGjv|]                                             (i) ˆ^GK (ii) weGqvM KGi cvB,
                                                                                                LM
                  15                                                      2Q = L  M ev, Q =
     awi ZÚvwU 3 ev 5m eÅeavGb C I D we±`yGZ AewÕ©Z LuywU                                          2
                                                                          ˆhGnZz P I Q,  ˆKvGY wKÌqviZ, myZivs jwº¬,
     `yBwUi Dci mgvb Pvc«¼q P I P wKÌqv KGi| ZvnGj ‰G`i
                                                                          R=     P2 + Q2 + 2PQcos
     jwº¬ 2P, hv CD ‰i gaÅwe±`y O ˆZ wKÌqv KiGe|                                              2
                                                                                                    L  M 2
                5                                                         =     L +2 M          +         + 2.
                                                                                                                   L + M L  M 
                                                                                                                                 cos
      OC = OD = m
                2
                           mvgÅveÕ©vi RbÅ 24 I 32 IRb«¼Gqi                                        2           2  2 
                                                                                   L2 M2       L2 M2
     jwº¬ (24 + 32)                                                       =     2   +    + 2      cos
                                                                                  4 4  4 4 
     A^Ævr 56, AekÅB O ˆZ Lvov wbÁ²w`GK KvhÆiZ nGe|
                                                                                L2 M2 L2             M2
     24  AO = 32  BO                                                    =        +     + cos         cos
                                                                                2     2    2          2
        AO BO AO + BO AB 15                                                      2                2
          =     =          =     = m                                           L               M
         4    3      4+3        7   7                                     =        (1 + cos) +     (1  cos)
                                                                                2               2
             60             45
      AO =     m ‰es BO = m                                                    L2         M2         
             7               7                                            =         2cos2 +    2sin2
                                                                                2         2  2         2
                         60 5     120 – 35 85
      AC = AO – CO =  –  =             = m = 6.07m                                                 
                        7  2      14     14                             =     L2cos2        + M2sin2     (ˆ`LvGbv nGjv)
                                                                                            2          2
                          45 5     90 – 35 55
     ‰es BD = BO – OD =  7 – 2  = 14 = 14 m = 3.93m                                                                     
                                                                        [we.`Ë: cÉGk² fzj AvGQ,        L cos2
                                                                                                                  2
                                                                                                                    + Msin2 ‰i
                                                                                                                           2
                                                                                                                                 Õ©Gj
      LuywU `yBwU A I B we±`y ˆ^GK h^vKÌGg 6.07m I 3.93m                                        
                                                                              L2 cos2     + M2sin2 nGe|]
     `ƒiGZ½ Õ©vwcZ wQj| (Ans.)                                                          2         2
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                              49
                                     B                          C
                                                                        K. ˆKvGbv we±`yGZ F gvGbi `yBwU mgvb ej ciÕ·i 120
                                            a       D
                                                                           ˆKvGY wKÌqviZ nGj, ‰G`i jwº¬i gvb I w`K wbYÆq Ki| 2
                                    M           M+N         N
                                                                        L. `†kÅK͸-1 ‰i ej `ywUi mvG^ mggvGbi KZ ej ˆhvM
    ‰Lb B I C wKÌqviZ m`†k mgv¯¦ivj ej M I N ‰i jwº¬                       KiGj bZzb jwº¬i wKÌqvwe±`y 5cm `ƒGi mGi hvGe?                 4
    (M + N) ejwU BC ‰i ˆKvGbv we±`yGZ wKÌqv KiGe| Avevi                 M. `†kÅK͸-2 ‰ Q = 13 N ‰es P I Q ‰i jwº¬ R = 12 N
    cÉ`î ejòGqi jwº¬ (L + M + N) ‰i wKÌqvwe±`y I ‰es ‰i                    nGj, P ‰i gvb wbYÆq Ki|                                       4
    ‰KwU AskK ej L ‰i wKÌqvwe±`y A eGj Aci AskK ej                      wkLbdj- 4, 9 I 11              [w`bvRcy i ˆevWÆ
                                                                                                                       - 2021  cÉ
                                                                                                                                 k ² bs 8]
50                                                                                        cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
                        34 bs cÉGk²i mgvavb                                 cÉk
                                                                            ² 35
K F gvGbi `yBwU mgvb ej ciÕ·i 120 ˆKvGY wKÌqv KGi|
                                                                             `†kÅK͸-1:                   `†kÅK͸-2:
   jwº¬, R = F2 + F2 + 2F.F cos120                                          ˆKvGbv we±`yGZ KvhÆiZ Q  R,          A
                                         1                                    Q, Q + R gvGbi ejàGjvi                  P
                 =      2F2 + 2F2        =       2F2  F2 =   F2 = F       w`K ‰KBKÌGg ˆKvGbv mgevü
                                        2                                                                                              G
                                                                                                                                                         C
                                                                              wòfzGRi evüàGjvi mgv¯¦ivj|
                                             120                                                                                                       R
     ˆhGnZz ej«¼q mgvb jwº¬i w`K,         =
                                              2
                                                  = 60                                                                   B
                                                                                                                              Q
      jwº¬i   gvb F ‰es jwº¬i w`K ˆh ˆKvGbv eGji mvG^ 60                  K. gƒj we±`yGZ 5, 8 I 10 ‰KK gvGbi wZbwU ej x-AGÞi
                                                                   (Ans.)      mvG^ h^vKÌGg 0, 60 I 120 ˆKvGY wKÌqv KiGQ| OX
L awi, `†kÅK͸-1 ‰i ej«¼Gqi mvG^ P gvGbi ej ˆhvM KiGj
                                                                              eivei ejàGjvi jÁ¼vsGki mgwÓ¡ wbYÆq Ki|                        2
  jwº¬i wKÌqvwe±`y 5cm `ƒGi mGi hvGe|                                       L. `†kÅK͸-1 ‰i ejàGjvi jwº¬ wbYÆq Ki|                          4
                                                     (10 + P)N              M. `†kÅK͸-2 ‰i m`†kÅ mgv¯¦ivj ej P, Q, R ‰i jwº¬ hw`
                                                     10N
                                                                               ABC wòfzGRi fiGK±`Ê G-ˆZ wKÌqv KGi ZGe cÉgvY Ki ˆh,
             D 5 cm C        A      10 cm       B
                                                                               P = Q = R.                                                   4
                                 15N                                        wkLbdj- 4, 9 I 11                [KzwgÍÏv ˆevWÆ-2021  cÉk² bs 7]
                                 (15 + P)N
            5N       5N                                                                          35 bs cÉGk²i mgvavb
     1g ˆÞGò, 10  BC = 15  AC                                             K OX eivei jÁ¼vsGki mgwÓ¡
                                                                            
           ev, 10  (AB + AC) = 15  AC                                               = 5 cos0 + 8 cos60 + 10cos120
                                                                                                1          1
           ev, 10 (10 + AC) = 15  AC                                                 = 5.1 + 8. + 10.  
                                                                                                2       2
           ev, 100 + 10AC = 15AC
                                                                                      = 5 + 4  5 = 4 (Ans.)
           ev, 5AC = 100
             AC = 20 cm                                                    L gGb Kwi, O we±`yGZ OX, OY, OZ eivei KvhÆiZ h^vKÌGg
                                                                            
  w«¼Zxq ˆÞGò, (15 + P)  AD = (10 + P)  BD                                  (Q  R), Q, (Q + R) ejàwji w`K ABC mgevü wòfzGRi
ev, (15 + P)  (AC + CD) = (10 + P)  (AB + AC + CD) BC, CA, AB evüi mgv¯¦ivj|
   ² 38 `†kÅK͸-1:
cÉk
                                                                      weK͸ mgvavb: gGb Kwi, OA ‰es OB ˆiLv«¼q eivei P I Q ej
                                                                         `yBwU mƒwPZ nq ‰es ‰G`i gaÅeZÆx ˆKvY  A^Ævr AOB = .
                       Q
                                 3Q                                       P I 3Q ‰i gaÅeZÆx ˆKvY 30
                                                                          Q I 3Q ‰i gaÅeZÆx ˆKvY   30
                           
                               30                                        eGji mvBb mƒò nGZ cvB,
                                      P                                       P         Q     3Q
                                                                                    =      =
`†kÅK͸-2: ABC-‰i A, B I C we±`yGZ h^vKÌGg P, Q, R m`†k                 sin(  30) sin30 sin
                                                                                                      B
mgv¯¦ivj ejòq KvhÆiZ ‰es wòfzGRi cwiGK±`Ê O.
K. `ywU eGji mGeÆvœP I meÆwbÁ² jwº¬i gvb h^vKÌGg 9N I 4N                                 Q
                                                                                                               3Q
    nGj ej«¼q wbYÆq Ki|                                         2
                                                                                             –30
L. `†kÅK͸-1 nGZ cÉgvY Ki ˆh, P = Q I P = 2Q.                   4
                                                                                                    30
M. `†kÅK͸-2 nGZ ‰G`i jwº¬i wKÌqvGiLv O we±`yMvgx nGj,
    cÉgvY Ki ˆh, P : Q : R = sin2A : sin2B : sin2C.             4            O
                                                                                                       P        A
wkLbdj- 4, 5 I9                   [wmGjU ˆevWÆ-2021  cÉk² bs 17
                                                                                                                 Q         3Q
                   38 bs cÉGk²i mgvavb                                   2q I 3q AbycvZ nGZ cvB, sin30 = sin
K gGb Kwi, ej«¼q P I Q ˆhLvGb P > Q
                                                                           1            3                 3
                                                                         ev, 1 = sin ev, 2 = sin
   mGeÆvœP jwº¬ = P + Q
                                                                            2
  meÆwbÁ² jwº¬ = P  Q
                                                                                             3
  kZÆgGZ, P + Q = 9 N                                                    ev, sin = 2 = sin60 = sin(180  60) = sin120
                PQ=4N
                                                                           = 60 A^ev 120
                
                                                                                                                 P              Q
                2P = 13 N                                                1g I 2q AbycvZ ˆ^GK sin(60  30) = sin30
           13
    P=       N = 6.5 N                                                          P               Q
           2                                                             ev, sin30 = sin30 [hLb  = 60]
    ‰es Q = 9 N  P = 9 N  6.5 N = 2.5 N
      ej«¼q 6.5 N ‰es 2.5 N (Ans.)                                       P=Q      (ˆ`LvGbv nGjv)
    
                                                                         Avevi, 1g I 2q AbycvZ ˆ^GK,
L gGb Kwi, OA ‰es OB
                                                       B                        P           Q
  ˆiLv«¼q «¼viv h^vKÌGg P I Q                                                           =
                                                                         sin(120  30) sin30
                                                                                                 [hLb  = 120]
                                                  Q
  ej`yBwU mƒwPZ nq ‰es                                      3Q                  P     Q     P
                                                                         ev, sin90 = 1 ev, 1 = 2Q
  ‰G`i gaÅeZÆx ˆKvY  A^Ævr
                                                                                      2
  AOB = . ˆhGnZz ej«¼Gqi                           30                 P = 2Q.           (ˆ`LvGbv nGjv)
  jwº¬ 3Q                                 O                      A
  P eivei jÁ¼vsk wbGq cvB,
                                                            P        M gGb Kwi, ABC wòfzGRi
                                                                                                                                   A
                             3
                 Q cos = Q  P
                                                                       ‰i jwº¬ BC ˆiLvÕ© ˆKvb
                             2                                         we±`yGZ wKÌqv KiGe|                             B                    C
    Avevi, mvgv¯¦wiK mƒòvbymvGi,                                                                                                    D
                   2
            (  3Q) = P2 + Q2 + 2PQ cos                                                                                    P+Q+R            R
                                     3                                                                                 Q            Q+R
            ev, 3Q2 = P2 + Q2 + 2P  2 Q  P
                                           
                                                                         Avevi, wZbwU eGji jwº¬ O we±`yMvgx ‰es P ejwU A we±`yGZ
            ev, 3Q2 = P2 + Q2 + 3PQ  2P2
                                                                         wKÌqviZ, KvGRB Q ‰es R ‰i jwº¬ BC ‰es AOD
            ev, P2  3PQ + 2Q2 = 0
                                                                         ˆiLv«¼Gqi ˆQ`we±`y D ˆZ wKÌqviZ nGe|
            ev, P2  PQ  2PQ + 2Q2 = 0                                                                    Q   CD    CD/OD
            ev, P(P  Q)  2Q(P  Q) = 0                                  Q.BD = R.CD                ev, R = BD = BD/OD ... ... ... (i)
            ev, (P  Q) (P  2Q) = 0                                     COD nGZ cvB,
            PQ=0            A^ev P  2Q = 0                               CD       OD       CD sin COD
                                                                                  =       ev, OD = sinOCD ... ... ... (ii)
            ev, P = Q         ev, P = 2Q                                 sinCOD sinOCD
                                                                                            BD sinBOD
             P = Q I P = 2Q (cÉgvwYZ)                                   Abyi…cfvGe BOD ‰ OD = sinOBD
54                                                                                             cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
         (i) bs   mgxKiGY DcGivÚ gvb ewmGq cvB,                                       A^Ævr BOD ˆiLvi DciÕ© D we±`yGZ
                                  sinCOD                                              wKÌqv KiGe|
                     Q CD/OD sinOCD
                       =        =        ... ... ... (iii)                            AZ‰e Q.AD = R.CD
                     R BD/OD sinBOD                                                       Q CD CD/OD
                                  sinOBD                                              ev, R = AD = AD/OD ... ... ... (i)
         Avevi, ˆhGnZz OB = OC = cwieÅvmvaÆ,                                                                         CD
                                                                                      ‰Lb, COD wòfzR nGZ, sinCOD = sinOCD
                                                                                                                                 OD
         myZivs OCD = OBD ev, sinOCD = sinOBD.
                                                                                                                 CD       sinCOD
         (iii) bs mgxKiY nGZ cvB,                                                                             ev, OD = sinOCD
                     Q sinCOD sin(π  AOC) sinAOC
                       =        =                  =                                                                  AD           OD
                     R sinBOD sin(π  AOB) sinAOB                                     Avevi, AOD wòfzR nGZ, sinAOD = sinOAD
         Avevi, e†Gîi ˆK±`ÊÕ© ˆKvY cwiwaÕ© ˆKvGYi w«¼àY eGj,                                           AD sinAOD
         AOC = 2B ‰es AOB = 2C                                                                        =       ... ... (ii)
                                                                                                       OD sinOAD
                     =
                       Q sin2B          Q       R
                                  ev, sin2B = sin2C ... ... ... (iv)                  (i) bs   mgxKiGY DcGivÚ gvbàGjv ewmGq cvB,
                       R sin2C                                                                    Q CD/OD sinCOD/sinOCD
                                         P       Q                                                  =        =           ... ... ... (iii)
         Abyi…cfvGe cÉgvY Kiv hvq ˆh, sin2A = sin2B = ... ... ... (v)                             R AD/OD sinAOD/sinOAD
                                                                                      ˆhGnZz OA = OC = cwieÅvmvaÆ
                                               P       Q           R
         ZvnGj (iv) I (v)bs mgxKiY nGZ cvB, sin2A = sin2B = sin2C                     myZivs, OCD = OAD
                                                                                       sinOCD = sinOAD nGj,
          P : Q : R = sin2A : sin2B : sin2C. (cÉgvwYZ)
                                                                                      (iii) bs mgxKiY nGZ cvB,
cÉk
² 39                                                                                           Q sinCOD sin(  BOC) sinBOC
                                                                                                    =        =         =
     `†kÅK͸-1:                                   `†kÅK͸-2:                                      R sinAOD sin(  BOA) sinBOA
                  B                                                                   Avevi, e†Gîi ˆKG±`ÊÕ© ˆKvY cwiwaÕ© ˆKvGYi w«¼àY eGj,
                                           A     D          C         B               BOC = 2A ‰es BOA = 2C
                                                                                           Q sin2A
                                                                                       =            R : Q = sin 2C : sin 2A (cÉgvwYZ)
                   O                                                                       R sin2C
     C             D      A
                                                     60
                                                     ˆKwR
                                                                                  M
                                                                                     AB = 20 wgUvi Š`NÆÅ wewkÓ¡ ZÚvwU A I C we±`yGZ `yBwU
                                                     IRb        BC = 4m               LyuwUi Dci Avbyf„wgKfvGe Õ©vcb KGi 60kg IRGbi eÕ§wU D
                                               AD = 3m
                      P                                                               we±`yGZ Õ©vcb Kiv nGjv|
 Owe±`ywU cwiGK±`Ê|                                                                    A           D      E      O           C          B
K. ‰KwU eÕ§i Dci ciÕ·i 20 wgUvi `ƒiGZ½ wKÌqvkxj wem`†k,
    mgv¯¦ivj ej 8N I 12N ‰i jwº¬i wKÌqvwe±`y wbYÆq Ki|           2
L. `†kÅK͸-1 ‰i AvGjvGK cÉgvY Ki ˆh, C I A we±`yGZ P                                              60 kg         50 kg
    eGji mgv¯¦ivj AskK«¼Gqi AbycvZ sin2C : sin2A.                4                    AD = 3 wgUvi, BC = 4 wgUvi
M. `†kÅK͸-2 ‰ 50 ˆKwR IRGbi AB mgi…c ZÚvwUi Š`NÆÅ                                     AC = (20  4) wgUvi = 16 wgUvi
    20 wgUvi nGj LyuwU«¼Gqi Dci PvGci cwigvY wbYÆq Ki|           4                    ZÚvwUi IRb ‰i gaÅwe±`y O ˆZ wKÌqvkxj|
wkLbdj- 9 I 11                    [ewikvj ˆevWÆ-2021  cÉk² bs 8]                     AO = BO = 10 wgUvi|
                      39 bs cÉGk²i mgvavb                                              DO = AO  AD = (10  3) wgUvi = 7 wgUvi
K gGb Kwi, A I B we±`yGZ h^vKÌGg 12N I 8N gvGbi `ywU
                                                                                     D I O we±`yGZ 60kg I 50kg IRGbi jwº¬ 110kg,           hv E
   wem`†k mgv¯¦ivj ej wKÌqvkxj| ej«¼Gqi jwº¬ ewaÆZ BA ‰i                              we±`yGZ wKÌqv KGi|
   C we±`yGZ wKÌqv KGi|                                                                            60  DE = 50  EO
   jwº¬ = (12  8)N = 4N                                                                          ev, 60  DE = 50  (DO  DE)
   AB = 20 wgUvi, awi, AC = x                                                                     ev, 60  DE = 50  7  50  DE
                   8  BC = 12  AC             8                                                ev, (60 + 50)  DE = 350
                  ev, 8  (20 + x) = 12x                                                                   350 35
                                                                 A        C                        DE =        =
                                                                                                           110 11
                                                                                                                    wgUvi
                  ev, 160 + 8x = 12x             B                                                             35 68
                  ev, 4x = 160                                                         AE = AD + DE = 3 +        =
                                                                                                               11 11
                                                                                                                      wgUvi
                                                                 12
                   x = 40                                                            ‰Lb, E we±`yGZ wKÌqvkxj 110kg IRGbi RbÅ A I C we±`yGZ
     jwº¬ 12N ej nGZ 40 wgUvi `ƒGi wKÌqvkxj| (Ans.)
                                                                                     LyuwU«¼Gqi Dci PvGci cwigvY h^vKÌGg P I Q nGj,
L gGb Kwi, A I C we±`yGZ wKÌqviZ P eGji mgv¯¦ivj AskK«¼q
                                                                                     P + Q = 110
  Q I R.                                                                              P  AE = Q  CE = Q  (AC  AE)
                                                B                                      P  AE + Q  AE = Q  AC
  ‰Lb, A I C we±`yGZ wKÌqvkxj Q I R
                                                                                      ev, (P + Q)  AE = Q  AC
  ‰i jwº¬ P, AC ˆiLvi DciÕ© ˆKvGbv                                                               68                 680
  ‰KwU we±`yGZ wKÌqv KiGe| Avevi,                O                                    ev, 110  11 = Q  16  Q = 16 = 42.5 kg
  jwº¬ ej BO eivei wKÌqv KGi KvGRB       C       D    A                                P = 110  Q = (110  42.5) = 67.5 kg
  Q ‰es R ‰i jwº¬ (Q + R) ejwU BO                                                      A we±`yi Pvc 67.5 kg IRb I C we±`yi Pvc 42.5 kg
                                                                      P               IRb| (Ans.)
                                                            R                 Q
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                       55
                                                                                                   3
   ² 40 `†kÅK͸-1: ˆKvGbv we±`yGZ 2P ‰es Q gvGbi `yBwU ej
cÉk
                                                                      ev, 2AC = 3AB  AC = 2 AB
wKÌqviZ AvGQ|                                                            ‰Lb, cÉGZÅK eGji gvb 3N e†w«¬ KiGj, A we±`yGZ wKÌqviZ
 `†kÅK͸-2: 5N I 3N gvGbi wecixZgyLx `yBwU mgv¯¦ivj ej                   ej nGe (5 + 3) = 8N ‰es B we±`yGZ wKÌqviZ ej nGe (3 + 3)
 h^vKÌGg A I B we±`yGZ wKÌqvkxj, ˆhLvGb AB = 10 ˆm.wg.|                  = 6N ‰es ZvG`i jwº¬ (8  6) = 2N ejwU ewaÆZ BA ‰i
 K. ˆKvGbv we±`yGZ ciÕ·i 120 ˆKvGY wKÌqviZ ‰KB gvGbi                    IciÕ© D we±`yGZ wKÌqv KiGj, 8AD = 6BD
     `yBwU eGji jwº¬ 4N nGj, ej«¼q wbYÆq Ki|                    2        ev, 8AD = 6 (AB + AD) ev, 8AD  6AD = 6AB
 L. `†kÅK͸-1: ‰ hw` Q = 3P nq ‰es 1g ejwUGK w«¼àY I 2q                  ev, 2AD = 6AB  AD = 3AB
     ejwUi gvb 6 ‰KK KGi e†w«¬ cvq ZGe jwº¬i w`K                                                                     3
     AcwiewZÆZ ^vGK| Q ‰i gvb wbYÆq Ki|                        4            wbGYÆq `ƒiZ½ = CD = AD  AC = 3AB  2 AB
 M. `†kÅK͸-2 ‰, cÉGZÅK eGji gvb hw` 3N KGi e†w«¬ Kiv                          = 3 
                                                                                        3
                                                                                           AB = 32 AB = 32  10 = 15   ˆm.wg. (Ans.)
                                                                                       2
     nq, ZGe jwº¬i wKÌqvwe±`y KZ `ƒiGZ½ mGi hvGe?              4
wkLbdj- 4, 10 I 11              [ivRkvnx ˆevWÆ-2019  cÉk² bs 6]      ² 41 `†kÅK͸-1:
                                                                    cÉk
                                                                    
                     40 bs cÉGk²i mgvavb
                                                                                            R
K Avgiv Rvwb,
                R2
                    = P2 + Q2 + 2PQ cos                                        Q
     ‰LvGb, R = 4N,  = 120                                                                 
     ‰es P = Q [ ej«¼q ciÕ·i mgvb]
          42 = P2 + P2 + 2P.P cos 120                                                                P
                                                                                                              Q>P
                              1                                    `†kÅK͸-2: 17 ˆm.wg. `xNÆ ‰KwU myZvi cÉv¯¦«¼q ‰KB Abyf„wgK
         ev, 16 = 2P2 + 2P2  2  ev, 2P2  P2 = 16
                                                                    ˆiLvq 13 ˆm.wg. `ƒGi AewÕ©Z `ywU we±`yGZ Ave«¬ AvGQ|
         ev, P2 = 16  P = 4N (Ans.)
                                                                    myZvwUi ‰K cÉv¯¦ nGZ 5 ˆm.wg. `ƒGi Zvi mvG^ 3 ˆKwR IRGbi
L gGb Kwi, 2P ‰es Q = 3P gvGbi `yBwU ej  ˆKvGY wKÌqviZ|
                                                                   ‰KwU eÕ§ mshyÚ Kiv nGjv|
  ZvG`i jwº¬, 2P ‰i w`GKi mvG^  ˆKvY Drc®² KGi|                    K. P I Q ej«¼q mgvb nGj, R ej  ˆK mgw«¼LwíZ KGi@
                 Q = 3P                                                 cÉgvY Ki|                                                   2
                                                                    L. R = 15N ‰es P I Q ej«¼Gqi e†nîg jwº¬ 25N nGj,
                      
                                                                       ej«¼q wbYÆq Ki|                                            4
                           2P                                       M. `†kÅK͸-2 Abyhvqx myZvwUi cÉGZÅK AsGki Uvb wbYÆq Ki| 4
                  3P sin                                           wkLbdj- 4, 5 I 9               [w`bvRcyi ˆevWÆ-2019  cÉk² bs 6]
      tan =
               2P + 3P cos
                                                                                        41 bs cÉGk²i mgvavb
     Avevi, ej«¼q 4P ‰es 3P + 6 nGj,
                                                                                                                     
               (3P + 6) sin                                                                               2 sin cos
     tan =                                                                       P sin     sin               2     2
            4P + (3P + 6) cos                                      K
                                                                        tan =           =
                                                                                P + P cos 1 + cos
                                                                                                    =
                                                                                                                   
                   3P sin        (3P + 6) sin                                                              2 cos2
     kZÆvbymvGi, 2P + 3P cos = 4P + (3P + 6) cos                                                                  2
                                                                                        
         4P + (3P + 6) cos (3P + 6) sin                                 = tan   = (ˆ`LvGbv nGjv)
     ev, 2P + 3P cos = 3P sin                                                 2        2
                                                                    L
                                                                       ˆ`Iqv AvGQ, R = 15N
         4P + (3P + 6) cos  2P  3P cos
     ev,            2P + 3P cos                                        kZÆgGZ, P + Q = 25 … … (i)
                                       (3P + 6) sin  3P sin          wPòvbymvGi jwº¬ P ‰i mvG^  = 90 ˆKvY Drc®² KGi|
                                     =                                   Avbyf„wgK eivei eGji Dcvsk wbGq cvB,
                                               3P sin
          2P + 6 cos     6 sin                                        P + Qcos = R cos
     ev, P(2 + 3cos) = 3P sin                                         ev, P + Qcos = 15  sin 90                  R
         P + 3 cos                                                     ev, P + Qcos = 0 ... ... ... (ii)  Q
     ev, 2 + 3cos = 1                                                             P
                                                                        ev, cos = Q … … (iii)                         
     ev, P + 3cos = 2 + 3 cos
     ev, P = 2 + 3 cos  3cos  P = 2                                 jwº¬ R2 = P2 + Q2 + 2PQ cos                       P
                                                                                                        P
      Q = 3P = 3  2 = 6N (Ans.)                                       ev, 15 = P + Q + 2PQ.  Q  [(iii) bs ˆ^GK gvb ewmGq]
                                                                              2    2     2
     (i) I (iv)
           ˆhvM KGi cvB, 2Q = 25 + 9 ev, Q = 2 = 17
                                                          34                     1 I 2 ,,                  ,,       ,,            ,, 180  60 = 120
                                                                                 2 I 3 ,,                  ,,       ,,            ,, 180  30 = 150
  (i) bs ‰ Q ‰i gvb ewmGq cvB,
  P + 17 = 25 ev, P = 25  17 = 8                                      L `†kÅK͸-2 ‰ OPRQ mvgv¯¦wiKwU cƒYÆ Kwi|
                                                                       
   ej«¼q P = 8N ‰es Q = 17N (Ans.)                                                                Q
                                                                                                                                       O
M 17 ˆm.wg. `xNÆ ACB myZvi A A
                                       13                         B
  cÉv¯¦ nGZ 5 ˆm.wg. `ƒGi C 5 T                   T2
                                                                                            F2
                                      1
  we±`yGZ 3kg fGii ‰KwU eÕ§ A 90 B 12                                                                          F
                                                                                                   
  SzjvGbv ‰es Aci cÉv¯¦ A ˆ^GK        C                                               R                    F1                 P
  13 ˆm.wg. `ƒGi ‰KB mijGiLv
  eivei B we±`yGZ evav AvGQ|            3kg
                                                                           awi, F1 = K cosP
   AB = 13, AC = 5 ‰es BC = 12                                                  F2 = K cosQ
     AC2 + BC2 = 52 + 122 = 169 = 132 = AC2                                F1 I F2 ‰i            gaÅeZxÆ ˆKvY R ‰es jwº¬ F.
      ACB = 90
                                                                        F2 = F12 + F22 + 2F1F2 cosR
     gGb Kwi, CA AsGki Uvb T1 ‰es CB AsGki Uvb T2| ZvnGj
                                                                            = K2 cos2P + K2 cos2Q + 2 K cosP.K cosQ.cosR
     T1, T2 I 3kg IRb ejòq C we±`yGZ fvimvGgÅ AvGQ|
                                                                            = K2 cos2P + K2 cos2Q + 2K2 cosP.cosQ.cosR
                            T               T             3
     jvwgi mƒòvbymvGi, sin(901 + B) = sin(902 + A) = sin 90              = K2 (cos2P + cos2Q + cos2R + 2 cosP.cosQ.cosR  cos2R)
          T1      T2            T1 T2                                        = K2 (1  cos2R) [‹ P + Q + R =  nGj, cos2P + cos2Q
     ev, cosB =
                 cosA
                       = 3 ev,     =
                                12 5
                                        =3
                                                                                                  + cos2R + 2 cosP.cosQ.cosR = 1]
                                13 13                                            2    2
                                                                             = K sin R
              12                 36
     ev, T1 = 13  3kg  T1 = 13 kg (Ans.)                                  F = K sinR
                5                  15                                      RP    ‰i jÁ¼ eivei Dcvsk wbGq cvB,
     ‰es T2 = 13  3kg  T2 = 13 kg (Ans.)
                                                                           F1 sin0 + F2 sinR = F sin
   ² 42 `†kÅK͸-1: 16N I 12N `yBwU mggyLx mgv¯¦ivj ‰KwU
cÉk
                                                                        ev, K cosQ sinR = K sinR sin
KwVb eÕ§i Dci h^vKÌGg L I M we±`yGZ wKÌqviZ AvGQ|                          ev, cosQ = sin [K sinR «¼viv fvM KGi]
                                     Q                                                      
                                                                           ev, sin 2  Q = sin
                          F2
`†kÅK͸-2:                     F
                                                                                 
                                                                           ev, 2  Q = 
                  R                       P
                              F1
                                                                               P+Q+R
 K. ˆKvb we±`yGZ 1, 2 ‰es 3 ‰KK ejòq wKÌqv KGi                             ev,     2
                                                                                        Q =  [‹ P + Q + R = ]
    mvgÅveÕ©v m†wÓ¡ KGi| ejàGjvi gaÅeZxÆ ˆKvY wbYÆq Ki| 2                          P+Q+R
 L. `†kÅK͸-2 ‰ F1  cosP, F2  cosQ ‰es F1, F2 ‰i jwº¬                    ev,  =   2
                                                                                          Q
                                      1
          nGj ˆ`LvI ˆh, R   = 2 (R + Q  P).                     4
      F
M. `†kÅK͸-1 nGZ ej«¼q AeÕ©vb wewbgq KiGj LM eivei
                                                                           R=R                  (P + Q2 + R  Q)
                                                                                                   P+Q+R
   ZvG`i jwº¬i miY wbYÆq Ki|                                 4                              =R
                                                                                                     2
                                                                                                         +Q
wkLbdj- 5, 9, 10 I 11          [PëMÉvg ˆevWÆ-2019  cÉk² bs 6]                              2R  P  Q  R + 2Q
                   42 bs cÉGk²i mgvavb                                                      =
                                                                                                      2
K ˆhGnZz ejòq mvgÅveÕ©v m†wÓ¡ KGi ZvB ‰G`iGK KÌgv®¼Gq gvb
                                                                                            1
                                                                                            = (R + Q  P) (ˆ`LvGbv
                                                                                           nGjv)
                                                                                             2
  I w`K Abyhvqx wòfzR AvKvGi cÉKvk Kiv hvq| ABC ‰i
  AB, BC, CA «¼viv h^vKÌGg 1, 3 I 2 gvGbi ej cÉKvk Kiv   M gGb Kwi, L I M we±`yGZ 16N I 12N gvGbi `ywU mggyLx
  nj|                                                       mgv¯¦ivj ej wKÌqv KiGQ| ‰G`i jwº¬ C we±`yGZ wKÌqv KiGQ|
                                                                                 L                     C                 C                  M
                                              A
           ( 3)2 + 12 =       4= 2                                                                                                   (16)
                                                                                     (12)
      A^Ævr ABC mgGKvYx wòfzR                     2
                                          1                                          16                                               12
      ˆhLvGb ABC = 90
                           3                                                    16.LC = 12.MC
      ACB = cos1           = 30            B
                                                      3
                                                               C
                          2                                               ev, 16.LC = 12.(LM  LC)
      ‰es BAC = 90  30 = 60                                          ev, (16 + 12) . LC = 12.LM
       1 I 3 gvGbi eGji A¯¦MÆZ ˆKvY 180  90 = 90                                       12.LM
                                                                          ev, LC = 28
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                                       57
          3
     LC = .LM ... ... ... (i)                                                           M
                                                                                                                        A
          7
    Avevi, ej«¼q Õ©vb wewbgq KiGj hw` jwº¬ C we±`yGZ wKÌqv
    KGi, ZvnGj- 12 . LC = 16.MC                                                                                    X       O
                      1                                           =     2
                                                                            4
                                                                              +
                                                                                4
                                                                                   + 2L4  M4  cos
        ev, cos =  = cos 135                                                               
                       2                                                L2 M2 L2             M2
          = 135 (Ans.)                                         =        +     + cos         cos
                                                                        2     2    2          2
                                                                        2                2
                                                                        L               M
L
    ˆ`Iqv AvGQ,  = 3                                            =        (1 + cos) +     (1  cos)
                                                                        2               2
       = 3                                                           L2         M2         
                                                                  =         2cos2 +    2sin2
     gGb Kwi, 3 ˆKvGY wKÌqviZ P I Q ej«¼Gqi jwº¬ R, P eGji             2         2  2         2
     mwnZ  ˆKvGY bZ| ZvnGj jwº¬ ej R, Q eGji mwnZ 2                                       
                                                                  =     L2cos2
                                                                                  2
                                                                                    + M2sin2
                                                                                             2
                                                                                                    (ˆ`LvGbv nGjv)
     ˆKvGY wKÌqviZ|
                                                                                                                        
      ejàwjGK R eivei wefvRb KGi cvB,                            [we.`Ë: cÉGk² fzj AvGQ,           L cos2       + Msin2     ‰i Õ©Gj
                                                                                                               2         2
     Rcos0 = Pcos() + Q.cos2
                                                                                         
     ev, R = Pcos + Q(2cos2  1) ......... (i)                      L2 cos2     + M2sin2 nGe|]
                                                                                2         2
     Avevi, Rsin0 = Psin() + Qsin2                           ² 45 `†kÅK͸-1:
                                                              cÉk
                                                              
     ev, 0 = Psin + Q.2sin.cos                                                  B                C
       = cos1
                  P                     3                     `†kÅK͸-2: P I Q `ywU m`†k mgv¯¦ivj eGji mvG^ ‰KB mgZGj
                 2Q                                            h^vKÌGg r `ƒiGZ½ X gvGbi `ywU wem`†k mgv¯¦ivj ej wKÌqviZ|
                                                              K. jvwgi mƒòwU eYÆbv Ki|                                  2
                          P                            P                                   2
     myZivs   3 = 3cos1 = 
                         2Q                                    L. `†kÅK͸-1 nGZ hw` R = 3 Q nq, ZGe P I Q eGji
     ‰Lb, (i) bs mgxKiGY cos ‰i gvb ewmGq cvB,                   AbycvZ wbYÆq Ki|                                                   4
             P             P     2                                                                   rX
     R = P     + Q.2. 4Q      
                             2  1
                                                               M. `†kÅK͸-2 nGZ ˆ`LvI ˆh, ‰G`i jwº¬ P + Q `ƒiGZ½ mGi
           2Q                  
               P2    P2
                                                                 hvGe|                                                               4
     ev, R = 2Q + 2Q  Q                                      wkLbdj- 4, 9 I 11                        [ewikvj ˆevWÆ-2019  cÉk² bs 6]
               2P2                                                               45 bs cÉGk²i mgvavb
     ev, R = 2Q  Q
                                                              K eYÆbv: ˆKvGbv we±`yGZ wf®² wf®² ˆiLv eivei wKÌqviZ wZbwU
                                                              
         2P2  2Q2
     ev, R =                                                    mgZjxq ej mvgÅveÕ©vq ^vKGj, ZvG`i cÉGZÅKwU eGji gvb
             2Q                                                 Aci `yBwU eGji wKÌqvGiLvi A¯¦MÆZ ˆKvGYi mvBGbi
          P  Q2
           2
                                                                mgvbycvwZK|
      R=
             Q                                                L gGb Kwi, O we±`yGZ  ˆKvGY wKÌqviZ P I Q ej«¼Gqi jwº¬
                                                              
                                 P2  Q2                               2
     myZivs ej«¼Gqi jwº¬ R =        Q                             R=     Q, P eGji mvG^ 90 ˆKvY Drc®² KGi|
                                                                       3
                                      P                                      2 2
     ‰es A¯¦fzÆÚ ˆKvY,      = 3cos1 | (Ans.)                            Q = P2 + Q2 + 2PQ.cos
                                     2Q                                   3 
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                                   59
                     4
               ev, 9 Q2  Q2 = P2 + 2PQ cos                                                  46 bs cÉGk²i mgvavb
                                                                           K gGb Kwi, P ‰KK gvGbi `yBwU mgvb ej O we±`yGZ ciÕ·i
                                                                           
                         5Q2
               ev,  9 = P2 + 2PQ cos ... ... (i)                           60 ˆKvGY wKÌqviZ| ‰B ej«¼Gqi jwº¬ R ‰KK nGj eGji
                                  Q sin                                     mvgv¯¦wiK mƒòvbymvGi Avgiv cvB,
    Avevi, tan 90 = P + Q cos                                                R2 = P2 + P2 + 2.P.P cos 60
                     1       Q sin                                                                1                                          R
               ev, 0 = P + Q cos                                              R=      2P2 + 2P2 .
                                                                                                   2        P
                                                                                        2    2
               ev, Q cos + P = 0                                                = 2P + P                                     60
                                 P                                               = 3P2
                                                                                                         O
               ev, cos =  Q ... ... (ii)                                       = 3P ‰KK (Ans.)                                    P
                       5Q2              P                                 L
                                                                                                                 A
    myZivs      (i)        = P2 + 2PQ  
                        9                Q
                                        
                                                                                                                  P
                     5Q2                                    P2   5
               ev, 9 = P2  2P2 ev, 5Q2 = 9P2 ev, Q2 = 9                                          F                       E
                                                                                                          I
                     P   5
               ev,     =
                     Q 3
                            P : Q = 5 : 3 (Ans.)
                                                                                                      D
M gGb Kwi, AB ˆiLvi A I B we±`yGZ wKÌqviZ P I Q m`†k
                                                                                     B
                                                                                                      Q+R
                                                                                                                                    C
  gaÅwe±`y O ˆZ wKÌqv KGi| ‰KwU LyuwU A we±`yGZ ‰es Aci                 R=           P2 + Q2 + 2PQ cos
                                                                             =        (100)2 + (70)2 + 2  100  70  cos 62
  LyuwU B we±`y ˆ^GK 2 wgUvi wfZGi C we±`yGZ AewÕ©Z|
                                                                             = 21472.60188
                                       8
    AB = 8 wgUvi, AO = BO =              = 4 wgUvi                           = 146.535N (Ans.)
                                       2
    BC = 2 wgUvi
                                                                           awi, ej P, jwº¬ R ‰i mvG^  ˆKvY Drc®² KGiGQ|
                                                                                         Q sin
    OC = OB – BC = 4 – 2 = 2 wgUvi                                          tan =
                                                                                       P + Q cos
    AC = AO + OC = 4 + 2 = 6   wgUvi                                                       70 sin62
                                                                           ev,   tan =
    evjKwUi IRb 55 ˆKwR, hv B we±`yGZ wKÌqvkxj|                                        100 + 70 cos62
    awi, evjKwU C we±`y ˆ^GK B cÉvG¯¦i w`GK AMÉmi nGq x `ƒiZ½              ev,  = tan1 (0.465)
                                                                             = 24.94
    AwZKÌg KGi ZÚvwU bv DwΟGq B we±`yGZ ˆcuŒQvGZ mÞg nq|
                                                                           jwº¬ P eGji mvG^ 24.94 ˆKvY Drc®² KGi| (Ans.)
    ZÚvwU mywÕ©Z ^vKGe hw` IRb«¼Gqi jwº¬ C we±`yGZ wKÌqv
                                                                       L
                                                                                 A                   C          B
    KGi ‰es A we±`yGZ ZÚvi Dci ˆKvY Pvc ^vKGe bv|                                  P                         Q
                                                                                    P+R+3                            Q+S+2
      A                                     O        C     B      B
                                                                                  Q
                                                                                                             R+3
                                        42 ˆKwR          55 ˆKwR
                                                                           gGb Kwi, P, Q mggyLx mgv¯¦ivj ej«¼q h^vKÌGg A, B we±`yGZ
    42.OC = 55.BC
                                                                           wKÌqv KiGQ ‰es jwº¬ C we±`yGZ wKÌqvkxj| ZvnGj,
             42  2
    ev, BC = 55                                                           P.AC = Q.BC ... ... ... (i)
                                                                           Avevi, P ˆK (R + 3) cwigvGY I Q ˆK (S + 2) cwigvGY e†w«¬
     x = 1.53 wgUvi  (cÉvq)
                                                                           KiGjI jwº¬ C we±`yGZ wKÌqvkxj|
     evjKwU ZÚvwUGK bv DwΟGq C we±`y ˆ^GK B cÉvG¯¦i w`GK                  (P + R + 3).AC = (Q + S + 2).BC ... ... ... (ii)
    cÉvq 1.53 wgUvi ˆhGZ cviGe| (Ans.)                                     Avevi, P, Q ‰i cwieGZÆ h^vKÌGg Q, (R + 3) wKÌqv KiGjI
    A^ev, evjKwU ZÚvwUGK bv DwΟGq A we±`y ˆ^GK B cÉvG¯¦i                  jwº¬ C we±`yGZ wKÌqvkxj|
    w`GK (6 + 1.53) = 7.53 wgUvi ˆhGZ cviGe| (Ans.)                         Q.AC = (R + 3) BC ... ... ... (iii)
62                                                                               cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
     ‰Lb, (i) bs mgxKiYGK (iii) bs mgxKiY «¼viv fvM KGi cvB,      ² 49 `†kÅK͸-1:
                                                               cÉk
                                                                                                                       `†kÅK͸-2:
     P   Q   PQ                                                                                                                   L
       =   =     ... (iv)                                                   B                          C
     Q R+3 QR3
                                                                                                                     W3        n       m       W2
     Avevi, (ii) bs mgxKiY nGZ (i) bs mgxKiY weGqvM KGi cvB,     1
                                                                   P                                                       F       I       E
                                                                 2
     (R + 3) AC = (S + 2) BC ... ... ... (v)                            
                                                                            
     ‰Lb, (iii) bs mgxKiYGK (v) bs «¼viv fvM KGi cvB,           O                 P        A                       M           D       l
                                                                                                                                                N
      Q   R+3                                                   LD, ME I NF h^vKÌGg MN, NL I LM ‰i Dci
                                                                                                    W1 jÁ¼|
        =
     R+3 S+2
                                                                K. eGji AskK I jwº¬ eÅvLÅv Ki|                                                      2
        QR3   QR3
     =        =       ... (vi)                                                        1   
       R+3S2 RS+1                                            L. `†kÅK͸-1 ‰ 2 P ejGK ˆKvb evü eivei Õ©vbv¯¦i Kiv
     ‰Lb, (iv) I (vi) bs nGZ cvB,                                                                                    5
                                                                   hvGe? hw` ej«¼Gqi jwº¬ P eGji 2 àY nq ZGe ej«¼Gqi
       PQ   QR3
           =
      QR3 RS+1                                                  A¯¦MÆZ ˆKvY I jwº¬i w`K wbYÆq Ki|                     4
     ev, (P  Q) (R  S + 1) = (Q  R  3)2                     M. `†kÅK͸-2 ‰ DwÍÏwLZ ejàwji jwº¬ kƒbÅ nGj cÉgvY Ki ˆh,
                       (Q  R  3)2                                W1 = W2 = W3 hLb l = m = n.                           4
     ev, R  S + 1 =      PQ                                                                                  [ivRkvnx ˆevWÆ-2017  cÉk² bs 6]
              (Q  R  3)2                                                        49 bs cÉGk²i mgvavb
     ev,   R=
                 PQ
                           +S1
                                                               K ˆKvGbv eÕ§KYvi Dci ‰KB mgGq ‰KvwaK ej KvhÆiZ nGj,
                                                               
                 (Q  R  3)2
     R=S+                     1 (cÉgvwYZ)                      ‰G`i mwÁÃwjZ wKÌqvdj, hw` eÕ§KYvi Dci wbw`ÆÓ¡ w`GK ‰KwU
                    PQ
                                                                 gvò eGji wKÌqvdGji mgvb nq, ZGe      
M gGb Kwi, AB ˆiLvi A I B we±`yGZ wKÌqviZ P I Q m`†k
                                                                                                     Q       
                                                                 H ‰KwUgvò ejGK DcGivÚ ‰KvwaK                 R
      mgv¯¦ivj eGji jwº¬ (P + Q), C we±`yGZ wKÌqviZ|             eGji jwº¬ eGj ‰es ‰KvwaK eGji                      
                                                                                                                    P
                                                          R      cÉGZÅKwUGK jwº¬ eGji AskK ev         O
       A        D        G        F       C    B
                                                          E      Dcvsk eGj| wPGò O we±`yGZ wKÌqviZ
                                                                                                                                     
                                                                    PIQ         ej `yBwUi mwÁÃwjZ wKÌqvdj ‰KwU gvò R eGji
                                                                                                                                            
           P    R       P + Q P+Q+R P + Q      Q
                                                                    wKÌqvdGji mgvb nGj, R ˆK P I Q ‰i jwº¬ ‰es P I Q ˆK
                                                                    
                                                                    R ‰i        AskK ev Dcvsk eGj|
      Avevi, D I E we±`yGZ R gvGbi wecixZgyLx `yBwU mgv¯¦ivj        ˆfÙi msGKGZ jwº¬ R = P + Q
                                                                                                         
cÉk
² 50                                            X
                                                   x                                                                                        P
                                                             y
                                           z                                                                        F
                                                                                                                                                    E
                                                                                                                                I
                                       y                          z
                               Y                                      Z
                                                       x
 P, Q, R ejòq XYZ ‰i      jÁ¼ ˆK±`Ê nGZ h^vKÌGg YZ, ZX I
                                                                                                    Y                                                   Z
 XY evüi   Dci jÁ¼fvGe wKÌqv KGi mvgÅveÕ©vq ^vGK| Avevi                                                 Q
                                                                                                                          W
                                                                                                                        Q+R                             R
 ejòq h^vKÌGg X, Y, Z we±`yGZ m`†k mgv¯¦ivjfvGe wKÌqv KiGj
 ZvG`i jwº¬ wòfzRwUi A¯¦tGKG±`Ê wKÌqv KGi|                                                    XYZ    wòfzGRi X, Y, Z we±`yGZ h^vKÌGg P, Q, R gvGbi wZbwU
 K. “`yBwU mgvb eGji jwº¬ ZvG`i A¯¦fÆyÚ ˆKvYGK mgw«¼LwíZ                                      mggyLx mgv¯¦ivj ej wKÌqviZ AvGQ| X, Y, Z ˆKvYàwji
     KGi”@DwÚwUi mZÅZv hvPvB Ki|                           2                                  A¯¦w«¼ÆLíK wZbwU ciÕ·i I we±`yGZ ˆQ` KGiGQ| ZvnGj, I
 L. DóxcGKi ejòGqi mvgÅveÕ©vq ^vKvi ˆÞGò cÉgvY Ki ˆh,                                         nGjv, XYZ wòfzGRi A¯¦tGK±`Ê|
     P: Q: R=x: y: z                                      4                                   ‰Lb, Y I Z we±`yGZ wKÌqviZ Q I R eGji jwº¬
 M. DóxcGKi ejòq m`†k mgv¯¦ivjfvGe wKÌqv Kivi ˆÞGò                                            (Q + R) ejwU YZ ˆiLvÕ© W we±`yGZ wKÌqv KiGe|
     cÉgvY Ki ˆh, P : Q : R = x : y : z                   4                                   Avevi, ej wZbwUi jwº¬ A¯¦tGK±`Ê I we±`yMvgx| myZivs, I we±`y
                                                       [KzwgÍÏv ˆevWÆ-2017  cÉk² bs 7]       XW ˆiLvi Ici AeÕ©vb KiGe|
64                                                                                      cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
      A^Ævr, XW ˆiLv X ˆKvYGK mgw«¼LwíZ KiGe|                             M gGb Kwi, 12 ˆKwR IRGbi AB mgi…c ZÚvi IRb ‰i
                                                                          
      
        YW XY
          =                                     ... ... ... (i)             gaÅwe±`y O ˆZ wKÌqv KGi| ‰KwU LyuwU A we±`yGZ ‰es Aci B
        ZW XZ
                                                                            we±`y ˆ^GK 1 wgUvi wfZGi C we±`yGZ AewÕ©Z|
      wK¯§ jwº¬ W we±`yMvgx nIqvq, Q.YW = R.ZW                                                                                 8
            YW R                                                              AB = 8       wgUvi, AO = BO = 2 = 4 wgUvi
     ev,      =
            ZW Q
                                                ... ... ... (ii)
                                                                             BC = 1 wgUvi|
                             R     XY           Q        R
      (i)   I (ii) bs nGZ cvB, Q = XZ ev, XZ = XY                            OC = OB  BC = 4  1= 3 wgUvi|
                                        P       Q                                 A
      Abyi…cfvGe cÉgvY Kiv hvq ˆh, YZ = XZ                                                                                 O                       C 1 wg. B
                                                                                                 R
             P   Q   R         P    Q       R
              =   =
            YZ XZ XY
                           ev, x = y = z
                                                                                                                      12 ˆKwR
       P : Q : R = x : y : z (cÉgvwYZ)                                                                                                                   W
                                                                             awi, evjKwUi IRb W, hv B we±`yGZ wKÌqvkxj|
cÉk
  ² 51 `†kÅK͸-1: ABC mgevü wòfzGRi BC, CA, AB evüi                       ˆhGnZy evjKwU ZÚvwUGK bv DwΟGq B we±`yGZ ˆcuŒQvGZ mÞg|
mgv¯¦ivGj h^vKÌGg 5, 7, 9 ‰KK gvGbi wZbwU ej wKÌqviZ|                        ZÚvwU mywÕ©Z ^vKGe hw` 12 ˆKwR I W IRb«¼Gqi jwº¬ C
 `†kÅK͸-2: 8 wgUvi `xNÆ 12kg IRGbi ‰KwU mylg ZÚv `yBwU                      we±`yGZ wKÌqv KGi|
 LyuwUi Dci Avbyf„wgKfvGe wÕ©i AvGQ| ‰KwU LyuwU A cÉv¯¦ ‰es                   12.OC = W.BC ev, 12  3 = W.1 ev, W = 36 ˆKwR
 AbÅwU B cÉv¯¦ nGZ 1 wgUvi wfZGi AewÕ©Z|                                      evjKwUi IRb 36 ˆKwR| (Ans.)
 K. 8N I 5N gvGbi `yBwU ej 60 ˆKvGY wKÌqviZ| ej«¼Gqi
       jwº¬i gvb KZ?                                        2             cÉk
                                                                          ² 52
 L. `†kÅK͸-1 nGZ ejòGqi jwº¬ wbYÆq Ki|                     4              `†kÅK͸-1:       Q                                                  `†kÅK͸-2:
 M. `†kÅK͸-2 nGZ ‰KRb evjK ZÚvwUGK bv DwΟGq ‰i Dci
       w`Gq B cÉvG¯¦ ˆcuŒQvGj evjGKi IRb KZ?                4                      F2                                                                 Q
                                        [PëMÉvg ˆevWÆ-2017  cÉk² bs 6]
                                                                                                                                       2
                   51 bs cÉGk²i mgvavb                                                     F                                                  
                                                                                                                                                                S
                                                                              R                          P                                 O
K ˆ`Iqv AvGQ, 8N I 5N gvGbi ej `ywUi gaÅeZxÆ ˆKvY 60|
                                                                                           F1
                                                                                                                                   R
  ej«¼Gqi jwº¬ R nGj,                                                      K. eGji jÁ¼vsk Kx eÅvLÅv Ki|                           2
     R=  82 + 52 + 2  8  5  cos 60                                     L. `†kÅK͸-1 ‰ F1  cosP, F2  cosQ ‰es F1, F2 ‰i jwº¬
                           1                                                                                           1
       =   64 + 25 + 80 
                           2
                                                                              F   nGj ˆ`LvI ˆh, R −  = 2 (R + Q − P)                                          4
       = 64 + 25 + 40 = 129N (Ans.)                                        M. `†kÅK͸-2 ‰ Q, R, S ej wZbwU mvgÅveÕ©vq ^vKGj ˆ`LvI
L gGb Kwi, mgevü wòfzR ABC ‰i BC,
                                           A                                 ˆh, S2 = R(R − Q)                                   4
   CA I AB evüi mgv¯¦ivGj wKÌqviZ                                                                                                  [wmGjU ˆevWÆ-2017  cÉk² bs 6]
                                            R
   h^vKÌGg 5, 7 I 9 ‰KK gvGbi ej       9        7
                                                                                              52 bs cÉGk²i mgvavb
   wZbwUi jwº¬ R ej 5 ‰KK gvGbi     B
                                          
                                                   C                      K jÁ¼vsk: ˆKvb wbw`ÆÓ¡ ejGK hw` ciÕ·i jÁ¼ `ywU ˆiLv eivei
                                                                          
                                              5
   eGji mvG^  ˆKvY Drc®² KGi|                                              wKÌqvkxj `ywU eGji AsGk wefÚ Kiv nq ZGe Ask `yBwUi
  ‰Lb 5 ‰KK gvGbi ej eivei ‰es ‰i Dci jÁ¼GiLv eivei                         cÉwZwU H wbw`ÆÓ¡ eGji jÁ¼vsk|
  jÁ¼vsk wbGq cvB,                                                          x AGÞi mvG^  ˆKvGY wKÌqviZ ˆKvGbv ej F ‰i jÁ¼vsk
     R cos = 5 cos 0 + 7 cos(180  60) + 9 cos(180 + 60)
           = 5  7 cos 60  9 cos 60
                                                                            h^vKÌGg F cos I Fsin.
                    1     1                                               L
                                                                                  `†kÅK͸-1 ‰ OPRQ mvgv¯¦wiKwU cƒYÆ Kwi|
           = 5  7.  9. =  3 ... ... ... (i)
                    2     2                                                                          Q
                                                                                                                                               O
     ‰es R sin = 5 sin 0 + 7 sin (180  60) + 9 sin (180 + 60)
                                                = 7 sin 60  9 sin 60                     F2
                                             3      3                                                             F
                                   =7.         9.    =  3 .....(ii)                                
                                            2      2                                    R                                              P
                                                                                                             F1
     ‰Lb, (i)2 + (ii)2 ˆ^GK cvB,
                                                                                        awi, F1 = K cosP
     R2 (sin2 + cos2) = (  3)2 + (  3)2
                                                                                                F2 = K cosQ
     ev, R2 = 9 + 3 ev, R2 = 12  R = 12 = 2 3                                        F1 I F2 ‰i gaÅeZxÆ ˆKvY R ‰es                        jwº¬ F.
      wbGYÆq jwº¬, R = 2 3 ‰KK (Ans.)                                                 F2 = F12 + F22 + 2F1F2 cosR
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                            65
         2         2           2       2
     = K cos P + K cos Q + 2 K cosP.K cosQ.cosR
                                                              cÉk
                                                               ² 53 `†kÅK͸-1: L, M, N gvGbi mywÕ©Z wZbwU eGji
     = K2 cos2P + K2 cos2Q + 2K2 cosP.cosQ.cosR
                                                              wKÌ q vGiLv ABC wòfzGRi BC, CA, AB evüi mgv¯¦ivj| evü
     = K2 (cos2P + cos2Q + cos2R + 2cosP.cosQ.cosR  cos2R)   wZbwUi Š`NÆÅ 25, 60, 65 ˆm.wg.| L I M gvGbi ej«¼Gqi mgwÓ¡
     = K2 (1  cos2R) [‹ P + Q + R =  nGj, cos2P             51 MÉvg IRb|
                          2       2
                     + cos Q + cos R + 2 cosP.cosQ.cosR = 1]   `†kÅK͸-2: 20 ˆm.wg. eÅeavGb ‰KwU mylg nvjKv `Gíi `yB
         2
     = K sin R2                                                cÉvG¯¦ 8N I 4N gvGbi wecixZgyLx `yBwU mgv¯¦ivj ej wKÌqv
                                                               KGi|
         F = K sinR
                                                               K. 4N I 2 3N gvGbi ej«¼q 30 ˆKvGY wKÌqv KGi| 4N
        RP ‰i jÁ¼ eivei Dcvsk wbGq cvB,                              gvGbi ej eivei ej«¼Gqi jÁ¼vsGki mgwÓ¡ wbYÆq Ki|            2
                                    F1sin0 + F2sinR = F sin  L.    `†k ÅK͸
                                                                            - 1 nGZ  ejàwji  gvb wbYÆ q Ki|                    4
        ev, K cosQ sinR = K sinR sin                          M. `†kÅK͸-2 ‰ cÉGZÅK eGji gvb 4N KGi e†w«¬ Kiv nGj
                                                                     jwº¬i wKÌqvwe±`y KZ `ƒiGZ½ mGi hvGe?                      4
        ev, cosQ = sin [K sinR «¼viv fvM KGi]                                                     [hGkvi ˆevWÆ-2017  cÉk² bs 6]
                       
         ev, sin 2  Q = sin ev, 2  Q = 
                                                                                                                 53 bs cÉGk²i mgvavb
                                                                                                 K 4N gvGbi ej eivei 2 3N eGji jÁ¼vsk
                                                                                                 
               P+Q+R
         ev,     2
                      Q =  [‹ P + Q + R = ]                                                       F1 = 2 3 cos 30 = 2 3 .
                                                                                                                                 3
                                                                                                                                   = 3N
                                                                                                                                2
                       P+Q+R                                                                          4N gvGbi   ej eivei ej«¼Gqi jÁ¼vsGki mgwÓ¡
         ev,  =         2
                             Q
                                                                                                                             = 4N + 3N
                                                                                                                             = 7N (Ans.)
          R   = R              (P + Q2 + R  Q)                                              L
                                                                                                    L I M gvGbi ej«¼Gqi mgwÓ¡ 51 MÉvg IRb
                                                                                                     ˆhGnZz ABC wòfzGR 252 + 602 = 652
                P+Q+R      2R  P  Q  R + 2Q                                                       ev, BC2 + CA2 = AB2
       =R            +Q =
                  2                 2
                                                                                                      ABC ‰i C = 90
                                                   =
                                                       1
                                                         (R + Q  P)            (ˆ`LvGbv nGjv)       ˆhGnZz ejàwj mywÕ©Z ‰es ABC
                                                       2
                                                                                                     ‰i evüàwji mgv¯¦ivj KvGRB jvwgi DccvG`Åi wecixZ
M
      awi, QOS =                                                         Q
                                                                                                     cÉwZæv nGZ cvB
                                                                                                     L M N                                              A
       QOR = 2                                                                                         =    =
                                                               2           
                                                                                                     25 60 65
       ROS =                                                      O                                    L M N L + M 51
                                                                                      S
                                                                                                     ev, 5 = 12 = 13 = 5 + 12 = 17 = 3           65
       ‰LvGb,  +  + 2 = 2                                                                                                                            60
                                                       R                                              L = 15 MÉvg IRb
        ev,  = 2  3                                                                              M = 36 MÉvg IRb
                                                                                                     ‰es N = 39 MÉvg IRb (Ans.)            B      25    C
     ev, R2 = P2 + Q2 + 2PQ.
                                 1                                           ev, 6(AC – CD) = 8(BC + CD)
                                  2
                                                                             ev, 6(AC – d) = 8(BC + d)
      R2 = P2 + Q2 + 2PQ                                                    ev, 6AC – 6d = 8BC + 8d
     BnvB wbGYÆq mÁ·KÆ| (Ans.)
                                                                             ev, 6AC – 8BC = 8d + 6d
L gGb Kwi, P ‰es 3P ej«¼q  ˆKvGY wKÌqviZ ‰es ZvG`i jwº¬
                                                                            ev, 3. 2AC – 8BC = 14d
     P ‰i    mvG^  ˆKvY Drc®² KGi|                                          ev, 3. 3BC – 8BC = 14d. [(i) bs nGZ]
                  3Psin
      tan =
                P + 3P cos                                                  ev, 9BC – 8BC = 14d
     Avevi, ej«¼q 4P ‰es 3P + 18 nGj,                                        ev, BC = 14d
                                                                                        BC
                (3P + 18) sin                                               d=           ... ... ... (ii)
     tan =                                                                             14
              4P + (3P + 18)cos
                    3P sin       (3P + 18) sin                             Avevi, (i) nGZ cvB,
     kZÆgGZ, P + 3P cos = 4P + (3P + 18) cos                                  2AC = 3BC
               3P                3P + 18                                     ev, 2(AB – BC) = 3BC
     ev, P + 3P cos = 4P + 18cos + 3Pcos
                                                                             ev, 2AB – 2BC = 3BC
           4P + 18cos + 3Pcos 3P + 18
     ev,        P + 3P cos
                               =
                                  3P                                         ev, 2AB = 5BC  BC = 5 AB
                                                                                                                  2
                                                                                           s                         s s                        s
               s            s            s                                                                      s    
                                                                                           m                         m n                        n
     awi, Z½iY = f ‰es mgvb mgvb KÌwgK `ƒiZ½ = s                                                                                        s
                 s      u +v                                                    awi, ˆijMvwowU t1 mgGq mgZ½iGY PGj m `ƒiZ½ AwZKÌg KGi
      MoGeM         =        .................. (i)
                  p       2
                  s     v +w                                                    mGeÆvœP v ˆeM cÉvµ¦ nq| Avevi t2 mgGq v mgGeGM PGj
                     =         ................. (ii)
                  q       2                                                     s  s  s  `ƒiZ½ AwZKÌg KGi ‰es t3 mgGq mgg±`Gb PGj
                 s w+x
                     =         ............... (iii)                             m n
                  r       2                                                     s
     (i) bs I (iii) bs ˆhvM AZtci (ii) bs weGqvM KGi,                           n
                                                                                    `ƒiZ½ AwZKÌg KGi|
           s s         s 1                                                                              u+v
           p q
              –     + = (u + v  v  w +w +x)
                       r 2                                                      cÉ^g ˆÞGò, s = 2 .t mƒò nGZ cvB,
             1 1 1          1
     ev, s p  q + r = 2 (u + x)                                                         s 0+v
                                                                                             =
                                                                                                     v
                                                                                                 .t = t .......... (i)
                                                                                         m   2 1 2 1
             1 1 1           1                                                                                                          s           s
     ev, s p  q + r  = 2 (u + x)                                             w«¼Zxq ˆÞGò, s = vt mƒGòi mvnvGhÅ, s  m  n = vt2
                       
                        ˆgvU `ƒiZ½    3s      u+x                                     s    s        s       v
                                                                                ev, 2  2m  2n = 2 t2 ................. (ii)
     mgMÉ mgGqi MoGeM = ˆgvU mgq = p + q + r = 2
                                                                                                s           v+0           v
               1 1 1
           s  + =
                          3s                                                    Z‡Zxq ˆÞGò, n = 2 .t3 = 2t3 .................. (iii)
              p q r  p + q + r
            1   1 1     3                                                       (i), (ii) I (iii) ˆhvM KGi cvB,
            –
            p   q
                  + =
                   r p+q+r
                              (cÉgvwYZ)                                                   s s      s     s s v
                                                                                            +              + = (t +t +t )
                                                                                         m 2 2m 2n n 2 1 2 3
cÉk
² 28 `†kÅK͸-1: Avbyf„wgGKi mvG^  ˆKvGY wbwÞµ¦ ‰KwU                                s   s s v
eÕ§ wbGÞcY we±`y nGZ h^vKÌGg q I p `ƒiGZ½ AewÕ©Z p I q                          ev,      + +      = (t +t +t )
                                                                                      2m 2 2n 2 1 2 3
DœPZvwewkÓ¡ `yBwU ˆ`qvj ˆKvGbv iKGg AwZKÌg KGi|                                       s 1
                                                                                         + 1 + 1n  = v2(t1 + t2 + t3)
                                                                                ev,
 `†kÅK͸-2:                                                                           2 m         
                                                                                           s            1            1
           A        B                                         C    D            ev, t + t + t m + 1 + n  = v
                                                                                     1   2   3          
                   1                                             1
            AB =     AD                                      CD = AD                                            1     1
                   m                                             n              ev, Mo ˆeM  1 + m + n  = mGeÆvœP ˆeM
                                                                                                                         
 K. ˆ`LvI ˆh, mggvGbi `yBwU ‰Kwe±`yMvgx ˆeGMi jwº¬ ‰G`i
    A¯¦MÆZ ˆKvYGK mgvb `yBfvGM wefÚ KGi|                  2                             1 1 mGeÆvœP ˆeM
                                                                                ev, 1 + m + n = Mo ˆeM
 L. `†kÅK͸-1 ‰ ewYÆZ eÕ§wUi Avbyf„wgK cvÍÏv R nGj, ˆ`LvI
                                                                                                                                    1       1
    ˆh, R(p + q) = p2 + pq + q2.                          4                          Mo ˆeM : mGeÆvœP ˆeM = 1 : 1 + m + n  (cÉgvwYZ)
 M. ‰KLvbv ˆijMvwo A ˆÕ¡kb nGZ ˆQGo D ˆÕ¡kGb wMGq                                                                                              
    ^vGg| MvwoLvbv AB Ask mgZ½iGY, CD Ask mgg±`Gb                          cÉk
                                                                            ² 29 ‰KwU ˆUÇb ‰K ˆÕ¡kb nGZ hvòv ÷i‚ KGi t wgwbU ci s
    ‰es BC Ask mgGeGM PGj| cÉgvY Ki ˆh, Dnvi MoGeM                         wK.wg. `ƒiZ½ AwZKÌg KGi Aci ‰KwU ˆÕ¡kGb ^vGg| ˆUÇbwU
                                             1       1
     I mGeÆvœP ˆeGMi AbycvZ 1 : 1 + m + n                            4   hvòvi cÉ^g Ask x mgZ½iGY ‰es w«¼Zxq Ask y mgg±`Gb PGj|
                                                        
wkLbdj- 2, 4 I 9                        [wmGjU ˆevWÆ-2019  cÉk² bs 7]     f„wg ˆ^GK cÉwÞµ¦ ‰KwU wKÌGKU ej cÉwÞµ¦ we±`y nGZ h^vKÌGg
                                                                            1         1                      1            1
                          28 bs cÉGk²i mgvavb                               b
                                                                              ‰es a `ƒGi AewÕ©Z a ‰es b DœPZvi `yBwU ˆ`Iqvj ˆKvGbv
K awi, O we±`yGZ ‰KB mgGq wKÌqviZ `ywU ˆeM
                                                                           iKGg AwZKÌg KGi|
  P I P ‰i jwº¬ ˆeM R                                                       K. mgZGj ‰KwU eÕ§KYv u Avw`GeGM a mgZ½iGY t mgGq s
                                 2 sin
                                      
                                        cos
                                                                              `ƒiZ½ AwZKÌg KGi ZvnGj t Zg mgGq KZ `ƒiZ½ AwZKÌg
                 P sin               2     2            
      tan  =            =                   = tan   =
                                                   2      2
                                                                               KiGe?                                             2
               P + P cos                2
                                   2 cos                                                                                  1   1    t2
                                          2                                 L. DóxcK nGZ cÉgvY Ki ˆh, x + y = 2s                                                  4
      jwº¬    mggvGbi ˆeM«¼Gqi gaÅeZxÆ ˆKvYGK mgw«¼Lw´£Z                                                                                       2        2
                                                                                                                                            a + ab + b
  KiGe| (Ans.)                                                             M. DóxcK nGZ ˆ`LvI ˆh, Avbyf„wgK cvÍÏv R = ab(a + b)         4
L m†Rbkxj 10(M) bs cÉGk²i mgvavb `ËÓ¡eÅ| c†Ó¤v-257|
                                                                          wkLbdj- 4 I 9                  [hGkvi ˆevWÆ-2019  cÉk² bs 7]
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                            69
                   29 bs cÉGk²i mgvavb                                L gGb Kwi,
                                                                                         A                                     C
                                                                                                                 B
K ‰KwU eÕ§KYv u Avw`GeGM a mgZ½iGY t mgGq S `ƒiZ½ AwZKÌg KGi|
     myZivs t Zg mgGq AwZKÌv¯¦ `ƒiZ½ = u + 2 a(2t  1)
                                                       1                  A we±`yGZ weovjwU wÕ©iveÕ©vq AvGQ| A ˆ^GK 12 wgUvi `ƒGi
                                                                          B we±`yGZ Bu`yiwUGK ˆ`LGZ ˆcGq weovjwU ˆ`Œo ÷i‚ KGi t
L m†Rbkxj 1(L) bs cÉGk²i mgvavb `ËÓ¡eÅ| c†Ó¤v-347|
                                                                         ˆmGKG´£ C we±`yGZ Bu`iy GK aGi|
M
           u
                                                                          ‰LvGb, AB = 12 wgUvi
                                           1       1
                                                                          awi, BC = x wgUvi  AC = x + 12 wgUvi
                
                                           a       b                      Bu`yGii ˆÞGò, BC = 4t [ S = vt]
                         1
                                                                                    ev, x = 4t
                         b                                                                                   1
                             1
                                                                          ‰es weovGji ˆÞGò, AC = 0 + 2  2  t2 = t2
                             a
                                                                          ev, x + 12 = t2 ev, 4t + 12 = t2 ev, t2  4t  12 = 0
     gGb Kwi, ejwUi cÉGÞc ˆeM u ‰es cÉGÞc ˆKvY |                         ev, t2  6t + 2t  12 = 0 ev, (t  6) (t + 2) = 0
     Avgiv Rvwb, evqykƒbÅ Õ©vGb cÉwÞµ¦ KYvi MwZGeGMi mgxKiY,               t = 6 [ t =  2 MÉnYGhvMÅ bq]
                                 x
     y = x tan 1                                                      ‰es AC = t2 = 36
                                R
                                               1   1                       6 ˆmGK´£ cGi 36 wgUvi `ƒiGZ½ aiGZ cviGe| (Ans.)
     cÉ^g ˆ`IqvGji ˆÞGò, y = a , x = b
                                                                      M ‰KB MwZGeGM wbwÞµ¦ `yBwU cÉGÞcGKi Avbyf„wgK cvÍÏvi gvb ‰KB
                                                                      
           1 1          1
           = tan 1 
           a b
                           … … (i)                                     nGe hw` ‰KwUi wbGÞcY ˆKvY  ‰es AciwUi (90  ) nq|
                    bR 
                                               1   1
                                                                        ‰GÞGò, awi, wbGÞcY ˆeM = u
     w«¼Zxq ˆ`IqvGji ˆÞGò, y = b , x = a                                  ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv,
           1    1                      1                                             u2 sin2   u2 sin2
     ev, b = a tan 1  aR  … … (ii)                                        h=
                                                                                        2g
                                                                                              
                                                                                                   2g
                                                                                                         = 4 ... ... ... (i)
                                          
     (i)  (ii)     nGZ cvB,                                              ‰es (90  ) ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv,
                  1                                                               u2 sin2 (90  )
            1  bR                                                          h =
                                                                                          2g
     b     a                       a bR  1    aR    a2 bR  1
       =
     a b             1
                                 =
                                     b bR
                                                     = 2.
                                                aR  1 b aR  1              u2 cos2
               1  aR                                                                = 6 ... ... ... (ii)
                                                                                2g
                      
                                                                                                           u2 sin2
     ev, ab3R  b3 = ba3R  a3                                            Avevi, Avbyf„wgK cvÍÏv, R = g
     ev, ab3R  ba3R = b3  a3 ev, abR(b2  a2) = b3  a3                 ‰Lb, (i) I (ii) àY KGi cvB,
                b3  a3       a2 + ab + b2                                   u4 sin2 cos2          u4 (sin cos)2
     ev,   R=      2
              ab(b  a )2 R=
                               ab (a + b)
                                           (ˆ`LvGbv           nGjv)                  2      = 24 ev,                 = 24
                                                                                   4g                       4g2
                                                                              1 4
cÉk
² 30 `†kÅK͸-1: ‰KwU weovj 12 wgUvi `ƒGi ‰KwU Bu`yiGK                         u (2 sin cos)2
                                                                              4                            u4 (sin2)2
ˆ`LGZ ˆcGq wÕ©iveÕ©v ˆ^GK 2wg/ˆm2 Z½iGY ˆ`Œovj ‰es Bu`yiwU                ev,          4g2
                                                                                                  = 24 ev,
                                                                                                               16g2
                                                                                                                       = 24
4 wgUvi/ˆm mgGeGM ˆ`Œovj|                                                          u2 sin22
                                                                          ev,               = 384   ev, R2 = 384  R = 8 6 (Ans.)
 `†kÅK͸-2: ‰KwU cÉwÞµ¦ eÕ§KYvi `ywU MwZcG^i e†nîg DœPZv                               g 
 h^vKÌGg 4 wgUvi I 6 wgUvi|
                                                                      cÉk
                                                                       ² 31 `†kÅK͸-1: ‰KwU ˆijMvox cvkvcvwk `yBwU ˆÕ¡kGb
 K. gaÅvKlÆGYi cÉfvGe 100 wgUvi DuPz Õ©vb nGZ co¯¦ eÕ§i 2
                                                                      ^vGg| ˆÕ¡kb `yBwUi gaÅeZxÆ `ƒiZ½ 4 wK.wg. ‰es ‰K ˆÕ¡kb
     sec ‰ cÉvµ¦ ˆeM wbYÆq Ki| (g = 9.8 ms2).                    2
                                                                      ˆ^GK Aci ˆÕ¡kGb ˆhGZ mgq jvGM 8 wgwbU|
 L. weovjwU KZ mgq cGi ‰es KZ `ƒGi Bu`yiwUGK aiGZ
                                                                       `†kÅK͸-2: ˆKvGbv eÕ§KYv ˆKvGbv mijGiLv eivei mgZ½iGY PGj
     cviGe?                                                      4
                                                                       t1, t2 ‰es t3 mgGq avivevwnK MoGeM h^vKÌGg v1, v2 ‰es v3.
 M. `†kÅK͸-2 nGZ ˆ`LvI ˆh, R = 8 6|                             4
wkLbdj- 4, 8 I 9                   [ewikvj ˆevWÆ-2019  cÉk² bs 7]    K. AvGcwÞK ˆeM eÅvLÅv Ki|                                 2
                       30 bs cÉGk²i mgvavb                             L. `†kÅK͸-1 ‰ ˆijMvoxwU hw` Zvi MwZcG^i 1g Ask
                                                                             x mgZ½iGY ‰es w«¼Zxq Ask y mgg±`Gb PGj ZGe ˆ`LvI
K ‰LvGb, u = 0
     h = 100 wgUvi
                                                                             ˆh x + y = 8xy                                      4
                      2                                                                                    t +t       t +t
     g = 9.8 wgUvi/ˆm                                                 M. `†kÅK͸-2 nGZ cÉgvY Ki ˆh, v1  v2 = v2  v3             4
                                                                                                       1   2     2   3
     2 sec cGi cÉvµ¦ ˆeM v nGj,                                       wkLbdj- 3 I 4           [XvKv, w`bvRcyi, wmGjU I hGkvi ˆevWÆ-
     v = u + g  t = 0 + 2  9.8 = 19.6 wgUvi/ˆm. (Ans.)                                                                  2018  cÉk² bs 7]
70                                                                             cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
                    31 bs cÉGk²i mgvavb                  cÉk
                                                         ² 32 ˆÕ¡kb                            ˆÕ¡kb
K `yBwU MwZkxj eÕ¦yKYvi cÉ^gwUi mvGcGÞ w«¼ZxqwUi miGYi
                                                                    A                               B
  cwieZÆGbi nviGK cÉ^g eÕ¦yKYvi mvGcGÞ w«¼Zxq eÕ¦yKYvi                              S
  AvGcwÞK ˆeM ejv nq| gGb Kwi, A I B `yBwU MwZkxj K. mPivPi msGKZgvjvq cÉgvY Ki ˆh, v = u + ft.                           2
  eÕ¦yKYv| A eÕ¦yKYv nGZ B eÕ¦yKYvGK chÆGeÞY KiGj ˆh ˆeM L. wÕ©iveÕ©v nGZ ‰KwU ˆUÇb A ˆÕ¡kb nGZ 4 wgwbGU B
  cwijwÞZ nq Zv nGe A eÕ¦yKYvi mvGcGÞ B eÕ¦yKYvi
                                                              ˆÕ¡kGb wMGq ^vGg| hw` Dnv cG^i cÉ^g Ask x mgZ½iGY
  AvGcwÞK ˆeM|
                                                              ‰es w«¼Zxq Ask y mgg±`Gb PGj ZGe cÉgvY Ki ˆh,
L gGb Kwi, ˆijMvoxi meÆvwaK ˆeM = v wK.wg./wgwbU
                                                              1 1
  awi, t1 I t2 wgwbU aGi h^vKÌGg x mgZ½iGY I y mgg±`Gb           + = 4 hLb S = 2.                                        4
                                                              x y
  PGj ‰es s1 ‰es s2 wK.wg. `ƒiZ½ AwZKÌg KGi|
          u=0                v                  v=0
                                                          M. hw` `yBwU ˆijMvwo A I B ‰i wecixZ w`K nGZ u1 I u2
       A
                   x            B        y          C
                                                              MwZGeGM AMÉmi nIqvi mgq ‰GK AciGK ˆ`LGZ cvq
                                                              ZLb ZvG`i gaÅeZxÆ `ƒiZ½ x| msNlÆ ‰ovGbvi RbÅ ˆijMvwo
                  t1                    t2
                                                              `yBwU mGeÆvœP g±`b h^vKÌGg a1 I a2 cÉGqvM KGi| ZvnGj
                                         s2
                   s1                                         ˆ`LvI ˆh, ˆKvGbv iKGg msNlÆ ‰ovGbv mÁ¿e hw` u12a2 +
  ZvnGj, s1 + s2 = 4 wK. wg. ‰es t1 + t2 = 8 wgwbU|           u22a1  2a1a2x nq|                                         4
                s1 0 + v             v
   AB AsGk       =         ev, s1 = 2 t1                wkLbdj- 1, 4 I 5                    [XvKv ˆevWÆ-2017  cÉk² bs 7]
                t     12
     BC AsGk =
                 s2 v + 0             v
                             ev, s2 = 2 t2                                            32 bs cÉGk²i mgvavb
                 t2     2
                    v                                               K awi, ˆKvb mijGiLv eivei mgZ½iGY Pj¯¦ ‰KwU KYvi
                                                                    
      s1 + s2 = (t1 + t2)
                    2                                                 mgZ½iY f ‰es t mgq cGi ˆeM v.
              v
     ev, 4 = 2 8 [ s1 + s2 = 4]                                        
                                                                            dv
                                                                               =f
                                                                                            dv
                                                                                      ev,  dt dt =  f dt [t-‰i mvGcGÞ ˆhvMRxKiY KGi]
                                                                            dt
     ev, 4v = 4  v = 1 wK.wg./wgwbU
                                                                                                 [ˆhLvGb c ˆhvMRxKiY aËe‚ K]
                                                                         v = f t + c ... ... ... (i)
     Avevi, v = u + ft mƒò eÅenvi KGi
                           1                                            Avw` AeÕ©vq t = 0, v = u
     v = 0 + xt1 ev, t1 =              [ v = 1]
                           x                                            (i) bs nGZ, u = 0 + c  c = u
                           1
     0 = v  yt2 ev, t2 = [ v = 1]                                     (i) bs mgxKiGY c ‰i gvb ewmGq, v = f t + u
                           y
                  1 1                                                                                v = u + f t (cÉgvwYZ)
      t 1 + t2 = +
                  x y                                                       ˆÕ¡kb                         ˆÕ¡kb
              1 1                                                   L
                                                                           A                               B
     ev, 8 = x + y        [ t1 + t2 = 8]
                                                                                            S=2
         x+y
     ev, xy = 8  x + y = 8xy (ˆ`LvGbv nGjv)
                                                                        gGb Kwi, ˆUÇbwUi meÆvwaK ˆeM = v ‰KK
M gGb Kwi, f mgZ½iGY Pjgvb ‰KwU eÕ§KYv A we±`y ˆ^GK u
                                                                       awi, t1 I t2 wgwbU aGi h^vKÌGg mgZ½iGY I mgg±`Gb PGj
  Avw`GeGM hvòv KGi t1, t2, t3 mgGq h^vKÌGg B, C, D we±`yGZ             ‰es s1 ‰es s2 `ƒiZ½ AwZKÌg KGi|
  u1, u2, u3 ˆeMcÉvµ¦ nq|
                                                                        ZvnGj, s1 + s2 = 2 ‰es t1 + t2 = 4 wgwbU|
         u                u1        u2        u3
                                                                                     s1 0 + v             v
         A       t1       B    t2   C    t3   D                          MoGeM =       =        ev, s1 = 2 t1
                                                                                     t1     2
     u1 = u + ft1                                                       s2 v + 0            v                  v
     u2 = u1 + ft2 = u + ft1 + ft2                                      t2
                                                                           =
                                                                              2
                                                                                   ev, s2 = 2 t2  s1 + s2 = 2 (t1 + t2)
     u3 = u2 + ft3 = u + ft1 + ft2 + ft3                                        v
             u + u1        u1 + u2         u2 + u3                      ev, 2 = 2 4 ev, 4v = 4  v = 1
      v1=          ; v2 =         ; v3 =
               2              2                2
                      u + u 1 u1 + u2 u + u 1  u1  u2 u  u2
                                                                        Avevi, v = u + ft mƒò eÅenvi KGi
      v1  v2 =                        =                  =                                1
                         2         2                 2          2       v = 0 + xt1 ev, t1 =             [ v = 1]
                                                                                             x
               u1 + u2 u2 + u3 u1 + u2  u2  u3 u1  u3
     v2  v3 =                     =                     =                                  1
                   2          2                  2            2         0 = v  yt2 ev, t2 =             [ v = 1]
        v1  v2 u  u2              u  u  ft1  ft2                                        y
               =           =                                                       1 1
        v2  v3 u1  u3 u + ft1  u  ft1  ft2  ft3                    t 1 + t2 = +
                              f(t1 + t2) t1 + t2                                   x y
                           =               =                                     1 1
                               f(t2 + t3) t2 + t3                      ev, 4 = x + y                    [ t1 + t2 = 4]
         v1 – v2 t1 + t2              t +t         t +t
                 =
         v2 – v3 t2 + t3
                             AZ‰e, v1  v2 = v2  v3 (cÉgvwYZ)              1 1
                                       1     2      2   3
                                                                         + = 4 (cÉgvwYZ)
                                                                            x y
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                                     71
M gGb Kwi, ˆeËK cÉGqvM Kivi gyn„GZÆ wecixZ w`K nGZ AMÉmigvb 
                                                           L gGb Kwi, ˆÕ¡kb `ywUi gaÅeZxÆ `ƒiZ½ S
  Mvwo `yBwUi AeÕ©vb wQj h^vKÌGg A ‰es B we±`yGZ|               u=0         v              v                                                       v=0
  myZivs, AB = x
      A             x1                            x2               B                      mgZ½iY                     mgGeM               mgg±`b
                                                                                             t1                       t2                   t3
                                       x                                                     S                         S S                 S
                                                                                                                     S 
                                                                                             2                         2 3                 3
    awi, Dfq MvwoGZ ˆeËK cÉGqvGMi ci ‰iv h^vKÌGg x1 ‰es x2                                                                                 S
    `ƒiZ½ AwZKÌg KGi ˆ^Gg hvq|                                                    awi, ˆijMvwowU t1 mgGq mgZ½iGY PGj                       2
                                                                                                                                                   `ƒiZ½ AwZKÌg KGi
    cÉ^g Mvwoi ˆÞGò, Avw`GeM = u1 ‰es g±`b = a1
                                                                                  mGeÆvœP v ˆeM cÉvµ¦ nq| Avevi t2 mgGq v mgGeGM PGj
     u12  2a1x1 = 0
           u12
     x1 =
           2a1
                ... ... ... (i)
                                                               2
                                                                                  (S  S2  S3 ) `ƒiZ½ AwZKÌg KGi ‰es t mgGq mgg±`Gb           3
                                                           u
    w«¼Zxq Mvwoi ˆÞGò, u22  2a2x2 = 0  x2 = 2a2 ... ... ... (ii)                     S
                                                               2                  PGj 3 `ƒiZ½ AwZKÌg KGi|
    ‰G`i msNlÆ ˆKvGbv iKGg ‰ovGbv mÁ¿e hw` x1 + x2  x nq
                    2          2                                                                    S        u+v                 0+v
                u        u
    A^Ævr, hw` 2a1 + 2a2  x nq                                                   cÉ^g ˆÞGò, 2 = 2  t1 = 2  t1
                  1     2
                      45                                                                     1 1
                O
                           A       B
                                               y
                                                       C                            v2
                                                                                            ( )+
                                                                                              a b
                                                                                                       = 400 ... ... (vii)
Kwig O we±`y nGZ Abyf„wgi mvG^ 45 ˆKvGY e±`yGKi àwj Kij| iwng                                           v
                                                                                   mgxKiY (ii) nGZ, a = t ... ... (viii)
‰KB mgGq wÕ©iveÕ©v O nGZ ˆ`ŒGo 20 ˆmGKG´£ 200 wgUvi `ƒGi
                                                                                                             v
AewÕ©Z ‰KwU Lvov ˆ`qvGji cv`G`k B we±`yGZ ^vGg| iwng hvòv cG^i                     mgxKiY, (iv) nGZ, b = 20 – t ... ... (ix)
OA Ask a mgZ½iGY ‰es AB Ask b mgg±`Gb hvq| Aciw`GK àwjwU
                                                                                   mgxKiY (viii) I (ix) ˆhvM Kwi,
ˆ`qvGji wVK Dci w`Gq ˆMj ‰es ˆ`qvGji Aci cvGk¼Æ y `ƒiGZ½ C                                          1 1
we±`yGZ coj| (‰LvGb ˆ`qvGji cyi‚Z½ AMÉvnÅ Kiv nGqGQ)
 K. ‰KwU ˆbŒKv 10 wK. wg. ˆeGM PGj N¥Ÿvq 6 wK. wg. ˆeGM cÉevwnZ
                                                                                              v
                                                                                                  ( )+
                                                                                                    a b
                                                                                                                 = 20 ... ... (x)
                                                              200 + y                  1 1
                                                                                       + = 1 (cÉgvwYZ)
wkLbdj-==                                  [KzwgÍÏv ˆevWÆ-2017  cÉk² bs 6]           a b
                               34 bs cÉGk²i mgvavb                             M
                                                                               
K
                              A
                                                                                          O
                                                                                                45
                                                                                                                                        C
                                                                                                 200 m B
                B                  D                                                                                       y
                                                                                   gGb Kwi, O we±`yGZ ‰KwU eÕ§ f„wgi mvG^ 45 ˆKvGY wbGÞc KiGj Zv
                      10                                                           B we±`yGZ AewÕ©Z ˆ`qvjGK AwZKÌg KGi C we±`yGZ cwZZ nq| ‰LvGb,
                                                                                   OB = 200 wgUvi I BC = y wgUvi| Avbyf„wgK cvÍÏv, R = 200 + y
                                                                                   ˆ`qvGji DœPZv h nGj,
                               O       6   C
                                                                                                                   200                             x
     wPGò b`xi cÉÕ© OA = 500 wg. = 0.5 wK. wg.| gGb Kwi, ˆbŒKvwU O                 h = 200 tan45
                                                                                                     (   1–
                                                                                                                 200 + y )     y = xtan
                                                                                                                                            ( )
                                                                                                                                              1–
                                                                                                                                                   R
     we±`y nGZ OB «¼viv mƒwPZ ˆeGM hvòv KGi ‰es ˆmÉvGZi ˆeM OC «¼viv                              200 + y – 200
     mƒwPZ| ˆbŒKvwU bƒbÅZg c^ cvwo w`Gj Zvi jwº¬ ˆeM OA eivei                        = 200
                                                                                              (     200 + y          )
     wKÌqvkxj ‰es OBDC mvgv¯¦wiGKi KYÆ «¼viv mƒwPZ|                                     200y
                                                                                     =         (cÉgvwYZ)
     ‰Lb, OBD-‰, OB2 = BD2 + OD2                                                      200 + y
     ev, OD2 = OB2 – BD2 = OB2 – OC2                              ² 35 `†kÅK͸-1: ‰KwU UvIqvGii P„ov nGZ ‰KLí cv^i 2
                                                               cÉk
                                                               
                    = 102 – 62 = 100 – 36 = 64
                                                               wgUvi wbGP bvgvi ci Aci ‰KLí cv^i P„ovi 6 wgUvi wbP nGZ
     OD = 8        [eMÆgƒj KGi]
  ZvnGj, bābZg c^ cvwo w`GZ mgq jvMGe
                                                               ˆdGj ˆ`Iqv nGjv|
       0.5      5     1                                         `†kÅK͸-2: ˆKvGbv cÉwÞµ¦ eÕ§i `yBwU MwZcG^ e†nîg DœPZv
     =      =       = N¥Ÿv (Ans.)
        8     10  8 16                                         h^vKÌGg 8m ‰es 10m.
L
           d                200 – d                            K. ‰KwU eÕ§ 15m/sec ˆeGM Avbyf„wgGKi mvG^ 30 ˆKvGY
    O
            t         A       20 – t
                                     B
                                                                    wbwÞµ¦ nGj eÕ§wUi ögYKvj KZ?                       2
  gGb Kwi, cÉ^gvsGk Kwig O ˆ^GK ˆ`ŒGo d `ƒiZ½ t ˆmGKG´£ AwZKÌg  L. `†kÅK͸-1 nGZ hw` `yBwU cv^iB wÕ©i AeÕ©v nGZ cGo
  KGi A AeÕ©vGb AvGm ‰es w«¼ZxqvsGk (200 – d) wgUvi (20 – t)        ‰es ‰KB mvG^ f„wgGZ cwZZ nq ZGe UvIqvGii DœPZv
  ˆmGKG´£ AwZKÌg KGi B ˆZ ^vGg| A AeÕ©vGb Zvi ˆeM v.
                                                                    wbYÆq Ki|                                          4
                                                                M. `†kÅK͸-2 nGZ ˆ`LvI ˆh, R = 16 5                    4
     cÉ^gvsGk, Z½iGYi mƒò eÅeni KGi cvB,
                                                                                                                                [PëMÉvg ˆevWÆ-2017  cÉk² bs 7]
          v2 = 2ad ... ... (i)
          v = at ... ... (ii)                                                                             35 bs cÉGk²i mgvavb
     w«¼ZxqvsGk, g±`Gbi mƒò eÅenvi KGi cvB,                                    K ‰LvGb, u = 15 m/s,  = 30, g = 9.8 m/s2
                                                                               
      2     2
     0 = v – 2b(200 – d) ... ... (iii)                                                                      2u sin 2  15  sin 30
     0 = v – b (20 – t) ... ... (iv)                                                eÕ§wUi       ögYKvj =           =
                                                                                                               g            9.8
                       v2                                                                                      1
     mgxKiY (i) nGZ 2a = d ... ... (v)                                                                2  15 
                                                                                                               2 15
                          v2                                                                        =            =     = 1.53s (Ans.)
     mgxKiY (iii) nGZ, 2b = 200 – d ... ... (vi)                                                          9.8      9.8
   ‰KB nGe hw` ‰KwUi wbGÞcY ˆKvY  ‰es AciwUi                         u1 ‰i w`K eivei u ˆeGMi jÁ¼vsk =u2 [kZÆ Abyhvqx]
   (90  ) nq|                                                      ˆhGnZz ˆh ˆKvGbv ˆiLv
   ‰GÞGò, awi, wbGÞcY ˆeM = u                                         eivei jwº¬i jÁ¼vsk ‰es
     ˆKvGY wbwÞµ¦ cÉGÞcGKi mGeÆvœP DœPZv,                           AskK ˆeMàGjvi jÁ¼vsGki u2             u
                                                                                                   A               d            d   C
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                   75
 muvZvi‚i ˆeM u1, ˆmÉvGZi ˆeM u2, AB = d, AC = 2d                                                        0. 668
                                                                                                     =          = 0.068
                                                                                                          9.8
 K. u ˆeGM f„wg nGZ Lvov DcGii w`GK wbwÞµ¦ KYvi DïvbKvj
     wbYÆq Ki|                                            2                        1 wgUvi      DœPZvq AeÕ©vGbi mgGqi cv^ÆKÅ:
 L. `†kÅK͸-1 ‰ wbwÞµ¦ KYvwU 1 wgUvi DœPZvq ˆcuŒQvi mgGqi                         (2.993 – 0.068) ˆmGK´£ = 2.925 ˆmGK´£        (cÉvq) (Ans.)
     cv^ÆKÅ wbYÆq Ki|                                     4
 M. `†kÅK͸-2 ‰ AC eivei cÉevwnZ b`x ‰KRb muvZvi‚ t1                          M gGb Kwi, AB cG^ hvòvKvGj muvZvi‚i ˆeM u1 ‰es ˆmÉvGZi
                                                                              
     mgGq AB `ƒiZ½ ‰es t2 mgGq AC `ƒiZ½ AwZKÌg KiGj t1                            ˆeM u2 ‰i gaÅeZÆx ˆKvY  ‰es jwº¬ ˆeM v
     ‰es t2 ‰i AbycvZ wbYÆq Ki|                           4
                                            [ewikvj ˆevWÆ-2017  cÉk² bs 7]        ˆeGMi     mvgv¯¦wiK mƒò Abyhvqx,
                  38 bs cÉGk²i mgvavb                                                 v = u12 + u22 + 2u1u2 cos ... ... (i)
                                                                                       2
       DïvbKvj = g (Ans.)
                          u                                                       (i) bs   ‰ ‰B gvb ewmGq cvB,
    y = ut sin –
                         1 2
                           gt                                                     ev, v2 = u12 – u22
                         2
                                   1                                              v = u12 – u22
      1 = 30. t. sin 30 –           9. 8  t2
                                   2
                           1                                                      ˆ`Iqv AvGQ, b`xi weÕ¦vi d.
    ev, 1 = t  30  2 – 4.9t2 ‰LvGb,
                                                                                   d = vt1
    ev, 4.9t2 + 1 = 15t               Avw`GeM, u = 30 ms– 1
                                                                                        d     d
                                      wbGÞcb ˆKvY,  = 30                         t1 = =
                                                                                        v
             2                                                                             u12 – u22
     4.9t – 15t + 1 = 0
    t=
             15         (– 15)2 – 4  1  4 . 9                                  Avevi, ˆmÉvGZi AbyK„Gj AC cG^ cÉK‡Z ˆeM, u1 + u2
                             2  4.9
                                                                                  kZÆgGZ, 2d = (u1 + u2)t2
           15  225 – 19.6
         =                                                                                   2d
                9.8
                                                                                   t2 =
                                                                                           u1 + u2
             15  205.4 15  14.332
         =             =                                                                             d        2d
                 9.8        9.8                                                    t1 : t 2 =             :
                                                                                                  u12 – u22 u1 + u2
    (+) wPn×     wbGq,
                                                                                              = (u1 + u2) : 2 u12  u22
           15 + 14.332 29.332
        t=            =       = 2.993                                                                         2
               9.8      9.8                                                                   = ( u1 + u2) : 2 (u1 + u2)(u1  u2)
                              15 – 14.332
    (–) wPn×     wbGq, t =                                                                    = u1 + u2 : 2 u1 – u2 (Ans.)
                                  9.8
76                                                                                 cvGéix DœPZi MwYZ w«¼Zxq cò  ‰Kv`k-«¼v`k ˆkÉwY
                i=1
                      N
                          
                             N 
                                    =
                                        70
                                              
                                                   70     ( )            cwimi, R = 100  51 = 49 (Ans.)
                = 148.4898 (Ans.)                                     L cwiwgZ eÅeavb wbYÆGqi ZvwjKv:
                                                                      
M eÅvGM 7wU jvj, 5wU KvGjv ‰es 4wU mv`v ej AvGQ| ˆgvU ej
                                                                                                                   di =
                                                                                                                        xia
    msLÅv 16wU| 16wU ej nGZ 3wU ej 16C3 DcvGq ˆbqv hvq|                            gaÅwe±`y           MYmsLÅv             c
                                                                      ˆkÉYx mxgv                                                       fidi      fidi2
    ‰Lb, KgcGÞ 2wU jvj ej nIqvi mÁ¿vebv                                              xi                 fi           a=75.5
                                                                                                                      c=10
    = P{(2wU jvj I ‰KwU wf®²) A^ev (wZbwUB jvj)}
                                                                        51-60       55.5                10             –2              – 20       40
    = P(2wU jvj I ‰KwU wf®²) + P (wZbwUB jvj)                           61-70       65.5                20             –1              – 20       20
      7
        C2  9C1 7C3 21  9 35 224 2                                    71-80       75.5                15              0                0         0
    = 16        + 16 =         +      =   = (Ans.)
           C3       C3    560     560 560 5
                                                                        81-90       85.5                10              1               10        10
cÉk
 ² 15 `†kÅK͸-1: ‰KwU SzwoGZ 4wU mv`v ej ‰es 5wU KvGjv              91-100       95.5                5               2               10        20
ej AvGQ|                                                                                                                              fiidi    fiidi2
                                                                        ˆgvU                          N=60
                                                                                                                                      = 20      = 90
 `†kÅK͸-2: cÉ`î Dcvî : 5, 9, 8, 11, 20, 23, 24, 14, 15, 21.                                                          2          2
 K. D`vniYmn AeRÆbkxj NUbvi msæv `vI|                           2     cwiwgwZ eÅeavb,  =                    fidi        fidi
                                                                                                                                    c2
                                                                                                              N            N      
 L. `†kÅK͸-1 nGZ wbiGcÞfvGe wZbwU ej DVvGbv nGj ej                                                                         2
      wZbwU mv`v nIqvi mÁ¿vebv wbYÆq Ki|                        4                                 =        90  20   102
                                                                                                           60  60  
 M. `†kÅK͸-2 ‰i Z^Åmvwi ˆ^GK ˆf`vâ wbYÆq Ki|                   4
                                  [ewikvj ˆevWÆ -2019  cÉk² bs 8]                                = 138.89
wkLbdj- 2, 3 I 6
                                                                                                  = 11.785 (Ans.)
ˆevWÆ cixÞvi cÉk²cGòi mgvavb                                                                                                                                                  77
M Mo eÅeavb wbYÆGqi ZvwjKv:
                                                                                        M eÅvGM ˆgvU ej AvGQ (9 + 7)wU = 16wU
                                                                                         
                    gaÅwe±`y           MYmsLÅv                                           16wU ˆ^GK 6wU ej 16C6 cÉKvGi ˆZvjv hvq|
  ˆkÉYx mxgv                                            |xi – x|           fi|xi  x|
                      xi                 fi                                                myZivs 3wU ej jvj I 3wU ej mv`v nIqvi mÁ¿vebv
   51-60             55.5                10             16.66                166.7         = P(3wU jvj ej I 3wU mv`v ej)
   61-70             65.5                20              6.66                133.3                      9
                                                                                                           C3  7C3 84  35 105
   71-80             75.5                15              3.33                49.95                =         16     =       =     (Ans.)
                                                                                                               C6    8008    286
   81-90             85.5                10             13.33                133.4
   91-100            95.5                 5             23.33               116.65       cÉk
                                                                                         ² 18 `†kÅK͸-1: ‰KwU QØv ‰es `yBwU gy`Ëv ‰KGò wbGÞc
                                                                           fi|xi – x|   Kiv nj|
    ˆgvU                                N=60
                                                                             =600         `†kÅK͸-2: wbGÁ² ‰KwU MYmsLÅv wbGekb ˆ`Iqv nj:
                                                                                          ˆkÉwY eÅeavb 10-14 15-19 20-24 25-29 30-34 35-39
                                     fi |xi  x| 600
        Mo eÅeavb, MD =                         =    = 10 (Ans.)
                                          N        60                                        MYmsLÅv        5      8       14    12      9      6
                                                                                                                                                          [e. ˆev. 17  cÉk² bs 8]
cÉk
 ² 17 `†kÅK͸-1 : «¼v`k ˆkÉwYi 55 Rb QvGòi MwYGZi bÁ¼Gii
                                                                                          K. eRÆbkxj ‰es AeRÆbkxj NUbvi msæv `vI|                    2
‰KwU WvUv wbGÁ² ˆ`Iqv nj :
                                                                                          L. bgybvGÞGòi mvnvGhÅ 2wU ˆnW I weGRvo msLÅv nIqvi mÁ¿vebv
      bÁ¼i    51−60      61−70     71−80    81−90 91−100
                                                                                             ˆei Ki|                                                 4
  Qvò msLÅv      7         18        15       10       5
                                                                                          M. wbGekbwUi cwiwgZ eÅeavb wbYÆq Ki|                       4
 `†kÅK͸-2: ‰KwU eÅvGM 9wU jvj I 7wU mv`v ej AvGQ|                                                                                        [ewikvj ˆevWÆ-2017  cÉk² bs 8]
 wbiGcÞfvGe 6wU ej ˆZvjv nGjv|                                                                                            18 bs cÉGk²i mgvavb
               1          3
 K. P(A) = 3, P(B) = 4, A I B Õ¼vaxb nGj P(A  B) ‰i gvb                                 K eRÆbkxj NUbv (Mutually Exclusive Events): `yBwU NUbv
                                                                                         
    wbYÆq Ki|                                                                        2     ZLbB eRÆbkxj nq hLb ZvG`i gGaÅ ˆKvGbv mvaviY bgybv we±`y
 L. `†kÅK͸-1 nGZ cwiwgZ eÅeavb wbYÆq Ki|                                            4     ^vGK bv| `yB ev ZGZvwaK NUbv hw` ciÕ·i ‰i…Gc mÁ·wKÆZ
 M. `†kÅK͸-2 nGZ 3wU ej jvj I 3wU ej mv`v nIqvi mÁ¿vebv                                   ^vGK hvGZ ZvG`i ˆh ˆKvGbv `yBwU NUbv ‰KB mvG^ NUv mÁ¿e
                                                                                           bq ZvnGj DÚ NUbv mgƒnGK ciÕ·i eRÆbkxj ev wewœQ®² NUbv
    wbYÆq Ki|                                                                        4
                                              [PëMÉvg ˆevWÆ-2017  cÉk² bs 8]
                                                                                           eGj|
                            17 bs cÉGk²i mgvavb                                                                                               S
                                 1                  3
K ˆ`Iqv AvGQ, P(A) = 3 ‰es P(B) = 4
                                                                                                                     A                   B
  ‰LvGb, A I B Õ¼vaxb|
                                                 1 3      1                                                         wPò : A I B eRÆbkxj NUbv
     myZivs P(A  B) = P(A). P(B) = 3 . 4 = 4
                                                                                                     AeRÆbkxj NUbv (Not mutually Exlusive Events): `yB ev
     myZivs P(A  B) = P(A) + P(B)  P(A  B)                                                        ZGZvwaK NUbv hw` ‰i…Gc ciÕ·i mÁ·KÆ hyÚ nq ˆh ZvG`i
                          1 3 1 4 + 9  3 13  3 10 5
                         = +  =         =      = =                                                  gGaÅ ˆh ˆKvGbv `yBwU NUbv ‰KGò NUGZ cvGi ZvnGj ‰B
                          3 4 4    12       12   12 6
                                                                                                     NUbvmgƒnGK ciÕ·i AeRÆbkxj NUbv eGj| ‰i…c NUbv«¼Gqi
     (Ans.)
                                                                                                     gGaÅ AekÅB mvaviY bgybv we±`y ^vKGe|
L cwiwgZ eÅeavb wbYÆGqi QK :
                                                                                                                                                  S
                                          u =
                     Qvò      gaÅwe±`y x  i75.5                                                                           2              3
       bÁ¼i                             i                           fiui        fiui2                                      A              B
                   msLÅv (fi)  (xi)       10
                                                                                                                                  6
                                                                                                                            4
     51-60             7      55.5                   2              14    28
     61-70             18     65.5                   1              18    18                                                  (A  B)
     71-80             15    75.5 = a                0                0      0                                        wPò : A I B AeRÆbkxj NUbv
     81-90             10     85.5                   1               10     10
                                                                                         L `yBwU gy`Ëv I ‰KwU QØv wbGÞc KiGj bgybv ˆÞòwU wbÁ²i…cfvGe
                                                                                         
     91-100            5      95.5                   2               10     20
                   fi = N =                                       fiui = fiui2          ˆ`LvGbv ˆhGZ cvGi:
                                                                                                            ‰KwU QØvi bgybv ˆÞGòi bgybvwe±`y
                                                                                         `ywU gy`Ëvi bgybv ˆÞGòi
                       55                                           12 = 76
                                        fiui2 fiui2                                                             1        2     3                    4     5     6
    cwiwgZ eÅeavb = c                        
                                                                                                bgybv we±`y