0% found this document useful (0 votes)
36 views13 pages

SSC M 9

Uploaded by

sajidali11du
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
36 views13 pages

SSC M 9

Uploaded by

sajidali11du
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 13

SSC Math

Aa¨vqwfwËK K‡›U›U
Aa¨vq-9: w·KvYwgwZK AbycvZ
cÖ‡qvRbxq Z_¨:
 Trigonometry
Trigon metry

P P

O N O N

PON OP ON, OPN OP, PN,


PN ON

alpha  beta  gamma  theta  phi  omega 


XOA OA P A
P
P OX PM POM
∆POM PM, OM OP
XOA

O
M x

XOA POM PM OM OP XOA =  

PM
=  (sine) sin
OP
OM
=  (cosine) cos
OP

PM
=  (tangent) tan
OM

OM
=  (cotangent) cot
PM

OP
=  (secant) sec
OM

OP
=  (cosecant) cosec.
PM

()


 = XOA
A
P
PM OP
sin = OP cosec =
PM
OM OP
cos = sec =  x
OP OM
O M
PM OM
tan = cot =
OM PM

PM OP PM OM
1 sin cosec = . =1 3 tan cot =  =1
OP PM OM PM
1 1 1 1
 sin = Ges cosec =  tan = Ges cot =
cosec sin cot tan
OM OP PM
2 cos sec =  =1
OP OM PM OP
4 tan = = OP
OM OM
 
 cos = Ges sec = OP
sec cos
sin cos
 tan = cot =
cos sin


1 sin2 + cos2 = 1 2. 1 + tan2 = sec2 3 1 + cot2 = cosec2
sin2 = 1 – cos2 sec2 – tan2 = 1 cosec2 – cot2 = 1
cos2 = 1 – sin2
 sin cos
sin2 + cos2 = 1

 =XOA
PM ⊥ OX
POM

2 2 2

∆OPM
OP, PM OM
 OP = PM + OM
2 2 2

2 2 2 A
OP PM OM 2 P
2 = 2 + 2 OP
OP OP OP
1=  +  
PM 2 OM 2

 OP   OP 
1 = (sin) + (cos)
2 2

O x
M
1 = sin  + cos   Sin
2 2
cos = ]

 sin2 + cos2 = 1
P A
 sec tan sec2 − tan2 =1
 =XOA
PM ⊥ OX

 POM O x
M

2 2 2

∆POM
OP, PM OM
 OP2 = PM2 + OM2
OP2 − PM2 = OM2
2 2 2
OP PM OM
2 –
2
2 = 2 [ OM ]
OM OM OM
2 2
 OP  –  PM  =1  = sec = tan]
OM OM
 sec2 – tan2 = 1
A
 cosec cot cosec2 – cot2 = 1 P

 = XOA
PM ⊥ OX
 POM O  x
M
2 2 2

∆POM
OP, = PM OM
 OP = PM + OM
2 2 2

OP – OM = PM
2 2 2

2 2 2
OP OM PM 2
2 – 2 = 2 [ PM
PM PM PM
 OP  – OM = 1 
2 2
cosec = cot]
PM  PM 
 cosec2 – cot2 = 1

0 30 45 60 90

0 30 45 60 90


1 1 3
sine 0
2 2 2 1
3 1 1
cosine 1 2
0
2 2
1
tangent 0 1 3
3
1
cotangent 3 1 3 0

2
secant 1 3 2 2

2
cosecant 2 2 3 1


(i) 0, 1, 2, 3 4 4 sin0, sin30, sin45, sin60
1 1
sin90 sin 30 = =
4 2
(ii) 4, 3, 2, 1 0 4 cos 0 cos 30 cos 45 cos
60  cos 90
2 1 1
cos 45 = 4
= 2
=
2
(iii) 0, 1, 3 9 3 tan 0 tan 30 tan 45 tan
60 tan 90
(iv) 9, 3, 1 0 3 cot30, cot45, cot60, cot90
cot0
 x − y = 30 ................ (ii)
m„Rbkxj cÖkœ: (i) I (ii) bs mgxKiY †hvM K‡i cvB,
2x = 90  x = 45
cÖk
œ 1 [Xv. †ev. 17] Avevi, (i) bs †_‡K (ii) bs mgxKiY we‡qvM K‡i cvB,
A 2y = 30  y = 15
myZivs x = 45 Ges y = 15 (Ans.)
x+y
cÖk
œ 2 [w`. †ev. 17]
a
A = cos + sin Ges B = cos − sin `yBwU w·KvYwgwZK ivwk|
x−y
C K.  = 45 n‡j A Ges B Gi gvb wbY©q Ki| 2
B b L. A = 2 (A − sin) n‡j, cÖgvY Ki †h, B = 2 (A − cos) 4
K. AC Gi ˆ`N©¨ wbY©q Ki| 2 M. A = 1 n‡j,  Gi gvb wbY©q Ki †hLv‡b 0    90. 4
b a 2 bs cÖ‡kœi mgvavb
1− 2 K †`Iqv Av‡Q, A = cos + sin Ges B = cos − sin
a2 + b2 a + b2
L. cÖgvY Ki †h, a
+
b
= 2 cosecA. 4  = 45 n‡j, A = cos45 + sin 45 Ges B = cos45 − sin 45
1− 2 1 1 1 1

2 2 2
a +b a +b = + =
2 2 2 2
M. a = 1 Ges b = 3 n‡j x I y Gi gvb wbY©q Ki| 4
1+1 2  B=0
1 bs cÖ‡kœi mgvavb = = =
A 2 2

K 2
x+y A= 2 Ges B = 0 (Ans.)
a L †`Iqv Av‡Q, A = cos + sin Ges B = cos − sin

x−y GLb A = 2 (A − sin) n‡j
B b C cos + sin = 2 (cos + sin − sin)
wPÎvbymv‡i, AB = a, BC = b Ges ABC = 90 ev, cos + sin = 2 cos
cx_v‡Mviv‡mi Dccv`¨ Abymv‡i, ev, sin = 2 cos − cos
AC2 = AB2 + BC2 ev, AC2 = a2 + b2  AC = a2 + b2 (Ans.) ev, sin = ( 2 − 1) cos

L †`Iqv Av‡Q, AB = a, BC = b ev, ( 2 + 1) sin = ( 2 + 1) ( 2 − 1) cos
Ges AC = a2 + b2 [ÔKÕ †_‡K cÖvß] ev, ( 2 + 1) sin = {( 2 )2 − 1} cos
b
1− 2
a BC AB ev, ( 2 + 1) sin = (2 − 1) cos
1−
a2 + b2 a + b2 AC AC ev, 2 sin + sin = cos
evgc¶ =
a
+
b
=
AB
+
BC
[ ÔKÕ
1− 2 1− ev, 2 sin = cos − sin
a +b 2 2
a +b 2 AC AC
ev, cos − sin = 2 sin
Gi wPÎ n‡Z]
sinA 1 − cosA sin2A + (1 − cosA)2
ev, cos − sin = 2 (cos + sin− cos)
=
1 − cosA
+
sinA
=
(1 − cos A) sinA  B = 2 (A − cos) (cÖgvwYZ)
sin A + 1 − 2cosA + cos2A
2 M †`Iqv Av‡Q,
=
(1 − cosA) sinA A = cos + sin
1 + 1 − 2cosA A = 1 n‡j cos + sin = 1
= [ sin2A + cos2A = 1]
(1 − cosA) sinA ev, cos = 1 − sin
2(1 − cosA) 1 ev, cos2 = (1 − sin)2
= = 2. = 2 cosecA = Wvbc¶
(1 − cosA) sinA sinA
ev, cos2 = 1 − 2sin + sin2
b a
1− 2 ev, 1 − sin2 = 1 − 2 sin + sin2
a2 + b2 a + b2
 + = 2cosecA (cÖgvwYZ) ev, 1 − 2sin + sin2 – 1 + sin2 = 0
a b
1− 2 ev, 2 sin2 − 2sin = 0
a + b2 a2 + b2
ev, 2 sin (sin − 1) = 0

M †`Iqv Av‡Q, AB = a = 1
ev, sin (sin − 1) = 0
BC = b = 3 nq, sin = 0 A_ev, sin − 1 = 0
GLb, mg‡KvYx ABC G sin = sin0 ev, sin = 1
BC   = 0
tan BAC = ev, sin = sin90   = 90
AB
3   = 0 ev 90 (Ans.)
ev, tan (x + y) = 1 A
cÖk
œ 3 [Kz. †ev. 17]
ev, tan (x + y) = tan60
 x + y = 60 ............. (i) 1
AB
Avevi, tan ACB = BC
1 B  C
ev, tan (x − y) = 3
3 K.  Gi gvb wbY©q K‡iv| 2
ev, tan (x − y) = tan30
1 1 = a2 + b2 – a2 = b2 = b
L. DÏxc‡Ki Av‡jv‡K cÖgvY K‡iv †h, 1 + sin2 + 1 + cosec2 = 1.
AB
4 myZivs, tan = BC
cosB – sinB 3–1 a
M. hw` cosB + sinB = nq, Z‡e †`LvI †h, B = . 4  tan = (Ans.)
3+1 b
3 bs cÖ‡kœi mgvavb 
L ÔKÕ †_‡K cvB,

K wPÎ n‡Z cvB, a
A tan =
b
AC
tan = sin a
BC ev, =
1 1 cos b
ev, tan = a sin a2 a
3 ev, = 2 [b Øviv ¸Y K‡i]
ev, tan = tan30 B  C b cos b
3 a sin + b cos a2 + b2
  = 30 ev, = [†hvRb-we‡qvRb K‡i]

L ÔKÕ †_‡K cvB,  = 30 a sin – b cos a2 – b2
a sin − b cos a – b
2 2
1 1
evgc¶ = 1 + sin2 + 1 + cosec2  =
a sin + b cos a2 + b2
(Ans.)

1 1 
M MwYZ cvV¨eB‡qi Abykxjbx 9.1 Gi D`vniY 9 Gi Abyiƒc|
= +
1 + (sin30)2 1 + (cosec 30)2 cÖk
 œ 5 [wm. †ev. 17]
1 1
= + ABC mg‡KvYx wÎfz‡R B = 1 mg‡KvY Ges tanA = 1
1 2 1 + (2)2
1+
2 () K. AC Gi ˆ`N©¨ wbY©q K‡iv| 2
L. DÏxc‡Ki Av‡jv‡K (sec2A + cot2C + sin2A) Gi gvb wbY©q K‡iv| 4
1 1 1 1
= + =
1 1+4 4+1 5
+ 1 – sin2A 2tan2A
1+ M. DÏxc‡Ki Av‡jv‡K cÖgvY K‡iv †h, 1 + sin2A + 3sin2A = 1 4
4 4
4 1 4+1 5 5 bs cÖ‡kœi mgvavb
= + = = = 1 = Wvbc¶ K †`Iqv Av‡Q, B = 1 mg‡KvY Ges tanA =A1

5 5 5 5
1 1 Avgiv Rvwb,
 + = 1 (cÖgvwYZ)
1 + sin2 1 + cosec2 j¤^ BC

M †`Iqv Av‡Q, tanA =
f‚wg = AB
cosB − sinB 3−1 BC
= ev, 1 = AB
cosB + sinB 3+1
B C
cosB − sinB + cosB + sinB 3 −1 + 3 + 1  AB = BC
ev, cosB − sinB − cosB − sinB = [†hvRb ABC n‡Z,
3−1− 3−1
we‡qvRb K‡i] AC2 = AB2 + BC2 = AB2 + AB2 = 2AB2
 AC = 2 AB (Ans.)
2cosB 2 3
ev, − 2sinB = − 2 
L †`Iqv Av‡Q, tanA = 1
cosB ev, tanA = tan45  A = 45
ev, sinB = 3 Avevi, A + B + C = 180
ev, cotB = 3 ev, C = 180 − A − B = 180 − 45 − 90 = 45
ev, cotB = cot30  sec2A + cot2C + sin2A = sec245 + cot245 + sin245
= ( 2)2 + (1)2 +  
 B = 30 1 2
myZivs B =  [ÔKÕ n‡Z cvB] (†`Lv‡bv n‡jv)  2
1 4+2+1 7
=2+1+ = = (Ans.)
cÖk
œ 4 [P. †ev. 17] 2 2 2
A 1 − sin A 2tan A
2 2

M evgc¶ = 1 + sin2A + 3sin2A
1 − sin245 2tan245
= + [ A = 45]
1 + sin 45 3sin(2  45)
2

1− 
B C 1 2 1
 2 2.(1)2 1 − 2 2
AB = a, AC = a2 + b2 Ges C =  n‡j, = + = +
1 31
1+ 
1 2 3.sin90
1+
K. wPÎ n‡Z tan Gi w·KvYwgwZK AbycvZ wbY©q K‡iv| 2  2 2
a sin – b cos 2−1 1
L. tan Gi gv‡bi Dci wfwË K‡i a sin + b cos Gi gvb wbY©q K‡iv|
2 2 2 2 1 2 2 1 2
4 = + = + =  + = +
2+1 3 3 3 2 3 3 3 3
M. hw` tanA + sinA = m, tanA – sinA = n nq Zvn‡j cÖgvY K‡iv †h, 2 2
m2 – n2 = 4 mn. 4 1+2 3
= = = 1 = Wvbc¶
3 3
4 bs cÖ‡kœi mgvavb
A 1 − sin2A 2tan2A

K GLv‡b, AB = a, AC = a2 + b2  + = 1 (cÖgvwYZ)
1 + sin2A 3sin2A
 BC = AC2 – AB2
a
= ( a2 + b2)2 – a2

B C
cÖk
œ 6 [h. †ev. 17] L. †`LvI †h, x = 45 Ges y = 15. 4
1 M. B + 15 Gi w·KvYwgwZK AbycvZ¸‡jv †ei K‡iv| 4
ABC G B = 90 Ges tan =
3 7 bs cÖ‡kœi mgvavb
K. AC evûi ˆ`N©¨ wbY©q K‡iv| 2 
K wc_v‡Mviv‡mi m~Îvbymv‡i cvB,
cosec2 – sec2 1 AB2 = AC2 + BC2 = a2 + (a 3)2 = a2 + 3a2 = 4a2
L. cÖgvY K‡iv †h, cosec2 + sec2 = 2. 4  AB = 2a
M. A = x – y =  Ges C = x + y n‡j x I y Gi gvb wbY©q K‡iv| AB Gi ˆ`N©¨ 2a GKK
4 a 3

L wPÎ †_‡K, tan A = a
6 bs cÖ‡kœi mgvavb
K ABC-G B = 90
 C ev, tan (x + y) = 3 ev, tan (x + y) = tan 60
 AC2 = AB2 + BC2  x + y = 60................(i)
a
 AC = AB2 + BC2 GKK (Ans.) Avevi, tan B =
1 a 3

L tan = B A 1
3 ev, tan (x − y) = ev, tan (x − y) = tan 30
1 3
 tan  =
2
 x − y = 30................(ii)
3
1 4 GLb (i) I (ii) bs †hvM K‡i cvB,
sec2 = 1 + tan2 = 1 + = x + y + x − y = 60 + 30
3 3
1 90
tan2 =  cot2 = 3 ev, 2x = 90 ev, x = 2  x = 45
3
cosec2 = 1 + cot2 = 1 + 3 = 4 x Gi gvb (i) bs G ewm‡q cvB,
4 12 − 4 45 + y = 60 ev, y = 60 − 45  y = 15
4−
cosec2 − sec2 3 3  x = 45 Ges y = 15 (†`Lv‡bv n‡jv)
GLb, evgc¶ = cosec2 + sec2
= =
4+
4 12 + 4 
M ÔLÕ †_‡K cvB, x − y = 30
3 3 wPÎ †_‡K B = x − y = 30
8 3 1
= 
3 16 2
= = Wvbc¶ GLb B + 15 = 30 + 15 = 45
cosec2 − sec2 1 45 †Kv‡Yi w·KvYwgwZK AbycvZ¸‡jv †ei Ki‡Z n‡e|
 cosec2 + sec2 = 2 (cÖgvwYZ) AZci:

M †`Iqv Av‡Q, A = x − y =  Ges C = x + y MwYZ cvV¨ eB‡qi Abykxjb 9.2 Gi Aby‡”Q` 9.6 Gi 45 †Kv‡Yi
BC w·KvYwgwZK AbycvZ `ªóe¨| c„ôv-160
ABC G tanA =
AB
œ 8 [iv.
cÖk †ev. 16] Y
BC
ev, tan = AB A
ev, = AB  tan = 
1 BC 1
3  3
BC 1 y
ev, AB =
3
ev, tanA =
1 
3 O X
x B
1
ev, tan (x − y) =
3 K. cot Gi gvb wbY©q Ki| 2
ev, tan (x − y) = tan 30 L. DÏxc‡Ki Av‡jv‡K R¨vwgwZK c×wZ‡Z †`LvI †h,
 x − y = 30..............(i) sin2 + cos2 = 1| 4
AB
Avevi, tan C = BC sinA 1 – cosA
ev, tan (x + y) = 3 = tan 60
M. DÏxc‡Ki Av‡jv‡K (1 – cosA
+
sinA ) Gi gvb wbY©q Ki,
hLb x = 3, y = 4| 4
 x + y = 60..............(ii)
(i) I (ii) bs †hvM K‡i cvB, 8 bs cÖ‡kœi mgvavb
2x = 90  x = 45 
K wPÎ †_‡K cvB, Y
Avevi, (ii) bs n‡Z (i) bs we‡qvM K‡i cvB, A
f‚wg = OB = x
2y = 30  y = 15 j¤^ = AB = y y
myZivs x = 45 Ges y = 15 (Ans.) Avgiv Rvwb, 
cÖk
œ 7 [e. †ev. 17] A f‚wg OB B
O x X
cot =
j¤^ = AB
x+y x
a  cot  = . (Ans.)
y

L ÔKÕ Gi wPÎvbymv‡i cvB,
x–y
B C f‚wg = OB = x
a 3 j¤^ = AB = y
wP‡Î ABC GKwU wÎfzR Ges AOB =  GKwU m~²‡KvY
K. AB Gi ˆ`N©¨ wbY©q K‡iv| 2 cx_v‡Mviv‡mi Dccv`¨ Abymv‡i cvB,
(AwZf~R)2 = (f‚wg)2 + (j¤^)2 GLb, cos = AC =
BC 1
ev, OA2 = OB2 + AB2 2
ev, OA2 = x2 + y2 AB 1
Ges cos = AC =
 OA = x2 + y2 2
Avgiv Rvwb, 1 1 1+1 2
j¤^ AB y  cos + cos = + = = = 2 (Ans.)
sin = 2 2 2 2
AwZfyR = OA = x2 + y2 
M ÔKÕ Gi wPÎ †_‡K cvB,
f‚wg OB x AB 1 AB 1
cos =
AwZfyR = OA = x2 + y2 sin =
AC
=
2
Ges cos = AC =
2
evgc¶ = sin2 + cos2
=
y
2 +  x 2
GLb, sin2 + cos2 = AC (AB) + ( ) 2 AB
AC
2

 x2 + y2  x2 + y2
=  +  1 2
1 2
= 2
y2
+ 2
x2 x2 + y2
= 2 =1  2  2
x + y x + y x + y2
2 2
1 1 1+1 2
= Wvbc¶ = + = = =1
2 2 2 2
 sin2 + cos2 = 1 (†`Lv‡bv n‡jv)
 sin2 + cos2 = 1 (cÖgvwYZ)

M ÔLÕ †_‡K cvB,
OB = x œ 10 [Kz.
cÖk †ev. 16]
AB = y tanA + sinA = m Ges tanA − sinA = n
OA = x2 + y2 K. cÖgvY Ki †h, tan2A. sin2A = mn. 2
†`Iqv Av‡Q, x = 3 Ges y = 4 L. †`LvI †h, m2 − n2 = 4 mn. 4
ÔKÕ Gi wPÎ †_‡K cvB, M. cÖgvY Ki †h, secA = mn. cosec2A. 4
OB x 3 3 3
10 bs cÖ‡kœi mgvavb
sinA =
OA
= = = = 
K †`Iqv Av‡Q,
x2 + y2 32 + 42 25 5
tanA + sinA = m
AB y 4 4 4 tanA – sinA = n
cosA = = 2 = 2 = =
OA x +y 2 3 + 42 25 5 GLb, tan2A. sin2A
sinA 1 − cosA = tan2A.(1 – cos2A) [ sin2A + cos2A = 1]
cÖ`Ë ivwk = 1 − cosA + sinA = tan2A – tan2A.cos2A
sin2A
3 4 3 1 = tan2A – . cos2A
1− cos2A
5 5 5 5
= + = + = tan2A – sin2A
4 3 1 3 = (tanA + sinA) (tanA – sinA)
1−
5 5 5 5 = mn [gvb ewm‡q]
3 5 1 5  tan2A.sin2A = mn (cÖgvwYZ)
=  + 
5 1 5 3

L MwYZ cvV¨eB‡qi Abykxjbx 9.1 Gi D`vniY 9 Gi Abyiƒc|
1 9+1
=3+ = 
M ÔLÕ †_‡K cvB,
3 3
m2 – n2 = 4 mn
10
=
3
(Ans.) ev, (tanA + sinA)2 – (tanA – sinA)2 = 4 mn [m, n Gi gvb
ewm‡q]
cÖk
 œ 9 [w`. †ev. 16] ev, 4tanA sinA = 4 mn [ (a + b)2 – (a – b)2 = 4ab]
wb‡Pi wPÎwU j¶¨ Kit ev, tanA.sinA = mn [4 Øviv fvM K‡i]
A
sinA

ev, cosA.sinA = mn
sin2A
1 ev, cosA = mn
 1 mn
B C ev, cosA = sin2A
1
1
K. AwZf‚R Gi cwigvY KZ? 2 ev, secA = mn. sin2A
L. cos + cos Gi gvb wbY©q Ki| 4  secA = mn cosec2A (cÖgvwYZ)
M. wP‡Îi Av‡jv‡K cÖgvY Ki †h, sin2 + cos2 = 1. 4
9 bs cÖ‡kœi mgvavb cÖk
œ 11 [wm. †ev. 16]
A

K cx_v‡Mviv‡mi Dccv`¨ Abymv‡i,

AC = AB2 + BC2
= 12 + 12
= 1+1 = 2
30
AwZfzR 2 GKK (Ans.) B C
3

L ÔKÕ †_‡K cvB, BC = 3 †m.wg., B = GK mg‡KvY, ACB = 30.
AwZfzR AC = 2 K. AB I AC evûi ˆ`N©¨ wbY©q Ki| 2
1
L. DÏxc‡Ki Av‡jv‡K cÖgvY Ki †h, 2 − sin2A + 2 + tan2A = 1.
1
4 ev, (cos – 1) (2cos – 1) = 0
 cos – 1 = 0 A_ev, 2cos – 1 = 0
M. DÏxcK Abymv‡i  †Kv‡Yi mv‡c‡¶ hw` 2. AC (BC) + 3.AC
2AB
−3=0 ev, cos = 1 ev, 2cos = 1
nq, Z‡e †`LvI †h,  = 60| 4 ev, cos = cos0 ev, cos = 2
1
11 bs cÖ‡kœi mgvavb

K A   = 0 ev, cos = cos60   = 60

  = 60 (†`Lv‡bv n‡jv)
œ 12 [h.
cÖk †ev. 16]
30
B C tan + sin = mGes tan – sin = n.
3
K. DÏxc‡Ki Av‡jv‡K †`LvI †h, m + n = 2 sec.sin. 2
†m.wg.
†`Iqv Av‡Q, BC = 3 †m.wg., B = GK mg‡KvY I ACB = 30 L. cÖgvY Ki †h, m2 – n2 = 4 mn. 4
BC m 2+ 3
cos ACB = M. n = n‡j,  Gi gvb wbY©q Ki, †hLv‡b 0 <  < 90. 4
AC 2– 3
3 12 bs cÖ‡kœi mgvavb
ev, cos30 = AC

K †`Iqv Av‡Q,
3 3
ev, 2 = AC tan + sin = m......... (i) Ges tan − sin = n ........ (ii)
1 1 (i) I (ii) †hvM K‡i cvB,
ev, 2 = AC tan + sin + tan − sin = m + n
 AC = 2 †m.wg. (Ans.) ev, 2tan = m + n
AB ev, m + n = 2tan
Avevi, sinACB = AC sin
AB ev, m + n = 2.cos
ev, sin30 = 2 1
1 AB ev, m + n = 2.cos.sin
ev, 2 = 2
 m + n = 2sec.sin (†`Lv‡bv n‡jv)
 AB = 1 †m.wg. (Ans.)

L MwYZ cvV¨eB‡qi Abykxjbx 9.1 Gi D`vniY 9 Gi Abyiƒc|

L ÔKÕ Gi wPÎ †_‡K cvB,
BC

M †`Iqv Av‡Q,
sinA = .......... (i) m 2+ 3
AC =
3 n 2− 3
 sinA = [ BC = 3 I AC = 2]
2 tan + sin 2 + 3
BC ev, tan − sin = [cÖ`Ë]
Avevi, tanA = AB ........... (ii) 2− 3
tan + sin + tan − sin 2 + 3 + 2 − 3
3 ev, tan + sin − tan + sin = [†hvRb-we‡qvRb
tanA = [ BC = 3 I AB = 1] 2+ 3−2+ 3
1
K‡i]
 tanA = 3
1 1 1 1 2 tan 4
GLb, 2 – sin2A + 2 + tan2A = + ev, 2 sin =
2 3
2– 
3 2 2 + ( 3)2
2 tan
ev, sin =
2
1 1 1 1 1 1 3
= + = + = + sin 1 2
3 2+3 8–3 5 5 5 ev, cos . sin =
2–
4 4 4 3
4 1 4+1 5 1 2
= + =
5 5 5
= =1
5
ev, cos =
3
1 1
 + = 1 (cÖgvwYZ) 3
2 – sin2A 2 + tan2A ev, cos = 2
BC AB ev, cos = cos 30

M wPÎvbyhvqx, sin = AC Ges cos = AC
  = 30 (Ans.)
†`Iqv Av‡Q, 2 AC (BC) + 3.AB
2
AC
–3=0
cÖk
œ 13 [e. †ev. 16]
 2(sin)2 + 3.cos – 3 = 0
ABC-G B = 90, A = x − y, C = x + y, AB = 3, BC = 1.
ev, 2sin2 + 3cos – 3 = 0
ev, 2(1 – cos2) + 3cos – 3 = 0 K. AC Gi ˆ`N©¨ wbY©q Ki| 2
ev, 2 – 2cos2 + 3cos – 3 = 0 cosec2A − sec2A
L. DÏxc‡Ki Av‡jv‡K cos2A − sin2A
Gi gvb wbY©q Ki| 4
ev, –2cos2 + 3cos – 1 = 0
M. x I y Gi gvb wbY©q Ki| 4
ev, 2cos2 – 3cos + 1 = 0
ev, 2cos2 – 2cos – cos + 1 = 0
ev, 2cos (cos – 1) – 1(cos – 1) = 0
13 bs cÖ‡kœi mgvavb 14 bs cÖ‡kœi mgvavb

K A 
K A

3
x−y

x+y
B C
1 C B
†`Iqv Av‡Q, ABC G B = 90, AB = 3, BC = 1 ABC mg‡KvYx wÎfz‡R C = GK mg‡KvY
wc_v‡Mviv‡mi Dccv`¨ Abymv‡i cvB, cx_v‡Mviv‡mi Dccv`¨ Abyhvqx,
AC2 = AB2 + BC2 = ( 3)2 + 12 = 3 + 1 = 4 AB2 = AC2 + BC2
 AC = 2  AB = AC2 + BC2 (Ans.)
†h‡nZz ˆ`N©¨ FbvÍK n‡Z cv‡i bv|
 AC Gi ˆ`N©¨ 2 GKK (Ans.)

L †`Iqv Av‡Q, tanB = 3
ev, tanB = tan60
L †`Iqv Av‡Q, ABC -G AB = 3, BC = 1
  B = 60
ÔKÕ †_‡K cvB, AC = 2 †h‡nZy C = 90  A = 30
BC
 sinA = cotA + tanB cot30 + tan60 3+ 3 2 3
AC evgc¶ = cotB + tanA = cot60 + tan30 = 1 = =3
1 1 1 2
sinA = ev, sinA = 2 +
2 3 3 3
 cosecA = 2 Wvbc¶ = cotA . tanB = cot30.tan60
AB = 3. 3 =3
Avevi, cosA = AC
= evgc¶
3 1 2 cotA + tanB
 cosA = ev, cosA =  = cotA.tanB (cÖgvwYZ)
2 3 cotB + tanA
2
 secA = M †`Iqv Av‡Q, B = p + q ............. (i)

3 A = p − q ............. (ii)
22 –  
2 2 (i) bs Ges (ii) bs †hvM K‡i cvB,
cosec2A − sec2A  3 B + A = p + q + p – q
cÖ`Ë ivwk = cos2A − sin2A =
 32 – 1 2 ev, 60 + 30 = 2p
2 2 () ev, 2p = 90
4 12 – 4 8 ev, p = 45
4–
3 3 3 8 4 16
= = = =  = (Ans.) (i) bs †_‡K (ii) bs we‡qvM K‡i cvB,
3 1 3–1 2 3 2 3 B − A = p + q − p + q

4 4 4 4 ev, 60 − 30 = 2q

M ABC-G AB = 3, BC = 1 ev, 30 = 2q
BC
tanA =  p = 45 Ges q = 15 (Ans.)
AB
1
 tan (x − y) = [ A = x – y] cÖk
œ 15 [w`. †ev. 15]
3
ev, tan (x − y) = tan 30 †Kv‡bv mg‡KvYx wÎfz‡Ri AwZfzR 1 + p Ges  †Kv‡Yi mwbœwnZ evû
 x − y = 30 ......... (i) 2p|
AB K. Z_¨¸‡jv R¨vwgwZK wP‡Î Dc¯’vcb K‡i Aci evûi ˆ`N©¨ wbY©q Ki|
Avevi, tanC = BC
2
3 L. sec2 + tan2 Gi gvb wbY©q Ki| 4
ev, tan (x + y) = 1 [ C = x + y]
1 + cosec2 1
ev, tan (x + y) = tan 60 M. cÖgvY Ki †h, 1 − cosec2 = − p 4
 x + y = 60 ......... (ii) 15 bs cÖ‡kœi mgvavb
mgxKiY (i) I (ii) †hvM K‡i cvB,
K awi, ABC mg‡KvYx

2x = 90  x = 45 A
x Gi gvb (ii) bs G ewm‡q cvB,
wÎfz‡Ri AwZfzR
45 + y = 60  y = 15 AC = 1 + P ,
 x = 45 I y = 15 (Ans.)  †Kv‡Yi mwbœwnZ
evû BC = 2P . 1+P
cÖk
œ 14 [Xv. †ev. 15]
GLb, wc_v‡Mviv‡mi
ABC mg‡KvYx wÎfz‡R C mg‡KvY, tan B = 3.
K. AB Gi gvb KZ? 2
Dccv`¨ Abymv‡i cvB, 
AC2 = AB2 + BC2 C
cotA + tan B 2 2 B 2P
L. DÏxc‡Ki Av‡jv‡K cÖgvY Ki †h, cot B + tan A = cotA.tanB.4 ev, ( 1 + P) = AB2 + ( 2P)
M. B = p + q Ges A = p − q n‡j, p I q Gi gvb wbY©q Ki|4 ev, 1 + P = AB2 + 2P
ev, AB2 = 1 + P − 2P
ev, AB2 = 1 − P
 AB = 1 − P (Ans.)

L ÔKÕ n‡Z cvB,  A = 30 (Ans.)
ABC mg‡KvYx wÎfz‡Ri AC = 1 + P , BC = 2P 
M 4sin2 − (2 + 2 3 )sin + 3 = 0
Ges AB = 1 − P Ges  = ACB ev, 4sin2 − 2sin − 2 3 sin + 3 = 0
AC
GLb, sec = BC =
1+P ev, 2sin(2sin − 1) − 3 (2sin − 1) = 0
2P ev, (2sin − 1) (2sin − 3 ) = 0
AB 1−P nq, 2sin − 1 = 0 A_ev, 2sin − 3 = 0
tan = =
BC 2P ev, 2sin = 1 ev, 2sin = 3
1 + P2  1 − P2
 sec2 + tan2 =  + 1 3
 2P   2P  ev, sin =
2
ev, sin = 2
1+P 1−P 1+P+1−P 2 ev, sin = sin30 ev, sin = sin60
= + = =
2P 2P 2P 2P ev,  = 30
1
= (Ans.)   = A [ÔLÕ n‡Z] ev,  = 2  30
P
  = 2A [ÔLÕ n‡Z]
M ÔKÕ n‡Z cvB, ABC mg‡KvYx wÎfz‡Ri AC = 1 + P , BC = 2P
 (†`Lv‡bv n‡jv)
AB = 1 − P Ges  = ACB œ 17 [P.
cÖk
 †ev. 15]
AC 1+P
 cosec = = L
AB 1−P

1+
1 + P2 1+P 13 GKK
1 + cosec2  1 − P
1+
1−P 12 GKK
evgc¶ =
1 − cosec2
= =
1−
1 + P 2 1−
1+P 
 1 − P 1−P M N
1−P+1+P K. cot Gi gvb wbY©q Ki| 2
1−P 2 (1 − P) −1 L. DÏxc‡Ki Av‡jv‡K cÖgvY Ki †h, tan2 − sin2 = tan2. sin24
= =  =
1 − P − 1 − P (1 − P) −2P P M. R¨vwgwZK c×wZ‡Z cÖgvY Ki †h, sin2 + cos2 = 1 4
1−P 17 bs cÖ‡kœi mgvavb
= Wvbc¶ 
K †`Iqv Av‡Q,
1 + cosec2 −1 L
 = (cÖgvwYZ) LM = 12 GKK
1 − cosec2 P
LN = 13 GKK
œ 16 [Kz.
cÖk †ev. 15]  MN = LN2 − LM2 GKK
12 13 GKK
cosA + sinA 3+1 = 132 − 122 GKK
= , B = 60. GKK
cosA − sinA 3−1 = 169 − 144 GKK
K. cosec2B + cot2B Gi gvb wbY©q Ki| 2 = 25 GKK

L. A Gi gvb wbY©q Ki| 4 = 5 GKK
M N
M. 4sin2 − (2 + 2 3) sin + 3 = 0 mgxKiYwU mgvavb K‡i MN 5
 cot = = (Ans.)
LM 12
†`LvI †h,  = 2A A_ev  = A| 4
16 bs cÖ‡kœi mgvavb 
L DÏxc‡Ki wPÎvbymv‡i cvB,
LM = 12 GKK, LN = 13 GKK
K B = 60
 ÔKÕ n‡Z cvB, MN = 5 GKK
GLb cosec2B + cot2B LM 12
= (cosec60)2 + (cot60)2  tan = =
MN 5
=  + 
2 2 1 2 LM 12
 3  3 sin =
LN 13
=
4 1
= +  evgc¶ = tan2 − sin2
3 3 12 2 12 2
=
5
3
(Ans.)
= ( ) ( )
5

13
144 144 24336 − 3600 20736
= − = =

L †`Iqv Av‡Q, 25 169 4225 4225
12 2 12 2 144 144 20736
cosA + sinA
cosA − sinA
=
3+1
3−1
2 2
( )( )
Wvbc¶ = tan .sin  = 5 . 13 = 25 .169 = 4225
 tan2 − sin2 = tan2.sin2 (cÖgvwYZ)
cosA + sinA − cosA + sinA 3+1− 3+1
ev, cosA + sinA + cosA − sinA
=
3+1+ 3−1

M MwYZ cvV¨eB‡qi Abykxjbx 9.1 Gi Aby‡”Q` 9.5(i) `ªóe¨|
[we‡qvRb−†hvRb K‡i]
2sinA 2
ev, =
2cosA 2 3
sinA 1
ev, cosA
=
œ 18 [h.
cÖk
 †ev. 15]
3
ev, tanA = tan30
p = 1 + sinA Ges q = 1 − sinA n‡j ⎯ =
2.tan 45
K. pq Gi gvb KZ? 2 1 − (tan 45)2
2.1
p =
L. cÖgvY Ki †h, q = secA + tanA. 4 1 − (1)2
2
q = = AmsÁvwqZ
M. cÖgvY Ki †h, (secA − tanA)2 = p. 4 0
2tanA
18 bs cÖ‡kœi mgvavb  tan 2A = (†`Lv‡bv n‡jv)
1 − tan2A
K †`Iqv Av‡Q, p = 1 + sinA Ges q = 1 − sinA
 1
 pq = (1 + sinA) (1 − sinA) = 1 − sin2A = cos2A (Ans.) M 3cot2 (B + 45) − 2 cosec2 (B + 45) + 5 sin2(B + 30) − 4
p 1 + sinA cos2(B + 45)

L evgc¶ = =
1 − sinA
1
q = 3cot2 (15 + 45) − cosec2 (15 + 45) +
2
(1 + sinA) (1 + sinA) 5sin2 (15 + 30) − 4cos2 (15 + 45) [ B = 15]
=
(1 + sinA) (1 − sinA)
[je I ni‡K (1 + sinA) Øviv ¸Y
1
K‡i] = 3cot2 60 − cosec2 60 + 5 sin2 45 − 4cos260
2
(1 + sinA)2 (1 + sinA)2
= 3   −   + 5.   − 4
1 2 1 2 2 1 2 1 2
=
1 − sin A
2 =
cos2A  3 2  3  2 ()2
1 + sinA 1 sinA 1 1 4 1 1
=
cosA
= +
cosA cosA =3 −  +5 −4
3 2 3 2 4
= secA + tanA 2 5
= Wvbc¶ =1− + −1
3 2
p 5 2 15 − 4 11
 = secA + tanA (cÖgvwYZ) = − = = (Ans.)
q 2 3 6 6
M evgc¶ = (secA − tanA)2
 cÖk
œ 20 cos A + cos4A = 1
2

1 − sinA2 cos2A
= K. †`LvI †h, 1 + cos2A = (1 + cosA) (1 − cosA)
1 sinA 2
= (cosA −
cosA)  cosA 
L. cÖgvY Ki †h, cot A − cot A = 1
4 2
2
4
(1 − sinA)2 (1 − sinA)2
= = M. †`LvI †h, tan4A + tan2A = 1 Ges sin2A + sec2A = 2 4
cos2A 1 − sin2A
(1 − sinA) (1 − sinA) 1 − sinA q 20 bs cÖ‡kœi mgvavb
= = = 
(1 + sinA) (1 − sinA) 1 + sinA p K †`Iqv Av‡Q,
= Wvbc¶ cos2A + cos4A = 1
q ev, cos4A = 1 − cos2A
 (secA − tanA)2 = (cÖgvwYZ) ev, cos4A = sin2A [ sin2A + cos2A = 1]
p
cÖk
œ 19 2cos (A + B) = 1 = 2sin (A − B)  cos2A = sinA
cos2A sinA
K. DÏxcK Abymv‡i A + B I A − B msKwjZ `yBwU mgxKiY MVb Ki| GLb, 1 + cos2A = 1 + sinA
2 sinA (1 – sinA)
2tanA =
L. A I B Gi gvb wbY©q Ki| Av‡iv †`LvI †h, tan2A = 1 − tan2A (1 + sinA) (1 − sinA)
[ni I je‡K (1 − sinA) Øviv ¸Y K‡i]
4 sinA (1 − sinA)
1 =
M. 3cot2 (B + 45) − 2 cosec2 (B + 45) + 5 sin2 (B + 30) − 4 cos2 1 − sin2A
sinA (1 − sinA)
(B + 45) Gi gvb wbY©q Ki| 4 =
cos2A
19 bs cÖ‡kœi mgvavb sinA (1 − sinA)

K †`Iqv Av‡Q, 2cos (A + B) = 1 =
sinA
ev, cos (A + B) = 2
1 = 1 − sinA = 1 − cos2A
= (1 + cosA) (1 − cosA)
ev, cos (A + B) = cos 60 cos2A
 A + B = 60 ... ... ... ... (i)  = (1 + cosA) (1 − cosA) (†`Lv‡bv n‡jv)
1 + cos2A
Ges 2 sin (A − B) = 1 
L †`Iqv Av‡Q,
1 cos2A + cos4A = 1
ev, sin (A − B) = 2
ev, cos4A = 1 − cos2A
ev, sin (A − B) = sin 30 ev, cos4A = sin2A
 A − B = 30 ... ... ... (ii) cos4A sin2A

L (i) I (ii) bs †hvM K‡i cvB, ev, sin4A = sin4A
2A = 90  A = 45 1
Avevi, (i) n‡Z (ii) we‡qvM K‡i cvB, ev, cot4A = sin2A
2B = 30  B = 15 ev, cot4A = cosec2A
evgc¶ = tan 2A ev, cot4A = 1 + cot2A
= tan (2  45) [ A = 45]  cot4A − cot2A = 1 (cÖgvwYZ)
= tan 90

M ÔLÕ †_‡K cvB,
sin 90 1
= = = AmsÁvwqZ cot4A − cot2A = 1
cos 90 0
1 1
2tanA ev, tan4A − tan2A = 1
Wvbc¶ = 1 − tan2A
1− tan2A
ev, tan4A = 1
ev, tan4A = 1 − tan2A
 tan4A + tan2A = 1 (†`Lv‡bv n‡jv)
sin2A + sec2A
1
= sin2A +
cos2A
1
= sin2A +
sinA
sin3A + 1
=
sinA
(sinA + 1) (sin2A − sinA + 1)
=
sinA
(sinA + 1) (sin2A − sinA + 1)
= [ÔKÕ n‡Z sinA = cos2A]
cos2A
(sinA + 1) (sin2A − sinA + 1)
= [ sin2A + cos2A = 1]
1 − sin2A
sin2A − sinA + 1
=
1 − sinA
sin2A − sinA + 1
=
1 − cos2A
sin2A − sinA + 1
=
sin2A
1 1
=1− +
sinA sin2A
1 1
=1− +
cos2A sin2A
1 − sec2A + cosec2A
= 1 − sce2A + (1 + cot2A) [  cosec2A − cot2A = 1]
= 2 + cot2A − sec2A
cos2A
= 2 + 2 − sec2A
sin A
cos2A
=2+ − sec2A
cos4A
= 2 + sec2A − sec2A
=2
 sin2A + sec2A = 2 (†`Lv‡bv n‡jv)

You might also like