Atomic Structure
Atomic Structure
Atoms
indivisible
matter
Basic units of
elements look alike
some
Atoms of is diff
a a diff
themselves in
react among
They
weight
fixed foopotions of
J J Thompson
cathode rays
ve
Low pressure
high voltage
bright spot
fjfj C a
electrons
are
7 Cathode rays
ve
madeup of
ma
g
It
elm ratio
electrons
of found
Y were
q A
T
taken inside the
Efm ratio for any gas
same
tube remains the fundamental
are
that elections
which proves
particles
stamina
shadow
hit the
walls
canal rats
for
ratio of glass tube
elm ditt A genreale heat
is diff for Canode rays
gases
Canal rags
0 0 Positive field
8 e's
0
model
not accepted
µ 2ns screen
2
Hey
I
i
Thin
aft
e
and foil
Fy
the space in an
most of
empty charged and
centre of atom
rely is
atom is concentrated at centre
whole mass of
IOI
FI
s
as
is present
mass
40 Particles with measurable
onside remains
missing
distinnosiseim
To
x Loosing energy
Antinous nnnr
continuously
spectrum
Oinnent
ve volatile oil
q anise
im electrons
captured by
oil droplets
vet
i
Ei
c
n
Plancks Quantum Theory s Hertz
or
7
C hw
Joules Ed D plancies Constant
t radiation
velocity
bearuency of
s T the radiation
O wavelength of
m or A
l AO e lo Om
Inm lo 9M
available is
Zadiations are
Energy of duainta
called
discrete packets
E hid
Quanta is photons
the
for light
Velocity distance
c travelled by a
waskeeoinnd.mi
µf X
Frequency no
passing thru
of waves
34 a point in
h 6.626 10 g g unit time
T 7
f
m
wave number
in unit distance
no of wavelengths
wave length
A light emits
a photon
the
of
from
30008 How many photons
equivalent to
Energy
will be
light source
300J
of C 300J
h
C
For 1 photon 3 108ms
6.626 10 3455
e
E 10M
3000 10
34 3 108
6.628 10
10
3000 10
7 300J
1000 10
3000 10
300
photons 34 108
nor if 6.626 10 31 z
10
_x1o
f
59
72
el
B
based on
postulates were
His
A spectrum with
It samples
irradiated
He
energies
diff
radiation of he
exp
each set of
In
of energy
amount
calculated the he also
and
absorbed Absorption spectrum released
energy
calculated amount of
spectrum
emission he gave us
calculations
Based on this
postulates
following
the atom is
in an
electron values
all the
Energy of cannot
have
Quantized It
of energy
Electrons revolve around the nucleus in
called orbit Each orbit
a circular path
its own energy
associated With
is levels
called energy
They are not loose
does
its own orbit around
E's in revolve
continuous
and circular motion
energy in uniform
nucleus
the levels
energy
Stationary
associated with the
momentum
angular
orbit
Mvr on ZR
3 4 or
n _1,2
N orbit no i
M n _i
k Sheil
Z
SheilL
L
K z M
shell
a 2 3 4 5 Shell
µ
q N
absorb and get excited they
Es energy
excited to higher shell
get orbits by
to high energy
They jump
release the
They
absorbing energy to
original
and return
excess energy releasing the
do so by EMR
orbit They form of
in the
excess energy E g
COO J
tE _100J
O Eg
100J
N Es z f Ese
7
Es ztE2 F'T
L
K Cg 100J
A 2 3 4 5
N
7nF E5 tEf 3
n
n r E3 z
C 271
100J
Electrostatic force of attraction
and Z non f protons
between e S
exz
22
K
ge
2
Ckgpbofetatic
2
M
Centrifugal force
to have a uniform
for an e
around the
motion
circular
nucleus
Ze
2
K MI
T
Iz
2 K
mv2
mire
K E 2
t.E
JL.ee
mv2 2 K
8
MVT I
2h
m2v2z2 nth
4h2
mv2 nth
497mn22
and
from
n2h
Zej
K
49 m 22
K 9 109
Ia
r
m e
NM 4G
t o 5zq.no A
Z
r O 529 Ao 3 0529
A Atom
for 0.529
Nc 4
5 0529
9 0 52gal
73 7 0 529
Ja 16 0 52gal
Potential energy the electron
of as ve
atom is taken
inside an
O
P E
e free electron
T
PE
ZetZ K
y
p E ZI K
2 K
KRG 2
P E
K G t
T E
2 K
iz
I
I K
Z n2h2_
Ze 2K
4h2m
4 K2
4h2m 2
Energy of z n 2h2
e in nth
Z
orbit TEN za2mk2
n 2h2 I
18
En
2.19 X 10
4 2
J atom
18 1
En 2.19 10 22 J atom
Tz
atom
En
13.6 ZI ev
NZ
19 J
ev s 6 10
nTses En Tses
as
E 13 bev 138
H atom
for 13.6 4
C 2
93.6
5136
E3 13.61g
13.6
13 61,6 724
C4
HUMPHERY
Radio
ffn I rr 6
n es T
arte
I I
nee IR
p
ne 3
i
illhtti
n 7
mvz nh_
2h
Zz n2
K
422m12
n.tn
zarmi
n h
zq.NL 4h2
m.e2
2nkTZV
2ae2
n h atomic
nor
106
2.186 IN osbii non
2 18 10 1822 J atom
En Tz
O
O 529 A
Tn
A 10 Om
i
E s H atom 2 1
6 fEp
5
92
6,2
Ake f e
g
t
3
n _I
M
2 arrays
series v
Brackett
Nz5,617
n q spectrum
f
Nz 43 4,5 G 7 r n
IR
t
visible series
Paschen 2 4,516
Nyt 3
near series Nz
hi 3 IR
Aza 4
5,6
18
En Z 18 10 2 h12
Enz 2.18 10
18 ZI
na
Enz En
2.18 10
18 22 Tz 2
selased d 22
Energy RH X
e
by tee constant
jumps
when it Rhydber
from Nz Al 2.18 10
18 J
d equivalent
Energy
released in
Energy
ER
the form
Ra IZ 4,7
E
f
2
h C
EE ft nta
TI y 6.6 10 34ps
I 120 22 tint
4
105cm for loam
narwind to excise an
e Calculate Energy
in
est shell to 4th Shell
electron from radiation
calculate tee of
H atom Also
the e's
excite
used to
Fn 2.18 10 1822
ne
18
E Z 18 10 x g
18
C a
Z 18 10 1 42
1048 16 J
2 18
E 2.18 10
18 x l
t
Ea
18
2 18 10 1 16
10 185
2.04
18
h 10
2.04
15515 3 108ms
6.64
HC
X T.ggoI8 2.04 10 185
9.76 10 8M
976 10 com
976ft
absorbs Kiev
An e in H atom
level
and Jumps to high energy
emitted
radiated
Calculate the X of
from that
e s if it falls
this in a
by shell
to first
excited Shell
manner
stepwise
E 13.6 ev 12Z
13 GeV
12 l EV
Cabsorbed
13.61 121
l Bev
En
2
13.6 2 1 515
NZ
2 1
13.6 n 3
n2 9
fine
2 71
3 32 z
147.12
f RH l2 LT 32 4
RH FT X 45kt
3 I 33 10
FM
de Ry
133mm
Ix 10Am
72 20
Fm
I
720hm
nz 2
n 7
I line 8 Lyman series
Balmer
s n Z 72
4
I limit 1 4
a 3
1
Paschen 8
I Ii a 72
is M 4
n
Bracher 0
II n
series nz
line for any
limiting
Az
4th limiting
n
2nd 3rd
pi 5 D
3 4
2 D
Lyman
1 G
4 5
3 D
2 7
Kilmer 5 6
3 4
Teschen 8
7
5
5 6
D
Brackett 4 8 9
6 7
N
Pfund co
8 9
6 7
Humphery
emitted by
maximum non
f lines
when it
AN Electron
to hi is
Nz
from
jumps
of lines photons
nor
minimum
electron
AN
emitted by nz to n
is
from
when it jumps
Sample of atoms a 5 72
74 5 33
5 5
5 74 n
I
vs
4 71 3
3 u
3 21
2 7in
non f lines
or no f Photons
5 34 Nz Mtl Cha n
4 2h T
z 71
in H atom jumps from 4th shell
An e
emits a photon of
shell and
to 1st in Het atom
scam Which transition in
X Same X as
a photon f
will emit
A atom
Rit 12
Kit Ent Te
Entente
f IT
RH
Ra I
i
fo IT IT
f
Tae
Fa
Z n z S
7
n Nz X
z
scam
H b I 4
Xnm
net
2T
EL Iz
XM
z
C M
12
µ2t 3
n nz X
Z
Het 2 3 6 Yam 7 o
9 nm
List 3
6 2am
Het 2 4
2mm
3 6 9
citt
electrons
Deal nature of
master waves
deBroglie
X mv
Bhors
Muz
n
ha statement
Zao n hav
222 9 X
circumference
in phase revolunon
nfh
Zar 44
A 4
h_ de Broglie ceruation
X Mr
x h_
2 make
or no
1 e
f 7
k.GE.e.PL
d to
charge e
h
t
J2 m e
Ph potential
1 din i
charge on the
particle
principle observed
uncertaining Bohr
what nod position 8
Heisenberg s
Lorin e
of c
E
N
measure velocity
possible to
it is not
and position of
C this momentum
Simultaneously
particle
a subatomic
loot accuracy
with
Ex
M Ev Z Fa
uncertaining in velocity
j
in position
uncertainty
b
DX sp Z 4h
myr n_ a
E
n
Bohr atom 2h22
5th orbit of
waves made is 5
no f
1 ton
is
transition X
Lowest enemy lowest energy Longer
z 71
Lyman series 73
Paschen n 4
5 24
Brackett
3 32
Balmer
6 75
Pfund
7 76
Humphery
Cw
Refer
did already 7 34
10
6.6 10
Da X
ay
DX DP
tf 4 3 14
DX 5.25 10
2 um 5
Dp 10 g
3 MS I
152 10 10 2kg DP 0
b
7 l Doc a
10
Kgms
AB
5 10 Em
XA
mu a
Cmv B Iz
XB
da Fgf
cA DB_
KYA
XB 77
XA
10 8
2
5
co Fm
Pe 1kV 1 103 v
Me 9.1 10 311cg
66 10 34
a I 2xgixio
37xt6fYoYT
J2 m.e.gs
3 85 10 m
Ax move
er
39.1 0.0007
6.6 10
34 10 Dva
3.14 4
34
0 525 10
DV 31
co 9 91 10
36
Are 525
g 10 35
1 m
5.3 10
E o 53M
o 579M
him
M a 200 10 3 Kg
200g
5 MS
Smh
3600
54
34 66 10 36
6.6 0 10
3
10
odx5_ 34 36
3600 616 10
2
X 10
32
100 10
go 30M
Energy f tree
13 GeV
N electron _O
n 4
sequised to
Energy
is energy
Ionisation gaseous
a
neutral
an e from
amore
atom
Ionisation Energy
K E Energy given possessed
energy
ta c in
by
the orbit
in it atom 13 Gev
I E J e
13.6 2
C absorbed
13 6
KE 2 13 b
13 GeV
34
66 0
b
in 31 X
12 m GE 12 9.1 10
19
3 6 1.6 10
34 6.6 10 9
X 6.6 10
18.296 136 10 50
118.2 1.6 136
8.1 10 9
20
fo
3.3 10 M
l
11808 KI Moy
3 I C
103 g atom
I
I G 1118
6 023
20
10 J atom
118,08
Enemy e in atom
8
118,0 10 203
20
18.22 08 10
2.18
102 1168
12
2
22 1118 10
6 2.18
2 3
22 z g
13108 24
3 1 s
non f protons
E 2.18 10 18
10
18
2.18
4
IT
18
2 18 10 I
Eq E a
10
18
2 18 1 16
2.18 1048 Y
Enemy ten J
this C
Radiation that Prodivides
10 18
6.6 1534 3 108
2 18
5,3 T
54 3 108 16
X 6.6 10
5 2.18 10 18
g
687158M
15 2.18
Bohrs theory
Shortcomings of
to Uni electron Species
applicable
H Het Litt Best
does not take uncertaining principle
It
spectral lines
splitting of Boh's theory
not
explained by
is
to n _I
Nz 3
from
on e
fall
according to Bohn
3 72 2 lines seen
z model
external magnetic
In the presence of
more ran 2 lines
electrical field
R and blank effect
seen Zeeman
are
Quantum Model atom
of
01213
dimensional space
3
ORBITAL where the
around the nucleus
e is maximum
probability of finding
Stationary
waves
an electron
Amplitude
wave function of
is continuous
Y Y
Y is finite
is singlevalued
Y
y
t.tn
is
y X Y
N
T
r
wave
Can be
both
4
n ve
tve
Y
Y
II t.FI
Ek 8ah2m O
fE Iao y
Bohr interpration
Square of 4
Ace to
probability
or 141 at a point gives
at that point
densig
finding e's at any
y probability of
distance 8 from the
point at
nucleus
Iy IE
Hamiltonian operator
1 2 3 4
L M N n
K
from the
distance of the electron
talk about
nucleus 67 this
e too
energy of
no
Cl
Azimuthal Ouantum
0 to Cn D
l 1 0 Sorbitol
al b I porbital
eliphI aY e di
sommerfled l 3
IS n 3
0
f I 4 e o 35
O l ZP zp
n z l
25 2 3d
magnetic Quantum non cm
l o tl
m o spherical orientation
to
S orbital m
m I Pe P Pz
e p
O 3 degeneracy
pomital
I y
spherical y
L
x
x
n
Py
s Poe dumbell
Shape
y M Z
2
2
if f 7
Pz O
entations
X ti
2
2
does
day
y dye
x
x dza
2
dicky
derived from
no not
Spin ouantum earuantion
wave
to revolve
z freedoms
Cg
t E
s 2C2lH 2h2
A l m
hell
orbital
1 Yes Yz Z Z
I 0 O
S
K
O two 42 2
Z O
28 8
L
I 42542
1
ZP o tye Ya 6
fi tyre 42
Yz Z
O tyre
3 O
t 12
M
I Yz
42
G 18
l O tyz
I 42
ya
1 2
s
2 Yz
2 YZ
I Yz s
O
0 1 Ye s Yz
fI Yz s Yz
z t Yz s Yz
sT.sn T
non.ofe shell
orbital
e's in orbital 2 C 21ft
No of
S 9 0 2
6 2 in each Px Py
P l
Pe
d lez co 2 in a day dice
dyz dx2y
dat
l 3 14
f
2e
IS zees
2Pa
2e
2dg
2 Pz 2e
in a Shell 2h2
no
f e's
shell n 2
a
orbitals in a
3dx2yz 3dL
35 3p
IS C 25 210
1ST as c3d 4ps
L sss 4d
210
sp CGS 248
35 310 3d g d crop
L
4S 4P 4d 48
Ss 5P Sd 58 5g
X
ios Gp Gd 6f
r
2 CITI
75
1 0 S 2e
SP Ge
LES ee p
d toe
l Z
IS f 7145
e 3
IS 1 O l
2
2 O
ZS
3
2 I
Rp
O 3
3s 3
3s ZP
3 l 4
31
2 5
3d 3
O 4
45 4
452 3d
Electronic configuration
35 C 3P L 4S L
3ds 410
I s s 25 L Zp
Sss ed
H is he
152 Mt opposite spin
Lte no 2 electron
exclusion principle value
Pauli's have some
can
in atom
an numbers
Quantum
all the 4 is 25
for
1522 s C 2,13 EH DT
gli
Be 15225 Dt Dt
1St 252
9
1525210 Days ME TI
B
152252 zp6 3g
Na
y
352
12mg
152252ft
1522522106 352 3p
z A1 35273102
1525 2pb
gsi 152252
2,06 352
3133
15 P 2106 352 3124
152 252
165 Zpb 352 3ps
7 Q 15252 352 Spf
2ps
15 IS 35 Spt qsl2
g AT 2p
q
k 5225 2,08 352 Spb
Ca 15225
2
SC 15225 2pb 3523106 452 3d
2
2106 352 3106 452 3d
Ti 152 252 3
3106 452 3d
2Pb 352
V 15225 4
3106 45
2252 2p6 352
co CS 4S
3ds
za
At
5
3106 452 3d
352
152 2522106 3d 5
gym Ar 452
2 6
3106 as 3d
352
CS 25 2Pb 7
zgfe 422
3d
406 352 sp
15252
zfo
AD 412318
zgNi cf
4523
afar
yell CAR Is
3110
3d
152521,83523126452
or cab
23dL
yn
are
All the above configurations
around stale electronic
called
configurations zite 152
1522522,06
Ale
2 He L
co
152252406
P Ayn
8
ONE 3523pA
35 310
3d
18 AT k
1522522106
so
f Ess
54 L ne ng't configur
65 GP
gg Rn L
anon
unpaired is
7S
L It
CAD 45 3ds
4 Patamn
28 Hi 18 10
unpaired e paramagnetic
presence
of
weekly attracted
towards Magnets
orbit angular momentum mvr nd
29
momentum Tet h_
orbital angular 2h
or T
Jeceti
orbital
S orbital e o
angularmomentum
l
orbital ang mom Tatya
Is i
4 n
a thZa
l 2
di 4
s JI
l 3 2h
f
magnetic
momentum JF Bmg
spin only
Ms Bm Bohr Magneton
unpaired e's
n no
of
Fe
CAD453dB ITTIHAD
n 4
t2 4.913M
µs
5
CAN 45 3d
2ft
Dr ITTIHAD
N 6
jogs 5.48 Bm
µ G 913M
25 t I
electrons
Spin number of
impaired
no
of e s
S nz
3
5
N 1St 252 2ps n 3 2
nor 2 3
Spin
4
C 15225 2102 na 2 Sa I
21 1
spinner
3
y graphs
i l's
35
eh
in
I
orbital tune
Zhao
S on ode 2 e
i
anode z EEF
ha
Eon
to E e
3 Fo 3
23ft 2,2
3s
28390
2 nodes
e
1 nude
E f 20 390
e
2 243A
24 1 2 e
3d
o nodes h2 42 Eo
Ao
nodes
orbital where the
inside the
space
electron is
probability of finding
Zero
h l I
nodes
no of
n l I
n l
0
IS I 0
S spherical
2 D nudes
ZS
O
2 1 IS
ZP o
Z
3 0
j'T
35
S
i
3 I
3P 0
Z O
3
3d as
d orbital radial nodes
P orbital
of finding
plane I
l
nudes laudal
angular nodal planes
e
me of
0
S O
P l
2 2
d
Planes XY XZ YZ
Px 23 has es
YZ 7 nodal plane
nodal plane
Pj Xz
a a
Pz Xy
nodes
d orbital no of nodal plane angular
2
in Xy plane
day e s
nodal planes
XZ and Yz
nodal planes Xy and Yz
dxz
e
n
Xy and x2
dyz
nodal planes
dx2 yr z
Cube
in a
diagonal planes
y
dx2y2
i ki
3P 2
y
vi T
Just a mathematical function
is
y itself
direct physical significance
with no
density and
to electron
42 corresponds
e s
the probability of finding
arty
at that density point
function
distribution
Radial probability
4ar do x 42
IS 25
4ardo
4daf3y2µ
µ
42
r
r
or
4982dg42 or pay 242
Radial distribution gash 122
function
Zp 35
Qatar qar2dr
YL yl
r z
wt z
SP 3d
qatar
leaf yn
D8
Y
N N r
r
at a
an annular element
The volume of is proportional
the nucleus
from
distance r
a sphere of radius
the area 4hr2 of
to
e is being at
tee
r the probability of Vtdt from
T and
a distance between of
is given by the product
nucleus
the 4982dB and
volume spherical shell
tee of
I l f
Mobility density 122m42
Radial probability 4az2drxR2
4902dg 42
nl
zp
sp
807
f
3P
electrons
no nodes
diagram
Boundary surface
Py
IS it
prosanias
i i
density
p
a
Tp
Photo electric effect
ve
hI
surfed
G A 0
E
e
to remove
Energy Rea
O
EO HD
KE HO HI
E F
seas to
potential Potential
Stopping
electron Kinetic energy
stop the
C Threshold energy
f ta metal
hV WIK Ion
KC HO hv
c
MK
y
K E th
r
WUT
energy level
containing
which the first
t Coo
4th
i
orbital
f
4523015
Markt Mn gCAr
25 3d5
Mnt gCABqs
Cne 353104
5 qs
3523106
5 ne
own.be's
2C2lH
5
4f la 3
14
3rd shell 9 3 4 2h22 18
zpyl 212
2
6 15252 zp
152252 2Px22Py2X
2Pa degenerate
Hands Zale 2Pa 2Py
orbitals
orbitals takes place
in degenerate
Pairing have one
c
when all I
only
e Each
n s
n l
7 Z Yz
Z
3
O O Yz
4 en rom th
m
3 Yz X
3 Z z 1,0 tl.TL
5 3
O Yz
have 5 ya
max 3d e
How many
Ioe
d orbital
Se
Se
Yz Yz
in shell zn2 own 8 Abitds n2
no J e's a
Cpp
0.57 10 9 m
1 X 0.57hm
2555
25 watt
1 photon
for
C
try
n n
E n hog for
3 1
08m51
en x 6.6 10 3455 x
2555
O 57 10 9M
9
0.57 10 y
n
25 s
34 3 108
6 6 10
i 0.712 10 175
n 72 10105
n I mole H atom
H
2 I
GIM f
in visible
with lowest energy
spectral lines
zegion
IZ n2 3
N
2
C 2.18 1518 2
n 2
Hortatory
C3 2.18 10
18 1
4g
2.18 1048 x 144
Ez
E Ez
DE
2.18 10
18
4 F
18 atom
2 18 10 536 g per
H atom
Pcs mole 8
2 18 10 18
6 1023
36
0.363 5 1055
1.815 X 105J
2181 5 KJ
Cabsorbed
C Sx hog
250 KJ moi 1
C peer
Xz 2X
JS
4 3 108ms i
5 66 X 0
Cabsorbed
5000 10 Om
19 5 3
yo
xgI 1 98 1018
10 195
C BX 6 6
photons
I J
5
Enemy of
5 2 3 10X
will convert
5 Photons
250 1035
Xz 2x Eran
1 mole f 250 10
For Gpas
6 10223
I
103
CRear for break
Imolealers
6 023
20
41.66 10
4.166410 19
0.4166 10485
16 I
1 98 10
8J
Cabsurd I
18
18 10
10 0.4166
KE s I 98
18 J
1 57 10
8
100
t k.fi
f energy I 98 10 18
79 37
D sea's
emitted is 15
no f lines
stale
ground
from
h 91 1
is
2
Nz Az I
a 15
2
nz 6 hi I
107 mix 12
IT
X 36 10 Fm
33
I 2 10 FM
CO2 nm
AO
co 20 n
o
4530A
5 X absorbed
5080 A
X emitted
CRemitted ni So 4
Cemined AZ 5080
hi
mxhe
I.IS xaofo 5080
F s
4 0.52624
G n fnz 4 3 n
92
I 2
Mz n
n RH
222 t Z
X
32.12 L
4 RH x
9
q
atom
I 10 13 Geir H atom
13 beer
atom for
E
En 13 6 I L
n
9 2
First excited stale
Li't has le
2 3
13 6 er
Ez 9,2
I P2 113.6 41 ev
I 30 Gev
Xt
l 73 BM
8 µ
fitness 53 1 7313M
n I
n t
G
lines emitted
no of non of lines
m2 Ntl na n z
nz 4
6 i
na Cha 17 2
RH 22 2 2
x
151
n
iortxiffe.to X 106mm
momentum
angular
Mvr 3 1652 10 34kg m2 Is
mvrn n.tn
2h
10 34
3.1652
nxb.by o 34gs
2 3.14
3.1652 2 3 14
n
Nc 22
N 3
2
RH 4 Is IT
f
4 RH 5T 512ft
E E t Ez
I d
Xz emited
absorbed
h h the
XL
data X XI
f 7,72
X tiz