0% found this document useful (0 votes)
34 views7 pages

Trigonometry

The document provides a comprehensive overview of trigonometric identities, formulas, and inverse trigonometric functions. It includes various equations and relationships involving sine, cosine, tangent, and their inverses, along with specific angle values and properties. Additionally, it discusses the domains and ranges of inverse trigonometric functions and their relationships.

Uploaded by

sjayaprakash79
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
34 views7 pages

Trigonometry

The document provides a comprehensive overview of trigonometric identities, formulas, and inverse trigonometric functions. It includes various equations and relationships involving sine, cosine, tangent, and their inverses, along with specific angle values and properties. Additionally, it discusses the domains and ranges of inverse trigonometric functions and their relationships.

Uploaded by

sjayaprakash79
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 7

TRIGONOMETRY

1800 = πC = 200g ( 1c ≈57017’45” , 10 = 0.01745c )


sin2θ +cos2θ = 1
sec2θ – tan2θ = 1
cosec2θ – cot2θ = 1
sin4θ + cos4θ = 1 - 2 sin2θ cos2θ
sin6θ + cos6θ = 1 – 3 sin2θ cos2θ
tan2θ – sin2θ = tan2θ sin2θ
cot2θ – cos2θ = cot2θ cos2θ
sec2θ + cosec2θ = sec2θ cosec2θ

sin (A + B) = sin A cos B + cos A sin B


sin (A – B) = sin A cos B – cos A sin B
cos (A + B) = cos A cos B – sin A sin B
cos (A – B) = cos A cos B + sin A sin B
sin (A + B) sin (A – B) = sin2 A – sin2 B = cos2 B – cos2 A
cos (A + B) cos (A – B) = cos2 A – sin2 B = cos2 B – sin2 A
tan (A + B) = (tan A + tan B) / (1 – tan A tan B)
tan (A – B) = (tan A – tan B) / (1 + tan A tan B)
cot (A + B) = (cot A cot B – 1)/(cot A + cot B)
cot (A – B) = (cot A cot B + 1)/(cot B – cot A)
sin C + sin D = 2 sin (C + D)/2 cos (C – D)/2
sin C – sin D = 2 cos (C + D)/2 sin (C – D)/2
cos C + cos D = 2 cos (C + D)/2 cos (C – D)/2
cos C – cos D = – 2 sin (C + D)/2 sin (C – D/2
2 sin A cos B = sin (A + B) + sin (A – B)
2 cos A sin B = sin (A + B) – sin (A – B)
2 cos A cos B = cos(A + B) + cos(A – B)
2 sin A sin B = cos (A – B) – cos (A + B)
sin 2A = 2 sin A cos A
cos 2A = cos2 A – sin2 A = 1 – 2 sin2A = 2 cos2 A – 1
cos2A = (1 + cos 2A)/2
sin2 A = (1 – cos 2A)/2
tan 2A = 2 tan A/(1 – tan2 A)
sin 2A = 2 tan A/(1 + tan2 A)
cos 2A = (1 – tan2 A)/(1 + tan2 A)
sin (A + B + C) = sin A cos B cos C + cos A sin B cos C + cos A cos B sin C – sin A sin B sin C
cos (A + B + C) = cos A cos B cos C – sin A sin B cos C – sin A cos B sin C – cos A sin B sin C
sin 3A = 3 sin A – 4 sin3 A
cos 3A = 4 cos3A – 3 cos A
tan (θ 1 + θ 2 + θ 3 + ______) = (S1 – S3 + S5 – S7 + _____)/(1 – S2 + S4 – S6 + _____)
where S1 = ∑ tan θ 1 , S2 = ∑ tan θ 1 tan θ 2 , S3 = ∑ tan θ 1 tan θ 2 tan θ 3

tan 3A = (3 tan A – tan3 A)/(1 – 3 tan2 A)


sin 3 A
sinA sin(600+A) sin(600-A) =
4
cos 3A
cosA cos(600+A) cos(600-A) =
4
tanA tan(600+A) tan(600-A) = tan3A
cotA cot(600+A) cot(600-A) = cot3A
If A + B + C = π , then
tan A + tan B + tan C = tan A tan B tan C
cot A cot B + cot B cot C + cot C cot A = 1

tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2 = 1
cot A/2 + cot B/2 + cot C/2 = cot A/2 cot B/2 cot C/2
If A + B + C = π /2, then
cot A + cot B + cot C = cot A cot B cot C
tan A tan B + tan B tan C + tan C tan A = 1

sin 15° = (√ 3 – 1)/2√ 2 = cos 750


cos 15° = (√ 3 + 1)/2√ 2 = sin 750
sin 18° = (√ 5 – 1)/4 = cos 720
cos 18° = √ 10+2 √ 5 /4 = sin 720
sin 36° = √ 10−2 √ 5 /4 =cos 540
cos 36° = (√ 5 + 1)/4 = sin 540

sin 22.50 =
√ √2−1
2 √2
= cos 67.50

cos 22.50 =
√ √2+1
tan 22.50 = √ 2 - 1
2 √2
= sin 67.50

= cot 67.50
cot 22.50 = √ 2 + 1 = tan 67.50

sin α + sin (α + β ) + sin (α + 2 β ) + ______ n terms = sin (n β /2) /sin ( β /2) sin (α + (n – 1) β /2)
cos α + cos (α + β ) + cos (α + 2 β ) + _____ n terms = sin (n β /2)/sin ( β /2) cos(α + (n – 1) β /2)
– √ a2 +b 2 +c < a sin θ + b cos θ +c < √ a2 +b 2 + c
3
sin2θ + sin2(X+θ) + sin2(X-θ) = where X = 600 or 1200 or 2400
2
3
cos2θ + cos2(X+θ) + cos2(X-θ) = where X = 600 or 1200 or 2400
2

π π 1+tanθ cosθ +sinθ


tan( + θ ) = cot ( - θ) = =
4 4 1−tanθ cosθ−sinθ

π π 1−tanθ cosθ−sinθ
tan( - θ ) = cot ( + θ) = =
4 4 1+tanθ cosθ +sinθ

π π π π
tan( - θ ) tan ( + θ) = cot( - θ ) cot ( + θ) = 1
4 4 4 4
π π
tan( + θ ) + tan ( - θ) = 2sec2θ
4 4

π π
tan( + θ ) - tan ( - θ) = 2tan2θ
4 4
cos θ +cos(1200+θ) + cos(1200 - θ) = 0 ::: cos(1200+θ ) = cos(2400-θ ); cos(1200- θ) = cos(2400+θ )

sinA=sinB then A=B or A+B=1800

cosA=cosB then A=B or A+B=0 or A+B=3600

tanA=tanB then A=B or |A-B|=1800

If A+B = 900 then tanA – tanB = 2 tan( A – B)

tanθ+tan(600+ θ)+ tan(1200+ θ) = 3tan3θ

cotθ+cot(600+ θ)+ cot(1200+ θ) = 3 cot3θ

tanθ tan(600+θ) + tanθ tan(1200+θ)+ tan(600+ θ) tan(1200+θ) = - 3

cotθ cot (600+θ) + cotθ cot(1200+θ)+ cot(600+ θ) cot(1200+θ) = - 3

If A+B=900 then sin2A + sin2B = 1 and cos2A + cos2 B = 1

sin ⁡( A+ B)
tanA + tanB =
cosAcosB

sin ⁡( A−B)
tanA - tanB =
cosAcosB
tanA + cotA = 2cosec 2A
tanA – cotA = - 2cot2A
A A
√(1+ sinA ) = ± ( sin 2 + cos 2 )
A A
√(1−sinA ) = ± ( sin 2 −cos 2 )

Period of a sin(± kθ +b ) +c is
|k|


Period of a cos(± kθ +b ) +c is
|k|

Period of a cosec(± kθ +b ) +c is
|k|


Period of a sec(± kθ +b ) +c is
|k|

π
Period of a cot(± kθ +b ) +c is
|k|

π
Period of a tan(± kθ +b ) +c is
|k|

Period of nx - [ nx ] is 1/|n|

sinθ = k , -1≤ k ≤ 1 then θ = nπ + (-1)n α where αЄ [ −π π


,
2 2 ]
cosθ = k , -1≤ k ≤ 1 then θ = 2nπ ± α where αЄ [ 0 , π ]

tanθ = k , k Є R then θ = nπ + α where αЄ ( −π2 , π2 )


For simultaneous equations θ = 2nπ + α where α Є [ 0 , 2π )

sin2θ = k or cos2θ = k or tan2θ = k then θ = nπ ±α where α Є 0 , [ ]


π
2

INVERSE TRIGONOMETRIC FUNCTIONS

Function : Domain Range

π π
Sin-1x or arc Sine : [ -1 , 1] [- , ]
2 2

Cos-1x or arc Cos : [ -1 , 1] [ 0, π ]

π π
Tan-1x or arc Tan : R (- , )
2 2

Cot-1x or arc Cot : R (0 , π)


π
Sec-1x or arc Sec : (- ∞,-1]∩[1,∞) [ 0 , π ] –{ }
2
π π
Cosec-1x or arc Cosec : (- ∞,-1]∩[1,∞) [- , ] –{ 0 }
2 2

Sin-1(-x) = - Sin-1(x) Tan-1(-x) = -Tan-1(x) Cosec-1(-x) = -Cosec-1(x)


Cos-1(-x)=π-Cos-1(x) Sec-1(-x)=π-Sec-1(x) Cot-1(-x)=π-Cot-1(x)

π π π
Sin-1(x)+Cos-1(x) = Tan-1(x)+Cot-1(x) = Sec-1(x)+Cosec-1(x) =
2 2 2

1 1 1
Cosec-1(x)=Sin-1( ) Sec-1(x)=Cos-1( ) Cot-1(x) = Tan-1( ) x›0
x x x

1
= Π + Tan-1( ) x‹0
x

π
Sin-1x+Cos-1x = x Ɛ [ −1 ,1 ]
2

π
Tan-1x+Cot-1x = xƐR
2

π
Sec-1x+Cosec-1x = x Ɛ ¿−∞ ,−1 ¿ ¿ υ ¿
2

Tan-1x+Tan-1y = Tan-1 ( 1−xy


x+ y
) ; x›0, y›0 , xy‹1
= Tan-1 ( 1−xy
x+ y
) +π ; x›0, y›0 , xy›1

You might also like