AP Calculus
AP Calculus
·
eim m + + b
=
ma + b
*+ a
I
sex and coty are cont .
Over any intertal not containing =
IVT
:
Let fixe be continuous over laibs such that frarefibe -o then by IT ACE Ca,belfies so
if fixe if fix l
lim exists
lim 1 lin f(x)
Nim
-
=
+
-ab
-
Sandwich theorem :
for usyoffixsuits if lim was im vixt
=
d
* A
f(x) l
* A
then Rim =
* a
types of discontinuity :
jump discont : ates a
limatis Flim * a
free
removable discontinuity at
lina fixi
=
non !
a
·
free sind giye-coss are cont
·
If f and gare cont on an
open interval 1, ftg , -g fog , , Ig are continuous
over I
·
Polynomials and monomials are continuous
left -
·
a function is cons . on Ca , by it it is cons on (a ,b) right cons as y =
a and left at = b
e
=
lim
(1
+ Critical points
e
&
Extreme value theorem fr=0 fl does not exist endpoints
:
,
or can
be extremes
2 . Differentiation
Definition of derivative :
free im fi
U o
n -
1 y
+ y UV v v'u
y
=
nx
=
= =
yy'
n
.
y' nuun y
=
u
y
= =
2
~
derivatives of
trigonometric functions :
y'
y'
y =
sin + =
cosy u
=
286x =
-
SC
y's
y'
Y'
sex
y
& =
anx =
y
=
CS x
=
excoty
un - I
y =
sin' mus 4 = 1 - 42
y =
tancur
i =
un
y COS" ru 4 Cour -
y u
=
=
-
=
u -,
y = Secu - = ↑
- I
141-1
y = CSC rur
y' =
ur
-
- ~
right hand :
at x =
a Rim -Fran exists
U - 8
+
* H
·
not continuous
·
Vertical tangent lim Fraue Rim f(x) =
+0
n +0 +
&-
·
corner point Rin free e Rim fry) absolute Valued
&- I
-
mean value theorem :
if a function is diff on an intervall then the average rate of change between 2 points =
Rolle's theorem
:
Let fr be a cont function over Saibs & fre is difs over ra,b)/fraiffbe
by Rolles theorem 3
<(a , brifr 21 = G
linearitation :
(exe-fras + far (x-as linearitation of fatx =
Slope , tangent
Newtons method - =
a -
fran -n =
+n -
+1
:
Frag fy n
-
1
=
40 -
frx0
T
↑ =0 &
Other derivatives :
1 y
-logau
ex
1x y
-
y y e
=
= =
= =
*
na
g
un e
y' y
y In u =
y
= =
=
fixo
I
a al
&
y' '
Ina -
y
=
=
- =
b flar
f(a) =
b
3 . Integrals
definition of
a definite integral :
(a free
Dim in der
C .
/am fre de =
ma fix de
3 .
S fraudx --1 fix de
s .
If memil on Sa , b) and Mamas on Zaibs then mibas fre axs Mib as
- .
If fr o , on Ja,bs then free des o
Sudx
M
=
C
n + 1
1
substitution method :
Su'u das Sudu U
n +
+C
=-
Sein x de--Coskx
V
+ Scosux de =
sex
+a
(de-inlost
=
In seit
Scott af
= dx =
insint
Sseex de =
In isecyttanti +C
Sescy de =
in lesex +coty +
SFax
u
- sin u + -cosu+ 1412
Si de -tan'u+c-cot'U+C
S 42 -
1
der setuxstute I
S un af =
sin + Ita
-
a -
u
S
de tan"
es is
S ur ax
= se + 1
#
uz -
a
the average rate of a diff function on a closed interval is attained at least once
a
e era , be/far a
freude fice
Ify = fitat = fr
1f
Greg fre as u u'res +rurse
=
y
=
44&
y =
g fitat =
-
Säfstedt Sa
fitat
Trapezoidal Sum
h A trapezoid
ba (b, +
ba
=
=
=
(f(1) + 2912) + 2f(3) ...
+ fin
The second fundamental law of Calculus
antiderivative of free
Sf(x) dy =
F(x +
Salfreude
volume of solids of Revolution
S free
"
washer method :
-gredy
shell method :
27 hiserres de
Sa Dresde
far - a( free dx
5 .
Other Important Remarks
k
n
E Ca =
ca = nu
.. i = i =
Summeation formular
I
⑭ ne
U
21 =
n
nun +18 E -2
I -nun + 2122n +12
2 i
i 1 =
G
=
Trigonometry : sin'x+cosy -
,
1
Ittanke Sechs ,
It coty =sche
Sumrule : Sindatbe -
sinacosb + cosasinb
=cos(ge-sin(e
inverse trigonometric functions :
domain range
Sin C C-E E , E1 is ,
Sire"C [1 , 1 [ - , * odd
1
, 18
cas" & 5-1 , 18 Co, 1
tan &-
E -
IT
I
R
tan"d R (
y y ,
*
odd
See" (eu -
E
sa" (4) =
Sin, sex+csa =
I
Cot "11 = tan" ( tan"x+coty = gresso
T
-
gro
inverse functions :
fifixe symmetric about yee, fre has to
Be 1 -
1
Exponential functions :
b
1 eab =
pa +
e= in domain (R) 2 .
reab =
gab
&
b
range (0 tor ea -
, , 3 .
=
y =
ey
sex
&4
you b
e
4 e
-
y
=
. =
Continuous
compounding
rate
A =
pert-time effective rate :
R = e-1
Initial amount o
money
Logarithmic Functions :
y = in
= sin y
=
y logay
properties of the natural logarithm :
In1 =
0 In e = 1 IMN MIN ( same properties
apply for 109 a +
In IM-IN Innen
special angles
L in radians O
T
T I -
T
O i 1
Sind
COSL
-E -
I O
Es
-
/
/
O -
-
tan a Es
5
/ B
-V -
-
/
Sin T = G
Cosrevent =
1 Lexample
:
2, Un, GT
cos(oddi =
o
=
sin
(odd
+1 : Sa F
Il T
a
=
a + 2VIT
-
a + 24π
L =
a + Lit
-A +2
& a + VI
=
etfre Ein fre
ein ,