0% found this document useful (0 votes)
30 views7 pages

Wî Kvywgwz: Aóg Aa VQ

Uploaded by

duttaryekkeshor
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
30 views7 pages

Wî Kvywgwz: Aóg Aa VQ

Uploaded by

duttaryekkeshor
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 7

Aóg Aa¨vq

w·KvYwgwZ
cvV m¤úwK©Z MyiæZ¡c~Y© welqvw` 8.1

mvaviYfv‡e w·KvYwgwZ ej‡Z wZbwU †Kv‡Yi cwigvc †evSvq|


e¨envwiK cÖ‡qvR‡b wÎfy‡Ri wZbwU †KvY I wZbwU evûi cwigvc
Ges wÎfy‡Ri mv‡_ m¤úwK©Z wel‡qi Av‡jvPbv †_‡KB
w·KvYwgwZi m~ÎcvZ nq| w·KvYwgwZ‡K `ywU kvLvq wef³ Kiv
nq| kvLv `ywU n‡”QÑ mgZjxq w·KvYwgwZ Ges †MvjKxq
w·KvYwgwZ|
 abvZ¥K I FYvZ¥K †KvY : †Kv‡bv GKwU w¯’i iwk¥i †cÖwÿ‡Z
Aci GKwU N~Y©vqgvb iwk¥‡K Nwoi KuvUvi wecixZ w`‡K
†Nviv‡bvi d‡j †h †KvY Drcbœ nq, Zv‡K abvZ¥K †KvY ejv nq|

Avevi, N~Y©vqgvb iwk¥wU‡K Nwoi KuvUvi w`‡K †Nviv‡bvi d‡j


Drcbœ †KvY‡K FYvZ¥K †KvY ejv nq|
 †KvY cwigv‡ci GKK : †Kv‡Yi cwigvY I gvb eY©bvq mvaviYZ
`yB ai‡bi GKK c×wZ e¨envi Kiv nq| h_v : (1) lvUg~jK GKK
c×wZ Ges (2) e„Ëxq GKK c×wZ|
1. lvUg~jK c×wZ : lvUg~jK c×wZ‡Z mg‡KvY‡K †KvY cwigv‡ci
GKK aiv nq| GK mg‡KvY‡K mgvb 90 fv‡M wef³ Ki‡j cÖwZ fvM‡K
GK wWwMÖ ejv nq| Avevi, GK wWwMÖ‡K 60 fvM K‡i cÖwZ
fvM‡K GK wgwbU Ges GK wgwbU‡K mgvb 60 fvM K‡i cÖwZ
fvM‡K GK †m‡KÛ ejv nq|
60 (†m‡KÛ)
= 1
(wgwbU)
60 (wgwbU)
= 1
(wWwMÖ)
90
(wWwMÖ) =
1 mg‡KvY|
2.e„Ëxq c×wZ : e„Ëxq c×wZ‡Z GK †iwWqvb †KvY‡K †KvY
cwigv‡ci GKK aiv nq| †Kv‡bv e„‡Ëi e¨vmv‡a©i mgvb Pvc H
e„‡Ëi †K‡›`ª †h m¤§yL †KvY Drcbœ K‡i, Zv‡KB GK †iwWqvb ejv
nq Ges †iwWqvb GKwU aªæe †KvY|
†Kv‡Yi wWwMÖ cwigvc I †iwWqvb cwigv‡ci m¤úK© :
1 †iwWqvb = mg‡KvY| A_©vr 1c = mg‡KvY
 1 mg‡KvY =
 90 =
1 = Ges 1c =
 90 = 1 mg‡KvY = †iwWqvb
A_©vr 180 = 2 mg‡KvY =  †iwWqvb|

cvV m¤úwK©Z MyiæZ¡c~Y© welqvw` 8.2

 m~²‡Kv‡Yi w·KvYwgwZK AbycvZmg~n :


m~²‡Kv‡Yi w·KvYwgwZK AbycvZmg~n wbY©q Kivi Rb¨ Avgiv
GKwU mg‡KvYx wÎfyR OPQ we‡ePbv Kwi| OPQ G OQP
mg‡KvY|
P
POQ Gi mv‡c‡ÿ : OP wÎfy‡Ri AwZfyR, OQ yR
Zf
Aw
f‚wg, PQ j¤^ Ges POQ =  (m~²‡KvY)| OPQ j¤^

mg‡KvYx wÎfy‡R m~²‡KvY  Gi Rb¨ QqwU O f‚wg


Q

w·KvYwgwZK AbycvZ h_vµ‡g wb‡gœv³fv‡e


msÁvwqZ Kiv nq :
sin = cosec = cos = sec = tan = cot
=
 w·KvYwgwZK AbycvZ¸‡jvi cvi¯úwiK m¤úK© :
Y
w·KvYwgwZK AbycvZmg~‡ni A

msÁv †_‡K Avgiv jÿ Kwi †h, P

sin = Y

cosec = = = 
X
O
 sin = Ges cosec =
Abyiƒcfv‡e cos = , sec = = =
A_©vr, cos = Ges sec =
GKBfv‡e, tan = Ges cot =
 mnRfv‡e g‡b ivLvi Rb¨ :
2q PZzf©vM 1g PZzf©vM
sin (+ve) All (+ve)
cosec (+ve)

tan (+ve) cos (+ve)


cot (+ve) sec (+ve)

3q PZzf©vM 4_© PZzf©vM

 ¸iæZ¡c~Y© m~Îvewj :
 sin =  cos =
 tan =  cosec =
 sec =  cot =
 tan =  cot =
 cosec =  sec =
 cot =  cos =
 sin2 + cos2 = 1  cos2 = 1  sin2
 sin2 = 1  cos2  1 + tan2 = sec2
 tan2 = sec2  1  1 + cot2 = cosec2
 cosec2  cot2 = 1  1 = sec2  tan2
 cosec2 = 1 + cot2  cot2 = cosec2  1
 wkÿv_x©‡`i myweav‡_© w·KvYwgwZK
AbycvZmg~‡ni ZvwjKv :
= = =
†KvY 0 = 90
30 45 60
sin 0 1
cos 1 0
AmsÁv
tan 0 1
wqZ
AmsÁv
cot 1 0
wqZ
sec 1 2 AmsÁv
wqZ
AmsÁv
cosec 2 1
wqZ

cvV m¤úwK©Z MyiæZ¡c~Y© welqvw` 8.3

 †h‡Kv‡bv †Kv‡Yi A_©vr (n   ) †Kv‡Yi w·KvYwgwZK


AbycvZmg~n wbY©‡qi c×wZ (0 <  < ).
wb‡gœv³ c×wZ‡Z †h‡Kv‡bv w·KvYwgwZK †Kv‡Yi
AbycvZ wbY©q Kiv hvq|
avc-1 : cÖ_‡g cÖ`Ë †KvY‡K `yBfv‡M fvM Ki‡Z n‡e| hvi
GKwU Ask ev Gi n ¸wYZK Ges AciwU m~²‡KvY| A_©vr
cÖ`Ë †KvY‡K (n   ) AvKv‡i cÖKvk Ki‡Z n‡e|
avc-2 : n †Rvo msL¨v n‡j Abycv‡Zi aib GKB _vK‡e
A_©vr sine AbycvZ sine _vK‡e cosine AbycvZ cosine _vK‡e
BZ¨vw`|
n we‡Rvo n‡j sine, tangent I secant AbycvZ¸‡jv cosine,
cotangent I cosecant G cwiewZ©Z n‡e| GKBfv‡e Gi wecixZ
cwieZ©b NU‡e|
avc-3 : (n   ) †Kv‡Yi Ae¯’vb †Kvb PZzf©v‡M †mUv
Rvbvi ci H PZzf©v‡M cÖ`Ë Abycv‡Zi †h wPý †mB wPý
avc-2 †_‡K wbiƒwcZ Abycv‡Zi c~‡e© emv‡Z n‡e|
 () †Kv‡Yi w·KvYwgwZK AbycvZ :
sin() =  sin cosec() = cosec
cos() = cos sec() = sec
tan() =  tan cot() =  cot
 (90 + ) †Kv‡Yi w·KvYwgwZK AbycvZ :
sin(90 + ) = cos cosec (90 + ) = sec
cos(90 + ) = sin sec(90 + ) =  cosec
tan(90 + ) = cot cot(90 + ) =  tan
 (90  ) †Kv‡Yi w·KvYwgwZK AbycvZ :
sin(90  ) = cos cosec(90  ) = sec
cos(90  ) = sin sec(90  ) = cosec
tan(90  ) = cot cot(90  ) = tan
 (180  ) †Kv‡Yi w·KvYwgwZK AbycvZ :
sin(180  ) = sin cosec (180  ) = cosec
cos(180  ) = cos sec (180  ) = sec
tan(180  ) = tan cot (180  ) = cot
 (180 + ) †Kv‡Yi w·KvYwgwZK AbycvZ :
sin(180 + ) = sin cosec(180 + ) = cosec
cos(180 + ) = cos sec(180 + ) = sec
tan(180 + ) = tan cot(180 + ) = cot
 (270  ) †Kv‡Yi w·KvYwgwZK AbycvZ :
sin (270  ) = cos cosec(270  ) = sec
cos (270  ) = sin sec(270  ) = cosec
tan (270  ) = cot  cot(270  ) = tan
 (270 + ) †Kv‡Yi w·KvYwgwZK AbycvZ :
sin(270 + ) = cos cosec(270 + ) = sec
cos(270 + ) = sin sec(270 + ) = cosec
tan(270 + ) = cot cot(270 + ) = tan
 (360  ) †Kv‡Yi w·KvYwgwZK AbycvZ :
sin(360  ) = sin cosec(360  ) = cosec
cos(360  ) = cos sec(360  ) = sec
tan(360  ) = tan cot(360  ) = cot
 (360 + ) †Kv‡Yi w·KvYwgwZK AbycvZ :
sin(360 + ) = sin cosec(360 + ) = cosec
cos(360 + ) = cos sec(360 + ) = sec
tan(360 + ) = tan cot(360 + ) = cot

You might also like