Mobility & Transport Networks
Plan de Formación (40h)
Plan de Formación (40h)
(2021)
Lecture 2. Trajectories
Trajectories (s-t) + queues (N-t)
Transport operations:
• Trajectories (in movement –
overcome the distance)
– Speed, acceleration, etc.
s
• Queues (waiting – overcome
the time)
̶ Waiting time, maximum
queue and average, etc.
• Dual analysis of
movement
N
Q
t
t 2
Definition
• Determination of the position of a vehicle (x) in relation to a
reference point during the time (t).
• Geometrical place of the vehicle position (space) respect to
the time: function x(t). Graphic representation of x(t) in the
plane (t, x) is a curve named trajectory.
• Applications:
– Minimum travel time between stations in a railway line for a
maximum speed.
– Determine the initial speed of a car from the braking marks on its
tires.
– Length of runways and location of exits.
– Length of acceleration / deceleration lanes.
– Etc.
3
Diagrams s-t
x
* t
(*) does not represent a real physic al trajectory
TRAJECTORY
Instantaneous speed = v(t) = dx(t)/dt
Instantaneous acceleration = a(t) = dv(t)/dt = d2x(t)/dt2
In case, a(t) = a(constant):
4
Interpretación de trayectorias (1/2)
s t Acceleration
(recovering
Deceleration speed)
(intersection,
pedestrian
crossing, bump)
Free
speed
Vehicle running at a
lower speed and with
a longer than the
previous vehicles
5
Interpretación de trayectorias (2/2)
¿If we record a video
in a section of a road,
what do we see?
6
Construction of Trajectories
A) by record times of vehicle passing through fixed sections (elevators,
pedestrians, automobiles, etc.).
B) by photographs in sequenced areas in time or by time ranges in systems
operated by scheduled in a circuit (buses with navigation systems).
C) by record of the overtaking time of vehicles to an observer in movement at a
constant speed.
D) by continuous “tracking” with GPS (in vehicles such as cars, trucks, urban
buses via SAE or private smart phones) or bluetooth (roads).
7
Micro and Macro traffic variables
Micro: h, headway
Macro: q, flow
i=1
Micro: s, spacing
Macro: k, density
j=1
8
Diagrams (s,t) in traffic
Real trajectories in
a highway
9
Traffic jams in highways
10
Comparison of PT modes
11
Bus bunching
TRAJECTORIES D'AUTOBUSOS
4500,00 bus 1
4000,00 bus 2
3500,00 bus 3
TEMPS (seg.)
3000,00 bus 4
2500,00 bus 5
2000,00 bus 6
1500,00 bus 7
1000,00 bus 8
500,00 bus 9
0,00 bus 10
0 2 4 6 8 10 12 bus 11
PARADES bus 12
12
Bus bunching
AUTOBUSES PAREADOS
2000
1800
1600
1400
1200
Tiem po (s)
1000
800
600
400
200
0
0 5 10 15 20 25
Paradas
13
Bus bunching
AUTOBUSES PAREADOS
2000
1800
1600
1400
1200
Tiem po (s)
1000
800
600
400
200
0
0 5 10 15 20 25
Paradas
14
Bus bunching
AUTOBUSES PAREADOS
2000
1800
1600
1400
1200
Tiem po (s)
1000
800
600
400
200
0
0 5 10 15 20 25
Paradas
15
Bus bunching
AUTOBUSES PAREADOS
2000
1800
1600
1400
1200
Tiem po (s)
1000
800
600
400
200
0
0 5 10 15 20 25
Paradas
16
Bus bunching
AUTOBUSES PAREADOS
2000
1800
1600
1400
1200
Tiem po (s)
1000
800
600
400
200
0
0 5 10 15 20 25
Paradas
17
Bus bunching
AUTOBUSES PAREADOS
2000
1800
1600
1400
1200
Tiem po (s)
1000
800
600
400
200
0
0 5 10 15 20 25
Paradas
18
Bus bunching
AUTOBUSES PAREADOS
2000
1800
1600
1400
1200
Tiem po (s)
1000
800
600
400
200
0
0 5 10 15 20 25
Paradas
19
Trajectories PV and PT
Trajectòries
4.000
3.800
3.600
3.400
TRAJECTORIES B
TRAJECTORY PV OF BUSES
3.200
H
3.000
2.800
A
2.600 E
2.400
G
Posició
2.200
2.000 C
1.800 I
1.600
H2
1.400
1.200 A2
1.000
J
800
600
B2
400
200
0
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Temps
20
Group speed
3 friends are travelling with a tandem bicycle. The bicycle travels at 20 km/h and
walking the speed is 4 km/h at a constant rate. The operative is:
• A+B in tandem, C walking
• After a while (t), B walks and A goes back and picks up C with the bicycle
• A+C by bike until they find B.... A walks and B+C by bike... Repetition of the cycle
Average group speed?
21
Group speed
3 friends are travelling with a tandem bicycle. The bicycle travels at 20 km/h and
walking the speed is 4 km/h at a constant rate. The operative is:
• A+B in tandem, C walking
• After a while (t), B walks and A goes back and picks up C with the bicycle
• A+C by bike until they find B.... A walks and B+C by bike... Repetition of the cycle
Average group speed? x
4
1
2t
20(t x) 4(t x) x
3 1 20 t
20
20
4 (5t / 3) 20 (t ) 80t / 3 1
v 10km / h
8t / 3 8t / 3
20
1
1
4
20t/3
time
t (2/3)t t (8/3)t
22
Group speed
Bike speed = b km/h; walking speed = w km/h
(w/b<1).
x
w
1
1
b bt
b
D
1
b
1
w w(t+y)
1
t y t
t
t
T
If b = 20 km/h, w = 4 km/h, = 1/2 (Vgrupo = 0,5b = 10 km/h).
If b = 20 km/h, w = 20 km/h, = 1 (Vgrupo = b = 20 km/h).
If b = 20 km/h, w = 0 km/h, = 1/3 (Vgrupo = 0,33b = 6,67 km/h).
If b = 30 km/h, w = 4 km/h, = 0,4468 (Vgrupo = 13,404 km/h).
If b = 10 km/h, w = 4 km/h, = 0,6471 (Vgrupo = 6,47 km/h). Was it “intuitive”?
If b = 20 km/h, w = 5 km/h, = 0,5385 (Vgrupo = 10,769 km/h). 23
Group speed
4 10-15
b(bici)= w= w= w= w= w= w=
2 5-10
0 1 2 3 4 5
0 0 0 0 0 0 0
0-5
1 0,333333 1 1,4 1,666667 1,857143 2 0
2 0,666667 1,428571 2 2,444444 2,8 3,090909 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 1 1,8 2,454545 3 3,461538 3,857143
4 1,333333 2,153846 2,857143 3,466667 4 4,470588
5 1,666667 2,5 3,235294 3,888889 4,473684 5
6 2 2,842105 3,6 4,285714 4,909091 5,478261
7 2,333333 3,181818 3,956522 4,666667 5,32 5,923077 16
8 2,666667 3,52 4,307692 5,037037 5,714286 6,344828
9 3 3,857143 4,655172 5,4 6,096774 6,75
14
10 3,333333 4,193548 5 5,757576 6,470588 7,142857
11 3,666667 4,529412 5,342857 6,111111 6,837838 7,526316
12 4 4,864865 5,684211 6,461538 7,2 7,902439 12 14-16
13 4,333333 5,2 6,02439 6,809524 7,55814 8,272727
14 4,666667 5,534884 6,363636 7,155556 7,913043 8,638298 10 12-14
15 5 5,869565 6,702128 7,5 8,265306 9 10-12
16 5,333333 6,204082 7,04 7,843137 8,615385 9,358491 8
17 5,666667 6,538462 7,377358 8,185185 8,963636 9,714286 8-10
18 6 6,872727 7,714286 8,526316 9,310345 10,0678 6
19 6,333333 7,206897 8,050847 8,866667 9,655738 10,41935 6-8
20 6,666667 7,540984 8,387097 9,206349 10 10,76923 4 4-6
21 7 7,875 8,723077 9,545455 10,34328 11,11765
22 7,333333 8,208955 9,058824 9,884058 10,68571 11,46479 2 2-4
23 7,666667 8,542857 9,394366 10,22222 11,0274 11,81081
24 8 8,876712 9,72973 10,56 11,36842 12,15584 0 0-2
25 8,333333 9,210526 10,06494 10,89744 11,70886 12,5 0
26 8,666667 9,544304 10,4 11,23457 12,04878 12,84337
2 4 6 8 10
27 9 9,878049 10,73494 11,57143 12,38824 13,18605 12 14 16 18 20 0
28 9,333333 10,21176 11,06977 11,90805 12,72727 13,52809 22 24 26 28
29 9,666667 10,54545 11,40449 12,24444 13,06593 13,86957 30
30 10 10,87912 11,73913 12,58065 13,40426 14,21053
24
Playful fly
2 trains separated by an initial distance D moving in opposite directions
with speeds v1 y v2 until crash. A fly is travelling between train headboards
with a (high and constant) speed u (u >> max{v1, v2})
How far has the fly travelled before dying in the
crash?
25
Playful fly
2 trains separated by an initial distance D moving in opposite directions
with speeds v1 y v2 until crash. A fly is travelling between train headboards
with a (high and constant) speed u (u >> max{v1, v2})
How far has the fly travelled before dying in the
crash?
x
x Dx D
v1 v2 t
D t t v1 v2
1
v2 Distance travelled t·u
Du
x t u
v1 v2
u v1
1 1
0
t
t
26