0% found this document useful (0 votes)
84 views8 pages

AP Calculus

Uploaded by

2fr6c6sjw2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
84 views8 pages

AP Calculus

Uploaded by

2fr6c6sjw2
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

Ap Calculus notes

1 . Limits and continuity


Rin C0S+ I
sin = Dim tan b
eim
·
· - ·
-
-
=
0
* > *
8 O *

·
eim m + + b
=
ma + b
*+ a

and tanx any interval


secy are cont . Over not containing x =

I
sex and coty are cont .
Over any intertal not containing =

IVT
:
Let fixe be continuous over laibs such that frarefibe -o then by IT ACE Ca,belfies so

if fixe if fix l
lim exists
lim 1 lin f(x)
Nim
-
=

+
-ab
-

Continuity at a point : lim free -flas


* *A

Sandwich theorem :
for usyoffixsuits if lim was im vixt
=
d
* A
f(x) l
* A
then Rim =

* a

types of discontinuity :
jump discont : ates a
limatis Flim * a
free

removable discontinuity : at =a lim exists but frar is not defined

removable discontinuity at
lina fixi
=
non !
a

classes of continuous functions :

·
free sind giye-coss are cont

·
If f and gare cont on an
open interval 1, ftg , -g fog , , Ig are continuous

over I

·
Polynomials and monomials are continuous

left -

and right continuous

left cont: lim free:fras right cons : lim (1x) = fla


a
+
& -a

·
a function is cons . on Ca , by it it is cons on (a ,b) right cons as y =
a and left at = b

e
=

lim
(1
+ Critical points
e
&
Extreme value theorem fr=0 fl does not exist endpoints
:

,
or can

be extremes
2 . Differentiation

Definition of derivative :

free im fi
U o

n -
1 y

+ y UV v v'u
y
=

nx
=
= =

yy'
n
.
y' nuun y
=

u
y
= =

2
~

derivatives of
trigonometric functions :

y'
y'

y =
sin + =
cosy u
=

286x =
-

SC

y's
y'

y Cos Sin y= sex secxtany


= -
=
+

Y'
sex
y

& =
anx =

y
=
CS x
=

excoty

derivatives of inverse trigonometric functions :

un - I

y =
sin' mus 4 = 1 - 42
y =
tancur
i =

un

y COS" ru 4 Cour -
y u
=
=
-
=

u -,

y = Secu - = ↑

- I
141-1
y = CSC rur
y' =
ur
-

- ~

right and left hand derivatives :

right hand :
at x =
a Rim -Fran exists
U - 8
+

left hand : at + = a lim frathe-flas


->
exists
8 -

* H

non differentiable functions :

·
not continuous
·
Vertical tangent lim Fraue Rim f(x) =
+0

n +0 +
&-

·
corner point Rin free e Rim fry) absolute Valued
&- I
-
mean value theorem :

if a function is diff on an intervall then the average rate of change between 2 points =

instantaneous rate of change of function at some point in the interval

if fiscont . on Tabs and difs on Cabe there exissel point cera ,


be

such that free fibe-frad


b -
a

Rolle's theorem
:

Let fr be a cont function over Saibs & fre is difs over ra,b)/fraiffbe
by Rolles theorem 3

<(a , brifr 21 = G

linearitation :
(exe-fras + far (x-as linearitation of fatx =

Slope , tangent

Newtons method - =
a -
fran -n =
+n -
+1
:

Frag fy n
-
1
=
40 -
frx0
T
↑ =0 &

Other derivatives :

1 y

-logau
ex
1x y
-

y y e
=
= =
= =

*
na
g
un e
y' y

y In u =

y
= =
=

fixo
I
a al

&
y' '

Ina -

y
=
=

- =
b flar

f(a) =
b
3 . Integrals

definition of
a definite integral :

(a free
Dim in der

Properties of definite integral


1 . Sa fidx = o

C .
/am fre de =
ma fix de

3 .
S fraudx --1 fix de

s .
If memil on Sa , b) and Mamas on Zaibs then mibas fre axs Mib as
- .
If fr o , on Ja,bs then free des o

Sudx
M
=
C
n + 1

1
substitution method :
Su'u das Sudu U
n +
+C
=-

integrals of trigonometric functions :

Sein x de--Coskx
V
+ Scosux de =

sex
+a

Sseevade- + SCSC vide -


-
V Vo

(seauxtanxx da -sexte escuscoturdos-sx+


Vo E
Stanx de =

(de-inlost
=
In seit

Scott af
= dx =
insint

Sseex de =
In isecyttanti +C

Sescy de =

in lesex +coty +

integrals of inverse trigonometric functions :

SFax
u
- sin u + -cosu+ 1412

Si de -tan'u+c-cot'U+C

S 42 -
1
der setuxstute I

S un af =

sin + Ita
-
a -
u

S
de tan"
es is

S ur ax
= se + 1
#
uz -
a

4 Applications and properties of integrals

mean value theorem for definite integrals :

the average rate of a diff function on a closed interval is attained at least once

a
e era , be/far a
freude fice

First fundamental law of calculus :

Ify = fitat = fr

1f
Greg fre as u u'res +rurse
=

y
=

44&

y =

g fitat =
-

Säfstedt Sa
fitat

Trapezoidal Sum

h A trapezoid
ba (b, +
ba
=
=

=
(f(1) + 2912) + 2f(3) ...
+ fin
The second fundamental law of Calculus

if f is a continuous function on a closed interval La i b) then Safredy-Fibe-fra


where fredsf'd Fres is the

antiderivative of free

Sf(x) dy =
F(x +

area of a function under the curve :

Salfreude
volume of solids of Revolution

disk method = Sa freid de

S free
"
washer method :
-gredy

shell method :

27 hiserres de

solids with known Cross-section :

Sa Dresde

cross section of a sphere is a circle with radius ures-

the average value of a continuous function on a closed interval:

far - a( free dx

5 .
Other Important Remarks

Rules for a finite sum

k
n

E Ca =
ca = nu
.. i = i =

Summeation formular
I

⑭ ne
U

21 =
n
nun +18 E -2
I -nun + 2122n +12
2 i
i 1 =
G
=

Trigonometry : sin'x+cosy -
,
1
Ittanke Sechs ,
It coty =sche

Sumrule : Sindatbe -

sinacosb + cosasinb

Cosratbrs cosacosb-sina sind


double-angle formula : Sin (2x) = 2 sinXCOS2
cosidas = 1-2 sind =
10sa -
1

=cos(ge-sin(e
inverse trigonometric functions :

domain range
Sin C C-E E , E1 is ,

Sire"C [1 , 1 [ - , * odd

COS & 21t or ,


2 -

1
, 18
cas" & 5-1 , 18 Co, 1
tan &-

E -
IT
I
R
tan"d R (
y y ,
*
odd

See" (eu -

cosy sin" y +Cos" x


=

E
sa" (4) =
Sin, sex+csa =

I
Cot "11 = tan" ( tan"x+coty = gresso
T
-
gro

inverse functions :
fifixe symmetric about yee, fre has to

Be 1 -
1

Exponential functions :

Exponential function laws exponents


:
of

b
1 eab =
pa +

e= in domain (R) 2 .
reab =
gab

&
b
range (0 tor ea -

, , 3 .
=

y =
ey
sex
&4
you b
e

4 e
-

y
=

. =

Continuous
compounding
rate

A =
pert-time effective rate :
R = e-1
Initial amount o

money

Logarithmic Functions :

natural logarithmic function y S dt o


=
:
Inf =

y = in
= sin y
=

y logay
properties of the natural logarithm :

In1 =
0 In e = 1 IMN MIN ( same properties
apply for 109 a +
In IM-IN Innen
special angles

L in degrees Jo · 30° us 600 900120° 135° 150° 1800

L in radians O
T
T I -
T

O i 1
Sind

COSL
-E -
I O
Es
-
/
/
O -
-
tan a Es
5
/ B
-V -
-

/
Sin T = G

Cosrevent =
1 Lexample
:

2, Un, GT

Cosrodite= -1 /T, 31, Ste

cos(oddi =
o

=
sin
(odd

+1 : Sa F
Il T

COSL =X assume cos (x) =


a

a
=
a + 2VIT
-

a + 24π

sinn =x assume sin (xe =


a

L =
a + Lit

-A +2

tandsf assume tan"(x) =


a

& a + VI
=
etfre Ein fre
ein ,

eine fugiese freim gra


* * C - od

You might also like