Book1
Book1
                              LESSON 5 – RO
Method Use: CLOSED METHOD (INCREMENTAL SEARCH METHOD)
                                        EQ
                                             INCREMENT
       "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + " 𝟐𝒙^𝟑 " − " 𝟏𝟐𝒙^𝟐 " + 20x − " 𝟓
       Determine the positive real root of
   (SOLUTIONS) :
                                             "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + "
                                                       Note: 𝑥_𝐿=0 and
1ST ITERATION
Δx = 0.1
         x                  f(x)
         0                   -5
        0.1              -3.1175
        0.2               -1.456
        0.3              0.0145
        0.4               1.336
        0.5              2.5625
        0.6                3.76
        0.7              5.0065
        0.8               6.392
        0.9              8.0185
         1                   10
                                               |"ε" _𝑎
                                               |=(𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                                               ×100%
                    |εs| = (0.50 x 102-n)%
                              Hence,
                                             FALSE
3RD ITERATION
Δx = 0.001
          x              f(x)
        0.29        -0.12505795
       0.291      -0.11103329919
       0.292      -0.09702407552
       0.293      -0.08303023199
       0.294      -0.06905172152
       0.295      -0.05508849687
       0.296      -0.04114051072
       0.297      -0.02720771559
       0.298      -0.01329006392
       0.299       0.00061249201
        0.3            0.0145
                                               |"ε" _𝑎
                                               |=(𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                                               ×100%
                    |εs| = (0.50 x 102-n)%
                              Hence,
                                             FALSE
5TH ITERATION
Δx = 0.00001
          x              f(x)
       0.2989     -0.00077708564
      0.29891      -0.0006381211
      0.29892     -0.00049915807
      0.29893     -0.00036019654
      0.29894     -0.00022123652
      0.29895     -8.2278005E-05
      0.29896     5.66790069E-05
      0.29897      0.00019563451
      0.29898      0.00033458852
      0.29899      0.00047354101
        0.299      0.00061249201
                                               |"ε" _𝑎
                                               |=(𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                                               ×100%
                    |εs| = (0.50 x 102-n)%
7TH ITERATION
Δx = 0.0000001
          x             f(x)
      0.298955    -1.2799311E-05
     0.2989551    -1.1409741E-05
     0.2989552    -1.0020171E-05
     0.2989553    -8.6306012E-06
     0.2989554    -7.2410316E-06
     0.2989555    -5.8514622E-06
     0.2989556    -4.4618929E-06
     0.2989557    -3.0723237E-06
     0.2989558    -1.6827547E-06
     0.2989559     -2.931859E-07
      0.298956    1.09638279E-06
                                                |"ε" _𝑎
                                                |=(𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                                                ×100%
                     |εs| = (0.50 x 102-n)%
                               Hence,
                                              TRUE
E PROBLEMS
N 5 – ROOTS OF NONLINEAR
 METHOD)
     EQUATIONS
REMENTAL SEARCH METHOD
𝟐 " + 20x − " 𝟓
2ND ITERATION
Δx = 0.01
                                                   x                f(x)
                                                  0.2             -1.456
                                                 0.21         -1.30095395
                                                 0.22          -1.1477912
                                                 0.23         -0.99647395
                                                 0.24          -0.8469632
                                                 0.25         -0.69921875
                                                 0.26          -0.5531992
                                                 0.27         -0.40886195
                                                 0.28          -0.2661632
                                                 0.29         -0.12505795
                                                  0.3            0.0145
4TH ITERATION
Δx = 0.0001
                                                   x             f(x)
                                                 0.298     -0.0132900639
                                                0.2981     -0.0118991298
                               0.2982     -0.0105083466
                               0.2983     -0.0091177143
                               0.2984     -0.0077272327
                               0.2985      -0.006336902
                               0.2986     -0.0049467219
                               0.2987     -0.0035566926
                               0.2988     -0.0021668138
                               0.2989     -0.0007770856
                                0.299       0.000612492
6TH ITERATION
Δx = 0.000001
                                  x            f(x)
                               0.29895     -8.2278E-05
                              0.298951    -6.838224E-05
                              0.298952    -5.448648E-05
                              0.298953    -4.059074E-05
                              0.298954    -2.669502E-05
                              0.298955    -1.279931E-05
                              0.298956    1.0963828E-06
                              0.298957    1.4992061E-05
                              0.298958    2.8887725E-05
                              0.298959    4.2783373E-05
                               0.29896    5.6679007E-05
         3.34497384E-05
INEAR
OD
        0.01
        f(x)
      -1.456
  -1.30095395
   -1.1477912
  -0.99647395
   -0.8469632
  -0.69921875
   -0.5531992
  -0.40886195
   -0.2661632
  -0.12505795
     0.0145
                            |"ε" _𝑎
                            |=(𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                            ×100%
 |εs| = (0.50 x 102-n)%
te the values:
             0.00005                  |εa| = 3.333333
            Hence,
                          FALSE
0.0001
       f(x)
 -0.0132900639
 -0.0118991298
 -0.0105083466
 -0.0091177143
 -0.0077272327
  -0.006336902
 -0.0049467219
 -0.0035566926
 -0.0021668138
 -0.0007770856
   0.000612492
                            |"ε" _𝑎
                            |=(𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                            ×100%
 |εs| = (0.50 x 102-n)%
te the values:
             0.00005                  |εa| = 0.033445
            Hence,
                          FALSE
0.000001
      f(x)
  -8.2278E-05
 -6.838224E-05
 -5.448648E-05
 -4.059074E-05
 -2.669502E-05
 -1.279931E-05
 1.0963828E-06
 1.4992061E-05
 2.8887725E-05
 4.2783373E-05
 5.6679007E-05
                            |"ε" _𝑎
                            |=(𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)/𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                            ×100%
 |εs| = (0.50 x 102-n)%
te the values:
             0.00005                  |εa| = 0.000334
Hence,
         FALSE
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                           LESSON 5 – RO
Method Use: CLOSED METHOD (BISECTION METHOD)
                                     EQU
                                                      BISECT
       "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + " 𝟐𝒙^𝟑 " − " 𝟏𝟐𝒙^𝟐 " + 20x − " 𝟓
       Determine the positive real root of
   (SOLUTIONS) :
                                                           "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + " 𝟐
                                                                         Note: 𝑥_𝐿=0 and
 5 – ROOTS OF NONLINEAR
    EQUATIONS
   BISECTION METHOD
𝟐 " + 20x − " 𝟓
on up to True Value)
= " 𝟓𝒙^𝟒 " + " 𝟐𝒙^𝟑 " − " 𝟏𝟐𝒙^𝟐 " + 20x − " 𝟓
 Note: 𝑥_𝐿=0 and 𝑥_𝑈=1
                           LESSON 5 – RO
Method Use: CLOSED METHOD (FALSE POSITION METHOD_REGULA-FALSI
                                     EQU
                   FALSE POSITION METH
       "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + " 𝟐𝒙^𝟑 " − " 𝟏𝟐𝒙^𝟐 " + 20x − " 𝟓
       Determine the positive real root of
   (SOLUTIONS) :
                                     "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + " 𝟐
                                             Note: 𝑥_𝐿=0 and
 5 – ROOTS OF NONLINEAR
HOD_REGULA-FALSI METHOD)
    EQUATIONS
ON METHOD (REGULA-FALSI METHO
𝟐 " + 20x − " 𝟓
METHOD)
     New Interval       Approximate Error(%)   True Error(%)
        _____                    _____
0,0.333333333333333        -9.3827160493827
0,0.304740406320542       -1.60258317107662
 0,0.29993371901522      -0.271599739603037
0,0.299121306326141     -0.0459587122597287
0,0.298983897177134    -0.00777481888252826
0,0.298960653527792    -0.00131520362928457
0,0.298956721638139   -0.000222480719254481
0,0.298956056518555   -3.76349372838715E-05
0,0.298955944006672   -6.36634132257231E-06
0,0.298955924974118   -1.07693284447558E-06
0,0.298955921754563   -1.82174371479194E-07
0,0.298955921209942   -3.08167037306094E-08
0,0.298955921117814   -5.21296855234063E-09
0,0.298955921102229   -8.81810456296068E-10
0,0.298955921099593   -1.49196610156864E-10
0,0.298955921099147   -2.52158054253979E-11
0,0.298955921099072    -4.2707181501044E-12
0,0.298955921099059   -7.24165251539447E-13
Error(%)
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                           LESSON 5 – RO
Method Use: CLOSED METHOD (FIXED POINT METHOD)
                                     EQU
                                                      FIXED P
       "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + " 𝟐𝒙^𝟑 " − " 𝟏𝟐𝒙^𝟐 " + 20x − " 𝟓
       Determine the positive real root of
(SOLUTIONS) :
                                                                  "𝒙 =
                                      USE EQUATION:
                                                      ITERATION
                                                          1
                                                          2
                                                          3
                                                          4
                                                          5
                                                          6
                                                          7
                                                          8
9
10
11
12
13
CE PROBLEMS
 5 – ROOTS OF NONLINEAR
    EQUATIONS
FIXED POINT METHOD
𝟐 " + 20x − " 𝟓
"𝒙 = " 𝟓/(𝟓𝒙^𝟑 " + " 𝟐𝒙^𝟐 " − " 𝟏𝟐"x + 20 " )
ITERATION                 X                    VALUE 0F X
    1                     0                       0.25
    2                    0.25              0.290644868301544
    3             0.290644868301544        0.297548720367363
    4             0.297548720367363        0.298717838944154
    5             0.298717838944154        0.298915645884465
    6             0.298915645884465        0.298949108094931
    7             0.298949108094931        0.298954768607621
    8             0.298954768607621        0.298955726143118
9    0.298955726143118   0.298955888120231
10   0.298955888120231   0.298955915520345
11   0.298955915520345   0.298955920155359
12   0.298955920155359   0.29895592093942
13   0.29895592093942    0.298955921072052
NEAR
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                           LESSON 5 – RO
Method Use: CLOSED METHOD (NEWTON-RAPHSON METHOD)
                                     EQU
                                                  NEWTON-R
       "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + " 𝟐𝒙^𝟑 " − " 𝟏𝟐𝒙^𝟐 " + 20x − " 𝟓
       Determine the positive real root of
(SOLUTIONS) :
Note: 𝑥_𝑖=0
                      ITERATION           XI                 f(x)
                          1               0                   -5
                          2              0.25           -0.69921875
                          3       0.297606382978723 -0.01876648432148
                          4       0.298954933451171 -1.37240535452E-05
                          5       0.298955921098528 -7.3399064604E-12
                          6       0.298955921099056            0
CE PROBLEMS
  5 – ROOTS OF NONLINEAR
ETHOD)
     EQUATIONS
WTON-RAPHSON METHOD
 𝟐 " + 20x − " 𝟓
                           LESSON 5 – RO
Method Use: CLOSED METHOD (SECANT METHOD)
                                     EQU
                                                          SECA
       "𝒇(𝒙) = " 𝟓𝒙^𝟒 " + " 𝟐𝒙^𝟑 " − " 𝟏𝟐𝒙^𝟐 " + 20x − " 𝟓
       Determine the positive real root of
(SOLUTIONS) :
   ITERATION            XI                 f(x)
       -1               0
        0               1                   10
        1       0.333333333333333   0.469135802469137
        2       0.298342541436464   -0.00852616501737
        3       0.29895571722489    -2.83297198944E-06
        4       0.298955921099034   -3.13526982154E-13
        5       0.298955921099056            0
CE PROBLEMS
 5 – ROOTS OF NONLINEAR
    EQUATIONS
        SECANT METHOD
𝟐 " + 20x − " 𝟓
             -5          0.333333333333333            100
      13.4074074074074   0.298342541436464     -11.7283950617284
       13.90492771944    0.29895571722489      0.205105891306369
      13.8956903914866   0.298955921099034   6.81953860122385E-05
      13.8956873231695   0.298955921099056   7.53874595192348E-12
      13.8956873231692   0.298955921099056             0
NEAR
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                                     LESSON 6 – C
Method Use: CLOSED METHOD ( POLYNOMIAL REGRESSION)
                                           INTER
                                                             POLYNOM
   (SOLUTIONS) :
Using Regression
                                                       xi               yi
                                                       0               2.1
                                                       1               7.7
                                                       2              13.6
                                                       3              27.2
                                                       4              40.9
                                                       5              61.1
TABULAR PRESENTATION.
                   ITERATION          xi                yi            xi2
                       1              0                2.1             0
                       2              1                7.7             1
                       3              2               13.6             4
                       4              3               27.2             9
                       5              4               40.9            16
         n   =         6              5               61.1            25
                            15                   152.6                55
where:
              Mean, x            (x̄ )             2.5                 2.5
              Mean, y            (ȳ)       25.4333333333333 25.4333333333333
                m                 4                m - order of polynomial
                                          n      =           6
                                         Σxi     =          15
                                         Σxi2    =          55
                                         Σxi3    =         225
                                         Σxi4    =         979
                                                                    ¯𝑦=
                              ARITHMETIC MEAN
                                                                  (∑▒𝑦_𝑖 )/𝑛
                                                                 𝑆_𝑌=√(𝑆_𝑡/(𝑛−1)) =
                            STANDARD DEVIATION
                                                                 √((∑▒ 〖 ( 〖𝑦 _𝑖−¯𝑦) 〗 ^2
                                                                       〗 )/(𝑛−1))
                                   VARIANCE
                                                             〖𝑆 _𝑌 〗 ^2= 𝑆_𝑡/(𝑛−1)
                                                            (∑▒ 〖 ( 〖𝑦 _𝑖−¯𝑦) 〗 ^2 〗 )/(𝑛
                          COEFFICIENT OF VARIATION
𝐶.𝑉.= 𝑆_𝑌/¯𝑦×100%
                                                                  𝑆_(𝑦⁄𝑥)= √(𝑆_𝑟/(𝑛−
                    STANDARD ERROR OF THE ESTIMATE
(𝑚+1)))
                        COEFFICIENT OF DETERMINATION
                                                                  𝑟^2= (𝑆_𝑡−𝑆_𝑟)/𝑆_
                                                                       ×100%
                          𝑟^2= (𝑆_𝑡−𝑆_𝑟)/𝑆_
                               ×100%
CORRELATION COEFFICIENT
                              𝑟=√(𝑟^2 )
CE PROBLEMS
         yi
        2.1
        7.7
       13.6
       27.2
       40.9
       61.1
         2.5
  25.4333333333333
f polynomial
an, standard deviation, variance, coefficient of variation, standard error of the estimate, coefficient of
      ¯𝑦=
    (∑▒𝑦_𝑖 )/𝑛                      ¯𝑦
                                      =
                                            25.4333333333333
   𝑆_𝑌=√(𝑆_𝑡/(𝑛−1)) =
   √((∑▒ 〖 ( 〖𝑦 _𝑖−¯𝑦) 〗 ^2                      𝑆_𝑌
         〗 )/(𝑛−1))                                =
                                                         22.4204965749349
 〖𝑆 _𝑌 〗 ^2= 𝑆_𝑡/(𝑛−1) =
                                                 〖𝑆 _𝑌 502.678666666667
(∑▒ 〖 ( 〖𝑦 _𝑖−¯𝑦) 〗 ^2 〗 )/(𝑛−1)
                                                  〗 ^2
                                                    =
    𝑆_(𝑦⁄𝑥)= √(𝑆_𝑟/(𝑛−
         (𝑚+1)))                                 𝑆_(𝑦⁄𝑥 1.0547198028073
                                                  ) =
    𝑟^2= (𝑆_𝑡−𝑆_𝑟)/𝑆_𝑡
                                             𝑟^2 = 0.998672192870475
         ×100%                                                                =           99.867%
𝑟^2= (𝑆_𝑡−𝑆_𝑟)/𝑆_𝑡
                     𝑟^2 =
     ×100%
    𝑟=√(𝑟^2 )        𝑟   =   0.99933587590483
AND
                                 [
                                         6                  15                  55
                                         15                 55                 225
                                         55                225                 979
                                        225                979                 4425
                                        979               4425                20515
                                             ]{ } {                              =
                  225                979                      a0
                  979               4425                      a1
                 4425              20515                      a2
                20515              96825                      a3
                96825              462979                     a4
                                        LESSON 6 – C
Method Use: MULTIPLE LINEAR REGRESSION
                                              INTER
                                                         MULTIPLE L
   (SOLUTIONS) :
Using Regression
                                                              yi                  x1
                                                              5                    9
                                                              10                   2
                                                              9                   2.5
                                                              0                    1
                                                              3                    4
                                                              27                   7
                         a. Fit a 4th-order multiple linear function and calculate the new values of t
                         (Note: include the tabulation of the solution process)
TABULAR PRESENTATION.
                   ITERATION              yi                  x1                   x2
                       1                  5                    9                   3
                       2                  10                   2                   5
                       3                  9                   2.5                  6
                       4                  0                    1                   4
                       5                  3                    4                   3
         n   =         6                  27                   7                   2
                            54                 25.5                  23
where:
              Mean, y            (ȳ)           9                    9
                m                 4             m - number of variable
                                         n     =         6
                                        Σx1i   =        25.5
                                        Σx2i   =         23
                                        Σx3i   =         22
                                        Σx4i   =         19
                                                                  ¯𝑦=
                              ARITHMETIC MEAN
                                                                (∑▒𝑦_𝑖 )/𝑛
                                                               ¯𝑥= (∑▒𝑥_𝑖 )/𝑛
                                                                𝑆_𝑌=√(𝑆_𝑡/(𝑛−1)) =
                            STANDARD DEVIATION
                                                                √((∑▒ 〖 ( 〖𝑦 _𝑖−¯𝑦) 〗 ^2
                                                                      〗 )/(𝑛−1))
                                   VARIANCE
                                                           〖𝑆 _𝑌 〗 ^2= 𝑆_𝑡/(𝑛−1)
                                                          (∑▒ 〖 ( 〖𝑦 _𝑖−¯𝑦) 〗 ^2 〗 )/(𝑛
                          COEFFICIENT OF VARIATION
𝐶.𝑉.= 𝑆_𝑌/¯𝑦×100%
                                                                𝑆_(𝑦⁄𝑥)= √(𝑆_𝑟/(𝑛−
                    STANDARD ERROR OF THE ESTIMATE
(𝑚+1)))
                        COEFFICIENT OF DETERMINATION
                                                                𝑟^2= (𝑆_𝑡−𝑆_𝑟)/𝑆_
                                                                     ×100%
CORRELATION COEFFICIENT
                                                                      𝑟=√(𝑟^2 )
𝑟=√(𝑟^2 )
CE PROBLEMS
         x1                  x2                  x3   x4
          9                  3                   8    1
          2                  5                   1    6
         2.5                 6                   2    4
          1                  4                   3    5
          4                  3                   6    2
          7                  2                   2    1
            9
r of variable
an, standard deviation, variance, coefficient of variation, standard error of the estimate, coefficient of
      ¯𝑦=
    (∑▒𝑦_𝑖 )/𝑛                      ¯𝑦
                                      =
                                                       9
 〖𝑆 _𝑌 〗 ^2= 𝑆_𝑡/(𝑛−1) =
                                               〖𝑆 _𝑌
(∑▒ 〖 ( 〖𝑦 _𝑖−¯𝑦) 〗 ^2 〗 )/(𝑛−1)
                                                〗 ^2
                                                                 91.6
     𝑆_(𝑦⁄𝑥)= √(𝑆_𝑟/(𝑛−
          (𝑚+1)))                              𝑆_(𝑦⁄𝑥 1.26968573538087
                                                ) =
     𝑟^2= (𝑆_𝑡−𝑆_𝑟)/𝑆_𝑡
                                              𝑟^2 = 0.989440380786269
          ×100%                                                                    =        98.944%
           𝑟=√(𝑟^2 )                           𝑟   = 0.994706178118076
𝑟=√(𝑟^2 )   𝑟   =
AND
       22          Σx4i    =    19           Σyi     =      54
      120        Σx1ix4i   =    51         Σx1iyi    =    288.5
       75        Σx2ix4i   =    85          Σx2iyi   =     182
      118        Σx3ix4i   =    51          Σx3iyi   =     140
       51         Σx4i2    =    83          Σx4iyi   =     134
x2x3   x2x4   x3x4   x1iyi   x2iyi   x3iyi
 24     3       8     45      15      40
 5      30      6     20      50      10
 12     24      8    22.5     54      18
 12     20     15     0       0       0
 18     6      12     12      9       18
 4      2       2    189      54      54
75   85   51   288.5   182   140
x3iyi   x4iyi   (yi-ȳ)2   (yi-a0-a1x1i-a2x2i-a3x3i-a4x4i)2
 40      5         16             0.162429526774378
 10      60        1              1.10957153491312
 18      36        0             0.0859131381286316
 0       0         81             1.96400454145799
 18      6         36             1.48409912144255
 54      27       324            0.0302877371722995
140   134   458   4.83630559988898
MATRIX FORM:
                                                      SIMULTANEOUS POLYNOMIAL (QUA
                                 [
                                         6                25.5
                                        25.5             157.25
                                         23                82
                                         22               120
                                         19                51
                                   9.32812126539141 -0.781948974163255
                                 -0.781948974163255 0.10103393241274
                                  -0.44760946499202 -0.000971480119353
                                 -0.193779443172268 -0.009946105983855
                                    -1.077413858241 0.124025628570768
 ANEOUS POLYNOMIAL (QUARTIC EQUATION) ARE….
                                                             ]{ }
                 23                 22                19                      a0
                 82                120                51                      a1
                 99                 75                85                      a2
                 75                118                51                      a3
                 85                 51                83                      a4
  25.1587676080773
  1.97321490528067
-0.672819374089239
 -4.17410311567553
 -2.10339324127404
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                                  LESSON 6 – C
Method Use: NEWTON'S DIVIDED DIFFERENCE INTERPOLATING POLYNOM
                                        INTER
                    NEWTON'S DIVIDED D
   (SOLUTIONS) :
                                   POL
                   Using Interpolation
                                                                         i
                                                                         0
                                                                         1
                                                                         2
                                                                         3
𝑓(𝑥)=𝑥𝑒^𝑥
Value of B                                          i                   xi
                              x0                    0                  0.2
                              x1                    1                  0.3
              For b0 :
                         b0 =         f(x0)        = 0.244280551632034
       𝑏_1=(𝑓(𝑥_1 )
              For b1 :
                                              𝑓[𝑥_1 , 𝑥_0]
   −𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 )
                                                                 1.60677090640767
                                                             =
                                                       (𝑥−𝑥_0 )
                             𝑓_1 (0.5)=0.244280552+(1.606770906)(0.5−0.2)
𝑓_1 (0.5)=0.726311824
𝑓(𝑥)=𝑥𝑒^𝑥
Value of B                                          i                   xi
                              x0                    0                  0.2
                              x1                    1                  0.3
                             x2                 2                  0.45
              For b0 :
                         b0 =        f(x0)      = 0.705740483470576
                         𝑏_1=(𝑓(𝑥_1 )−𝑓(𝑥_0
              For b1 :
                            ))/(𝑥_1−𝑥_0 )           𝑓[𝑥_1 , 𝑥_0]
                                                                   =
                          (𝑓(𝑥_2 )−𝑓(𝑥_1
                           ))/(𝑥_2−𝑥_1 )            𝑓[𝑥_2 , 𝑥_1]
                                                                   =
𝑓_2 (𝑥)=0.244280552+(1.606770906)(0.5−0.2)+(1.59379214)
𝑓_2 (0.5)=0.821939352
𝑓(𝑥)=𝑥𝑒^𝑥
Value of B                                      i                       xi
                             x0                 0                      0.2
                             x1                 1                      0.3
                             x2                 2                  0.45
                             x3                 3                   0.6
1st FINITE DIVIDED DIFFERENCE
           For b0 :
                      b0 =         f(x0)     = 0.705740483470576
                      𝑏_1=(𝑓(𝑥_1 )−𝑓(𝑥_0
           For b1 :
                                                 𝑓[𝑥_1 , 𝑥_0]
                         ))/(𝑥_1−𝑥_0 )                          =
                       (𝑓(𝑥_2 )−𝑓(𝑥_1
                        ))/(𝑥_2−𝑥_1 )           𝑓[𝑥_2 , 𝑥_1]
                                                                =
                       (𝑓(𝑥_3 )−𝑓(𝑥_2
                        ))/(𝑥_3−𝑥_2 )           𝑓[𝑥_3 , 𝑥_2]
                                                                =
Thus,
𝑓_2 (𝑥)=0.244280552+(1.606770906)(0.5−0.2)+(1.5
                                                            𝑓_2 (0.5)=0.8219393
CE PROBLEMS
 INTERPOLATION
VIDED DIFFERENCE INTERPOLATIN
    POLYNOMIAL
𝑓(𝑥)=𝑥𝑒^𝑥
nction wherein x = 0.50 by interpolation and its true percent relative error using the following
                           values of x:
          i                   xi
          0                  0.2
          1                  0.3
          2                 0.45
          3                  0.6
                                                                                𝑏_0= 〖𝑓 (𝑥 〗 _0)
                               x    =       0.5                              where,
                                                               WHERE
                                                                               TRUE VALUE
                                                                        x                 y = f(x)
                                                                       0.5          0.824360635350064
 1.60677090640767
                                                               ANSWER:
                                                                     f1(0.5)        0.726311823554335
_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 )
𝑥_0 )
06770906)(0.5−0.2)
                                                                                                                  𝑓
                    Estimate at
                               x    =       0.5
                                                                                                    𝑏_0= 〖𝑓 (𝑥 〗 _0
                                                                                                 where,
        xi
                                                                                                        𝑏_1=(𝑓(𝑥_1 )−𝑓
                           f(xi)            FIRST           SECOND
                                                                                                   𝑏_2=((𝑓(𝑥_2 )
       0.2          0.244280551632034 1.60677090640767 1.59379213964332
                                                                                             〖 𝑥〗 _0 )
       0.3          0.404957642272801 2.0052189413185
                                                                                                      𝑏_1=(𝑓(𝑥_1 )−𝑓
                                                                                                      𝑏_2=((𝑓(𝑥_2 )
        0.45          0.705740483470576                                                         〖 𝑥〗 _0 )
                                                                                                𝑓_2 (𝑥)= 〖𝑓 (𝑥 〗 _0)+(
                                                                                                                 (𝑓(𝑥
                                                                                  WHERE
                                                                                                 TRUE VALUE
                                                                                           x
                                                                                          0.5
           1.60677090640767
                                                                                  ANSWER:
               2.0052189413185
                                                                                       f2(0.5)
                     𝑓[𝑥_2 ,
                𝑥_(1 ),𝑥_0]      1.59379213964332
                            =
06)(0.5−0.2)+(1.59379214)(0.5−0.2)(0.5−0.3)
.5)=0.821939352
                      Estimate at
                                 x     =        0.5
2.0052189413185
2.58353864509153
                   𝑓[𝑥_2 ,
              𝑥_(1 ),𝑥_0]      1.59379213964332
                          =
                   𝑓[𝑥_2 ,
              𝑥_(1 ),𝑥_0]      1.92773234591009
                          =
     𝑓_2 (0.5)=0.821939352
AND
POLATING
the following
𝑥)=𝑏_0+𝑏_1 (𝑥−𝑥_0 )
〗 _0)
_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 )
〖𝑓 (𝑥 〗 _0)+(𝑓(𝑥_1 )−𝑓(𝑥_0
/(𝑥_1−𝑥_0 ) (𝑥−𝑥_0 )
           𝑏_0= 〖𝑓 (𝑥 〗 _0)
        where,
 TRUE VALUE
            y = f(x)
      0.824360635350064
0.821939351932934
                                   𝑏_0= 〖𝑓 (𝑥 〗 _0)
                                where,
                              WHERE
                                               TRUE VALUE
                                       x                  y = f(x)
                                      0.5           0.824360635350064
                              ANSWER:
                                     f3(0.5)        0.824443903479935
𝑥_0 ))/(𝑥_1−𝑥_0 ) (𝑥−𝑥_0 )+((𝑓(𝑥_2 )−𝑓(𝑥_1 ))/(𝑥_2−𝑥_1 ) − (𝑓(𝑥_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 ))/( 𝑥_2 − 〖 𝑥〗 _0 ) (𝑥−𝑥_0 )(𝑥−𝑥_1 )+(((
𝑥_1 ))/(𝑥_3 − 〖 𝑥〗 _1 ) − ((𝑓(𝑥_2 )−𝑓(𝑥_1 ))/(𝑥_2−𝑥_1 ) − (𝑓(𝑥_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 ))/(𝑥_2 − 〖 𝑥〗 _0 ))/(𝑥_3 − 〖 𝑥〗 _0 ) (𝑥−𝑥
0.5−0.2)+(1.59379214)(0.5−0.2)(0.5−0.3)+(0.834850516)(0.5−0.2)(0.5−0.3)(0.5−0.45)
                                                            𝑓_3 (0.5)=0.824443903
−𝑥_1 ) −
−𝑥_1 ) −
 )+((𝑓(𝑥_2 )−𝑓(𝑥_1 ))/(𝑥_2−𝑥_1 ) − (𝑓(𝑥_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 ))/(𝑥_2 − 〖 𝑥〗 _0 ) (𝑥−𝑥_0 )(𝑥−𝑥_1 )+(((𝑓(𝑥_3 )−𝑓(𝑥_2
 𝑥_2 )−𝑓(𝑥_1 ))/(𝑥_2−𝑥_1 ) − (𝑓(𝑥_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 ))/(𝑥_2 − 〖 𝑥〗 _0 ))/(𝑥_3 − 〖 𝑥〗 _0 ) (𝑥−𝑥_0 )(𝑥−𝑥_1 )(𝑥−𝑥_2 )
𝑥_0 ))/(𝑥_1−𝑥_0 ))/(𝑥_2   − 〖 𝑥〗 _0 )
/(𝑥_2−𝑥_1 ))/(𝑥_3 − 〖 𝑥〗 _1 ) − ((𝑓(𝑥_2 )−𝑓(𝑥_1 ))/(𝑥_2−𝑥_1 ) − (𝑓(𝑥_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 ))/(𝑥_2 − 〖 𝑥〗 _0 ))/(𝑥_3
 )+((𝑓(𝑥_2 )−𝑓(𝑥_1 ))/(𝑥_2−𝑥_1 ) − (𝑓(𝑥_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 ))/(𝑥_2 − 〖 𝑥〗 _0 ) (𝑥−𝑥_0 )(𝑥−𝑥_1 )+(((𝑓(𝑥_3 )−𝑓(𝑥_2
 𝑥_2 )−𝑓(𝑥_1 ))/(𝑥_2−𝑥_1 ) − (𝑓(𝑥_1 )−𝑓(𝑥_0 ))/(𝑥_1−𝑥_0 ))/(𝑥_2 − 〖 𝑥〗 _0 ))/(𝑥_3 − 〖 𝑥〗 _0 ) (𝑥−𝑥_0 )(𝑥−𝑥_1 )(𝑥−𝑥_2 )
)+(((𝑓(𝑥_3 )−𝑓(𝑥_2
 0 )(𝑥−𝑥_1 )(𝑥−𝑥_2 )
𝑥_2 − 〖 𝑥〗 _0 ))/(𝑥_3
)+(((𝑓(𝑥_3 )−𝑓(𝑥_2
 0 )(𝑥−𝑥_1 )(𝑥−𝑥_2 )
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                                  LESSON 6 – C
Method Use: LAGRANGE INTERPOLATING POLYNOMIAL
                                        INTER
                                 LAGRANGE INTER
   (SOLUTIONS) :
Using Interpolation
                                                                         i
                                                                         0
                                                                         1
                                                                         2
                                                                         3
                                                   GENERAL EQUATION:
                                                                             𝑓_𝑛 (𝑥)=∑_(𝑖=
                                                                             𝐿_𝑖
                                                                             Where,
                                                                             (𝑥)=∏24_█(𝑗
                                                                             −𝑥_𝑗 )
                                            (𝑥)=∏24_█(𝑗
                                            −𝑥_𝑗 )
𝑓(𝑥)=𝑥𝑒^𝑥
                                        i
                     x0                 0
                     x1                 1
                     x2                 2
                     x3                 3
FORMULA:
𝑓_1 (0.5)=0.726311824
𝑓(𝑥)=𝑥𝑒^𝑥
                                        i
                     x0                 0
                     x1                 1
                     x2                 2
                     x3                 3
               ((𝑥−𝑥_0)(𝑥−𝑥_2))/( 〖 (𝑥 〗 _1−𝑥_0) 〖 (𝑥 〗 _1
               〖 (𝑥 〗 _2−𝑥_1)) 𝑓(𝑥_2 )
 Substituting the given values…
             𝑓_2 (0.5)=((0.5−0.3)(0.5−0.45))/((0.2−0.3)(0.2
             (0.5−0.2)(0.5−0.3)/(0.45−0.2)(0.45−0.3) (0.7
             𝑓_2 (0.5)=0.821939352
             𝑓_2 (𝑥)=((𝑥−𝑥_1)(𝑥−𝑥_2))/( 〖 (𝑥 〗 _0−𝑥_1) 〖 (
             ((𝑥−𝑥_0)(𝑥−𝑥_1))/( 〖 (𝑥 〗 _2−𝑥_0) 〖 (𝑥 〗 _2−𝑥
             𝑓_2 (0.5)=((0.5−0.3)(0.5−0.45))/((0.2−0.3)(0.2
             (0.5−0.2)(0.5−0.3)/(0.45−0.2)(0.45−0.3) (0.7
𝑓_2 (0.5)=0.821939352
𝑓(𝑥)=𝑥𝑒^𝑥
                                          i
                     x0                   0
                     x1                   1
                     x2                   2
                     x3                   3
FORMULA:
           𝑓_3 (𝑥)=((𝑥−𝑥_1)(𝑥−𝑥_2)(𝑥−𝑥_3))/( 〖 (𝑥
           〖 (𝑥 〗 _1−𝑥_2) 〖 (𝑥 〗 _1−𝑥_3)) 𝑓(𝑥_1 ) + ((𝑥
           ( 〖 (𝑥 〗 _3−𝑥_0) 〖 (𝑥 〗 _3−𝑥_1) 〖 (𝑥 〗 _3−𝑥_2))
 Substituting the given values…
𝑓_3 (0.5)=((0.5−0.3)(0.5−0.45)(0.5−0.6))/((0.2−0.3)(
   𝑓_3 (0.5)=0.824443903
CE PROBLEMS
𝑓(𝑥)=𝑥𝑒^𝑥
nction wherein x = 0.50 by interpolation and its true percent relative error using the following
                           values of x:
         i                xi
         0               0.2
         1               0.3
         2              0.45
         3               0.6
rpolating Polynomial
             𝐿_𝑖
             Where,
             (𝑥)=∏24_█(𝑗=0@𝑗≠𝑖)^𝑛▒(𝑥−𝑥_𝑗)/(𝑥_𝑖
             −𝑥_𝑗 )
              (𝑥)=∏24_█(𝑗=0@𝑗≠𝑖)^𝑛▒(𝑥−𝑥_𝑗)/(𝑥_𝑖
              −𝑥_𝑗 )
POLYNOMIAL
                     Estimate at
                                x      =          0.5
          i                   xi                  f(xi)                          WHERE
          0                  0.2           0.244280551632034                                     TRUE VALUE
          1                   0.3          0.404957642272801                               x                  y = f(x)
          2                  0.45          0.705740483470576                             0.5          0.824360635350064
          3                   0.6          1.09327128023431
ANSWER:
−𝑥_1)/(𝑥_0−𝑥_1 ) 𝑓(𝑥_0 )+
                                                                                       f1(0.5)        0.726311823554335
1−𝑥_0 ) 𝑓(𝑥_1 )
726311824
POLYNOMIAL
                     Estimate at
                                x      =          0.5
          i                   xi                  f(xi)
          0                  0.2           0.244280551632034
          1                   0.3          0.404957642272801
          2                  0.45          0.705740483470576
          3                   0.6          1.09327128023431
39352
 (𝑥−𝑥_2))/( 〖 (𝑥 〗 _0−𝑥_1) 〖 (𝑥 〗 _0−𝑥_2)) 𝑓(𝑥_0 ) + ((𝑥−𝑥_0)(𝑥−𝑥_2))/( 〖 (𝑥 〗 _1−𝑥_0) 〖 (𝑥 〗 _1−𝑥_2)) 𝑓(𝑥_1 ) +
)/( 〖 (𝑥 〗 _2−𝑥_0) 〖 (𝑥 〗 _2−𝑥_1)) 𝑓(𝑥_2 )
39352
POLYNOMIAL
                      Estimate at
                                 x       =          0.5                                                  WHERE
                                                                                                                          TRUE VALUE
           i                    xi                  f(xi)                                                         x
           0                   0.2           0.244280551632034                                                   0.5
           1                   0.3           0.404957642272801
           2                  0.45           0.705740483470576
           3                   0.6           1.09327128023431                                            ANSWER:
                                                                                                                f3(0.5)
OMIAL
 the following
VALUE
        y = f(x)
 0.824360635350064
0.726311823554335
                     WHERE
                                    TRUE VALUE
                               x                 y = f(x)
                             0.5         0.824360635350064
                     ANSWER:
                          f2(0.5)        0.821939351932934
)) 𝑓(𝑥_1 ) +
404957642) +
)) 𝑓(𝑥_1 ) +
404957642) +
                  TRUE VALUE
           x                 y = f(x)
          0.5          0.824360635350064
 ANSWER:
        f3(0.5)        0.824443903479935
2)(𝑥−𝑥_3))/( 〖 (𝑥 〗 _1−𝑥_0)
𝑓(𝑥_2 )+((𝑥−𝑥_0)(𝑥−𝑥_1)(𝑥−𝑥_2))/
                                    LESSON 6 – C
Method Use: LINEAR SPLINE INTERPOLATION
                                          INTER
                                                      LINEAR SPLI
   (SOLUTIONS) :
Using Interpolation
                                                                     i
                                                                     0
                                                                     1
                                                                     2
                                                                     3
𝑓(𝑥)=𝑥𝑒^𝑥
                           i
                           0
                           1
                           2
                           3
INTERVAL
                        0.45≤𝑥 ≥0.6
Therefore,
𝑓_1 (0.5)=0.705740483
                 𝑓_1 (0.5)=
CE PROBLEMS
𝑓(𝑥)=𝑥𝑒^𝑥
nction wherein x = 0.50 by interpolation and its true percent relative error using the following
                           values of x:
        i                xi
        0               0.2
        1               0.3
        2              0.45
        3               0.6
INTERPOLATION
𝑥)=𝑥𝑒^𝑥
                              Estimate at
                                         x     =         0.5
          i                   xi               f(xi)
          0                  0.2        0.244280551632034
          1                  0.3        0.404957642272801
          2                 0.45        0.705740483470576
          3                  0.6        1.09327128023431
                                                               SLOPE, m
     0.45≤𝑥 ≥0.6
                                                                          𝑚_𝑖=(𝑓(𝑥_(𝑖+1) )
     0.45≤ 0.5 ≥0.6                                                       −𝑓(𝑥_𝑖 ))/(𝑥_(𝑖+1)−𝑥_𝑖 )
m = 2.58353864509153
𝑓_1 (0.5)=0.705740483+(2.583538645)(0.5−0.45)
𝑓_1 (0.5)=
                  f1(0.5)   = 0.834917415725152
AND
the following
𝑓(𝑥_(𝑖+1) )
 ))/(𝑥_(𝑖+1)−𝑥_𝑖 )
  2.58353864509153
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                                   LESSON 6 – C
Method Use: QUADRATIC SPLINE INTERPOLATION
                                         INTER
                                            QUADRATIC SP
   (SOLUTIONS) :
Using Interpolation
                                                                    i
                                                                    0
                                                                    1
                                                                    2
                                                                    3
𝑓(𝑥)=𝑥𝑒^𝑥
                         i
                         0
                         1
                         2
                         3
  INTERVAL
                 0.2≤𝑥 ≥0.3
0.3≤𝑥 ≥0.45
0.45≤𝑥 ≥0.6
1ST STEP.
                    2ND STEP.
                                                        0.2≤𝑥 ≥0.3
0.3≤𝑥 ≥0.45
0.45≤𝑥 ≥0.6
3RD STEP.
4TH STEP.
5TH STEP.
GENERAL EQUATIONS:
                𝑎_1=0
                0.04 𝑎_1+0.2 𝑏_1+ 𝑐_1=0.244280552
0.6𝑎_1+𝑏_1−0.6 𝑎_2−𝑏_2=0
0.9𝑎_2+𝑏_2−0.9𝑎_3−𝑏_3=0
CE PROBLEMS
𝑓(𝑥)=𝑥𝑒^𝑥
nction wherein x = 0.50 by interpolation and its true percent relative error using the following
                           values of x:
        i                xi
        0               0.2
        1               0.3
        2              0.45
        3               0.6
NE INTERPOLATION
𝑥)=𝑥𝑒^𝑥
                             Estimate at
                                        x     =        0.5
          i                  xi               f(xi)
          0                 0.2        0.244280551632034
          1                 0.3        0.404957642272801
          2                0.45        0.705740483470576
          3                 0.6        1.09327128023431
0.2≤𝑥 ≥0.3
0.3≤𝑥 ≥0.45
0.45≤𝑥 ≥0.6
                                     𝑓(𝑥)=𝑎𝑥^2+𝑏𝑥+𝑐
      1ST STEP.
                   𝑛+1=4
                   𝑛=3      (3 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)
                   3𝑛=3(3)
                   3𝑛=9    (9 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠)
      2ND STEP.
                   2𝑛−2=2(3)−2
                   2𝑛−2=4    (4 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)                  CONDITIONS
            0.3≤𝑥 ≥0.45
                                                       0.09 a2   +    0.3 b2     +     c2          =    0.404957642272801
                                                    0.2025 a2    +   0.45 b2     +          c2     =    0.705740483470576
           0.45≤𝑥 ≥0.6
                                                    0.2025 a3    +   0.45 b3     +     c3          =    0.705740483470576
                                                       0.36 a3   +    0.6 b3     +          c3     =     1.09327128023431
        3RD STEP.
                              CONDITIONS
        4TH STEP.
                       𝑛−1=3−1
                       𝑛−1=2   (2 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)                                  CONDITION (FIRST DERIVATIVE OF INTERIOR KNOTS)
                                                                                 𝑓^′ (𝑥)=2𝑎𝑥+𝑏=2𝑎_(𝑖−1)
                                                                                 𝑥_(𝑖−1)+𝑏_(𝑖−1)
                    at x = 0.3
                                           0.6 a1       + b1     =    0.6 a2    + b2
                    at x = 0.45
                                           0.9 a2       + b2     =    0.9 a3    + b3
5TH STEP.
                                  𝑎_1=0
                                                                                       MATRIX FORM:
b1 c1
44280552
957642
57642
44280552
               [
957642
                               0.2      1
57642                          0.3      1
                                0       0
.707540483
                                0       0
07540483                        0       0
27128
                                0       0
                                1       0
                                0       0
Matrix Product:
               [
                               -10       10
                                3        -2
                            66.66667 -66.66667
                               -50       50
                                9        -9
                           -66.66667 66.66667
                                70      -70
                               -18       18
                                                 Therefore,
AND
ON
the following
) 〗 ^2+𝑏_(𝑖−1)
(𝑥 〗 _(𝑖−1))
_𝑖 𝑥_(𝑖−1)+𝑐_𝑖= 〖𝑓 (𝑥 〗
) 〗 ^2+𝑏_(𝑖−1)
(𝑥 〗 _(𝑖−1))
_𝑖 𝑥_(𝑖−1)+𝑐_𝑖= 〖𝑓 (𝑥 〗
 0.244280551632034
 0.404957642272801
 0.404957642272801
 0.705740483470576
 0.705740483470576
  1.09327128023431
 0.244280551632034
  1.09327128023431
a2 b2 c2 a3 b3 c3
                               [𝑨
                               ]
                                                                       ]{
                      [𝑨
          0         0 ]  0              0              0         0
          0          0       0          0              0         0
        0.09       0.3       1          0              0         0
       0.2025      0.45      1          0              0         0
          0          0       0       0.2025          0.45        1
          0          0       0        0.36            0.6        1
        -0.6        -1       0          0              0         0
         0.9         1       0        -0.9            -1         0
                                                                       ]{
          0         0 〗 ^(−
                          0             0            0            0
          0         0     0             0            0            0
                      1)
      -44.44444 44.44444  0             0     6.66666666667       0
       26.66667 -26.66667      0        0           -5            0
          -3        4          0        0           0.9           0
       88.88889 -88.88889 -44.44444 44.444444 -6.6666666667 6.6666666667
      -93.33333 93.33333      40       -40           7           -7
          24       -24        -8        9          -1.8          1.8
      Therefore,
                          𝑓_2 (𝑥)=1.199144459
                          𝑥^2+1.324436963𝑥−0.133082903
                                  f2(5) = 0.82892169343
{𝑿   {𝑩
}    }
     =
{} { }
{𝑿             {𝑩
}b
 1
               }
         0.244280551632034
c1       0.404957642272801
a2       0.404957642272801
b2       0.705740483470576
c2       0.705740483470576
a3        1.09327128023431
b3                0
c3                0
     =
{} { }
{𝑿            {𝑩
}b
 1
              }
         1.60677090640767
c1         -0.0770736296495
a2         2.65632023273887
b2        0.012978766764348
c2        0.161995191296998
a3         1.19914445908132
b3         1.32443696305614
c3       -0.133082902868656
}
}
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                   LESSON 6 – CURV
Method Use: CUBIC SPLINE INTERPOLATION
                                                                 CUBIC
   (SOLUTIONS) :
Using Interpolation
                                                                      i
                                                                      0
                                                                      1
                                                                      2
                                                                      3
𝑓(𝑥)=𝑥𝑒^𝑥
                       i
                       0
                       1
                       2
                       3
INTERVAL
               0.2≤𝑥 ≥0.3
0.3≤𝑥 ≥0.45
0.45≤𝑥 ≥0.6
1ST STEP.
2ND STEP.
                       0.2≤𝑥 ≥0.3
    0.3≤𝑥 ≥0.45
0.45≤𝑥 ≥0.6
3RD STEP.
4TH STEP.
5TH STEP.
                                                6TH STEP.
GENERAL EQUATIONS:
0.27𝑎_1+0.6𝑏_1+𝑐_1−0.27𝑎_2−0.6 𝑏_2−𝑐_2=0
1.8𝑎_1+2𝑏_1−1.8𝑎_2−2𝑏_2=0
2.7𝑎_2+2𝑏_2−2.7𝑎_3− 〖 2𝑏 〗 _3=0
1.2𝑎_1+2𝑏_1=0
                     3.6𝑎_3+2𝑏_3=0
CE PROBLEMS
𝑓(𝑥)=𝑥𝑒^𝑥
he function wherein x = 0.50 by interpolation and its true percent relative error using the following valu
         i                xi
         0               0.2
         1               0.3
         2              0.45
         3               0.6
NTERPOLATION
𝑥)=𝑥𝑒^𝑥
                             Estimate at
                                           x       =           0.5
          i                  xi                    f(xi)
          0                 0.2            0.244280551632034
          1                 0.3            0.404957642272801
          2                0.45            0.705740483470576
          3                 0.6             1.09327128023431
0.2≤𝑥 ≥0.3
0.3≤𝑥 ≥0.45
0.45≤𝑥 ≥0.6
                                  𝑓(𝑥)=𝑎𝑥^3+𝑏𝑥^2+𝑐𝑥+𝑑
     1ST STEP.
                 𝑛+1=4
                 𝑛=3        (3 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)
                 4𝑛=4(3)
                 4𝑛=12       (12 𝑢𝑛𝑘𝑛𝑜𝑤𝑛𝑠)
     2ND STEP.
                 2𝑛−2=2(3)−2
                 2𝑛−2=4    (4 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)                                      CONDITIONS
                                                                                   𝑎_(𝑖−1) 〖𝑥 _(𝑖−1) 〗 ^3+𝑏_(𝑖−1)
                                                                                   〖𝑥 _(𝑖−1) 〗 ^2+𝑐_(𝑖−1)
                                                                                   𝑥+𝑑_(𝑖−1)= 〖𝑓 (𝑥 〗 _(𝑖−1))
   0.45≤𝑥 ≥0.6
                                            0.091125 a3    +        0.2025 b3    +          0.45 c3      +
                                                0.216 a3   +           0.36 b3   +           0.6 c3      +
3RD STEP.
                      CONDITIONS
4TH STEP.
               𝑛−1=3−1
               𝑛−1=2   (2 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)                                                      CONDITION (FIRST DERIVATIVE OF
𝑓^′ (𝑥)=3𝑎𝑥^2+2𝑏𝑥+𝑐
5TH STEP.
               𝑛−1=3−1
               𝑛−1=2   (2 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)                                                     CONDITION (SECOND DERIVATIVE OF
𝑓^′′ (𝑥)=6𝑎𝑥+2𝑏
                         6𝑎_1 𝑥+2𝑏_1=0
            at x = 0.3
                                   1.8 a1       +            2 b1    =           1.8 a2     +                2
            at x = 0.45
                                      2.7 a2    +      2 b2   =       2.7 a3             +               2
     6TH STEP.
                   𝑛−1=3−1
                   𝑛−1=2   (2 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠)                                                CONDITION (SECOND DERIVATIVE
                                                                       𝑓^′′ (𝑥)=6𝑎𝑥+2𝑏
6𝑎_1 𝑥+2𝑏_1=0
                 at x = 0.2
                                      1.2 a1    +      2 b1   =   0
                 at x = 0.6
                                      3.6 a3    +      2 b3   =   0
MATRIX FORM:
2 𝑐_1+
                                                                  [
                                                                                  a1               b1
3 𝑐_1+
3 𝑐_2+
                                                                                 0.008            0.04
                                                                                 0.027            0.09
_2+0.45 𝑐_2+
                                                                                   0                0
                                                                                   0                0
_3+0.45 𝑐_3+
                                                                                   0                0
                                                                                   0                0
                                                                                  0.27             0.6
6 𝑐_3+ 𝑑_3=1.09327128                                                              0                0
.27𝑎_2−0.6 𝑏_2−𝑐_2=0
                                                                                  1.8               2
                                                                                   0                0
−0.6 〖 075𝑎 〗 _3−0.9𝑏_3                                                           1.2               2
                                                                                   0                0
𝑏_2=0
2𝑏 〗 _3=0
                                                                               Matrix Product:
[
216.216216216   -216.21621622
-129.72972973    129.72972973
13.7837837838   -13.783783784
 1.7027027027   -0.7027027027
-180.18018018    180.18018018
227.027027027   -227.02702703
-93.243243243   93.2432432432
12.4054054054   -12.405405405
 36.036036036   -36.036036036
-64.864864865   64.8648648649
38.1081081081   -38.108108108
-7.2972972973    7.2972972973
0.2≤𝑥 ≥0.3
0.3≤𝑥 ≥0.45
                   0.45≤𝑥 ≥0.6
NTERPOLATION
ION
                   d3            =            0.705740483470576
                         d3      =             1.09327128023431
                   d1       =                 0.244280551632034
                         d3 =                  1.09327128023431
+2𝑏𝑥+𝑐
0.6 b2 + c3
0.9 b3 + c3
           b2
          b3
ORM:
c1 d1 a2 b2 c2 d2
                                                         [𝑨
               0.2            1           0        0     ]0     0
               0.3            1           0        0       0    0
                0             0        0.027     0.09    0.3    1
                0             0      0.091125   0.2025   0.45   1
                0             0           0        0       0    0
                0             0           0        0       0    0
                1             0        -0.27     -0.6     -1    0
                0             0       0.6075      0.9      1    0
                0             0         -1.8      -2       0    0
                0             0          2.7       2       0    0
                0             0           0        0       0    0
                0             0           0        0       0    0
                                                Therefore,
                                                                           𝑓_2 (𝑥)=0.540972099 𝑥^2+1.294501247
                                                                           𝑥^2+0.773953063𝑥+0.04602902
                                                                                             f2(5) =
                                ]{
   a3        b3      c3    d3
     0        0       0    0
     0        0       0    0
     0        0       0    0
     0        0       0    0
0.091125   0.2025   0.45   1
  0.216     0.36     0.6   1
     0        0       0    0
 -0.6075    -0.9     -1    0
     0        0       0    0
   -2.7      -2       0    0
     0        0       0    0
    3.6       2       0    0
                                                                         ]{
          0.945945945946 -0.27027027027     -2.027027027027 0.135135135135
         -0.567567567568 0.162162162162     1.7162162162162 -0.081081081081
          0.104054054054 -0.02972972973     -0.472972972973 0.014864864865
         -0.005675675676 0.001621621622     0.0421621621622 -0.000810810811
          0.600600600601 0.780780780781     0.3003003003003 -0.39039039039
         -0.756756756757 -0.783783783784   -0.3783783783784 0.391891891892
          0.310810810811 0.254054054054     0.1554054054054 -0.127027027027
         -0.041351351351 -0.026756756757   -0.0206756756757 0.013378378378
          -0.12012012012 0.510510510511    -0.0600600600601 1.411411411411
          0.216216216216 -0.918918918919    0.1081081081081 -2.040540540541
         -0.127027027027 0.539864864865    -0.0635135135135 0.967567567568
          0.024324324324 -0.103378378378    0.0121621621622 -0.150810810811
099 𝑥^2+1.294501247
 𝑥+0.04602902
         0.828028747658
{ }{ }
 {𝑿             {𝑩
 }a             }
      =
  1       0.244280551632034
 b1       0.404957642272801
 c1       0.404957642272801
 d1       0.705740483470576
 a2       0.705740483470576
 b2        1.09327128023431
 c2                0
 d2                0
 a3                0
 b3                0
 c3                0
 d3                0
{ }{ }
{𝑿             {𝑩
      =
} a
  1
               }
          5.48904019389336
 b1          -3.293424116336
 c1         2.21056532773595
 d1       -0.110007870812862
 a2         1.85157432478926
 b2       -0.019704834142331
 c2         1.22844954307784
 d2       -0.011796292347051
 a3        -5.51093445405149
 b3         9.91968201729269
 c3        -3.24427454006791
 d3        0.659112320124814
}
}
Name: CATAMPONGAN, JOSHUA G.
Course and Section: BSCE-3C
Subject Course: EM 315__NUMERICAL SOLUTIONS TO CE PROBLEMS
Name of Activity: MIDTERM PROJECT
                       LESSON 7 – NUME
Method Use: FINITE-DIVIDED DIFFERENCE APPROXIMATION OF DERIVATIV
                                          FINITE-DIVIDED
   (SOLUTIONS) :
Numerical Differentiation
                                                                                  i
                                                                                  0
                                                                                  1
                                                                                  2
                                                                                  3
FORMULA:
𝑓(𝑥)=𝑥 sin𝑥
                                              i
                       xi-5                  -5
                       xi-4                  -4
                       xi-3                  -3
                       xi-2                  -2
                       xi-1                  -1
                        xi                   0
                       xi+1                  1
                       xi+2                  2
                       xi+3                  3
                       xi+4                  4
                       xi+5                  5
                                 THEREFORE,
               BACKWARD - FINITE DIVIDED DIFFERENCE
FORMULA:
𝑓(𝑥)=𝑥 sin𝑥
                                              i
                       xi-5                  -5
                       xi-4                  -4
                       xi-3                  -3
                       xi-2                  -2
                       xi-1                  -1
                        xi                   0
                       xi+1                  1
                       xi+2                  2
                       xi+3                  3
                       xi+4                  4
                       xi+5                  5
THEREFORE,
FORMULA:
                              𝑓(𝑥)=𝑥 sin𝑥
       𝑓(𝑥)=𝑥 sin𝑥
                       i
xi-5                  -5
xi-4                  -4
xi-3                  -3
xi-2                  -2
xi-1                  -1
 xi                    0
xi+1                  1
xi+2                  2
xi+3                  3
xi+4                  4
xi+5                  5
          THEREFORE,
CE PROBLEMS
– NUMERICAL DIFFERENTIAT
TION OF DERIVATIVES
     INTEGRATION
DIVIDED DIFFERENCE APPROXIMATI
         DERIVATIVES
𝑓(𝑥)=𝑥 sin𝑥
 1st, 2nd, 3rd, and 4th derivatives of the function wherein x = π/4 and interval h = π/12 and its true
                                      percent relative error.
           i                 xi
           0                0.2
           1                0.3
           2               0.45
           3                0.6
on of Derivatives.
DIVIDED DIFFERENCE
FORMULA:
𝑥)=𝑥 sin𝑥
                                     Estimate at
                                                   x       = 0.785398163397448                   h      =     0.261799387799149
                                                                                                 x      =     0.785398163397448
              i                    xi               f(xi)
             -5            -0.5235987755983 0.261799387799149
                                                                                           1ST DERIVATIVE OF THE FUNCTION
             -4           -0.26179938779915 0.0677586675586004
             -3                  0                         0                             𝑓(𝑥)=𝑥 sin𝑥
                                                                                         (𝑑(𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
             -2           0.26179938779915 0.0677586675586004                            Product Rule of Differentiation:
             -1           0.523598775598299 0.261799387799149
             0            0.785398163397448 0.555360367269796                            𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
             1             1.0471975511966         0.906899682117109
             2            1.30899693899575          1.26439394990933
             3             1.5707963267949          1.5707963267949                        TRUE VALUE          1.26246714845634
             4            1.83259571459405         1.77015152987306
             5             2.0943951023932         1.81379936423422
THEREFORE,
                  𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
                                                                                 PERCENT RELATIVE ERROR:
                      f'(π/4)    =    1.34278127157811                                      εT          =      -6.36168024015287
 DIVIDED DIFFERENCE
FORMULA:
𝑥)=𝑥 sin𝑥
                                     Estimate at
                                                   x      = 0.785398163397448                   h      =     0.261799387799149
                                                                                                x      =     0.785398163397448
              i                    xi               f(xi)
             -5            -0.5235987755983 0.261799387799149
                                                                                          1ST DERIVATIVE OF THE FUNCTION
                                                                                        𝑓(𝑥)=𝑥 sin𝑥
             -4           -0.26179938779915 0.0677586675586004
             -3                  0                        0
                                                                                        (𝑑(𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
             -2           0.26179938779915 0.0677586675586004                           Product Rule of Differentiation:
             -1           0.523598775598299 0.261799387799149
             0            0.785398163397448 0.555360367269796                           𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
             1             1.0471975511966 0.906899682117109
             2            1.30899693899575         1.26439394990933
             3             1.5707963267949          1.5707963267949                       TRUE VALUE          1.26246714845634
             4            1.83259571459405         1.77015152987306
             5             2.0943951023932         1.81379936423422
THEREFORE,
                  𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
                                                                                PERCENT RELATIVE ERROR:
                      f'(π/4)    =    1.12132034355964                                     εT          =      11.1802358635062
DIVIDED DIFFERENCE
FORMULA:
𝑥)=𝑥 sin𝑥
                                     Estimate at
𝑥)=𝑥 sin𝑥
                                              x         = 0.785398163397448                   h      =     0.261799387799149
                                                                                              x      =     0.785398163397448
              i                    xi                f(xi)
             -5            -0.5235987755983   0.261799387799149
                                                                                        1ST DERIVATIVE OF THE FUNCTION
                                                                                      𝑓(𝑥)=𝑥 sin𝑥
             -4           -0.26179938779915 0.0677586675586004
             -3                   0                 0
                                                                                      (𝑑(𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
             -2           0.26179938779915 0.0677586675586004                         Product Rule of Differentiation:
             -1           0.523598775598299 0.261799387799149
              0           0.785398163397448 0.555360367269796                         𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
             1             1.0471975511966    0.906899682117109
             2            1.30899693899575    1.26439394990933
             3             1.5707963267949     1.5707963267949                          TRUE VALUE          1.26246714845634
             4            1.83259571459405    1.77015152987306
             5             2.0943951023932    1.81379936423422
THEREFORE,
                  𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
                                                                              PERCENT RELATIVE ERROR:
                      f'(π/4)    =   1.23205080756888                                    εT          =      2.40927781167669
NTIATION AND
XIMATION OF
                                                         𝑓(𝑥)=𝑥 sin𝑥
  0.261799387799149
  0.785398163397448
                                                  xi-5
THE FUNCTION
                                                  xi-4
                                                  xi-3
erentiation:                                      xi-2
))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
                                                  xi-1
os𝑥                                               xi
                                                  xi+1
                                                  xi+2
  1.26246714845634                                xi+3
                                                  xi+4
                                                  xi+5
THEREFORE,
  -6.36168024015287
                      2ND DERIVATIVE OF THE FUNCTION
                                                         𝑓(𝑥)=𝑥 sin𝑥
  0.261799387799149
  0.785398163397448
                                                  xi-5
THE FUNCTION
                                                  xi-4
                                                  xi-3
erentiation:                                      xi-2
))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
                                                  xi-1
os𝑥                                               xi
                                                  xi+1
                                                  xi+2
  1.26246714845634                                xi+3
                                                  xi+4
                                                  xi+5
THEREFORE,
11.1802358635062
                                                         𝑓(𝑥)=𝑥 sin𝑥
                             𝑓(𝑥)=𝑥 sin𝑥
  0.261799387799149
  0.785398163397448
                      xi-5
THE FUNCTION
                      xi-4
                      xi-3
erentiation:          xi-2
))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
                      xi-1
os𝑥                   xi
                      xi+1
                      xi+2
  1.26246714845634    xi+3
                      xi+4
                      xi+5
THEREFORE,
  2.40927781167669
                                  FORMULA:
(𝑥)=𝑥 sin𝑥
                                                                     Estimate at
                                                                                       x        =        0.785398163397448
                            i                                    xi                             f(xi)
                           -5                           -0.523598775598299               0.261799387799149
                           -4                           -0.261799387799149              0.0677586675586004
                           -3                                    0                                  0
                           -2                            0.26179938779915               0.0677586675586004
                           -1                            0.523598775598299               0.261799387799149
                           0                             0.785398163397448                 0.555360367269796
                           1                              1.0471975511966                  0.906899682117109
                           2                             1.30899693899575                  1.26439394990933
                           3                              1.5707963267949                   1.5707963267949
                           4                             1.83259571459405                  1.77015152987306
                           5                              2.0943951023932                  1.81379936423422
              THEREFORE,
                                𝑓^′′ (𝑥)= 〖 2 cos𝑥−xsin 〗𝑥
                                                          
                                                     f''(π/4)   =         0.086884254851373
                                  FORMULA:
(𝑥)=𝑥 sin𝑥
                                                                     Estimate at
                                                                                       x        =        0.785398163397448
                            i                                    xi                             f(xi)
                           -5                           -0.523598775598299               0.261799387799149
                           -4                           -0.261799387799149              0.0677586675586004
                           -3                                    0                                  0
                           -2                            0.26179938779915               0.0677586675586004
                           -1                            0.523598775598299               0.261799387799149
                           0                             0.785398163397448                 0.555360367269796
                           1                              1.0471975511966                  0.906899682117109
                           2                             1.30899693899575                  1.26439394990933
                           3                              1.5707963267949                   1.5707963267949
                           4                             1.83259571459405                  1.77015152987306
                           5                              2.0943951023932                  1.81379936423422
              THEREFORE,
                                𝑓^′′ (𝑥)= 〖 2 cos𝑥−xsin 〗𝑥
                                                          
f''(π/4) = 1.45202550646835
FORMULA:
(𝑥)=𝑥 sin𝑥
                                                                     Estimate at
(𝑥)=𝑥 sin𝑥
                                                                                   x        =        0.785398163397448
                            i                                    xi                           f(xi)
                           -5                           -0.523598775598299             0.261799387799149
                           -4                           -0.261799387799149          0.0677586675586004
                           -3                                    0                           0
                           -2                            0.26179938779915           0.0677586675586004
                           -1                            0.523598775598299             0.261799387799149
                            0                            0.785398163397448             0.555360367269796
                           1                              1.0471975511966              0.906899682117109
                           2                             1.30899693899575              1.26439394990933
                           3                              1.5707963267949               1.5707963267949
                           4                             1.83259571459405              1.77015152987306
                           5                              2.0943951023932              1.81379936423422
              THEREFORE,
                                𝑓^′′ (𝑥)= 〖 2 cos𝑥−xsin 〗𝑥
                                                          
                                                     f''(π/4)   =     0.845918433500587
0.785398163397448                             h     =      0.261799387799149
                                              x     =      0.785398163397448
                            𝑓(𝑥)=𝑥 sin𝑥
                            𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
                            (𝑑(𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
                            Product Rule of Differentiation:
                            𝑓(𝑥)=𝑥 sin𝑥
                            𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
                            (𝑑(𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
                            Product Rule of Differentiation:
                            𝑓(𝑥)=𝑥 sin𝑥
                            𝑓^′ (𝑥)=sin𝑥+𝑥 cos𝑥
                            (𝑑(𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
                            Product Rule of Differentiation:
FORMULA:
                                 𝑓(𝑥)=𝑥 sin𝑥
                                                                        Estimate at
                                                                                   x         = 0.785398163397448
                                                 i                      xi              f(xi)
                       xi-5                     -5              -0.5235987755983 0.261799387799149
                       xi-4                     -4             -0.26179938779915 0.0677586675586
                       xi-3                     -3                     0                      0
                       xi-2                     -2            0.26179938779915 0.0677586675586
                       xi-1                     -1            0.523598775598299 0.261799387799149
                        xi                      0             0.785398163397448 0.555360367269796
                       xi+1                     1               1.0471975511966 0.906899682117109
                       xi+2                     2              1.30899693899575 1.26439394990933
                       xi+3                     3               1.5707963267949 1.5707963267949
                       xi+4                     4              1.83259571459405 1.77015152987306
                       xi+5                     5               2.0943951023932        1.81379936423422
                                    THEREFORE,
                                                     𝑓^′′′ (𝑥)= 〖− 3 sin𝑥−𝑥 〗cos𝑥
                                                         f'''(π/4)     = -3.17925777389845
3RD DERIVATIVE OF THE FUNCTION
FORMULA:
                                 𝑓(𝑥)=𝑥 sin𝑥
                                                                        Estimate at
                                                                                   x         = 0.785398163397448
                                                 i                      xi              f(xi)
                       xi-5                     -5              -0.5235987755983 0.261799387799149
                       xi-4                     -4             -0.26179938779915 0.0677586675586
                       xi-3                     -3                     0                      0
                       xi-2                     -2            0.26179938779915 0.0677586675586
                       xi-1                     -1            0.523598775598299 0.261799387799149
                        xi                      0             0.785398163397448 0.555360367269796
                       xi+1                     1              1.0471975511966 0.906899682117109
                       xi+2                     2              1.30899693899575 1.26439394990933
                       xi+3                     3               1.5707963267949 1.5707963267949
                       xi+4                     4              1.83259571459405 1.77015152987306
                       xi+5                     5               2.0943951023932        1.81379936423422
                                    THEREFORE,
                                                     𝑓^′′′ (𝑥)= 〖− 3 sin𝑥−𝑥 〗cos𝑥
f'''(π/4) = -1.49145218439533
FORMULA:
                                 𝑓(𝑥)=𝑥 sin𝑥
                                                                        Estimate at
       𝑓(𝑥)=𝑥 sin𝑥
                                                         x         = 0.785398163397448
                       i                     xi              f(xi)
xi-5                  -5             -0.5235987755983 0.261799387799149
xi-4                  -4             -0.26179938779915 0.0677586675586
xi-3                  -3                     0                      0
xi-2                  -2             0.26179938779915        0.0677586675586
xi-1                  -1            0.523598775598299 0.261799387799149
 xi                    0            0.785398163397448 0.555360367269796
xi+1                  1               1.0471975511966 0.906899682117109
xi+2                  2              1.30899693899575 1.26439394990933
xi+3                  3               1.5707963267949 1.5707963267949
xi+4                  4              1.83259571459405 1.77015152987306
xi+5                  5               2.0943951023932        1.81379936423422
          THEREFORE,
                           𝑓^′′′ (𝑥)= 〖− 3 sin𝑥−𝑥 〗cos𝑥
                               f'''(π/4)     = -3.17925777389845
                                                                       4TH DERIVATIVE OF THE FUNCTION
0.785398163397448                         h      = 0.261799387799149
                                          x      = 0.785398163397448
                                                                                              xi-5
                            3RD DERIVATIVE OF THE FUNCTION
                            𝑓(𝑥)=𝑥 sin𝑥
                                                                                              xi-4
0.785398163397448                         h      = 0.261799387799149
                                          x      = 0.785398163397448
                                                                                              xi-5
                            3RD DERIVATIVE OF THE FUNCTION
                            𝑓(𝑥)=𝑥 sin𝑥
                                                                                              xi-4
                                                                       xi-5
                            3RD DERIVATIVE OF THE FUNCTION
                            𝑓(𝑥)=𝑥 sin𝑥
                                                                       xi-4
FORMULA:
               𝑓(𝑥)=𝑥 sin𝑥
                                                      Estimate at
                                                                 x      = 0.785398163397448                  h     =
                                                                                                             x     =
                               i                      xi              f(xi)
        xi-5                  -5              -0.5235987755983 0.261799387799149
                                                                                                   4TH DERIVATIVE OF THE FUNCTION
                              -4             -0.26179938779915 0.0677586675586
                                                                                                      𝑓(𝑥)=𝑥 sin𝑥
        xi-4
FORMULA:
               𝑓(𝑥)=𝑥 sin𝑥
                                                      Estimate at
                                                                 x        = 0.785398163397448                  h     =
                                                                                                               x     =
                               i                      xi              f(xi)
        xi-5                  -5              -0.5235987755983 0.261799387799149
                                                                                                     4TH DERIVATIVE OF THE FUNCTION
                                                                                                        𝑓(𝑥)=𝑥 sin𝑥
        xi-4                  -4             -0.26179938779915 0.0677586675586
OF THE FUNCTION
FORMULA:
               𝑓(𝑥)=𝑥 sin𝑥
                                                      Estimate at
       𝑓(𝑥)=𝑥 sin𝑥
                                                         x         = 0.785398163397448                  h     =
                                                                                                        x     =
                       i                     xi              f(xi)
xi-5                  -5             -0.5235987755983 0.261799387799149
                                                                                              4TH DERIVATIVE OF THE FUNCTION
                                                                                                 𝑓(𝑥)=𝑥 sin𝑥
xi-4                  -4             -0.26179938779915 0.0677586675586
𝑥)=𝑥 sin𝑥
  (𝑥)=sin𝑥+𝑥 cos𝑥
 ′ (𝑥)= 〖 2 cos𝑥−xsin 〗𝑥
 ′′ (𝑥)= 〖− 3 sin𝑥−𝑥 〗cos𝑥
                        
 𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
duct Rule of Differentiation:
-2.27306675747639
ATIVE ERROR:
              110.22259825985
             0.261799387799149
             0.785398163397448
𝑥)=𝑥 sin𝑥
  (𝑥)=sin𝑥+𝑥 cos𝑥
 ′ (𝑥)= 〖 2 cos𝑥−xsin 〗𝑥
 ′′ (𝑥)= 〖− 3 sin𝑥−𝑥 〗cos𝑥
                        
 𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
duct Rule of Differentiation:
-2.27306675747639
ATIVE ERROR:
             -64.1378622860146
             0.261799387799149
             0.785398163397448
𝑥)=𝑥 sin𝑥
  (𝑥)=sin𝑥+𝑥 cos𝑥
 ′ (𝑥)= 〖 2 cos𝑥−xsin 〗𝑥
 ′′ (𝑥)= 〖− 3 sin𝑥−𝑥 〗cos𝑥
                        
 𝑢𝑣))/𝑑𝑥=(𝑢(𝑑𝑣))/𝑑𝑥+(𝑣(𝑑𝑢))/𝑑𝑥
duct Rule of Differentiation:
-2.27306675747639
ATIVE ERROR:
             1.83989254580262