0% found this document useful (0 votes)
476 views17 pages

Itf@vel Jee

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
476 views17 pages

Itf@vel Jee

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

Inverse Trigonometric Functions

1. If x, y, z are in A.P. and tan–1x, tan–1y and tan–1z


are also in A.P., then [JEE (Main)-2013] 146 145
(1) (2)
12 12
(1) x = y = z (2) 2x = 3y = 6z
(3) 6x = 3y = 2z (4) 6x = 4y = 3z 145 145
(3) (4)
10 11
dy
2. If y  sec(tan1 x ), then at x = 1 is equal to 6. If x = sin –1 (sin10) and y = cos –1 (cos10), then
dx y – x is equal to [JEE (Main)-2019]
[JEE (Main)-2013]
(1) 7 (2) 10
1 1 (3) 0 (4) 
(1) (2)
2 2
 19  n 
(3) 1 (4) 2 7. The value of cot   cot –1  1   2 p   is
 n 1  p 1  
  
 2x 
3. Let tan1 y  tan1 x  tan1  2 [JEE (Main)-2019]
 1 x 
1 19 23
where | x |  . Then a value of y is (1) (2)
3 21 22
[JEE (Main)-2015]
22 21
(3) (4)
3x  x3 3x  x3 23 19
(1) (2)
1  3x 2 1  3x 2 8. All x satisfying the inequality (cot–1x)2 – 7 (cot–1x)
+ 10 > 0, lie in the interval [JEE (Main)-2019]
3x  x3 3x  x3
(3) (4) (1) (cot 2, )
1  3x 2 1 3x2
(2) (cot 5, cot 4)
  (3) (–, cot 5)  (cot 4, cot 2)
4. Consider f  x   tan1  1  sin x  , x  0,   .
 1  sin x   2 (4) (–, cot 5)  (cot 2, )

A normal to y = f(x) at x  also passes 3  1
6 9. If  = cos –1   ,  = tan–1   , where 0 < ,
5 3
through the point [JEE (Main)-2016]

< , then  –  is equal to
 2     2
(1)  0,  (2)  ,0 
 3   6 
[JEE (Main)-2019]
    9 
(3)  , 0  (4) (0, 0) 1  9  cos 1 
 4  (1) tan   (2) 
 14   5 10 
–1  2  –1  3   3
5. If cos    cos     x   , then x is 1  9   9 
 3x   4x  2  4 (3) sin   (4) tan1  
equal to [JEE (Main)-2019]  5 10   5 10 
MATHEMATICS ARCHIVE - JEE (Main)

y 15. If S is the sum of the first 10 terms of the series


10. If cos–1x – cos–1 = , where –1  x  1, –2  y
2
 1  1  1  1
y tan1   + tan–1   + tan –1   + tan –1   +...,
 2, x  , then for all x, y, 4x2 – 4xy cos + y2 3
  7
  13
   21
2 then tan(S) is equal to [JEE (Main)-2020]
is equal to : [JEE (Main)-2019]
(1) 2 sin2 (2) 4 sin2 – 2x2y2 6 5
(1) – (2)
5 11
(3) 4 cos2 + 2x2y2 (4) 4 sin2
10 5
–1  12  –1  3  (3) (4)
11. The value of sin   – sin   is equal to 11 6
 13  5
[JEE (Main)-2019]  1  x 2  1
16. The derivative of tan1   with respect to
  56   63   x 
– sin–1    – sin–1    
(1) (2)
2  65   65 
 2x 1  x 2  1
tan1   at x  is
–1  33    9   1  2x 2  2
(3)  – cos   (4) – cos –1    
 65  2  65 
[JEE (Main)-2020]
 
12. If f(x) = (secx + tanx),   x  , and
tan –1
2 2 2 3 2 3
f(0) = 0, then f(1) is equal to [JEE (Main)-2020] (1) (2)
3 5

 1 1
(1) (2) 3 3
4 4 (3) (4)
10 12
2  1
(3) (4) 6
3 4 
4 4 17. If y   k cos –1  5 cos kx – 5 sin kx  , then
k =1
13. The domain of the function
dy
at x = 0 is ________. [JEE (Main)-2020]
1  |
x | 5  dx
f x  sin  2  is
 x 1 
 n  1  
, a ]  [a,  . Then a is equal to 18. lim tan   tan –1   is equal to
n
r 1  1 r  r2  
[JEE (Main)-2020] ______. [JEE (Main)-2021]

1  17 17 1 1 63 
(1) (2) 1 19. A possible value of tan  sin  is :
2 2 4 8 
[JEE (Main)-2021]
17  1 17
(3) (4) (1) 2 2  1 (2)
2 2 7 1

 4 5 16  1 1
14. 2   sin1  sin1  sin1  is equal to (3) (4)
 5 13 65  7 2 2
 4 
[JEE (Main)-2020] 20. cosec  2 cot 1 5  cos 1    is equal to :
  5 
 7 [JEE (Main)-2021]
(1) (2)
2 4
65 65
(1) (2)
3 5 56 33
(3) (4)
2 4 75 56
(3) (4)
56 33
ARCHIVE - JEE (Main) MATHEMATICS

26. The number of solutions of the equation


 1  2
sin 1 x cos 1 x tan 1 y sin1  x2    cos1  x2    x2 , for x  [  1,1]
21. If   ; 0 < x < 1, then the  3  3
a b c and [x] denotes the greatest integer less than or
 c  equal to x, is : [JEE (Main)-2021]
value of cos   is : [JEE (Main)-2021]
ab (1) Infinite (2) 2
(3) 4 (4) 0
1 y2
(1) 1 – y2 (2)
y y cos ec –1x
27. The real valued function f  x   , where [x]
x  x
1  y2 1  y2 denotes the greatest integer less than or equal to x,
(3) 2 (4) is defined for all x belonging to :
1 y 2y
[JEE (Main)-2021]
 (1) all non-integers except the interval [–1, 1]
22. If 0 < a, b < 1, and tan–1a + tan–1 b = , then the
4 (2) all integers except 0, –1, 1
value of (3) all reals except integers

 a2  b2   a3  b3   a 4  b 4  (4) all reals except the interval [–1, 1]


(a + b) –   + 
 
 – 
 
 +
 28. The number of real roots of the equation
 2   3   4  
... is : [JEE (Main)-2021] tan1 x(x  1)  sin1 x2  x  1  is :
4
e [JEE (Main)-2021]
(1) e2 – 1 (2) loge   (1) 2 (2) 1
2
(3) 4 (4) 0
(3) e (4) loge2
23. Given that the inverse trigonometric function take  3  5 
29. The value of tan  2 tan1    sin1    is equal to
principal values only. Then, the number of real  5
   13  
values of x which satisfy [JEE (Main)-2021]
 3x   4x 
sin1    sin 1  1
  sin x is equal to : (1)
220
(2)
151
 5   5  21 63
[JEE (Main)-2021] 181 291
(3) (4)
(1) 3 (2) 1 69 76
(3) 0 (4) 2 1  1  x 
30. The domain of the function cosec   is :
24. If cot–1() = cot–12 + cot–18 + cot–118 + cot–132  x 
+... upto 100 terms, then  is : [JEE (Main)-2021]
[JEE (Main)-2021]  1   1 
(1)   ,0   1,  (2)  ,    0
(1) 1.01 (2) 1.02  2   2 
(3) 1.03 (4) 1.00  1  1 
(3)  1,    0,  (4)   ,    0
25. The sum of possible values of x for  2  2 
 1  1  8 
tan–1(x  1)  cot 1    tan  31  is
2 2
 x  1    31. If sin1 x  cos1 x  a; 0 < x < 1, a  0,
[JEE (Main)-2021] then the value of 2x2 – 1 is [JEE (Main)-2021]

30 31  2a   4a 
(1)  (2)  (1) cos   (2) sin  
4 4      

32 33  4a   2a 
(3)  (4)  (3) cos   (4) sin  
4 4      
MATHEMATICS ARCHIVE - JEE (Main)

38. Considering only the principal values of inverse


1  1  sin x  1  sin x   
32. If y ( x )  cot   , x   ,   , functions, the set [JEE (Main)-2021]
 1  sin x  1  sin x  2 
dy 5 
then at x  is [JEE (Main)-2021] A  x  0: tan–1(2 x )  tan–1(3 x ) 
dx 6 4
1 (1) Is a singleton
(1)  (2) 0
2
(2) Contains two elements
1
(3) –1 (4) (3) Contains more than two elements
2
33. Let M and m respectively be the maximum and (4) Is an empty set
minimum values of the function f(x) = tan–1(sinx +
39. T he set of all values of k for which
 
cosx) in 0,  . Then the value of tan(M – m) is 3 3
 2 tan1 x  cot 1 x  k 3 , x  R , is the interval
equal to [JEE (Main)-2021]

(1) 2  3 (2) 2  3 [JEE (Main)-2022]


(3) 3  2 2 (4) 3  2 2
34. The domain of the function  1 7  1 13 
(1)  ,  (2)  24 , 16 
 32 8   
 3 x 2  x – 1  x  1
f ( x )  sin–1    cos –1   is
 ( x – 1)2   x  1
   1 13   1 9
(3)  ,  (4)  32 , 8 
[JEE (Main)-2021]  48 16   

 1  1 40. T he domain of the function


(1) 0,  (2) 0, 
 4  2
 x2 – 5x  6 
 1 1  1 1 cos–1  
(3)  ,   0 (4) [–2, 0]   ,   x2 – 9 
4 2 4 2 f (x)    is [JEE (Main)-2022]
loge ( x 2 – 3 x  2)
35. cos –1(cos(–5))  sin–1(sin(6)) – tan –1(tan(12))
is equal to (The inverse trigonometric functions take
the principal values) [JEE (Main)-2021] (1) (– , 1)  (2,  )
(1) 3 + 1 (2) 3 – 11
(2) (2, )
(3) 4 – 11 (4) 4 – 9
 1 
k  6r  (3)  – , 1  (2, )
36. Let Sk   tan1  . Then lim Sk is  2 
 22r 1  3 2r 1  k 
r 1  
equal to : [JEE (Main)-2021]
3  1   3  5 3 – 5 
(1) tan–1(3) (2) tan1   (4)  – , 1  (2,  ) –  , 
2  2   2 2 

3 
(3) cot 1   (4) 41. Let x * y = x2 + y3 and (x * 1) * 1 = x * (1 * 1).
2 2
 x 4  x2  2 
50
–1 1
Then a value of 2 sin1   is
 x 4  x2  2 
37. If  tan  p, then the value of tan p is  
r 1 2r 2
[JEE (Main)-2021] [JEE (Main)-2022]

50  
(1) 100 (2) (1) (2)
51 4 3

101 51  
(3) (4) (3) (4)
102 50 2 6
ARCHIVE - JEE (Main) MATHEMATICS

  15    n
 cos   –1   1  
 4   is equal to 47. The value of lim 6 tan   tan–1  
42. The value of tan –1  n  r  1  r 2  3r  3  
   
 sin  4  
    is equal to [JEE (Main)-2022]
[JEE (Main)-2022] (1) 1 (2) 2

  (3) 3 (4) 6
(1) – (2) –
4 8 48. The domain of the function

5 4  1 
(3) – (4) – 1 
12 9  2 sin  2 
cos1   4x  1 
is [JEE (Main)-2022]
  
43. Let f ( x )  2 cos –1 x  4 cot –1 x – 3 x 2 – 2 x  10,  –1, 1 ,  
If [a, b] is the range of the function f, then  
4a – b is equal to [JEE (Main)-2022]  1 1
(1) R    , 
(1) 11 (2) 11 –   2 2
(3) 11 +  (4) 15 –  (2) ,  1  1,   0
44. If the inverse trigonometric functions take principal
 1   1 
values, then (3)  ,  ,  0
 2   2 
 3   4  2   4   1   1 
cos –1  cos  tan –1     sin  tan–1     (4)  ,  ,   0
 10   3  5   3   2  2 
is equal to [JEE (Main)-2022]   1  1 
49. 50 tan  3 tan1    2 cos 1  
  2  5 
(1) 0 (2)
4 1 
 4 2 tan  tan 1 2 2  is equal to ______.
  2 
(3) (4)
3 6 [JEE (Main)-2022]

 2   7   3   1 5 1
45. sin1  sin   cos1  cos   tan1  tan  is 50. tan  2 tan1  sec 1  2 tan1  is equal to
 3   6   4   5 2 8 

equal to [JEE (Main)-2022]
[JEE (Main)-2022]
11 17 (1) 1 (2) 2
(1) (2)
12 12
1 5
(3) (4)
31 3 4 4
(3) (4) 
12 4 51. For k  R, let the solution of the equation

 50 

46. The value of cot   tan–1 
1 cos  sin1 x cot tan1 cos sin1 

  is  
n 1  1  n  n2  
   1
 k,0  x 
[JEE (Main)-2022] 2
Inverse trigonometric functions take only principal
26 25
(1) (2) values. If the solutions of the equation x2 – bx – 5 =
25 26
1 1  b
0 are  and , then 2 is equal to ______.
50 52  2
 2  k
(3) (4)
51 51 [JEE (Main)-2022]
MATHEMATICS ARCHIVE - JEE (Main)

52. Considering only the principal values of the inverse


trigonometric functions, the domain of the function 1 sin–1 x cos –1 x
56. If 0  x  and  , then a value
2  
1
 x2  4x  2 
f ( x )  cos   is [JEE (Main)-2022]
 x2  3   2 
 
of sin   is
 
 1  1 
(1)   ,  (2)   ,  
 4  4  2 2 2 2
(1) 4 1  x 1  2 x (2) 4x 1  x 1  2 x
 1   1
(3)  ,   (4)   , 
 3   3 
(3) 2 x 1  x 2 1  4x 2 2
(4) 4 1  x 1  4 x
2
53. Considering the principal values of the inverse
trigonometric functions, the sum of all the solutions
[JEE (Main)-2022]
of the equation cos–1(x) – 2sin–1(x) = cos–1(2x) is equal
57. The domain of the function
to [JEE (Main)-2022]

(1) 0 (2) 1  
f x  sin1 2 x 2  3   log2  log 1 x 2  5 x  5 ,
   
1 1  2 
(3) (4) 
2 2
where [t] is the greatest integer function, is
54. The sum of the absolute maximum and absolute
minimum values of the function [JEE (Main)-2022]
f x  tan1 sin x  cos x in the interval [0, ] is
 5 5 5   
(1)   ,  (2)  5  5 , 5  5 
 1    2 2   2 2 
 
(1) 0 (2) tan 1  
 2 4

 1     5 5  5 5
(3) cos 1   (4) (3)  1,  (4) 1, 
 3 4 12  2   2 
 
[JEE (Main)-2022]

55. The domain of the function 1 1 4 


58. Let x = sin(2tan –1 ) and y  sin  tan . If
2 3 
 x2  3x  2 
f ( x )  sin–1   is
 x 2  2x  7 
  S     : y 2  1  x , then  163
S
is equal to
(1) [1, ) (2) [–1, 2] _______.
(3) [–1, ) (4) (–, 2] [JEE (Main)-2022]
[JEE (Main)-2022]

  
Inverse Trigonometric Functions

1. Answer (1)
1 x
= tan tan
–1 x z 4 2
2y = x + z and 2tan–1y = tan
1 xz
x
=
4 2
2y x z
1 y2 1 xy 1
f (x) and at x , f ( x)
2 6 3
y2 xz So, equation of normal is
x, y, z are in GP 2
y 2 x y 2x
x=y=z 3 6 3
2. Answer (1) 5. Answer (2)

y sec sec –1 1 x2 1 x2 1 2 1 3 3
cos cos x
3x 4x 2 4
dy x
dx 1 2 1 3
1 x2 cos cos
3x 2 4x
dy 1
dx x 1 2 sin 1 x cos 1 x
2
3. Answer (1)
1 2 1 3
2x cos sin
tan y 1
tan x 1
tan 1 3x 4x
1 x2
2 16 x 2 9
1 3x x 3 cos 1
cos 1
3tan–1 x = tan 3x 4x
1 3x 2

3x x3 3 16 x 2 9
y sin 1
cos 1
1 3x2 4x 4x
4. Answer (1)
2 16 x 2 9
1 1 sin x
f (x) tan 3x 4x
1 sin x
64 81
2 x2
x x 9 16
cos sin
1 2 2
= tan
x x
2 145 3
cos sin x x
2 2 12 4
ARCHIVE - JEE (Main) MATHEMATICS

6. Answer (4) 9. Answer (3)


x= sin–1(sin10) 3
cos
5
3 10 3 4
x = 3 – 10 2 2 tan
3 x 3
1
3 10 4 and tan
and y = cos–1(cos10) 3
4 x
tan tan
y = 4 – 10 tan
1 tan · tan
y – x = (4 – 10) – (3 – 10) =
7. Answer (4) 4 1
3 3 1
19 n 4 13
cot cot –1 1 2p 1
9 9
n 1 p 1
9
19
cot cot –1
1 n n 1 13
n 1
1 9 1 9 1 13
tan sin cos
19 13 5 10 5 10
n 1 n
cot tan–1
n 1 1 n 1n 10. Answer (4)

19 y
cos–1x – cos–1
cot tan–1 n 1 – tan–1 n 2
n 1
xy y2
cot tan–1 20 – tan–1 1 cos–1 1 x2 . 1
2 4
20 – 1
cot tan –1
1 20 1 xy 1 x2 4 y 2
cos
2 2
19 21 21
cot tan –1 cot cot –1
21 19 19 xy + 1 x2 4 y 2 2cos
8. Answer (1)
(xy – 2 cos )2 = (1 – x2) (4 – y2)
x2y2 + 4cos2 – 4xycos = 4 – y2 – 4x2 + x2y2
2 4x2 – 4xycos + y2 = 4sin2
2 11. Answer (1)
cot 2 3 12
1 1
sin sin
5 13

1 3 5 12 4
sin
(cot–1x – 5) (cot–1 – 2) > 0 5 13 13 5
cot–1x (– , 2) (5, ) ...(i) ( xy 0 and x2 + y2 1)
But cot–1x lies in (0, )
1 33 1 33
From equation (i) sin sin
65 65
So, cot–1x (0, 2)
By graph, 1 56 1 56
cos sin
x (cot 2, ) 65 2 65
MATHEMATICS ARCHIVE - JEE (Main)

12. Answer (1) 15. Answer (4)

1 sin x x 1 1 1 1 1 1
f '( x ) tan 1
tan 1
tan S tan tan tan .........
cos x 4 2 3 7 13
1 1 1 1 1
x tan tan tan
, 1 1 2 1 2 3
in the neighbourhood of x = 1
4 2 2 2 1
.........
x 1 3 4
f '( x )
4 2 1 2 1 1 3 2
tan tan
1 2 1 1 3 2
x2
f (x) x c 4 3
1 11 10
4 4 tan .......... tan 1
1 3 4 1 11 10
f(0) = 0 c=0 = (tan–12 – tan–11) + (tan–1 3 – tan–12) +
1 1 (tan–14 – tan–13) + ..... + (tan–111 – tan–110)
So f (1) = tan–111 – tan–11
4 4 4
1 11 1
13. Answer (1) tan
1 11 1
x 5
f (x) sin–1 1 5
2 tan
x 1 6

x 5 5
–1 1 tan(S) =
2 6
x 1
16. Answer (3)
x2 – x – 4 0
1 x2 – 1
2 d tan–1
1 x –1 x
1– 17 1 17 d tan–1
x – x – 0 x
2 2 dx
2
2 x 1– x 2 x 1– x 2
1 17 d tan–1 d tan–1
x 1– 2x 2 1– 2 x 2
2
dx
1 17 1 17 2
x – ,– , 1 x –1
2 2 Simplifying tan–1 Put x = tan
x
14. Answer (3)
sec – 1 1– 1– 2sin2 / 2
–1 4 5 16 tan–1 tan–1
2 – sin + sin–1 + sin–1 tan 2sin / 2 cos / 2 2
5 13 65

4 5 16 1 x2 – 1 tan–1 x
=2 – tan–1 + tan–1 + tan–1 tan–1
3 12 63 x 2
45
2 x 1– x 2
–1 3
12 16 & similarly tan–1 Put x = sin
=2 – tan + tan–1 1– 2 x 2
4 5 63
1–
3 12 sin2
tan–1 2 = 2sin–1x
63 16 cos 2
=2 – tan –1 + tan–1
16 63 Hence required derivative
1
63 63
=2 – tan –1 + cot –1 2(1 x 2 ) 1– x 2 3
16 16
2 4(1 x )2 10
3 1– x 2 1
=2 – = x
2 2 2
ARCHIVE - JEE (Main) MATHEMATICS

17. Answer (91)


6
3 4
y k cos –1 cos kx – sin kx
k =1 5 5

3 4
Let cos and sin
5 5
6 3 7
2cos2 1 2cos2
y k cos –1 {cos coskx – sin sinkx} 4 4 4 4
k =1
7 7
cos2 cos
6 4 8 4 2 2
k cos –1 cos kx
k =1 1
tan
4 7
6 6
k kx k x 2
k 20. Answer (1)
k 1 k 1
1 1 4
cos ec 2 cot 5 cos
dy 6
6 7 13 5
k2 91
dx k 1 6 1 5 1 3
cos ec tan tan
12 4
18. Answer (1)
1 56
cos ec tan
1 r 1 r 33
tan –1 tan 1
1 r r2 1 r 1r 1 65 65
cos ec cos ec
56 56
tan –1 r 1 – tan 1 r 21. Answer (3)
sin –1x cos –1 x tan –1 y
n
1 k (say)
tan 1 a b c
So (tan–12 – tan–11)
r 1 1 r r2 sin–1 x = ak, cos–1x = bk and tan–1y = ck
+ (tan–13 – tan–12) + .......... + (tan–1(n + 1) – Now,
tan–1n)
= tan–1(n + 1) – tan–11 sin –1 x cos –1 x
2
n
1
lim tan tan –1
n r 1 1 r r2 (a b)x
2
–1 –1
lim tan tan n 1 – tan 1
n k
2(a b)
= tan 1
2 4 c
Now tan –1 y
19. Answer (3) 2(a b)

1 63
tan sin 1 tan ? c
4 8 4 cos cos(2 tan –1 y)
ab
Let

sin 1
63 1 63 1 – y2
8
and cos
8
sin
8
tan 63 and 6
cos cos –1 [if y > 0]
1 y2
1 9 9
2cos2 1 2cos2 cos2
2 8 2 8 2 16
1– y 2
3
cos
2 4
1 y2
MATHEMATICS ARCHIVE - JEE (Main)

22. Answer (4) 100


1 1
tan 2k 1 tan 2k 1
1 1 1 a b
tan a tan b tan k 1
a ab 4
= tan–1201 – tan–1 1
a + b + ab = 1
(1 + a)(1 + b) = 2 1 200
tan
Given 202
= cot–1(1.01)
a2 a3 b2 b3
a ... b ... Hence = 1.01
2 3 2 3
25. Answer (3)
ln(1 + a) + ln(1 + b)
1 8
ln(1 + a)(1 + b) = ln 2 tan 1 (x 1) cot 1
tan 1

x 1 31
23. Answer (1)
8
3x 4x tan 1 (x 1) tan 1(x 1) tan 1
1 1 1 31
sin sin sin x
5 5
1 (x 1) (x 1) 1 8
tan tan
1 (x 1)(x 1) 31
1 3x 16x 2 4x 9x 2 1
sin 1 1 sin x x 4
5 25 5 25
2 x2 31
1
4x2 + 31x – 8 = 0 x or x 8
1 3x 25 16x2 4x 25 9x2 1 4
sin sin x
25 1
x does not satisfy
4
3x 25 16x 2 4x 25 9x 2 25x 32
Hence, sum of possible values of x 8
4
x = 0 or 3 25 16x 2 4 25 9x 2 25 26. Answer (4)
Squaring both sides
1 1 1
sin x2 cos 1
x2 1 x2
2 1 3 3
x
2
1 1 4 1
x2 , ; so x 2 0 or 1
1 3 3 3 3
x
2 Hence L.H.S. is always equal to .
1 and x2 = has no solution in [–1, 1].
x 0,
2 27. Answer (1)
24. Answer (1) cosec–1x defined for x (– , –1] [1, )

also {x} 0 x Z
1 1 1
cot cot 2 cot 8 cot 1 18 cot 1
32 ...100 terms f(x) is defined for all non-integer except interval
[–1, 1]
28. Answer (4)
11 11 1 1 1 1
tan tan tan tan ...100 term x(x + 1) 0 ...(i)
2 8 18 32
x2 + x + 1 1
100
1 1 x2 + x 0 ...(ii)
tan
2
k 1 2k x2 +x=0 x = 0, –1
When x = 0 or –1
100 n 2k 1 2k 1
1 2 1
tan tan
2 1 2k 1 2k 1 LHS
k 1 4k k 1 No solution
2
ARCHIVE - JEE (Main) MATHEMATICS

29. Answer (1) 32. Answer (1)


x x
6 6
1 sin x sin cos and
1 3 1 1 15 2 2
2tan tan 5
tan 5
tan 1
5 1 9 16 8
5
2 25 x x
1 sin x sin cos
2 2
x
3 5 15 5 2 sin
2tan 1 sin 1 tan 1 tan 1 y(x) cot 1 2 cot 1 tan
x x
5 13 8 12 x 2 2 2
2cos
2
15 5
dy 1
tan 1 8 12
15 5 dx 2
1 , 33. Answer (4)
8 12
Range of sinx + cosx for x 0, is [1, 2]
180 40 220 2
tan 1 tan 1
21 21 So, M tan 1 2 and m = tan–11
30. Answer (2)
For domain 2 1
M m tan 1
2 1
1 x 1 x
1 or 1 2 1
x x tan(M m) 3 2 2
2 1
1 2x 1 34. Answer (3)
0 or 0
x x 3x 2 x –1 x –1
[–1, 1] and [–1, 1]
2 x 1
1 ( x – 1)
x ,0 or x (0, )
2 1 1
x –2, and x – ,0 , – 1 and
2 4
1 x 0,
domian x ,0 0,
2
1 1
finally x 0 ,
1 4 2
i.e x , – 0 35. Answer (3)
2
cos –1(cos(–5)) –5 2 a (say)
31. Answer (4)
(sin–1 x)2 – (cos–1 x)2 = (sin–1 x + cos–1 x) (sin–1 x sin –1(sin 6) 6–2 b (say)
–cos–1 x) = a –1
tan (tan12) 12 – 4 c (say)
a + b – c = 2 – 5 + 6 – 2 – 12 + 4
2cos 1 x a = 4 – 11
2 2
36. Answer (3)
2r
1 2a r
2cos x 6 3r 1
2 Let Tk tan 1 tan 1
2r 1 2r 1 2r 1
2 3 2
take sine both sides 1
3
r r 1
2a 2 2
sin 2cos 1 x sin 3 3 2
r
2
r 1
2 tan 1
tan 1
tan 1
2r 1 3 3
2
2a 1
cos 2cos 1 x sin 3

k k 1
2a 2 2
2cos2 cos 1 x 1 sin then Sk Tk tan 1 tan 1
r 1 3 3

2a 2
2 x 2 1 sin lim Sk tan 1 .
k 3
MATHEMATICS ARCHIVE - JEE (Main)

37. Answer (2)


Max will occur around t
2
1 2
tan 1 tan–1
2r 2 1 (4r 2 – 1) 3
7 3
Range of ƒ t ,
32 8
1 (2r 1) – (2r 1)
= tan 1 (2r 1)(2r 1)
1 7
k ,
32 8
= tan 1 2r 1 – tan–1(2r 1)
40. Answer (4)
50 50
1 1
tan tan –1(2r 1) – tan–1(2r – 1)
r 1 2r 2 r 1 x2 – 5x 6
–1 1 and x2 – 3x + 2 > 0, 1
2
x 9
p = tan–1(101) – tan–1 1
( x – 3)(2 x 1) 5( x – 3)
0 0
2
–1 101– 1 x –9 x2 – 9
= tan
1 101 1
Solution to this inequality is
50 –1
tan p = x , – 3
51 2
38. Answer (1)
For x2 – 3x + 2 > 0 and 1
tan–1(2x) + tan–1(3x) =
4 3– 5 3 5
x (– ,1) (2, ) – ,
5x 5x 2 2
tan–1 1
1 6x 2 4 1 6x 2
Com bining the two s olution sets (taking
i.e. 6x2 + 5x – 1 = 0
intersection)
(6x–1)(x + 1) = 0
1 1 3– 5 3 5
x= (as x 0) x – ,1 (2, )– ,
6 2 2 2
Hence A is a singleton set
41. Answer (2)
39. Answer (1)
Given x * y = x2 + y3 and (x * 1) * 1 = x * (1 * 1)
So, (x2 + 1) * 1 = x * 2
Let tan–1x = t ,
2 2 (x2 + 1)2 + 1 = x2 + 8
x4 + 2x2 + 2 = x2 + 8
1
cot x t
2 (x2)2 + x2 – 6 = 0
(x2 + 3)(x2 – 2) = 0
3 2
ƒ(t ) t3 t ƒ (t ) 3t 2 3 t
2 2 x2 2

x4 x2 2 4
ƒ (t) = 0 at t = Now, 2sin 1 2sin 1
4 x4 x 2
2 8

3 3 3
ƒ t min 2·
64 64 32 6 3
ARCHIVE - JEE (Main) MATHEMATICS

42. Answer (2) 46. Answer (1)

15 50
1
cos 1 cot tan–1
–1 4 1 n n2
tan n 1
sin
4
50
(n 1) n
= cot tan–1
n 1 1 (n 1) n
1
1
tan–1 2
1 50
2 = cot tan–1(n 1) tan–1 n
n 1

tan–1 1 2 tan–1 2 1
= cot tan –1 51 tan–1 1

8
51 1
= cot tan –1
43. Answer (2) 1 51

f (x ) 2cos–1 x 4cot –1 x – 3x2 – 2x 10 x [–1, 1]


52
= cot cot –1
2 4 50
f (x ) – – – 6x – 2 0 x [–1, 1]
1– x 2 1 x2
26
So, f(x) is decreasing function and range of f(x) is =
25
f (1), f (–1) , which is 5, 5 9
47. Answer (3)
Now 4a – b = 4( + 5) – (5 + 9)
n
= 11 – 1
lim 6 tan tan–1
2
44. Answer (3)
n r 1 r 3r 3

3 4 2 4
cos –1 cos tan–1 sin tan –1 n
(r 2) (r 1)
10 3 5 3 = lim 6 tan tan –1
n r 1 1 (r 2)(r 1)

3 3 2 4
cos–1 · ·
10 5 5 5 n
= lim 6 tan (tan–1(r 2) tan–1(r 1))
n r 1
1
cos –1
2 3
–1 –1
= lim 6 tan tan ( n 2) tan 2
45. Answer (1) n

3 – 3
sin–1 cos –1 tan–1(–1) 1
2 2 = 6 tan cot –1
2 2

5
– 1
3 6 4 = 6 tan tan –1
2
4 10 – 3 11
12 12 =3
MATHEMATICS ARCHIVE - JEE (Main)

48. Answer (4) 1 1


1
50 tan tan 4 2 tan tan 1 2 2
2 2
2 1 1
1 sin 1
2
4x 1 1
50 4 2 tan , where 2 tan 1 2 2
2
1
sin 1 2 tan
2 2 2
4x 1 2 2 … (i)
1 tan2
1 2 2 tan2 2 tan 2 2 0
1 1
2
4x 1
2 2 tan2 4 tan 2 tan 2 2 0

1 4x 2 2 2 tan 2 tan 2 0
1 0
2 (2n 1)(2x 1)
4x 1
1
tan 2 or
2

1
tan
2
1 1 tan 2 doesn't satisfy i
x , (0) , …(1)
2 2
1
25 4 2 29
2 2
1 1 4x 2
1 1 0 0
4x2 1 4 x2 1 4x2 1 50. Answer (2)

1 5 1
1 1 tan 2 tan 1 sec 1 2 tan 1
x x 5 2 8
2 2
0
1 1
x x 1 1
2 2
1 5 8 1 5
tan 2 tan sec
1 1 2
1
5 8

1 1
tan 2 tan 1 tan 1
3 2

1 1 1 1 2
x , , , …(2)
2 2 2 2 1 3 1
tan tan tan 1
1 2
From (1) & (2), 1
9

1 1 3 1
x , , {0} tan tan 1 tan 1
2 2 4 2
49. Answer (29)
3 1 5
tan tan 1 4 2 tan tan 1 4
1 1 1 1 1 3 5
50 tan tan 2 tan 2 tan 2 1
2 2 8 8
1
tan
4 2 tan 2 2 tan tan 1 2 2
2
ARCHIVE - JEE (Main) MATHEMATICS

51. Answer (12) 52. Answer (2)

x2 4x 2
cos sin 1
x cot tan 1
cos sin 1
k 1 1
2
x 3

x2 3 x2 4x 2 x2 3
1 1 2
cos sin x cot tan 1 x k
2x 2 4x 5 0 & –4x 1

1
x R & x
1 x 4
cos sin k
1 x2
1
So domain is , .
4

1 2x 2 53. Answer (1)


k
1 x2 cos–1x – 2sin–1x = cos–12x

1 1
For Domain : x ,
1 2x 2 2 2
k2
1 x2
1 1 1
cos x 2 cos x cos 2x
1 – 2x2 = k2 – k2x2 2
cos–1x + 2cos–1x = + cos–12x
2
k 1 cos(3cos–1x) = – cos(cos–12x)
x2 0
k2 2 4x3 = x

1
x = 0, ±
1 1 k2 2 2
2 2
2 …(1)
k2 1 54. Answer (3)
1
f x tan sin x cos x , 0,

and 1 …(2)
Let g x sin x cos x

3
2 2 sin x and x ,
k 2 4 4 4 4
2 1 5
k2 1
g x 1, 2

1 and tan–1x is an increasing function


k2
3 1 1
f x tan 1 ,tan 2

k2 2 1
and b = S.R = 2 1 4 ,tan 2
k2 1 4

1
Sum of fmax and fmin tan 2
b 4 4
12
k 2 1
3 1 1
cos
3 4
MATHEMATICS ARCHIVE - JEE (Main)

55. Answer (3)


cos 2 0 as 2 0,
–1 x2 3x 2 2
f (x) sin
2
x 2x 7
sin4 = 2 · 2 x 1 x 2 (1 2 x 2 )
x2 3x 2
–1 1 4 x 1 x 2 1 2x 2
x2 2x 7
57. Answer (3)
x2 3x 2
1
x2 2x 7 –1 2 x 2 – 3 2 log 1 ( x 2 – 5 x 5) 0
2
x2 3x 2 x2 2x 7
or 2 2x 2 5 0 x2 – 5x 5 1
5x –5
2 5
x –1 …(i) or 1 x x 2 – 5x 5 0 & x 2 – 5x 4 0
2
x 2 – 3x 2
–1 5 5– 5 5 5
2 x – , –1
x 2x 7 x – , ,
2 2 2
x2 3x 2 – x2 2x 7
5
2x 2 x 9 0 1, & x (– , 1) (4, )
2
x R …(ii)
Taking intersection
(i) (ii),
Domain [–1, ) 5 5
x 1,
2
56. Answer (2)
58. Answer (130)
sin–1 x cos–1 x –1 –1
Let k sin x cos x k( )
1 2
x sin 2 tan 2 …(i)
1
.
2k 1 4 1 1
and y sin tan 1 sin sin 1

2 3 5 5
2 2 –1
Now, 4k 4 sin x
Now, y 2 1 x
2k
1 2
2 1
–1 5 1 2
Here sin sin (4 sin x)
2 2
1 5 5 10
1
Let sin–1 x = x 0, 0, 2 2
5 2 0
2 4
x = sin 1
2,
2
cos 1 x2
3 1
16 16 23 16
sin2 2x · 1 x 2 S 23
= 130
cos 2 1 4 x 2 (1 x 2 ) (2x 2 1)2 1 2x 2

You might also like