0% found this document useful (0 votes)
80 views24 pages

Maths Part 2 Formulae Booklate

Formule

Uploaded by

OMKAR ZITE
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
80 views24 pages

Maths Part 2 Formulae Booklate

Formule

Uploaded by

OMKAR ZITE
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 24

Algebraic Expressions

 (a + b)2 = a2 + 2ab + b2
 (a – b)2 = a2 – 2ab + b2
 a2 – b2 = (a – b) (a + b)
 a2 + b2 = (a + b)2 -2ab
 (a + b)3 = a3 + b3 + 3ab (a + b) = a3+3a2b + 3ab2 + b3
 (a – b)3 = a3 – b3 – 3ab (a – b) = a3-3a2b + 3ab2 - b3
 a3 – b3 = (a – b) (a2 + ab + b2)
 a3 + b3 = (a + b) (a2 – ab + b2)

Trignometric formulae
sin θ x cosec θ = 1 cos θ x sec θ = 1 tan θ x cot θ = 1
1 1 1
sin θ = cos θ = tan θ =
cosec θ sec θ cot θ
1 𝟏 𝟏
cosec θ = sec θ = cot θ =
sin θ cos θ tan θ

sin (− θ) = − sin θ
cos (−θ) = cos θ
tan (−θ) = − tan θ
cot (−θ) = − cot θ
sec (−θ) = sec θ
cosec (−θ) = − cosec θ

Vaibhav Sir :- 8425924179


Angle 0° 30° 45° 60° 90° 180° 270° 360°

T.F
Sin 0 1 1 √3 1 0 −1 0
2 √2 2
Cos 1 √3 1 1 0 −1 0 1
2 √2 2
tan 0 1 1 √3 ∞ 0 ∞ 0
√3
Cot ∞ √3 1 1 0 ∞ 0 ∞
√3
Cosec ∞ 2 √2 2 1 ∞ −1 ∞
√3
Sec 1 2 √2 2 ∞ −1 ∞ 1
√3

IMP Values
Sin 0 = 0 cos 0 = 1
Sin 𝛑 = 0 cos 𝛑 = − 1
Sin 2𝛑 = 0 cos 2𝛑 = 1
Sin 3𝛑 = 0 cos 3𝛑 = − 1
Sin 4𝛑 = 0 cos 4𝛑 = 1
𝜋 𝜋
Sin = 1 cos = 0
2 2
3𝜋 3𝜋
Sin =−1 cos =0
2 2
5𝜋 5𝜋
Sin =1 cos =0
2 2
7𝜋 7𝜋
Sin =−1 cos =0
2 2

Vaibhav Sir :- 8425924179


sin cos Tan
𝜋
–θ +Cos θ +Sin θ +Cot θ
2
𝜋
+θ +Cos θ −Sin θ −Cot θ
2
𝛑–θ +Sin θ −Cos θ −Tan θ
𝛑+θ −Sin θ −Cos θ +Tan θ
3𝜋 −Cos θ −Sin θ +Cot θ
−θ
2
3𝜋 −Cos θ +Sin θ −Cot θ

2
2𝛑 – θ −Sin θ +Cos θ −Tan θ
2𝛑 + θ +Sin θ +Cos θ +Tan θ

Compound Angle Formulae


 cos ( A + B ) = cos A.cos B – sin A.sin B
 cos ( A – B ) = cos A.cos B + sin A.sin B
 sin ( A + B ) = sin A.cos B + cos A.sin B
 sin ( A – B ) = sin A.cos B − cos A.sin B

Defactorization Formulae
 cos ( A + B ) + cos ( A – B ) = 2 cos A. cos B
 cos ( A + B ) − cos ( A – B ) = − 2 sin A. sin B
 sin ( A + B ) + sin ( A – B ) = 2 sin A. cos B
 sin ( A + B ) − sin ( A – B ) = 2 cos A. sin B

Factorization Formulae
𝐴+𝐵 𝐴−𝐵
 cos A + cos B = 2 cos ( ) cos ( )
2 2
𝐴+𝐵 𝐴−𝐵
 cos A – cos B = − 2 sin ( ) sin ( )
2 2
𝐴+𝐵 𝐴−𝐵
 sin A + sin B = 2 sin ( ) cos ( )
2 2
𝐴+𝐵 𝐴−𝐵
 sin A – sinB = 2 cos ( ) sin ( )
2 2

Vaibhav Sir :- 8425924179


Trigonometric identity
sin2 θ + cos2 θ = 1 sin2 θ =1- cos2 θ cos2 θ =1- sin2 θ
1+tan2 θ = sec2 θ 1 = sec2 θ − tan2 θ tan2 θ = sec2 θ - 1
1 + cot2 θ = cosec2 θ 1 = cosec2 θ − cot2 θ cot2 θ = cosec2 θ - 1
tan A+tan B tan A−tan B
tan (A+B) = tan (A-B) =
1 − 𝑡𝑎𝑛 𝐴.𝑡𝑎𝑛 𝐵 1 + 𝑡𝑎𝑛 𝐴.𝑡𝑎𝑛𝐵
cot A.cot B−1 cot A.cot B+1
cot (A+B) = cot (A-B) =
cot A+cot B cot A−cotB

Double angle formula


2 𝑡𝑎𝑛 𝜃
Sin 2 θ = 2 sin θ.cos θ = 2 𝑠𝑖𝑛2 θ = 1 - cos 2 θ
1 + 𝑡𝑎𝑛2 𝜃
1 − Cos 2 θ
Cos 2 θ = Cos2 θ − 𝑠𝑖𝑛2 θ = 2Cos2 θ – 1 𝑠𝑖𝑛2 θ =
2
1 − 𝑡𝑎𝑛2𝜃
Cos 2 θ = 1 − 2 𝑠𝑠𝑠2 θ = 2 𝑐𝑜𝑠2 θ = 1 + cos 2
1 + 𝑡𝑎𝑛2𝜃
θ
2 𝑡𝑎𝑛 𝜃 1 + Cos 2 θ
tan 2 θ = 𝑐𝑜𝑠2 θ =
1 − 𝑡𝑎𝑛2𝜃 2
Half Angle Formulae
𝜃
𝜃 𝜃 2 𝑡𝑎𝑛 2 𝜃
sin θ = 2sin cos = 𝜃 2𝑠𝑖𝑛2 = 1 − cos θ
2 2 1 + 𝑡𝑎𝑛2 2 2

𝜃 𝜃 𝜃 𝜃 1 − cos θ
cos θ = cos2 – sin2 = 2cos2 − 1 𝑠𝑖𝑛2 =
2 2 2 2 2
𝜃
𝜃 1 − 𝑡𝑎𝑛2 2 𝜃
cos θ = 1 - 2 𝑠𝑖𝑛2 = 𝜃 2𝑐𝑜𝑠2 = 1+ cos θ
2 1 + 𝑡𝑎𝑛2 2 2

𝜃
2 𝑡𝑎𝑛 2 𝜃 1 + 𝑐𝑜𝑠 𝜃
tan θ = 𝜃 𝑐𝑜𝑠2 =
1 − 𝑡𝑎𝑛2 2 2 2

Triple Angle Formulae


3 𝑠𝑖𝑛𝜃 – 𝑠𝑖𝑛 3𝜃
Sin 3θ = 3 sinθ – 4sin3θ sin3θ =
4
3 𝑐𝑜𝑠 𝜃 + 𝑐𝑜𝑠 3𝜃
Cos 3θ = 4 cos3θ – 3 cosθ cos3θ =
4
3 𝑡𝑎𝑛 𝜃 − 𝑡𝑎𝑛3 𝜃
Tan 3θ =
1 − 3 𝑡𝑎𝑛2 𝜃

Vaibhav Sir :- 8425924179


Logarithms
y = 𝑎𝑥 ……………. 𝑥 = 𝑙𝑜𝑔𝑎𝑦
𝑙𝑜𝑔𝑎𝑎 = 1
log 1 = 0
log e = 1
𝑚
loga ( ) = loga m – loga n
𝑛

loga mn= 𝑛. loga m


𝑙𝑜𝑔 𝑎
logba =
𝑙𝑜𝑔 𝑏
logba × logab = 1
Inverse Trignometric Formulae
1) sin−1 (sin θ) = θ sin (sin−1x) = x
2) cos−1 (cos θ) = θ cos (cos−1x) = x
3) tan−1 (tan θ) = θ tan (tan−1x) = x
4) cot−1 (cot θ) = θ cot (cot−1x) = x
5) sec−1 (sec θ) = θ sec (sec−1x) = x
6) cosec−1 (cosec θ) = θ cosec (cosec−1x) = x
𝜋 𝜋
7) sin−1 (cos θ) = sin−1 [𝑠𝑖𝑛 ( − 𝜃)] = – θ
2 2
𝜋 𝜋
8) cos−1 (sin θ) = cos−1 [𝑐𝑜𝑠 ( − 𝜃)] = – θ
2 2
𝜋 𝜋
9) tan−1 (cot θ) = tan−1 [𝑡𝑎𝑛 ( − 𝜃)] = – θ
2 2
𝜋 𝜋
10) cot−1 (tan θ) = cot−1 [𝑐𝑜𝑡 ( − 𝜃)] = – θ
2 2
𝜋 𝜋
11) sec−1 (cosec θ) = sec−1 [𝑠𝑒𝑐 ( − 𝜃)] = – θ
2 2
𝜋 𝜋
12) cosec−1 (sec θ) = cosec−1 [𝑐𝑜𝑠𝑒𝑐 ( − 𝜃)] = – θ
2 2
1
13) sin−1 (x) =cosec−1 ( )
𝑥
1
14) cos−1 (x) =sec−1 ( )
𝑥

Vaibhav Sir :- 8425924179


1
15) tan−1 (x) =cot−1 ( )
𝑥
1
16) cot−1 (x) =tan−1 ( )
𝑥
1
17) sec−1 (x) =cos−1 ( )
𝑥
1
18) cosec−1 (x) =sin−1 ( )
𝑥
𝜋
19) sin−1 (x) + cos−1 (x) =
2
𝜋
20) tan−1 (x) + cot−1 (x) =
2
𝜋
21) sec−1 (x) + cosec−1 (x) =
2

Trigonometric functions of angles of a triangle


A+B+C=𝛑
A+B=π–C
A+C=π–B
B+C=π–A
 sin ( A + B ) = sin ( π – C )
sin ( A + B ) = sin C A
 cos ( A + B ) = cos ( π – C )
cos ( A + B ) = − cos C
 sin ( B + C ) = sin ( π – A ) B C
sin ( B + C ) = sin A
 cos ( B + C ) = cos ( π – A )
cos ( B + C ) = − cos A
 sin ( A + C ) = sin ( π – B )
sin ( A + C ) = sin B
 cos ( A + C ) = cos ( π – B )
cos ( A + C ) = − cos B

Vaibhav Sir :- 8425924179


𝐴+𝐵 𝜋 𝐶
 sin ( ) = sin ( − )
2 2 2
𝐴+𝐵 𝐶
sin ( ) = cos ( )
2 2
𝐴+𝐶 𝜋 𝐵
 sin ( ) = sin ( − )
2 2 2
𝐴+𝐶 𝐵
sin ( ) = cos ( )
2 2
𝐵+𝐶 𝜋 𝐴
 sin ( ) = sin ( − )
2 2 2
𝐴+𝐶 𝐴
sin ( ) = cos ( )
2 2
𝐴+𝐵 𝜋 𝐶
 cos ( ) = cos ( − )
2 2 2
𝐴+𝐵 𝐶
cos ( ) = sin ( )
2 2
𝐴+𝐶 𝜋 𝐵
 cos ( ) = cos ( − )
2 2 2
𝐴+𝐶 𝐵
cos ( ) = sin ( )
2 2
𝐵+𝐶 𝜋 𝐴
 cos ( ) = cos ( − )
2 2 2
𝐴+𝐶 𝐴
cos ( ) = sin ( )
2 2

Vaibhav Sir :- 8425924179


1. FORMULAE OF DERIVATIVE
𝑑 𝑑
𝑘=0 Sin x = Cos x
𝑑𝑥 𝑑𝑥
𝑑 𝑑
𝑥=1 Cos x = − Sin x
𝑑𝑥 𝑑𝑥
𝑑 𝑑
xn = n.xn−1 Tan x = Sec2 x
𝑑𝑥 𝑑𝑥
𝑑 𝑑
ex = ex Cot x = − Cosec2 x
𝑑𝑥 𝑑𝑥
𝑑 𝑑
ax = ax . log a Sec x = Sec x. Tan x
𝑑𝑥 𝑑𝑥
𝑑 1 𝑑
log x = Cosec x = − Cosec x. Cot x
𝑑𝑥 𝑥 𝑑𝑥
𝑑 1 −1 𝑑 1
= Sin−1 x =
𝑑𝑥 𝑥 𝑥2 𝑑𝑥 √1 − 𝑥 2
𝑑 1 −𝑛 𝑑 −1
𝑛 =
Cos−1 x =
𝑑𝑥 𝑥 𝑥𝑛 + 1 𝑑𝑥 √1 − 𝑥 2
𝑑 1 𝑑 1
√𝑥 = 2√𝑥 Tan−1 x =
𝑑𝑥 𝑑𝑥 1 + 𝑥2
𝑑 −1
Cot−1 x =
𝑑𝑥 1 + 𝑥2
𝑑 1
Sec−1 x =
𝑑𝑥 𝑥√𝑥 2 − 1
𝑑 −1
Cosec−1 x =
𝑑𝑥 𝑥√𝑥 2 − 1

Composite function
𝑑 𝑑
[f(x)]n = n.f (x)n−1. f (x)
𝑑𝑥 𝑑𝑥
𝑑 𝑑
𝑒 𝑓(𝑥) = 𝑒 𝑓(𝑥) f (x)
𝑑𝑥 𝑑𝑥
𝑑 𝑑
sin[f (x)] = cos[f(x)] f (x)
𝑑𝑥 𝑑𝑥

Vaibhav Sir :- 8425924179


Rule :
𝑑 𝑑 𝑑
(u+v)= u+ v
𝑑𝑥 𝑑𝑥 𝑑𝑥
𝑑 𝑑 𝑑
(u−v)= u− v
𝑑𝑥 𝑑𝑥 𝑑𝑥
𝑑 𝑑 𝑑
u.v = u. v + v. 𝑢
𝑑𝑥 𝑑𝑥 𝑑𝑥
𝑑 𝑑
𝑑 𝑢 𝑣 𝑢−𝑢 𝑣
𝑑𝑥 𝑑𝑥
=
𝑑𝑥 𝑣 𝑣2

Derivaties of Parametric Function


𝑑𝑦
𝑑𝑦 𝑑𝑡
= 𝑑𝑥
𝑑𝑥
𝑑𝑡

Higher order Derivative


𝑑𝑦 𝑑2𝑦 𝑑3𝑦 𝑑 4𝑦 𝑑5𝑦 𝑑 𝑛𝑦
= 2 = 3 = 4 = 5 =
𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑑𝑥 𝑛

1 2 3 4 5 n
2. Application of Derivative
 To find equation of tangent and normal
𝑑𝑦
Steps : 1) Find from above equation
𝑑𝑥
𝑑𝑦
2) Find value of given point P (x1,x2)
𝑑𝑥
𝑑𝑦
=m
𝑑𝑥

3) Equation of Tangent y – y1 = m x (x – x1)


1
Equation of Normal y – y1 = − (x – x1)
𝑚
𝑑𝑦
Where = m (slope) at P (x1, y1)
𝑑𝑥

 Rate Measure
𝑑𝑠 𝑑𝑣
V= a=
𝑑𝑡 𝑑𝑡

Vaibhav Sir :- 8425924179


 Aproximation
𝑓(𝑎+ℎ) −𝑓(𝑎)
f’(a) = lim
ℎ→0 ℎ

hf’(a) = 𝑓(𝑎 + ℎ) − 𝑓(𝑎)


f(a) + hf’(a) = f(a+h)
0° → Degree
‘ → minutes
“ → seconds
1° = 60’
1’ = 60”
To convert minutes to Degree ÷60
To convert second to minutes ÷60
To convert second to Degree ÷360
To convert Degree to minutes ×60
To convert minutes to second ×60
To convert Degree to second ×360
 Increasing and Decreasing function
Conditions f(x) → f’(x)
1) f’(x) > 0 +ve
f(x) is Increasing
2) f’(x) < 0 −ve
f(x) is Decreasing

Vaibhav Sir :- 8425924179


 To find maxima & minima for f(x)
Steps : 1) Find f’(x)
2) f’(x) = 0, Find points (x1,x2)
3) Find f’’(x) at point
4) If f’’(x) < 0 function is maximum at x1
If f’’(x) > 0 function is minimum at x2
5) To find minimum and maximum value
Find f (x1)
 Rolle’s Theorem :
If f(x) is a real valued function defined on a variable such that,
Conditions :-
i) f(x) is continuous in closed interval [a,b]
ii) f(x) is differentiable in open interval (a,b)
iii) f(a) = f(b) then there exist a real number c ϵ (a,b) such that
f ’(x) =0
[a,b] = a ≤ x ≤ b
(a,b) = a < x < b

Vaibhav Sir :- 8425924179


 Lagrange’s mean value Theorem
If f(x) is a real valued function defined on a real variable such that
Conditions :-
i) f(x) is continuous in closed interval [a,b]
ii) f(x) is differentiable in open interval (a,b) then there exist a real
number c ϵ (a,b) such that
𝑓(𝑏) − 𝑓(𝑎)
f ’(c) =
𝑏−𝑎
𝑦2 −𝑦1
M slope =
𝑥2 −𝑥1

 Increasing
a.b = 0 (a.b → + ve)
Case (i) a → + ve b → + ve
a>0 b>0
Case (ii) a → − ve b → − ve
a<0 b<0
 Decreasing
a.b < 0 (a.b → − ve)
Case (i) a → + ve b → − ve
a>0 b<0
Case (ii) a → − ve b → + ve
a<0 b>0

Vaibhav Sir :- 8425924179


3. Indefinite Integration
∫ 1 𝑑𝑥 = x + c
𝑥𝑛 + 1
∫ 𝑥 𝑛 dx = 𝑛+1
1
∫ 𝑥 dx = log x + c

∫ 𝑒 𝑥 dx = 𝑒 𝑥 + c
𝑎𝑥
∫ 𝑎 𝑥 dx = 𝑙𝑜𝑔 𝑎
+c

∫ 𝑐𝑜𝑠 𝑥 dx = sin x + c
∫ 𝑠𝑖𝑛 𝑥 dx = − cos x + c
∫ 𝑠𝑒𝑐 2 x dx = tan x + c
∫ 𝑐𝑜𝑠𝑒𝑐 2 x dx = − cot x + c
∫ 𝑠𝑒𝑐 𝑥. 𝑡𝑎𝑛 𝑥 dx = sec x + c
∫ 𝑐𝑜𝑠𝑒𝑐 𝑥. 𝑐𝑜𝑡 𝑥 dx = − cosec x + c
∫ 𝑡𝑎𝑛 𝑥 dx = log | 𝑠𝑒𝑐 𝑥 | + c
∫ 𝑠𝑒𝑐 𝑥 dx = log |𝑠𝑒𝑐 𝑥 + 𝑡𝑎𝑛 𝑥| + c
∫ 𝑐𝑜𝑡 𝑥 dx = log |𝑠𝑖𝑛 𝑥 | + c
∫ 𝑐𝑜𝑠𝑒𝑐 𝑥 dx = log |𝑐𝑜𝑠𝑒𝑐 𝑥 − 𝑐𝑜𝑡 𝑥| + c
1
∫ √1 − 𝑥2 dx = sin−1x + c = − cos−1x + c
1
∫ 1 + 𝑥2 dx = tan−1x + c = − cot−1 + c
1
∫ 𝑥√𝑥2 − 1 dx = sec−1x + c = − cosec−1x + c

Vaibhav Sir :- 8425924179


Theorem 1
∫[𝑓(𝑥) + 𝑔(𝑥)] dx = ∫ 𝑓(𝑥) dx + ∫ 𝑔(𝑥) dx
Theorem 2
∫[𝑓(𝑥) − 𝑔(𝑥)] dx = ∫ 𝑓(𝑥) dx − ∫ 𝑔(𝑥) dx
Theorem 3
∫ 𝑘 𝑓(𝑥) dx = k ∫ 𝑓(𝑥) dx
Chain rule
𝑒 𝑎𝑥 + 𝑏
∫ 𝑒 𝑎𝑥 + 𝑏 dx = 𝑑 +c
𝑎𝑥 +𝑏
𝑑𝑥

[𝑓(𝑥)]𝑛 + 1
∫ 𝑓 ′(𝑥)[f (x)]n dx = 𝑛+1
+c
𝑓 ′(𝑥)
∫ dx = log [f(x)] + c
𝑓(𝑥)
𝑓 ′𝑥
∫ √𝑓(𝑥) dx = 2√𝑓(𝑥) + c

Some Special Integrals


1 𝑥
∫ √𝑎2 −𝑥2 dx = Sin−1 𝑎 + c
1 1 𝑥
∫ 𝑎2 +𝑥2 dx = 𝑎 tan−1 𝑎 + c
1 1 𝑥
∫ 𝑥√𝑥2 − 𝑎2 dx = 𝑎 Sec−1 𝑎 + c
1 1 𝑥−𝑎
∫ 𝑥2 −𝑎2 dx = 2𝑎 log [𝑥+𝑎] + c
1 1 𝑎+𝑥
∫ 𝑎2 −𝑥2 dx = 2𝑎 log [𝑎−𝑥] + c
1
∫ √𝑥2 + 𝑎2 dx = log [𝑥 + √𝑥 2 + 𝑎2 ] + c
1
∫ √𝑥2 − 𝑎2 dx = log [𝑥 + √𝑥 2 − 𝑎2 ] + c

Vaibhav Sir :- 8425924179


Expressions Substitutions
√1 − 𝑥 2 x = sin θ or x = cos θ
√1 + 𝑥 2 x = tan θ or x = cot θ
√𝑥 2 − 1 x = sec θ or x = cosec θ
𝑎+𝑥 𝑎−𝑥 x = a cos 2θ or x = a cos θ
√𝑎−𝑥 or √𝑎+𝑥
1+𝑥 1−𝑥 x = cos 2θ or x = cos θ
√ or √
1−𝑥 1+𝑥
𝑎+𝑥 2 𝑎−𝑥 2 x2 = a cos 2θ or x2 = a cos θ
√ or √
𝑎−𝑥 2 𝑎+𝑥 2
2𝑥 1 − 𝑥2 x = tan θ
or
1 + 𝑥2 1 + 𝑥2
3x – 4x3 or 1−2x2 x = sin θ
4x3− 3x or 2x2−1 x = cos θ
3𝑥 − 𝑥 3 x = tan θ
1 − 3𝑥 2
2𝑓(𝑥) 1 − [𝑓(𝑥)]2 f(x) = tan θ
or
1 + [𝑓(𝑥)]2 2
1 + [𝑓(𝑥)]

Some special integtrals


Type 1
1 1
∫ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 & ∫ √𝑎𝑥2 + 𝑏𝑥 + 𝑐

 Make coefficient of x2 is 1 by taking ‘a’ common


1 2
 Add and Subtract ( . 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥) in equation.
2
 Make standard integration form
Type 2
1
𝑎𝑠𝑖𝑛2 𝑥+ 𝑏𝑐𝑜𝑠 2 𝑥+𝑐

 ÷ by sin2x or cos2x
 Replace sec2x into 1 + tan2x

Vaibhav Sir :- 8425924179


Cosec2x into 1 + cot2x
 Put tan x = t or cot x = t
1
You will get form ∫
𝑎𝑡 2 +𝑏𝑡+𝑐

Type 3
CASE 1
1
∫ 𝑎 𝑠𝑖𝑛 𝑥+𝑏 𝑐𝑜𝑠 𝑥+𝑐 dx
𝑥 2𝑑𝑡
Put tan = t dx =
2 1+𝑡 2
2𝑡 1−𝑡 2
Sin x = cos x =
1+𝑡 2 1+ 𝑡 2

CASE 2
1
∫ 𝑎 𝑠𝑖𝑛 2𝑥+𝑏 𝑐𝑜𝑠 2𝑥+𝑐 dx
𝑑𝑡
Put tan x = t dx =
1+𝑡 2
2𝑡 1−𝑡 2
Sin x = cos x =
1+𝑡 2 1+ 𝑡 2

INTEGRATION BY PARTS
LIATE → Series
L – Logarithmic function
I - Inverse function
A – Algebric function
T – Trigonometric function
E – Exponential function
FIS – IDFIL (trick)
𝑑𝑢
∫ 𝑢. 𝑣 𝑑𝑥 = u∫ 𝑣 𝑑𝑥 −∫ [𝑑𝑥 ∫ 𝑣 𝑑𝑥] dx
𝑥 𝑎2 𝑥
∫ √𝑎2 − 𝑥 2 dx = 2 √𝑎2 − 𝑥 2 + 2
sin−1 + c
𝑎

Vaibhav Sir :- 8425924179


𝑥 𝑎2
∫ √𝑥 2 + 𝑎2 dx = 2 √𝑥 2 + 𝑎2 + 2
log|𝑥 + √𝑥 2 + 𝑎2 |
𝑥 𝑎2
∫ √𝑥 2 − 𝑎2 dx =
2
√𝑥 2 − 𝑎2 −
2
log|𝑥 + √𝑥 2 − 𝑎2 |

∫ 𝑒 𝑥 [𝑓(𝑥) + 𝑓 ′(𝑥)] dx = ex. f(x) + c


∫ 𝑒 𝑓(𝑥) . 𝑓 ′(𝑥) dx = ef(x) + c
𝑒 𝑎𝑥
∫ 𝑒 𝑎𝑥 .cos (bx + c) dx = 𝑎2 +𝑏2 [a. cos (bx+c) + b. sin (bx+c)]
𝑎𝑥 𝑒 𝑎𝑥
∫ 𝑒 .sin (bx + c) dx = 𝑎2 +𝑏2 [a. sin (bx+c) − b. cos (bx+c)]

Form Of Rational Fraction Form of Partial Function


𝑝𝑥 + 𝑞 𝐴
+𝐵
𝑥−𝑎
(𝑥 − 𝑎)(𝑥 − 𝑏)𝑎 ≠ 𝑏
𝑝𝑥 + 𝑞 𝐴
+
𝐵
𝑥−𝑎 (𝑥−𝑎)2
(𝑥 − 𝑎)2
𝑝𝑥 2 + 𝑞𝑥 + 𝑟 𝐴
+
𝐵
+
𝐶
𝑥−𝑎 𝑥−𝑏 𝑥−𝑐
(𝑥 − 𝑎)(𝑥 − 𝑏)(𝑥 − 𝑐)
𝑝𝑥 2 + 𝑞𝑥 + 𝑟 𝐴
+
𝐵
+
𝐶
𝑥−𝑎 (𝑥−𝑎)2 𝑥−𝑏
(𝑥 − 𝑎)2 (𝑥 − 𝑏)
𝑝𝑥 2 + 𝑞𝑥 + 𝑟 𝐴
+
𝐵𝑥+𝐶
𝑥−𝑎 𝑥 2 +𝑏𝑥+𝑐
(𝑥 − 𝑎)(𝑥 2 + 𝑏𝑥 + 𝑐)

𝑝𝑥+𝑞
∫ 𝑎𝑥2 +𝑏𝑥+𝑐 dx
𝑑
Step 1 : (px+q) = A. (𝑎𝑥 2 + 𝑏𝑥 + 𝑐) + B
𝑑𝑥
𝑑
A.𝑑𝑥(𝑎𝑥 2 +𝑏𝑥+𝑐) + B
Step 2 : ∫ dx
(𝑎𝑥 2 +𝑏𝑥+𝑐)
𝑑
𝑑𝑥
(𝑎𝑥 2 +𝑏𝑥+𝑐) 1
Step 3 : 𝐴 ∫ dx + B ∫ dx
(𝑎𝑥 2 +𝑏𝑥+𝑐) 𝑎𝑥 2 +𝑏𝑥+𝑐
𝑝𝑥+𝑞
∫ √𝑎𝑥2 +𝑏𝑥+𝑐 dx

Vaibhav Sir :- 8425924179


𝑑
Step 1 : (px+q) = A. (𝑎𝑥 2 + 𝑏𝑥 + 𝑐) + B
𝑑𝑥
𝑑
A. (𝑎𝑥 2 +𝑏𝑥+𝑐) + B
𝑑𝑥
Step 2 : ∫ dx
√(𝑎𝑥 2 +𝑏𝑥+𝑐)
𝑑
𝑑𝑥
(𝑎𝑥 2 +𝑏𝑥+𝑐) 1
Step 3 : 𝐴 ∫ dx + B ∫ dx
√(𝑎𝑥 2 +𝑏𝑥+𝑐) √(𝑎𝑥 2 +𝑏𝑥+𝑐)

4.Indefinite Integral
𝑎
∫0 𝑓(𝑥) 𝑑𝑥 = 0
𝑏 𝑎
∫𝑎 𝑓(𝑥) 𝑑𝑥 = − ∫𝑏 𝑓(𝑥) 𝑑𝑥
𝑐 𝑏 𝑐
∫𝑎 𝑓(𝑥) 𝑑𝑥 = ∫𝑎 𝑓(𝑥) 𝑑𝑥 + ∫𝑏 𝑓(𝑥) 𝑑𝑥
𝑏 𝑏
∫𝑎 𝑓(𝑥) 𝑑𝑥 = ∫𝑎 𝑓(𝑎 + 𝑏 − 𝑥) dx
𝑎 𝑎
∫0 𝑓(𝑥) dx = ∫0 𝑓(𝑎 − 𝑥) dx
2𝑎 𝑎 𝑎
∫0 𝑓(𝑥) 𝑑𝑥 = ∫0 𝑓(𝑥) 𝑑𝑥 + ∫0 𝑓(2𝑎 − 𝑥) dx
𝑎 𝑎
∫−𝑎 𝑓(𝑥) dx = 2∫0 𝑓(𝑥) dx ……if f(x) is even
=0 ……if f(x) is odd

5. Application of definite integral


Area under curve and axis is given by
𝑏
A = ∫𝑎 𝑓(𝑥) dx
Area between two curve is given by
𝑏 𝑐
A = ∫𝑎 𝑓(𝑥) + ∫𝑏 𝑓(𝑥) 𝑑𝑥

Vaibhav Sir :- 8425924179


6. differential equations
Order : Highest order of the Derivative
Degree : Power of highest order Derivative.
Order and Degree is defined only when it is free from radicals or
fractions.
1 𝑑2𝑦 𝑑𝑦 𝑑𝑦
For Eg. √,∛,∜, , ,sin( ),cos( )
𝑑𝑦/𝑑𝑥 𝑑𝑥 2 𝑑𝑥 𝑑𝑥

HOMOGENOUS DIFFERENTIAL EQUATION :


A differential equation f(x,y)dx + g(x,y) dy = 0 is said to be
homogenous differential equation:
Steps : -
𝑑𝑦 −𝑓(𝑥,𝑦)
1) Express the homogenous D.E. in the form = …..eqn (i)
𝑑𝑥 𝑔(𝑥,𝑦)
𝑑𝑦 𝑑𝑦
2) Put y = vx and =v+x in eqn (i) and cancel x from R.H.S.
𝑑𝑥 𝑑𝑥
𝑑𝑦
The equation reduces to the form v + x + = − f(v)
𝑑𝑥

3) Take v on R.H.S. and separate the variables v and x.


4) Integrate both sides in obtain the solution in v and x.
5) To obtain the required solution in terms of x and y we resubstitute
𝑦
the value of v i.e v = .
𝑥

Linear differential equation


Steps : -
𝑑𝑦
1) Write the given D.E. in the form + Py = Q, where P,Q are
𝑑𝑥
constants or functions of x only.
2) Find integrating factor I.F = 𝑒 ∫ 𝑝 𝑑𝑥

Vaibhav Sir :- 8425924179


3) Write the solution of the given differential equations as
y (I.F) = ∫(𝑄 . 𝐼. 𝐹. ) dx + c
This is the required general solution of the D.E.
𝒅𝒚
Note : -If the D.E. is in the form + px = Q ,Where P and Q are
𝒅𝒙
constants or functions of y only, the I.F = 𝐞∫ 𝐩 𝐝𝐱 and the general
solution of the D.E. is given by x (I.F) = ∫(𝑸 . 𝑰. 𝑭. ) dx +

7. PROBABILITY DISTRIBUTION
Random Experiment :
An experiment whose outcome can’t be predicted with certainly is
called as Random Experiment.
Sample Space :
The set of all possible outcome of a random experiment is called as
Sample space for that experiment.
Event : Any subject of a sample space is known as Event.
1) Equally likely Events.
2) Exhaustive events.
3) Mutually exclusive events.
A coin is tossed – Head / Tail
A bomb is dropped – Hit / Not Hit
An arrow is fired – Hit / Not Hit
A exam attempted – Pass / Fail

Vaibhav Sir :- 8425924179


IMP SAMPLE SET
A coin tossed
S = {H , t} n(s) = 2
A 2 coin tossed
S = { HH,HT,TH,TT } n(s) = 4
A 3 coin tossed
S = { HHH,HHT,HTH,HTT,THH,THT,TTH,TTT } n(s) = 8
A 4 coin tossed
S = { HHHH, HHHT, HHTH, HTHH,THHH, HHTT, TTHH, HTTH,
THTH,HTHT,THHT,TTTH,TTHT,THTT,HTTT,TTTT }
n(s) = 16
Tosses Of Dice :
S = { 1,2,3,4,5,6 } n(s) = 6
Tosses of 2 Dice :
S = { (1,1) , (1,2) , (1,3) , (1,4) ,(1,5) , (1,6) ,
(2,1) , (2,2) , (2,3) , (2,4) , (2,5) ,(2,6) ,
(3,1) , (3,2) , (3,3) , (3,4) , (3,5) , (3,6) ,
(4,1) , (4,2) , (4,3) , (4,4) , (4,5) , (4,6) ,
(5,1) , (5,2) , (5,3) , (5,4) , (5,5) , (5,6) ,
(6,1) , (6,2) , (6,3) , (6,4) , (6,5) , (6,6) }
n(s) = 36
Probability of event X
𝒏(𝒙)
P(x) =
𝒏(𝒔)

Vaibhav Sir :- 8425924179


 Random Variables
It represents a possible numerical value from a random experiment
Random Variables

Discrete Continous
Random Variables
 Probability = ∑ 𝑃(𝑥𝑖) = 1
 Mean E(x) = ∑ 𝑥𝑖 . 𝑝𝑖
 Variance v(x) = ∑(𝑥 2 ) – [∑(𝑥)]2
 Standard Deviation σx = √𝑣(𝑥)
Always p + q = 1
Where p = Probability of success , q = Probability of failure
8.BIONOMIAL DISTRIBUTION
n 𝑛! n
Cx = C0 = nCn = 1
(𝑛−𝑥)! 𝑥!

P (X = x) = nCx (p)x (q)n−x (binomial distribution)


P+q=1
Where p = Probability of Success , q = Probability of Failure
Mean / expected value
Mean / μ = E(x) = n.p
Variance
V (x) = n.p.q
Standard Deviation

S.D. = √𝑣(𝑥)
S.D. = √𝑛. 𝑝. 𝑞

Vaibhav Sir :- 8425924179

You might also like