Dr. P.
Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
WEEK ELEVEN & TWELVE
i). Compatible Systems Of First Order Partial Differential
Equations (Charpit’s Method)
In this section we shall study compatible systems of first order PDE and the Charpit’s
method for solving the non-linear PDEs.
Definition.
Compatible systems of first order PDEs
A system of two first order PDEs
F ( x, y, z , p, q ) 0........................................(1)
and
G ( x, y, z , p, q ) 0........................................(2)
are said to be compatible if they have a common solution.
Theorem 1. The equations
F ( x, y, z, p, q) 0 and G( x, y, z, p, q) 0
are compatible on a domain D if
Fp Fq
i) 0
Gp Gq
p and q can be solved explicitly from the system of equations (1) and (2) as
p ( x, y)dx and q ( x, y
such that the equation
dz ( x, y)dx ( x, y )dy
is integrable.
Theorem 2.
The necessary and sufficient condition for the integrability of the equation
dz ( x, y)dx ( x, y )dy
and hence, compatible is
F , G ( F , G) ( F , G) p ( F , G) q ( F , G) 0 …………………….(3)
( x, p ) ( y, q ) ( z, p) ( z, q)
In general, equations (1) and (2) are compatible if equation (3) holds.
Page 1 of 9
Dr. P. Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
Example
1. Show that the following equations are compatible and hence solve them.
xp yq 0, z ( xp yq) 2 xy
Solution.
Take F xp yq 0 Fx p, Fy q, Fz 0, F p x, Fq y
G zxp zyq 2 xy 0 G x zp 2 y, G y zq 2 x, G Z xp yq, G p zx, G q zy
Compatibibilty condition
F,G F,G F,G F,G
If p q 0
( x, p ) ( y , q ) ( z, p) ( z, q)
Test
Fx F p Fy Fq Fz F p Fz Fq
p q
Gx G p G y Gq Gz G p G z Gq
p x q y 0 x 0 y
p q
zp 2 y zx zq 2 x zy xp yq zx xp yq zy
zxp zxp 2 xy ( zyq zyq 2 xy ) p ( x 2 p xyq ) q ( xyp y 2 q )
( x 2 p 2 y 2 q 2 )
( xp yq ) xp yq
0 since, xp yq 0
Hence compatible.
Start by determining p and q from
xp yq 0, .........(i) and z ( xp yq ) 2 xy...........(ii)
xp yq 0 xp yq from (i)
putting (i) into (ii) we get;
z ( xp yq ) 2 xy
y x
2 zxp 2 xy p 2 zyq 2 xy q
z z
dz pdx qdy
zdz ydx xdy zdz ydx xdy z 2 2 xy c
Page 2 of 9
Dr. P. Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
FIRST SEMESTER EXAMINATIONS 2018/2019
FOURTH YEAR EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE MATHEMATICS
AND COMPUTER SCIENCE (CAT 2 MARKING SCHEME)
SPM 2420: PARTIAL DIFFERENTIAL EQUATIONS I
DATE: 16-11- 2018 TIME: 10.00AM -11.00AM
INSTRUCTIONS:
Answer both questions.
1. Solve the nonlinear differential equation
p 2 x 2 y 2 q (15 marks)
SOLUTION
Page 3 of 9
Dr. P. Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
p 2 x 2 y 2 q p 2 x 2 y 2 q 2 p 2 x 2 a y 2 q 2 p x2 a, q a y2
Therefore,
dz pdx qdy dz a y dy z
x 2 a dx 2
x 2 a dx a y dy
2
Take,
x 2 a dx and a y dy and evaluate separately then put the results together
2
Hence,
x 2 a dx
Let x a tan dx a sec 2d
x 2 a dx a sec 3 φd sec 3 φd sec sec 2d , use, udv uv- vdu
let, u sec du sectand
let, dv sec 2d v tan
sec φd sec sec 2d , use, udv uv- vdu
3
sectand sec tan 2d
sectand sec (sec 2 1)d
sectand sec 3 d sec d
2 sec 3 φd sectan sec d
2 sec 3 φd sectan ln[sec tan ] a
sec
3 1
φd sectan ln[sec tan ] b
2
a x 2 dx a sec 3 φd sectan ln[sec tan ] c
a
2
a
a x dx 2 tan 1 tan ln[ tan 1 tan ] c
2 2 2
ax
2 a
x 2 a ln[
x 2 a x
a
] c
ax
2a
1
x 2 a ln[ x 2 a x] ln x c....................................(1)
2
Also,
Page 4 of 9
Dr. P. Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
a y 2 dy
Let y a sin dy a cos d
a y 2 dy a a sin 2 a cos d
a y dy a cos d
2 2
But,
cos d cos cos d , let u cos du sind , Let dv cosd v sin
2
use udv uv vdu
cos d cos sin sin d
2 2
cos sin 1 cos d 2
1
2
cos sin d
1
2
1 sin 2 a
1 1 y
a y 2 sin 1 a
2 a a
but
a y 2 dy a cos 2 d
a 1 y
a y 2 sin 1 c......................................(2)
2 a a
Hence,
z
ax
2a
x 2
1
2
a 1
a ln x 2 a x 2 x ln a
2 a
y
a y 2 sin 1 c
a
2. Verify the given Pfaffian differential equation is integrable and determine its primitive
( y 2 yz )dx ( xz z 2 )dy ( y 2 xy)dz 0
Page 5 of 9
Dr. P. Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
(15marks) Solution.
(Work out the test for integrability)
Pdx Qdy Rdz 0 P y 2 yz, Px 0 ,Py 2 y z, Pz y
Q xz z 2 , Qx z , Q y 0, Qz x 2 z
R y 2 xy,Rx y, R y 2 y x, Rz 0
( y 2 yz )dx ( xz z 2 )dy ( y 2 xy)dz 0
If P Q z R y Q R x Pz R Py Q x 0, Then, Pdx Qdy Rdz 0 is integrable.
test
P Q z R y Q R x Pz R Py Q x
y 2 yz 2 z 2 y 2 x xz z 2 (2 y ) y 2 xy (2 y )
2 y 2 z 2 y 3 2 xy 2 2 yz 2 2 xyz 2 xyz 2 yz 2 2 y 3 2 xy 2
0 Hence, integrable.
Solve
( y 2 yz )dx ( xz z 2 )dy ( y 2 xy)dz 0
Solution.
Page 6 of 9
Dr. P. Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
Pdx Qdy Rdz 0
Work out the integrating factor
Px Qy Rz g(x,y,z) 0
g(x,y,z) xy 2 xyz xyz yz 2 y 2 z xyz
xy 2 xyz yz 2 y 2 z
xy ( y z ) yz ( z y )
( y z )( xy yz )
y ( y z )( x z )
divide the original equation by g(x,y,z) to get
1
y ( y z )dx z ( x z )dy y ( y x)dz 0
y ( y z )( x z )
dx z yx
dy dz 0
x z y y z ( y z )( x z )
But ,
z A B
Let y 0, A 1, Let y z , B 1
y y z y y z
z 1 1
y y z y y z
Also,
yx C D
Let y z , C 1, Let x z , C 1, D 1
( y z )( x z ) y z x z
yx 1 1
( y z )( x z ) y z x z
Hence,
dx z yx
dy dz 0
x z y y z ( y z )( x z )
dx dy dy dz dz
0
xz y yz yz xz
dx dz dy dy dz
0
x z x z y y z y z
Page 7 of 9
Dr. P. Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
d ln( x z ) d (ln( y z ) d (ln y ) d (ln c)
d ln( x z ) d (ln( y z ) d (ln y ) d (ln c)
ln( x z ) ln( y z ) ln y ln c
y( x z)
c
y x
1. Show that the following equations are compatible and hence solve them.
( y z ) p ( z x)q x y and z px qy 0
Others
1. Solve q px p
2
Solution
1
q px p 2 a q a, and px p 2 a p 2 px a p
2
x x 2 4a
1
dz pdx qdy dz x x 2 4a dx ady dz
2
1 x 2 x 2 4a
2 x x 2 4a
dx ady
1
z x2
4
Solve for the complete and singular solutions .
z px qy p 2 1 p 2 q 2
Solution
z ax by a 2 1 a 2 b 2 .......complete solution.
Singular solution
Differentiating w.r.t " a".
a ( x 2a ) 1
0 x 2a .......(1)
1 a 2 b2 a 1 a2 b2
Differentiating w.r.t " b".
Page 8 of 9
Dr. P. Njori-2024 KyU-SPM 2421-PDE I BMC, BFE, BAST, BED (SC)
b y 1
0 y .......................(2)
1 a b
2 2 b 1 a2 b2
( x 2a )b bx
1 y 2b
ay a
Page 9 of 9