Itf@vel Jee
Itf@vel Jee
1 1
(1) (2) 3 3
4 4 (3) (4)
10 12
2 1
(3) (4) 6
3 4
4 4 17. If y k cos –1 5 cos kx – 5 sin kx , then
k =1
13. The domain of the function
dy
at x = 0 is ________. [JEE (Main)-2020]
1 |
x | 5 dx
f x sin 2 is
x 1
n 1
, a ] [a, . Then a is equal to 18. lim tan tan –1 is equal to
n
r 1 1 r r2
[JEE (Main)-2020] ______. [JEE (Main)-2021]
1 17 17 1 1 63
(1) (2) 1 19. A possible value of tan sin is :
2 2 4 8
[JEE (Main)-2021]
17 1 17
(3) (4) (1) 2 2 1 (2)
2 2 7 1
4 5 16 1 1
14. 2 sin1 sin1 sin1 is equal to (3) (4)
5 13 65 7 2 2
4
[JEE (Main)-2020] 20. cosec 2 cot 1 5 cos 1 is equal to :
5
7 [JEE (Main)-2021]
(1) (2)
2 4
65 65
(1) (2)
3 5 56 33
(3) (4)
2 4 75 56
(3) (4)
56 33
ARCHIVE - JEE (Main) MATHEMATICS
30 31 2a 4a
(1) (2) (1) cos (2) sin
4 4
32 33 4a 2a
(3) (4) (3) cos (4) sin
4 4
MATHEMATICS ARCHIVE - JEE (Main)
3
(3) cot 1 (4) 41. Let x * y = x2 + y3 and (x * 1) * 1 = x * (1 * 1).
2 2
x 4 x2 2
50
–1 1
Then a value of 2 sin1 is
x 4 x2 2
37. If tan p, then the value of tan p is
r 1 2r 2
[JEE (Main)-2021] [JEE (Main)-2022]
50
(1) 100 (2) (1) (2)
51 4 3
101 51
(3) (4) (3) (4)
102 50 2 6
ARCHIVE - JEE (Main) MATHEMATICS
15 n
cos –1 1
4 is equal to 47. The value of lim 6 tan tan–1
42. The value of tan –1 n r 1 r 2 3r 3
sin 4
is equal to [JEE (Main)-2022]
[JEE (Main)-2022] (1) 1 (2) 2
(3) 3 (4) 6
(1) – (2) –
4 8 48. The domain of the function
5 4 1
(3) – (4) – 1
12 9 2 sin 2
cos1 4x 1
is [JEE (Main)-2022]
43. Let f ( x ) 2 cos –1 x 4 cot –1 x – 3 x 2 – 2 x 10, –1, 1 ,
If [a, b] is the range of the function f, then
4a – b is equal to [JEE (Main)-2022] 1 1
(1) R ,
(1) 11 (2) 11 – 2 2
(3) 11 + (4) 15 – (2) , 1 1, 0
44. If the inverse trigonometric functions take principal
1 1
values, then (3) , , 0
2 2
3 4 2 4 1 1
cos –1 cos tan –1 sin tan–1 (4) , , 0
10 3 5 3 2 2
is equal to [JEE (Main)-2022] 1 1
49. 50 tan 3 tan1 2 cos 1
2 5
(1) 0 (2)
4 1
4 2 tan tan 1 2 2 is equal to ______.
2
(3) (4)
3 6 [JEE (Main)-2022]
2 7 3 1 5 1
45. sin1 sin cos1 cos tan1 tan is 50. tan 2 tan1 sec 1 2 tan1 is equal to
3 6 4 5 2 8
equal to [JEE (Main)-2022]
[JEE (Main)-2022]
11 17 (1) 1 (2) 2
(1) (2)
12 12
1 5
(3) (4)
31 3 4 4
(3) (4)
12 4 51. For k R, let the solution of the equation
50
46. The value of cot tan–1
1 cos sin1 x cot tan1 cos sin1
is
n 1 1 n n2
1
k,0 x
[JEE (Main)-2022] 2
Inverse trigonometric functions take only principal
26 25
(1) (2) values. If the solutions of the equation x2 – bx – 5 =
25 26
1 1 b
0 are and , then 2 is equal to ______.
50 52 2
2 k
(3) (4)
51 51 [JEE (Main)-2022]
MATHEMATICS ARCHIVE - JEE (Main)
(1) 0 (2) 1
f x sin1 2 x 2 3 log2 log 1 x 2 5 x 5 ,
1 1 2
(3) (4)
2 2
where [t] is the greatest integer function, is
54. The sum of the absolute maximum and absolute
minimum values of the function [JEE (Main)-2022]
f x tan1 sin x cos x in the interval [0, ] is
5 5 5
(1) , (2) 5 5 , 5 5
1 2 2 2 2
(1) 0 (2) tan 1
2 4
1 5 5 5 5
(3) cos 1 (4) (3) 1, (4) 1,
3 4 12 2 2
[JEE (Main)-2022]
Inverse Trigonometric Functions
1. Answer (1)
1 x
= tan tan
–1 x z 4 2
2y = x + z and 2tan–1y = tan
1 xz
x
=
4 2
2y x z
1 y2 1 xy 1
f (x) and at x , f ( x)
2 6 3
y2 xz So, equation of normal is
x, y, z are in GP 2
y 2 x y 2x
x=y=z 3 6 3
2. Answer (1) 5. Answer (2)
y sec sec –1 1 x2 1 x2 1 2 1 3 3
cos cos x
3x 4x 2 4
dy x
dx 1 2 1 3
1 x2 cos cos
3x 2 4x
dy 1
dx x 1 2 sin 1 x cos 1 x
2
3. Answer (1)
1 2 1 3
2x cos sin
tan y 1
tan x 1
tan 1 3x 4x
1 x2
2 16 x 2 9
1 3x x 3 cos 1
cos 1
3tan–1 x = tan 3x 4x
1 3x 2
3x x3 3 16 x 2 9
y sin 1
cos 1
1 3x2 4x 4x
4. Answer (1)
2 16 x 2 9
1 1 sin x
f (x) tan 3x 4x
1 sin x
64 81
2 x2
x x 9 16
cos sin
1 2 2
= tan
x x
2 145 3
cos sin x x
2 2 12 4
ARCHIVE - JEE (Main) MATHEMATICS
19 y
cos–1x – cos–1
cot tan–1 n 1 – tan–1 n 2
n 1
xy y2
cot tan–1 20 – tan–1 1 cos–1 1 x2 . 1
2 4
20 – 1
cot tan –1
1 20 1 xy 1 x2 4 y 2
cos
2 2
19 21 21
cot tan –1 cot cot –1
21 19 19 xy + 1 x2 4 y 2 2cos
8. Answer (1)
(xy – 2 cos )2 = (1 – x2) (4 – y2)
x2y2 + 4cos2 – 4xycos = 4 – y2 – 4x2 + x2y2
2 4x2 – 4xycos + y2 = 4sin2
2 11. Answer (1)
cot 2 3 12
1 1
sin sin
5 13
1 3 5 12 4
sin
(cot–1x – 5) (cot–1 – 2) > 0 5 13 13 5
cot–1x (– , 2) (5, ) ...(i) ( xy 0 and x2 + y2 1)
But cot–1x lies in (0, )
1 33 1 33
From equation (i) sin sin
65 65
So, cot–1x (0, 2)
By graph, 1 56 1 56
cos sin
x (cot 2, ) 65 2 65
MATHEMATICS ARCHIVE - JEE (Main)
1 sin x x 1 1 1 1 1 1
f '( x ) tan 1
tan 1
tan S tan tan tan .........
cos x 4 2 3 7 13
1 1 1 1 1
x tan tan tan
, 1 1 2 1 2 3
in the neighbourhood of x = 1
4 2 2 2 1
.........
x 1 3 4
f '( x )
4 2 1 2 1 1 3 2
tan tan
1 2 1 1 3 2
x2
f (x) x c 4 3
1 11 10
4 4 tan .......... tan 1
1 3 4 1 11 10
f(0) = 0 c=0 = (tan–12 – tan–11) + (tan–1 3 – tan–12) +
1 1 (tan–14 – tan–13) + ..... + (tan–111 – tan–110)
So f (1) = tan–111 – tan–11
4 4 4
1 11 1
13. Answer (1) tan
1 11 1
x 5
f (x) sin–1 1 5
2 tan
x 1 6
x 5 5
–1 1 tan(S) =
2 6
x 1
16. Answer (3)
x2 – x – 4 0
1 x2 – 1
2 d tan–1
1 x –1 x
1– 17 1 17 d tan–1
x – x – 0 x
2 2 dx
2
2 x 1– x 2 x 1– x 2
1 17 d tan–1 d tan–1
x 1– 2x 2 1– 2 x 2
2
dx
1 17 1 17 2
x – ,– , 1 x –1
2 2 Simplifying tan–1 Put x = tan
x
14. Answer (3)
sec – 1 1– 1– 2sin2 / 2
–1 4 5 16 tan–1 tan–1
2 – sin + sin–1 + sin–1 tan 2sin / 2 cos / 2 2
5 13 65
4 5 16 1 x2 – 1 tan–1 x
=2 – tan–1 + tan–1 + tan–1 tan–1
3 12 63 x 2
45
2 x 1– x 2
–1 3
12 16 & similarly tan–1 Put x = sin
=2 – tan + tan–1 1– 2 x 2
4 5 63
1–
3 12 sin2
tan–1 2 = 2sin–1x
63 16 cos 2
=2 – tan –1 + tan–1
16 63 Hence required derivative
1
63 63
=2 – tan –1 + cot –1 2(1 x 2 ) 1– x 2 3
16 16
2 4(1 x )2 10
3 1– x 2 1
=2 – = x
2 2 2
ARCHIVE - JEE (Main) MATHEMATICS
3 4
Let cos and sin
5 5
6 3 7
2cos2 1 2cos2
y k cos –1 {cos coskx – sin sinkx} 4 4 4 4
k =1
7 7
cos2 cos
6 4 8 4 2 2
k cos –1 cos kx
k =1 1
tan
4 7
6 6
k kx k x 2
k 20. Answer (1)
k 1 k 1
1 1 4
cos ec 2 cot 5 cos
dy 6
6 7 13 5
k2 91
dx k 1 6 1 5 1 3
cos ec tan tan
12 4
18. Answer (1)
1 56
cos ec tan
1 r 1 r 33
tan –1 tan 1
1 r r2 1 r 1r 1 65 65
cos ec cos ec
56 56
tan –1 r 1 – tan 1 r 21. Answer (3)
sin –1x cos –1 x tan –1 y
n
1 k (say)
tan 1 a b c
So (tan–12 – tan–11)
r 1 1 r r2 sin–1 x = ak, cos–1x = bk and tan–1y = ck
+ (tan–13 – tan–12) + .......... + (tan–1(n + 1) – Now,
tan–1n)
= tan–1(n + 1) – tan–11 sin –1 x cos –1 x
2
n
1
lim tan tan –1
n r 1 1 r r2 (a b)x
2
–1 –1
lim tan tan n 1 – tan 1
n k
2(a b)
= tan 1
2 4 c
Now tan –1 y
19. Answer (3) 2(a b)
1 63
tan sin 1 tan ? c
4 8 4 cos cos(2 tan –1 y)
ab
Let
sin 1
63 1 63 1 – y2
8
and cos
8
sin
8
tan 63 and 6
cos cos –1 [if y > 0]
1 y2
1 9 9
2cos2 1 2cos2 cos2
2 8 2 8 2 16
1– y 2
3
cos
2 4
1 y2
MATHEMATICS ARCHIVE - JEE (Main)
x 1 31
23. Answer (1)
8
3x 4x tan 1 (x 1) tan 1(x 1) tan 1
1 1 1 31
sin sin sin x
5 5
1 (x 1) (x 1) 1 8
tan tan
1 (x 1)(x 1) 31
1 3x 16x 2 4x 9x 2 1
sin 1 1 sin x x 4
5 25 5 25
2 x2 31
1
4x2 + 31x – 8 = 0 x or x 8
1 3x 25 16x2 4x 25 9x2 1 4
sin sin x
25 1
x does not satisfy
4
3x 25 16x 2 4x 25 9x 2 25x 32
Hence, sum of possible values of x 8
4
x = 0 or 3 25 16x 2 4 25 9x 2 25 26. Answer (4)
Squaring both sides
1 1 1
sin x2 cos 1
x2 1 x2
2 1 3 3
x
2
1 1 4 1
x2 , ; so x 2 0 or 1
1 3 3 3 3
x
2 Hence L.H.S. is always equal to .
1 and x2 = has no solution in [–1, 1].
x 0,
2 27. Answer (1)
24. Answer (1) cosec–1x defined for x (– , –1] [1, )
also {x} 0 x Z
1 1 1
cot cot 2 cot 8 cot 1 18 cot 1
32 ...100 terms f(x) is defined for all non-integer except interval
[–1, 1]
28. Answer (4)
11 11 1 1 1 1
tan tan tan tan ...100 term x(x + 1) 0 ...(i)
2 8 18 32
x2 + x + 1 1
100
1 1 x2 + x 0 ...(ii)
tan
2
k 1 2k x2 +x=0 x = 0, –1
When x = 0 or –1
100 n 2k 1 2k 1
1 2 1
tan tan
2 1 2k 1 2k 1 LHS
k 1 4k k 1 No solution
2
ARCHIVE - JEE (Main) MATHEMATICS
k k 1
2a 2 2
2cos2 cos 1 x 1 sin then Sk Tk tan 1 tan 1
r 1 3 3
2a 2
2 x 2 1 sin lim Sk tan 1 .
k 3
MATHEMATICS ARCHIVE - JEE (Main)
x4 x2 2 4
ƒ (t) = 0 at t = Now, 2sin 1 2sin 1
4 x4 x 2
2 8
3 3 3
ƒ t min 2·
64 64 32 6 3
ARCHIVE - JEE (Main) MATHEMATICS
15 50
1
cos 1 cot tan–1
–1 4 1 n n2
tan n 1
sin
4
50
(n 1) n
= cot tan–1
n 1 1 (n 1) n
1
1
tan–1 2
1 50
2 = cot tan–1(n 1) tan–1 n
n 1
tan–1 1 2 tan–1 2 1
= cot tan –1 51 tan–1 1
8
51 1
= cot tan –1
43. Answer (2) 1 51
3 4 2 4
cos –1 cos tan–1 sin tan –1 n
(r 2) (r 1)
10 3 5 3 = lim 6 tan tan –1
n r 1 1 (r 2)(r 1)
3 3 2 4
cos–1 · ·
10 5 5 5 n
= lim 6 tan (tan–1(r 2) tan–1(r 1))
n r 1
1
cos –1
2 3
–1 –1
= lim 6 tan tan ( n 2) tan 2
45. Answer (1) n
3 – 3
sin–1 cos –1 tan–1(–1) 1
2 2 = 6 tan cot –1
2 2
5
– 1
3 6 4 = 6 tan tan –1
2
4 10 – 3 11
12 12 =3
MATHEMATICS ARCHIVE - JEE (Main)
1 4x 2 2 2 tan 2 tan 2 0
1 0
2 (2n 1)(2x 1)
4x 1
1
tan 2 or
2
1
tan
2
1 1 tan 2 doesn't satisfy i
x , (0) , …(1)
2 2
1
25 4 2 29
2 2
1 1 4x 2
1 1 0 0
4x2 1 4 x2 1 4x2 1 50. Answer (2)
1 5 1
1 1 tan 2 tan 1 sec 1 2 tan 1
x x 5 2 8
2 2
0
1 1
x x 1 1
2 2
1 5 8 1 5
tan 2 tan sec
1 1 2
1
5 8
1 1
tan 2 tan 1 tan 1
3 2
1 1 1 1 2
x , , , …(2)
2 2 2 2 1 3 1
tan tan tan 1
1 2
From (1) & (2), 1
9
1 1 3 1
x , , {0} tan tan 1 tan 1
2 2 4 2
49. Answer (29)
3 1 5
tan tan 1 4 2 tan tan 1 4
1 1 1 1 1 3 5
50 tan tan 2 tan 2 tan 2 1
2 2 8 8
1
tan
4 2 tan 2 2 tan tan 1 2 2
2
ARCHIVE - JEE (Main) MATHEMATICS
x2 4x 2
cos sin 1
x cot tan 1
cos sin 1
k 1 1
2
x 3
x2 3 x2 4x 2 x2 3
1 1 2
cos sin x cot tan 1 x k
2x 2 4x 5 0 & –4x 1
1
x R & x
1 x 4
cos sin k
1 x2
1
So domain is , .
4
1 1
For Domain : x ,
1 2x 2 2 2
k2
1 x2
1 1 1
cos x 2 cos x cos 2x
1 – 2x2 = k2 – k2x2 2
cos–1x + 2cos–1x = + cos–12x
2
k 1 cos(3cos–1x) = – cos(cos–12x)
x2 0
k2 2 4x3 = x
1
x = 0, ±
1 1 k2 2 2
2 2
2 …(1)
k2 1 54. Answer (3)
1
f x tan sin x cos x , 0,
and 1 …(2)
Let g x sin x cos x
3
2 2 sin x and x ,
k 2 4 4 4 4
2 1 5
k2 1
g x 1, 2
k2 2 1
and b = S.R = 2 1 4 ,tan 2
k2 1 4
1
Sum of fmax and fmin tan 2
b 4 4
12
k 2 1
3 1 1
cos
3 4
MATHEMATICS ARCHIVE - JEE (Main)
2 3 5 5
2 2 –1
Now, 4k 4 sin x
Now, y 2 1 x
2k
1 2
2 1
–1 5 1 2
Here sin sin (4 sin x)
2 2
1 5 5 10
1
Let sin–1 x = x 0, 0, 2 2
5 2 0
2 4
x = sin 1
2,
2
cos 1 x2
3 1
16 16 23 16
sin2 2x · 1 x 2 S 23
= 130
cos 2 1 4 x 2 (1 x 2 ) (2x 2 1)2 1 2x 2