0% found this document useful (0 votes)
16 views11 pages

Core Lec 17

Uploaded by

Akhilesh Meena
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
16 views11 pages

Core Lec 17

Uploaded by

Akhilesh Meena
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 11

Core:

Given a game v ∈ G N , the core of v is the set of all imputations x


in I(c) such that x (S) ≥ v (s) for all non-empty coalitions S ⊂ N.
The core of a game v ∈ G N is denoted by C (v ).

Example 1
coalitions v()
∅ 0
{1} v ({1}) = 0
{2} v ({2}) = 0
{3} v ({3}) = 0
{1, 2} v ({1, 2}) = 1
{1, 3} v ({1, 3}) = 1
{2, 3} v ({2, 3}) = 1
{1, 2, 3} v ({1, 2, 3}) = 3
We want to find the core allocation of the above coalition game.
We have v ({1}) = 0 ≤ xA1 , v ({2}) = 0 ≤ xA2 , v ({3}) = 0 ≤ xA3 .
v ({1, 2}) = 1 ≤ xA1 + xA2 , v ({1, 3}) = 1 ≤ xA1 + xA3 , v ({2, 3}) =
1 ≤ xA2 + xA3 .
v ({1, 2, 3}) = 3 ≤ xA1 + xA2 + xA3 .

Substituting v ({2, 3}) = 1 ≤ xA2 + xA3 in


v ({1, 2, 3}) = 3 = xA1 + xA2 + xA3 . We have 2 ≥ xA1 , similarly we
get 2 ≥ xA2 and 2 ≥ xA3 .
Therefore, core allocations are 2 ≥ xA1 ≥ 0, 2 ≥ xA2 ≥ 0,
2 ≥ xA3 ≥ 0 and 3 = xA1 + xA2 + xA3 .
It is shown in figure 1 and 2.
Example 2
coalitions v()
∅ 0
{1} v ({1}) = 1
{2} v ({2}) = 1
{3} v ({3}) = 1
{1, 2} v ({1, 2}) = 2
{1, 3} v ({1, 3}) = 2
{2, 3} v ({2, 3}) = 2
{1, 2, 3} v ({1, 2, 3}) = 3
We want to find the core allocation of the above coalition game.
We have v ({1}) = 1 ≤ xA1 , v ({2}) = 1 ≤ xA2 , v ({3}) = 1 ≤ xA3 .
v ({1, 2}) = 2 ≤ xA1 + xA2 , v ({1, 3}) = 2 ≤ xA1 + xA3 , v ({2, 3}) =
2 ≤ xA2 + xA3 .
v ({1, 2, 3}) = 3 ≤ xA1 + xA2 + xA3 .

Substituting v ({2, 3}) = 2 ≤ xA2 + xA3 in


v ({1, 2, 3}) = 3 = xA1 + xA2 + xA3 . We have 1 ≥ xA1 , similarly we
get 1 ≥ xA2 and 1 ≥ xA3 .
And we have
v ({1}) = 1 ≤ xA1 , v ({2}) = 1 ≤ xA2 , v ({3}) = 1 ≤ xA3 .

Therefore, core allocation is (xA1 , xA2 , xA3 ) = (1, 1, 1).


See figure 3 and 4.
Example 3
coalitions v()
∅ 0
{1} v ({1}) = 1
{2} v ({2}) = 1
{3} v ({3}) = 1
{1, 2} v ({1, 2}) = 2
{1, 3} v ({1, 3}) = 2
{2, 3} v ({2, 3}) = 2
{1, 2, 3} v ({1, 2, 3}) = 4
We want to find the core allocation of the above coalition game.
We have v ({1}) = 1 ≤ xA1 , v ({2}) = 1 ≤ xA2 , v ({3}) = 1 ≤ xA3 .
v ({1, 2}) = 2 ≤ xA1 + xA2 , v ({1, 3}) = 2 ≤ xA1 + xA3 , v ({2, 3}) =
2 ≤ xA2 + xA3 .
v ({1, 2, 3}) = 4 ≤ xA1 + xA2 + xA3 .

Substituting v ({2, 3}) = 2 ≤ xA2 + xA3 in


v ({1, 2, 3}) = 4 = xA1 + xA2 + xA3 . We have 2 ≥ xA1 , similarly we
get 2 ≥ xA2 and 2 ≥ xA3 .
And we have
v ({1}) = 1 ≤ xA1 , v ({2}) = 1 ≤ xA2 , v ({3}) = 1 ≤ xA3 .
Therefore, core allocation are
2 ≥ xA1 ≥ 1, 2 ≥ xA2 ≥ 1, 2 ≥ xA3 ≥ 1 and 4 = xA1 + xA2 + xA3
It is shown in figure 5 and 6.
Example 4
Suppose one person A owns an old car which values nothing to
him. There are two potential buyers, Buyer B values it at 1000 and
buyer C values it at 1050. The trade between these people can be
analysed based on coalition formation.
Coalitions Value or worth of coalitions
{A} 0
{B} 0
{C } 0
{A, B} 1000
{A, C } 1050
{B, C } 0
{A, B, C } 1050
{∅} 0
What is the core allocation?
We have xA ≥ 0, xB ≥ 0, xC ≥ 0,
xA + xB ≥ 1000, xA + xC ≥ 1050, xB + xC ≥ 0
xA + xB + xC ≥ 1050.

Substituting xA + xC ≥ 1050 in xA + xB + xC = 1050, we get


xB ≤ 0. We have xB ≥ 0, thus xB = 0.
Substituting xA + xB ≥ 1000 in xA + xB + xC = 1050, we get
xC ≤ 50. We have xC ≥ 0, thus 50 ≥ xC ≥ 0.
From this we get the core allocation as
C (v ) = {(xA , xB , xc ) = (1050 − d, 0, d)|0 ≤ d ≤ 50}.

You might also like