Cblemacp 07
Cblemacp 07
CHAPTER 7
I ntegrals
8. # sin 2x dx is equal to
sin2 x + 2 cos2 x
π/2
2. The value of #π/4 cot θ cosec2 θdθ is (a) − log (1 + sin2 x) + C
(a) 1 (b) - 1 (b) log (1 + cos2 x) + C
2 2
(c) − log (1 + cos2 x) + C
(c) 0 (d) - π (d) log (1 + tan2 x) + C
8
Sol : OD 2024
Sol : SQP 2016
(b) − sec2 a 4 − x k + c
2 π π
(a) sec a − x k + c (a) sin (tan−1 x) + C (b) tan (sec−1 x) + C
4
(c) log sec a π − x k + c (d) − log sec a π − x k + c (c) tan (sin−1 x) + C (d) − tan (cos−1 x) + C
4 4 Sol :
Sol : OD 2023 Delhi 2010, OD 2008
4. If d
dx f ^x h = 2x + x3 and f ^1 h = 1, then f ^x h is 10. If # 2x x+2 dx = P # 24x + 6 dx + 1 # 2x dx
2
+ 6x + 5 2x + 6x + 5 2 2
+ 6x + 5
(a) x 2 + 3 log | x |+ 1 (b) x 2 + 3 log | x | then the value of P is
(c) 2 - 32 (d) x + 3 log | x |− 4
2
(a) 1 (b) 1
Sol : x OD 2023 3 2
(c) 1 (d) 2
4
Sol : Comp 2007
5. #xe 2 x3
dx equals
3 3 11. # xe + ex
(c) 1 ex + C (d) 1 ex + C
3 3
# #
7 7 a a
(a) log c 7x m + C (b) 1 log c 7x m + C 19. If f (2a − x) dx = m and f (x) dx = n , then
x +1 7 x +1 0 0
2a
7
(c) log c x +7 1 m + C
7
(d) log c x +7 1 m + C
1 # f (x) dx
0
is equal to
x 7 x
Sol : Comp 2017, Delhi 2008
(a) 2m + n (b) m + 2n
π/2
(c) m - n (d) m + n
13. #0 cos x2 dx is equal to Sol : Comp 2018
(a) 1 (b) - 2
(c) 2 (d) 0
Sol : Foreign 2009
20. # 1 + cos 2x dx =
(a) 2 cos x + c (b) 2 sin x + c
(c) − cos x − sin x + c (d) 2 sin x + c
3a # b ax - 1 l dx is equal to
1 2
14. 2
0 a-1 Sol : OD 2014, Comp 2012
(a) ex +c
x
(b) − e + c
(x + 1) 2 x+1
x x
(c) x e+ 1 + c (d) − e 2 + c
(x + 1)
Sol : Foreign 2007
#
a
22. If f (− x) = − f (x) then f (x) dx =
−a
dx is
#
1
15. The value of
ex + e
#
0 a
(a) 2 f (x) dx (b) 0
(a) 1 log b 1 + e l (b) log b 1 + e l 0
e 2 2
(c) 1 (d) - 1
1
(c) log (1 + e) (d) log b 2 l Sol : Comp 2016
e 1+e
Sol : Foreign 2018, Delhi 2010
β
# #
α
2 23. φ (x) dx + φ (x) dx =
16. The value of #−2 (x cos x + sin x + 1) dx is α β
β
(a) 2 (b) 0 (a) 1 (b) 2 # φ (x) dx
α
(c) - 2 (d) 4
#
α
Sol : Delhi 2015 (c) - 2 φ (x) dx (d) 0
β
Sol : OD 2012, Delhi 2010
17. #0
π/2 sin x − cos x dx is equal to
1 + sin x cos x
# (x) dx =
1
(a) 0 (b) π 24.
4 0
1 + cos 2x dx is equal to
#
π
18.
0 2
dx =
(a) 0 (b) 2 25. # x
(c) 4 (d) - 2
Sol : Foreign 2010, OD 2009 (a) x +k (b) 2 x + k
Page 238 Integrals CHAPTER 7
28. # x dx =
−2
(a) 0 (b) 2
(c) 1 (d) 4
Sol : Foreign 2017
+ p/2
29. #
− p/2
sin9 xdx =
36. # log 2x dx is equal to
(a) - 1 (b) 1 (a) x log x - 1 (b) x log 2x + 1
(c) 0 (d) None of these (c) x log 2x - x (d) x log 2x + 2x
Sol : Delhi 2012, Comp 2009 Sol : Foreign 2018, OD 2013
(a) 4 4 x3 + c (b) 3 4 x3 + c
38. The value of # log cos x dx
0
is equal to the value of:
3 4 π/2 π/2
(a) # log sin x dx (b) # log sec x dx
(c) 4 3 x 4 + c (d) 3 3 x 4 + c 0 0
3 4 π/2 π/2
Sol : OD 2012
(c) # log cos x dx
0
(d) # log tan x dx
0
Sol : OD 2012
32. # 5e 4 logx
$ dx
5
(a) x 5
(b) x 39. I= # | 1 − x | dx
2
is equal to
5
0
4 5
(c) 5x (d) 4x (a) 0 (b) 1
2
CHAPTER 7 Integrals Page 239
(a) Both (A) and (R) are true and (R) is the correct
(c) 1 (d) None of these explanation of (A).
Sol : Delhi 2007
(b) Both (A) and (R) are true but (R) is not the
correct explanation of (A).
#
p
40. sin3 x cos 4 xdx is equal to (c) (A) is true but (R) is false.
-p
(d) (A) is false but (R) is true
(a) 0 (b) 1 Sol :
2 OD 2010
(c) 1 (d) None of these
Sol : Delhi 2018
(a) Both (A) and (R) are true and (R) is the correct 46. Assertion (A) : #
−p
2
sin7 x dx = 0
explanation of (A). 2
# ` sin x + cos x j dx = 2
2
Reason (R) : Here f ^x h is even function 48. Assertion (A) : Let d {f (x) + c} = F (x) then
dx
if f ^− x h = f ^x h : # f ^x h dx = 2 # f ^x h dx .
a a
−a 0
# F (x) dx = f (x) + c
Reason (R) : Integration is inverse process of
Page 240 Integrals CHAPTER 7
(d) (A) is false but (R) is true (a) Both (A) and (R) are true and (R) is the correct
Sol : Foreign 2009 explanation of (A).
(b) Both (A) and (R) are true but (R) is not the
correct explanation of (A).
49. Assertion (A) : # xex dx = ex + C
x+1 (c) (A) is true but (R) is false.
(x + 1) 2
(d) (A) is false but (R) is true
Reason (R) : # ex {f (x) + f ' (x)} dx = ex f (x) + C Sol : Comp 2015, OD 2011
(a) Both (A) and (R) are true and (R) is the correct
explanation of (A).
2π
(b) Both (A) and (R) are true but (R) is not the 53. Assertion (A) : # sin3 x dx = 0
correct explanation of (A). 0
(c) (A) is true but (R) is false. Reason (R) : sin3 x is an odd function
(d) (A) is false but (R) is true (a) Both (A) and (R) are true and (R) is the correct
Sol : Delhi 2007 explanation of (A).
(b) Both (A) and (R) are true but (R) is not the
correct explanation of (A).
50. Assertion (A) : # ex + dx
e−x + 2
= 1 +C
ex + 1 (c) (A) is true but (R) is false.
d {f (x)} (d) (A) is false but (R) is true
Reason (R) : # =− 1 + C Sol : SQP 2016
{f (x)} 2 f (x)
(a) Both (A) and (R) are true and (R) is the correct
explanation of (A).
(b) Both (A) and (R) are true but (R) is not the
correct explanation of (A).
(c) (A) is true but (R) is false.
(d) (A) is false but (R) is true
Sol : OD 2018
tan x dx = π
#0
2
(d) (A) is false but (R) is true 55. Assertion (A) : I =
Sol : OD 2012
2
2
Reason (R) : tan x = t makes the integrand in I as a
rational function.
CHAPTER 7 Integrals Page 241
(a) Both (A) and (R) are true and (R) is the correct 67. Evaluate # dx .
explanation of (A). Sol : 1 - x2 OD 2011, Delhi 2008
(b) Both (A) and (R) are true but (R) is not the
correct explanation of (A). −1
69. Evaluate # x3 − x2 + x − 1 dx .
Sol : x−1 Comp 2011
VERY SHORT Answer QUESTION
71. Evaluate # x3 - 1 dx .
x2
57. Find : # 5 + 41x − x2 dx Sol : Delhi 2010,
Sol : OD 2024
73. Evaluate # dx .
sin2 x - cos2 x dx . Sol : (x2 + 1) (x2 + 2) Foreign 2010
59. Find #
sin2 x cos2 x
Sol : Foreign 2014
log x
74. Evaluate # x
dx .
6
sin x dx . Sol : Foreign 2010, OD 2008
60. Find #
cos8 x
Sol : Foreign 2014
75. Evaluate # 2x dx .
Sol : Foreign 2010
61. Evaluate # cos-1 (sin x) dx .
Sol : Foreign 2014
77. Find # dx .
2 Sol : x2 + 4x + 8 Delhi 2017
63. Evaluate # 1 + cos 2x
dx .
Sol : Foreign 2012
# ^x +21xh2+^x1− 1h dx
1
#0
2
81. Evaluate x ex dx . 94. Find :
Sol : Foreign 2014
Sol : OD 2024
π/4
82. Evaluate #0 sin 2x dx . log 3 1
Sol : Foreign 2014 95. Evaluate #log 2 ^ex + e−x h^ex − e−x h
dx
Sol : OD 2023
83. Evaluate #0
1 1 dx .
Sol : 1 - x2 Comp 2014, OD 2011 sin-1 x
96. Find #
Sol :
^1 - x2h3/2 OD 2023
3
84. Evaluate #
2 x - 1 dx .
x2
Sol : # ex b 11 -- cos xl
sin x dx
1 Comp 2014
97. Evaluate
Sol : OD 2023
85. Evaluate #2
3 1 dx .
Sol : x 4
Delhi 2012
98. Find the value of #1 x - 5 dx .
Sol : OD 2020
86. Evaluate #0
1 1 dx .
;x1 - 1 2 E e2x dx .
Sol : 1 + x2 2
Comp 2011
99. Evaluate #1 2x
Sol : OD 2020
2
87. Evaluate #0 4 - x2 dx .
Sol : OD 2012
88. Evaluate #
3 dx .
Sol : 1 1 + x2 Foreign 2011, Delhi 2009
π/2 x
89. #0 e (sin x − cos x) dx .
x ^1 - x hn dx
Evaluate 1
Sol : Delhi 2014 100. Find the value of #0
Sol : OD 2020
90. Evaluate #
e2 dx .
Sol : e x log x OD 2014 101. Find # sin2 x - cos2 x dx .
Sol : sin x cos x OD 2017, Delhi 2010
92. Evaluate #0
1 2x dx .
Sol : 1 + x2 OD 2011C, 2008 103. Write the anti-derivative of c 3 x + 1 m .
Sol : x Delhi 2014
π e cos x
93. Evaluate : #0 e cos x
+ e− cos x
dx
x + cos 6x dx .
Sol : OD 2024 105. Write the value of #
3x2 + sin 6x
Sol : Comp 2012
CHAPTER 7 Integrals Page 243
122. Find # x - 5 ex dx .
108. Evaluate # (ax - b) 3 dx . Sol : (x - 3) 3 OD 2019
Sol : OD 2011 , Foreign 2007
123. Find # dx .
(1 + log x) 2 Sol : 5 - 8x - x2 OD 2017
109. Evaluate # x
dx .
Sol : Foreign 2011; Delhi 2009
124. Find # x dx .
2x −2x
Sol : a - x3
3
Delhi 2016, OD 2012
110. Evaluate # e2x − e−2x dx .
e +e
Sol : Foreign 2011
119. Find # 3 - 2x - x2 dx .
Sol : OD 2019
Page 244 Integrals CHAPTER 7
134. Evaluate # dx . 2 x
Sol : x (x3 + 8) OD 2013
148. Evaluate #-1 x
dx .
Sol : Delhi 2019
+ sin x ex dx .
# b 11 + cos x l
2
137. Evaluate #−2 1 +x 5x dx .
2
151. Evaluate
Sol : Comp 2012
Sol : OD 2016
140. If #0
a 1 dx = π , then find the value of a .
4 + x2 8 2π 1
154. Evaluate #0 dx .
Sol : 1 + e sinx OD 2013
Sol : OD 2014, Delhi 2010
5
155. Evaluate #2 [ x + x − 2 + x − 4 ] dx .
141. If f (x) = #0
x
t sin t dt , then write the value of f l (x). Sol : Delhi 2013
Sol : OD 2014
3
156. Evaluate # [ x − 1 + x − 2 + x − 3 ] dx .
4 dx . Sol : 1 Delhi 2013
142. Evaluate #2
9 + x2
Sol : OD 2014
157. Evaluate #0
π x tan x dx .
Sol : sec x $ cosec x Delhi 2011C, 2008, OD 2009
143. Evaluate #0
3 dx .
Sol : 9 + x2 Delhi 2014
158. Evaluate #π/6
π/3 dx .
Sol : 1 + tan x OD 2011
−1
144. Evaluate #0
1 tan x dx .
Sol : 1 + x2 Comp 2014, OD 2009
- sin 2x dx .
# ex b 11 - cos 2x l
159. Evaluate
Sol : Comp 2013
π/4
145. Evaluate #− π/4 sin3 x dx .
Sol : Comp 2010
sin x - cos x dx .
160. Evaluate #
Sol : sin 2x Comp 2011, OD 2007
π/2
146. Write the value of the following integral #− π/2 sin5 x dx .
Sol : OD 2010
161. Evaluate # x2 + 1 dx .
Sol : x4 + 1 Comp 2011
π
147. Evaluate #− π (1 − x ) sin x $ cos
2 2
x dx .
Sol : Delhi 2019
CHAPTER 7 Integrals Page 245
# ex b 1sin 4x - 4 dx . cos θ
- cos 4x l
162. Evaluate 173. Find # dθ .
Sol : Delhi 2010 Sol : (4 + sin2 θ) (5 − 4 cos2 θ) OD 2017, Comp 2015
163. Evaluate #
4
( x − 1 + x − 2 + x − 4 ) dx . (3 sin θ − 2) cos θ
Sol :
174. Find # dθ .
1 OD 2017, Comp 2011 5 − cos2 θ − 4 sin θ
Sol : Delhi 2016
176. Evaluate # x2 + x + 1 dx .
x
164. Find # x 2 + 3x + 2
dx Sol :
2
(x + 1) (x + 2) OD 2016, Delhi 2015, Comp 2009
Sol : OD 2020
3x + 5 dx . (2x - 5) e2x
165. Find : # 177. Find # dx .
Sol : x2 + 3x − 18 Delhi 2019 Sol : (2x - 3) 3 OD 2016
(x2 + 1) (x2 + 4)
179. Find # dx .
Sol : (x2 + 3) (x2 − 5) Foreign 2016, OD 2007
167. Find # x2 + x + 1 dx . 2
Sol : (x + 2) (x2 + 1) OD 2019, Delhi 2008 181. Integrate w.r.t. x , x − 3x +2 1 .
Sol : 1−x Delhi 2015
170. Find # 4 dx .
Sol : (x − 2) (x2 + 4) Comp 2018 184. # e2x $ sin (3x + 1) dx .
Sol : Foreign 2015
171. Find # 2x dx .
(x2 + 1) (x2 + 2) 2 185. Evaluate # x2 dx .
Sol : Delhi 2017
(x2 + 4) (x2 + 9)
Sol : Foreign 2015; Delhi 2013
172. Find # 2x dx .
Sol : (x2 + 1) (x 4 + 4) Delhi 2017
186. Evaluate # (x − 3) x2 + 3x − 18 dx .
Sol : Delhi 2014
Page 246 Integrals CHAPTER 7
# ;log (log x) +
(log x) 2 E
188. Evaluate # (3x − 2) x2 + x + 1 dx . 202. Evaluate 1 dx .
Sol : Foreign 2014 Sol : Comp 2010
190. Evaluate # 3x + 1 dx . 1
Sol : (x + 1) 2 (x + 3) 204. Evaluate # dx .
Comp 2013 Sol : sin 4 x + sin2 x cos2 x + cos 4 x OD 2014, Delhi 2010
x2 + 1 206. Evaluate # 1 dx .
192. Evaluate # dx . Sol : cos 4 x + sin 4 x Delhi 2014, Comp 2010
Sol : (x + 4) (x2 + 25)
2
Delhi 2013, SQP 2012
194. Evaluate # 3x + 5 dx .
Sol : x3 − x2 − x + 1 Comp 2013, OD 2011
207. Find # x2 dx .
2 Sol : (x + 1) (x2 + 4)
2
Delhi 2014
195. Evaluate # dx .
Sol : (1 − x) (1 + x2) Delhi 2012
197. Evaluate #e 2x
sin x dx .
Sol : Foreign 2011
x2 + 1 ` log x2 + 1 − 2 log x j
210. Find # dx .
x4
198. Evaluate # 3x + 5 dx .
Sol : x 2 − 8x + 7 Foreign 2011, Delhi 2008 Sol : Foreign 2014
2x 211. # x2 + 1
199. Evaluate # dx . Evaluate
(x − 1) 2 (x + 3)
dx .
(x2 + 1) (x2 + 3) Sol : Delhi 2012
212. Evaluate # 6x + 7 dx .
5x + 3 Sol : (x − 5) (x − 4) OD 2011, Foreign 2009
200. Evaluate # 2
dx .
Sol : x + 4x + 10 Delhi 2011; OD 2010
CHAPTER 7 Integrals Page 247
a a
213. Prove that #0 f (x) dx = #0 f (a − x) dx , hence evaluate 226. Evaluate #
2 5x 2 dx .
2
Sol : 1 x + 4x + 3 OD 2011
I = # x sin x2 dx .
π
0 1 + cos x
Sol : Delhi 2019
1 log 1 + x
227. Evaluate #0 dx .
a a Sol : 1 + x2 Foreign 2011
214. Prove that
0
#0
f (x) dx = # f (a − x) dx . and hence
evaluate #
π/2 x dx .
0 sin x + cos x
log 1 - 1 dx .
1
Sol : OD 2019, Delhi 2007 228. Evaluate #0
Sol : x OD 2011
215. Evaluate #0
π x sin x dx .
1 + cos2 x 229. Evaluate #0
π x dx .
Sol : Delhi 2017; OD 2013, 2012, 2011C, 2008 1 + sin x
Sol : Delhi 2010
#0
π x tan x dx . π/4 sin x + cos x dx .
216. Evaluate
sec x + tan x 230. Evaluate #0 16 + 9 sin 2x
Sol : OD 2017 Sol : OD 2018
#0
π x π x
218. Evaluate
1 + sin α sin x
dx . 232. Evaluate #0 dx .
Sol : Foreign 2016, OD 2014 Sol : a2 cos2 x + b2 sin2 x Foreign 2014; OD 2009
π
219. Evaluate #− π (cos ax − sin bx) 2 dx . 233. Evaluate #0
π x tan x dx .
Sol : Delhi 2015 Sol : sec x + tan xForeign 2014; Delhi 2014C, 2010, 2008; OD 2008
220. Find #0
π/4 dx . π/3 dx
Sol : cos3 x 2 sin 2x OD 2015
234. Evaluate #π/6 .
Sol : 1 + cot x Delhi 2014
#− π/2 1cos x dx .
π/2
2 $ π.
π/4
221. Evaluate 235. Prove that #0 ( tan x + cot x ) dx =
Sol : + ex Foreign 2015 Sol : 2 Delhi 2012
222. #π/6
π/3 sin x + cos x dx . p/2
Evaluate
sin 2x
236. Evaluate #p/4 cos 2x $ log (sin x) dx .
Sol : OD 2014C; Delhi 2011 Sol : Foreign 2012
#0
1 x 4 + 1 dx .
224. Evaluate
Sol : x2 + 1 Foreign 2011 Case Based Question
225. Evaluate #0
π/2 x + sin x dx .
1 + cos x 238. Commodity prices are primarily determined by the
Sol : OD 2011, Comp 2008
forces of supply and demand in the market. For
example, if the supply of oil increases, the price of
one barrel decreases. Conversely, if demand for oil
Page 248 Integrals CHAPTER 7
increases (which often happens during the summer), any time t . Initially ^t = 0h 50 g of the first substance
the price rises. Gasoline and natural gas fall into the was present; 1 hr later, only 10 g of it remained.
energy commodities category. (i) Find an expression that gives the amount of the
first substance present at any time t .
(ii) What is the amount present after 2 hr?
Sol :
#p
3
(ii) Evaluate log tan x dx
6
1
b xn
iii) Evaluate #a 1 1 dx ]
x + (a + b − x) n
n
b f (x)
(iv) Evaluate # dx
a f (x) + f (a + b − x)
Sol :
**********