Aóg Aa¨vq
w·KvYwgwZ
        cvV m¤úwK©Z MyiæZ¡c~Y© welqvw` 8.1
mvaviYfv‡e w·KvYwgwZ ej‡Z wZbwU †Kv‡Yi cwigvc †evSvq|
e¨envwiK cÖ‡qvR‡b wÎfy‡Ri wZbwU †KvY I wZbwU evûi cwigvc
Ges wÎfy‡Ri mv‡_ m¤úwK©Z wel‡qi Av‡jvPbv †_‡KB
w·KvYwgwZi m~ÎcvZ nq| w·KvYwgwZ‡K `ywU kvLvq wef³ Kiv
nq| kvLv `ywU n‡”QÑ mgZjxq w·KvYwgwZ Ges †MvjKxq
w·KvYwgwZ|
 abvZ¥K I FYvZ¥K †KvY : †Kv‡bv GKwU w¯’i iwk¥i †cÖwÿ‡Z
  Aci GKwU N~Y©vqgvb iwk¥‡K Nwoi KuvUvi wecixZ w`‡K
  †Nviv‡bvi d‡j †h †KvY Drcbœ nq, Zv‡K abvZ¥K †KvY ejv nq|
  Avevi, N~Y©vqgvb iwk¥wU‡K Nwoi KuvUvi w`‡K †Nviv‡bvi d‡j
  Drcbœ †KvY‡K FYvZ¥K †KvY ejv nq|
 †KvY cwigv‡ci GKK : †Kv‡Yi cwigvY I gvb eY©bvq mvaviYZ
  `yB ai‡bi GKK c×wZ e¨envi Kiv nq| h_v : (1) lvUg~jK GKK
  c×wZ Ges (2) e„Ëxq GKK c×wZ|
1. lvUg~jK c×wZ : lvUg~jK c×wZ‡Z mg‡KvY‡K †KvY cwigv‡ci
  GKK aiv nq| GK mg‡KvY‡K mgvb 90 fv‡M wef³ Ki‡j cÖwZ fvM‡K
  GK wWwMÖ ejv nq| Avevi, GK wWwMÖ‡K 60 fvM K‡i cÖwZ
  fvM‡K GK wgwbU Ges GK wgwbU‡K mgvb 60 fvM K‡i cÖwZ
  fvM‡K GK †m‡KÛ ejv nq|
      60 (†m‡KÛ)
      =          1
      (wgwbU)
      60 (wgwbU)
      =         1
      (wWwMÖ)
      90
      (wWwMÖ) =
      1 mg‡KvY|
2.e„Ëxq c×wZ : e„Ëxq c×wZ‡Z GK †iwWqvb †KvY‡K †KvY
  cwigv‡ci GKK aiv nq| †Kv‡bv e„‡Ëi e¨vmv‡a©i mgvb Pvc H
  e„‡Ëi †K‡›`ª †h m¤§yL †KvY Drcbœ K‡i, Zv‡KB GK †iwWqvb ejv
  nq Ges †iwWqvb GKwU aªæe †KvY|
  †Kv‡Yi wWwMÖ cwigvc I †iwWqvb cwigv‡ci m¤úK© :
  1 †iwWqvb = mg‡KvY| A_©vr 1c = mg‡KvY
   1 mg‡KvY =
   90 =
  1 = Ges 1c =
   90 = 1 mg‡KvY = †iwWqvb
  A_©vr 180 = 2 mg‡KvY =  †iwWqvb|
        cvV m¤úwK©Z MyiæZ¡c~Y© welqvw` 8.2
 m~²‡Kv‡Yi w·KvYwgwZK AbycvZmg~n :
  m~²‡Kv‡Yi w·KvYwgwZK AbycvZmg~n wbY©q Kivi Rb¨ Avgiv
  GKwU mg‡KvYx wÎfyR OPQ we‡ePbv Kwi| OPQ G OQP
  mg‡KvY|
                                                    P
  POQ Gi mv‡c‡ÿ : OP wÎfy‡Ri AwZfyR, OQ         yR
                                               Zf
                                            Aw
  f‚wg, PQ j¤^ Ges POQ =  (m~²‡KvY)| OPQ          j¤^
  mg‡KvYx wÎfy‡R m~²‡KvY  Gi Rb¨ QqwU O     f‚wg
                                                    Q
  w·KvYwgwZK AbycvZ h_vµ‡g wb‡gœv³fv‡e
  msÁvwqZ Kiv nq :
  sin = cosec = cos = sec = tan = cot
  =
 w·KvYwgwZK AbycvZ¸‡jvi cvi¯úwiK m¤úK© :
                                       Y
  w·KvYwgwZK           AbycvZmg~‡ni             A
  msÁv †_‡K Avgiv jÿ Kwi †h,               P
  sin =                                     Y
  cosec = = =                           
                                                     X
                                     O
   sin = Ges cosec =
  Abyiƒcfv‡e cos = , sec = = =
  A_©vr, cos = Ges sec =
  GKBfv‡e, tan = Ges cot =
 mnRfv‡e g‡b ivLvi Rb¨ :
                       2q PZzf©vM 1g PZzf©vM
                        sin (+ve)     All (+ve)
                       cosec (+ve)
                        tan (+ve)    cos (+ve)
                        cot (+ve)    sec (+ve)
                       3q PZzf©vM 4_© PZzf©vM
 ¸iæZ¡c~Y© m~Îvewj :
   sin =          cos =
   tan =          cosec =
   sec =          cot =
   tan =          cot =
   cosec =        sec =
   cot =          cos =
   sin2 + cos2 = 1      cos2 = 1  sin2
   sin2 = 1  cos2      1 + tan2 = sec2
   tan2 = sec2  1  1 + cot2 = cosec2
   cosec2  cot2 = 1    1 = sec2  tan2
   cosec2 = 1 + cot2  cot2 = cosec2  1
 wkÿv_x©‡`i         myweav‡_©                    w·KvYwgwZK
AbycvZmg~‡ni ZvwjKv :
              = = =
  †KvY 0                 = 90
             30 45 60
   sin   0                 1
   cos   1                 0
                         AmsÁv
   tan   0        1
                          wqZ
       AmsÁv
   cot            1        0
        wqZ
   sec   1            2 AmsÁv
                         wqZ
           AmsÁv
   cosec         2         1
            wqZ
      cvV m¤úwK©Z MyiæZ¡c~Y© welqvw` 8.3
 †h‡Kv‡bv †Kv‡Yi A_©vr (n   ) †Kv‡Yi w·KvYwgwZK
AbycvZmg~n wbY©‡qi c×wZ (0 <  < ).
  wb‡gœv³ c×wZ‡Z †h‡Kv‡bv w·KvYwgwZK †Kv‡Yi
  AbycvZ wbY©q Kiv hvq|
  avc-1 : cÖ_‡g cÖ`Ë †KvY‡K `yBfv‡M fvM Ki‡Z n‡e| hvi
  GKwU Ask ev Gi n ¸wYZK Ges AciwU m~²‡KvY| A_©vr
  cÖ`Ë †KvY‡K (n   ) AvKv‡i cÖKvk Ki‡Z n‡e|
  avc-2 : n †Rvo msL¨v n‡j Abycv‡Zi aib GKB _vK‡e
  A_©vr sine AbycvZ sine _vK‡e cosine AbycvZ cosine _vK‡e
  BZ¨vw`|
  n we‡Rvo n‡j sine, tangent I secant AbycvZ¸‡jv cosine,
  cotangent I cosecant G cwiewZ©Z n‡e| GKBfv‡e Gi wecixZ
  cwieZ©b NU‡e|
  avc-3 : (n   ) †Kv‡Yi Ae¯’vb †Kvb PZzf©v‡M †mUv
  Rvbvi ci H PZzf©v‡M cÖ`Ë Abycv‡Zi †h wPý †mB wPý
  avc-2 †_‡K wbiƒwcZ Abycv‡Zi c~‡e© emv‡Z n‡e|
 () †Kv‡Yi w·KvYwgwZK AbycvZ :
   sin() =  sin            cosec() = cosec
   cos() = cos              sec() = sec
   tan() =  tan            cot() =  cot
 (90 + ) †Kv‡Yi w·KvYwgwZK AbycvZ :
   sin(90 + ) = cos          cosec (90 + ) = sec
   cos(90 + ) = sin         sec(90 + ) =  cosec
   tan(90 + ) = cot         cot(90 + ) =  tan
 (90  ) †Kv‡Yi w·KvYwgwZK AbycvZ :
   sin(90  ) = cos          cosec(90  ) = sec
   cos(90  ) = sin          sec(90  ) = cosec
   tan(90  ) = cot          cot(90  ) = tan
 (180  ) †Kv‡Yi w·KvYwgwZK AbycvZ :
    sin(180  ) = sin     cosec (180  ) = cosec
    cos(180  ) = cos    sec (180  ) = sec
    tan(180  ) = tan    cot (180  ) = cot
 (180 + ) †Kv‡Yi w·KvYwgwZK AbycvZ :
    sin(180 + ) = sin    cosec(180 + ) = cosec
    cos(180 + ) = cos    sec(180 + ) = sec
    tan(180 + ) = tan     cot(180 + ) = cot
 (270  ) †Kv‡Yi w·KvYwgwZK AbycvZ :
   sin (270  ) = cos       cosec(270  ) = sec
   cos (270  ) = sin       sec(270  ) = cosec
   tan (270  ) = cot        cot(270  ) = tan
 (270 + ) †Kv‡Yi w·KvYwgwZK AbycvZ :
    sin(270 + ) = cos    cosec(270 + ) = sec
    cos(270 + ) = sin     sec(270 + ) = cosec
    tan(270 + ) = cot    cot(270 + ) = tan
 (360  ) †Kv‡Yi w·KvYwgwZK AbycvZ :
    sin(360  ) = sin    cosec(360  ) = cosec
    cos(360  ) = cos     sec(360  ) = sec
   tan(360  ) = tan        cot(360  ) = cot
 (360 + ) †Kv‡Yi w·KvYwgwZK AbycvZ :
    sin(360 + ) = sin     cosec(360 + ) = cosec
    cos(360 + ) = cos     sec(360 + ) = sec
    tan(360 + ) = tan     cot(360 + ) = cot