Engineering Mathematics 2014
SUBJECT NAME : Transforms and Partial Diff. Eqns.
SUBJECT CODE : MA6351
MATERIAL NAME : Formula Material
MATERIAL CODE : JM08AM3005
REGULATION : R2013
UPDATED ON : April-May 2014
(Scan the above Q.R code for the direct download of this material)
Name of the Student: Branch:
Unit – I (Partial Differential Equations)
1) Lagrange’s Linear equation
The equation of the form Pp Qq R
dx dy dz
then the subsidiary equation is
P Q R
2) Homogeneous Linear Partial Differential Equation of higher order with constant
coefficients:
2z 2z 2z
The equation of the form a b c f ( x, y)
x 2 xy y 2
The above equation can be written as
aD2 bDD cD2 z f ( x, y) …………………………….. (1)
2 2
where D 2 , D and D 2
, D
x 2
x y 2
y
The solution of above equation is z = C.F + P.I
Complementary Function (C.F) :
To find C.F consider the auxiliary equation by replacing D by m and D by
1. The equation (1) implies that am 2 bm c 0 , solving this equation
we get two values of m. The following table gives C.F of the above
equation.
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 1
Engineering Mathematics 2014
Sl.No. Nature of m Complementary Function
1 m1 m2 C.F = f1 ( y m1 x ) f 2 ( y m2 x )
2 m1 m2 C.F = f1 ( y mx ) xf 2 ( y mx )
3 m1 m2 m3 C.F = f1 ( y m1 x ) f 2 ( y m2 x ) f 3 ( y m3 x )
4 m1 m2 m3 C.F = f1 ( y mx ) xf 2 ( y mx ) x 2 f 3 ( y mx )
5 m1 m2 , m3 is different C.F = f1 ( y mx ) xf 2 ( y mx ) f 3 ( y m3 x )
Particular Integral (P.I) :
To find P.I consider ( D, D) aD2 bDD cD 2 .
Type: 1 If f ( x, y) 0 , then P.I 0 .
Type: 2 If f ( x, y ) e ax by
1
P .I e ax by
( D, D)
Replace D by a and D by b. If ( D, D) 0 , then it is P.I. If
( D, D) 0 , then diff. denominator w.r.t D and multiply x in
numerator. Again replace D by a and D by b. If again
denominator equal to zero then continue the same procedure.
Type: 3 If f ( x, y ) sin(ax by ) (or ) cos(ax by)
1
P .I sin(ax by ) (or ) cos(ax by )
( D, D)
Here replace D 2 by a 2 , D 2 by b 2 and DD by ab . Do not
replace for D and D . If the denominator equal to zero, then
apply the same producer as in Type: 2.
Type: 4 If f ( x, y ) x m y n
1
P .I xm yn
( D, D )
1
xm yn
1 g( D, D)
1 g( D, D) x m y n
1
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 2
Engineering Mathematics 2014
Here we can use Binomial formula as follows:
i) 1 x 1 x x 2 x 3 ...
1
ii) 1 x 1 x x 2 x 3 ...
1
iii) 1 x 1 2 x 3 x 2 4 x 3 ...
2
iv) 1 x 1 2 x 3 x 2 4 x 3 ...
2
v) (1 x )3 1 3 x 6 x 2 10 x 3 ...
vi) (1 x )3 1 3 x 6 x 2 10 x 3 ...
Type: 5 If f ( x, y ) e ax by V , where
V=sin(ax by ) (or) cos(ax by ) (or) x m y n
1
P .I e ax by V
( D, D)
First operate e ax by by replacing D by D a and D by D a .
1
P . I e ax by V , Now this will either Type: 3 or
( D a , D b)
Type: 4.
Type: 6 If f ( x, y ) y sin ax (or) y cos ax
1
P .I y sin ax
( D, D)
1
y sin ax y c m2 x
D m1 D D m2 D
1
c m2 x sin ax dx (Apply Bernouili’s method)
D m1 D
3) Non Homogeneous Linear Partial Differential Equation of higher order with
constant coefficients:
The equation of the form D m1 D 1 D m2 D 2 z f ( x, y )
The solution of above equation is z C .F P . I
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 3
Engineering Mathematics 2014
Complementary Function (C.F) :
If m1 m2 then
C .F e1 x f1 y m1 x e2 x f 2 y m2 x
If m1 m2 then
C .F e x f1 y mx xe x f 2 y mx
Particular Integral (P.I):
P.I is same as Homogeneous Linear Partial Diff. Equn.
4) Solution of Partial Differential Equations:
Standard Type: 1 Equation of the form f ( p, q) 0
Assume that z ax by c be the solution the above
equation. put p a and q b in equation (1), we get
f (a, b) 0 . Now, solve this, we get b (a ) .
z ax (a ) y c which is called Complete solution.
Standard Type: 2 Equation of the form z px qy f ( p, q) (Clairaut’s form)
The Complete solution is z ax by f (a, b) . To find
Singular integral diff. partially w.r.t a & b , equate to zero
and eliminate a and b .
Standard Type: 3 Equation of the form f1 ( x, p) f 2 ( y, q)
The solution is z pdx qdy .
Standard Type: 4 Equation of the form f ( z, p, q) 0
dz dz
In this type put u x ay , then p ,q a
du du
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 4
Engineering Mathematics 2014
Unit – II (Fourier Series)
1) Dirichlet’s Conditions:
Any function f ( x ) can be expanded as a Fourier
a
series 0 an cos nx bn sin nx where a0 , an , bn are constants provided the
2 n 1 n 1
following conditions are true.
f ( x ) is periodic, single – valued and finite.
f ( x ) has a finite number of discontinuities in any one period.
f ( x ) has at the most a finite number of maxima and minima.
2) The Fourier Series in the interval (0,2π):
a
f ( x ) 0 an cos nx bn sin nx
2 n 1 n 1
2 2 2
1 1 1
Where a0
0
f ( x )dx , an
0
f ( x )cos nxdx , bn
0
f ( x )sin nxdx
3) The Fourier Series in the interval (-π,π):
a
f ( x ) 0 an cos nx bn sin nx
2 n 1 n 1
2 2 2
0 0 0
Where a0 f ( x )dx , an f ( x )cos nxdx , bn f ( x )sin nxdx
In this interval, we have to verify the function is either odd function or
even function. If it is even function then find only a0 and an ( bn 0 ). If it is odd
function then find only bn ( a0 an 0 ).
If the function is neither odd nor even then you should find
1
a0 , an and bn by using the following formulas a0
f ( x )dx ,
1 1
an
f ( x )cos nxdx , b
n
f ( x )sin nxdx .
4) The half range Fourier Series in the interval (0,π):
The half range Cosine Series in the interval (0,π):
a
f ( x ) 0 an cos nx
2 n 1
2 2
Where a0
0
f ( x )dx , an
f ( x )cos nxdx
0
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 5
Engineering Mathematics 2014
The half range Sine Series in the interval (0,π):
f ( x ) bn sin nx
n 1
2
0
Where bn f ( x )sin nxdx
5) The Parseval’s Identity in the interval (0,2π):
2
1 a02 2
[ f ( x )] dx
2
[an bn2 ]
0 4 n 1
6) The Parseval’s Identity in the interval (-π,π):
2 a02 2
[ f ( x )] dx
2
[an bn2 ]
0 4 n 1
7) The Parseval’s Identity for half range cosine series in the interval (0,π):
2 a02 2
a
0
[ f ( x )] dx
2
4 n 1 n
8) The Parseval’s Identity for half range sine series in the interval (0,π):
2
[ f ( x )]2
dx bn2n 1
0
Change of interval:
9) The Fourier Series in the interval (0,2ℓ):
a
n x n x
f ( x ) 0 an cos bn sin
2 n 1 n 1
n x n x
2 2 2
1 1 1
Where a0
0
f ( x )dx , an
0
f ( x )cos dx , bn
0
f ( x )sin dx
10) The Fourier Series in the interval (-ℓ, ℓ):
a
n x n x
f ( x ) 0 an cos bn sin
2 n 1 n 1
2 2 n x 2 n x
Where a0 f ( x )dx , a
0
n f ( x )cos
0
dx , bn f ( x )sin
0
dx
In this interval, you have to verify the function is either odd function or even
function. If it is even function then find only a0 and an ( bn 0 ). If it is odd
function then find only bn ( a0 an 0 ).
11) The half range Fourier Series in the interval (0, ℓ):
The half range Cosine Series in the interval (0, ℓ):
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 6
Engineering Mathematics 2014
a0 n x
f ( x) an cos
2 n 1
2 2 n x
Where a0 f ( x )dx , a
0
n f ( x )cos
0
dx
The half range Sine Series in the interval (0, ℓ):
n x
f ( x ) bn sin
n 1
2 n x
Where bn f ( x )sin
0
dx
12) The Parseval’s Identity in the interval (0,2ℓ):
1
2
a02 2
0 [ f ( x )] dx 4 [an bn2 ]
2
n 1
13) The Parseval’s Identity in the interval (-ℓ,ℓ):
2 a02 2
0 [ f ( x )] dx 4 [an bn2 ]
2
n 1
14) The Parseval’s Identity for half range cosine series in the interval (0,ℓ):
2 a02 2
0 [ f ( x )]2
dx a
4 n 1 n
15) The Parseval’s Identity for half range sine series in the interval (0,ℓ):
2
[ f ( x )]2
dx bn2
n 1
0
16) Harmonic Analysis:
The method of calculation of Fourier constants by means of numerical
calculation is called as Harmonic analysis.
a0
f ( x) an cos nx bn sin nx
2 n 1 n 1
where
2 2 2 2
a0 y , a1 y cos x , a2 y cos 2 x , a3 y cos 3 x ,...
n n n n
2 2 2
b1
n
y sin x , b 2 y sin 2 x , b 3 y sin 3 x ,...
n n
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 7
Engineering Mathematics 2014
2 x
When the values of x is given as numbers the is calculated by .
T
Where T is period, n is the number of values given. If the first and last y values
are same we can omit one of them.
Complex form of Fourier Series:
17) The Complex form of Fourier Series in the interval (0,2π):
2
1
f ( x ) cn e inx
where cn f ( x )e inx dx
n 2 0
18) The Complex form of Fourier Series in the interval (-π,π):
1
f ( x ) cn e inx
where cn f ( x )e inx dx
n 2
19) The Complex form of Fourier Series in the interval (0,2ℓ):
in x 2 in x
1
f ( x ) cn e
2 0
where cn f ( x )e dx
n
20) The Complex form of Fourier Series in the interval (-ℓ,ℓ):
in x in x
1
f ( x ) cn e
2
where cn f ( x )e dx
n
Unit – III (Applications of Partial Differential Equations)
1) Classification of Partial Differential Equations of the second order
The equation is of the form
2u 2u 2u u u
A( x , y ) B ( x , y ) C ( x , y ) f x , y, u, , 0
x 2
xy y 2
x y
i) If B 2 4 AC 0 then the above equation is elliptic.
ii) If B 2 4 AC 0 then the above equation is Parabolic.
iii) If B 2 4 AC 0 then the above equation is Hyperbolic.
2) The One dimensional Wave equation:
2 y 2 y
2
a
t 2 x 2
The three solutions of the above equation are
i) y( x, t ) Ae px Be px Ce pat
De pat
ii) y( x, t ) A cos px B sin px C cos pat D sin pat
iii) y( x, t ) Ax B Ct D
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 8
Engineering Mathematics 2014
But the correct solution is ii),
y( x, t ) A cos px B sin px C cos pat D sin pat .
3) The One dimensional Heat flow equation:
u 2u
2 2
t x
k Thermal Conductivity
k
2
where Density
c
c Specific Heat
The three solutions of the above equation are
i) u( x , t ) Ae px Be px Ce
2 2
p t
ii) u( x, t ) A cos px B sin px Ce
2 2
p t
iii) u( x, t ) Ax B C
But the correct solution is ii), u( x, t ) A cos px B sin px Ce
2 2
p t
4) The Two dimensional Heat flow equation:
2u 2u
0
x 2 y 2
The three solutions of the above equation are
i) u( x, y ) Ae px Be px C cos py D sin py
(Applicable when given value is parallel to y-axies)
ii) u( x, y ) A cos px B sin px Ce py De py
(Applicable when given value is parallel to x-axies)
iii) u( x, y ) Ax B Cy D (Not applicable)
Unit – IV (Fourier Transforms)
1) Fourier Integral theorem
The Fourier integral theorem of f ( x ) in the interval , is
1
f ( x)
0
f ( x )cos ( t )dxd
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 9
Engineering Mathematics 2014
2) Convolution Theorem
If F [ s] and G[ s] are the Fourier transform of the functions f ( x ) and
g( x ) respectively, then F [ f ( x )* g( x )] F s .G s
3) The Fourier Transform of a function f ( x ) is given by F [ f ( x )] is denoted by
F [ s] .
1
4) Fourier Transform F [ s] F [ f ( x )]
2
f ( x )e isx dx
1
F [ s]e
isx
5) Inverse Fourier Transform f ( x ) ds
2
6) The Fourier transforms and Inverse Fourier transforms are called Fourier
transforms pairs.
2
7) Fourier Sine Transform Fs [ s] Fs [ f ( x )] f ( x )sin sx dx
0
2
0
8) Fourier Cosine Transform Fc [ s] Fc [ f ( x )] f ( x )cos sx dx
9) If f ( x ) e ax then the Fourier Cosine and Sine transforms as follows
2
a
a) Fc [ f ( x )]
a s2 2
2 s
b) Fs [ f ( x )]
a s2
2
10) Properties
d
a) Fs [ xf ( x )] F [ f ( x )]
ds c
d
b) Fc [ xf ( x )] Fs [ f ( x )]
ds
11) Parseval’s Identity
F ( s ) ds
2 2
a) f ( x ) dx
Fc ( s)Gc ( s)ds f ( x ) g( x )dx (Or) Fc ( s ) ds f ( x ) dx
2 2
b)
0 0 0 0
12) Condition for Self reciprocal F [ f ( x )] f ( s ) .
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 10
Engineering Mathematics 2014
Unit – V (Z – Transforms and Difference Equations)
1) Definition of Z-transform:
Let f ( n) be the sequence defined for all the positive integers n such that
Z f ( n) f ( n) z n
n 0
2)
Sl.No Z f ( n ) F [z]
Z 1
z
1.
z 1
z
2. Z ( 1)n
z 1
z
3. Z a n
za
z
4. Z n
z 1
2
z2
5. Z n 1
z 1
2
1 z
6. Z log
n z 1
n z
7. Z sin
2 z 1
2
n z2
8. Z cos
2 z2 1
a z 2 az
9. Z n a
2 n
z a
3
3) Statement of Initial value theorem:
If Z f ( n) F [ z ] , then Lt F [ z ] Lt f (n)
z n 0
4) Statement of Final value theorem:
If Z f ( n) F [ z ] , then Lt f (n) Lt ( z 1)F ( z )
n z 1
5) Z a f (n) Z f (n) z z
n
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 11
Engineering Mathematics 2014
d
6) Z nf ( n) z Z f ( n )
dz
7) Inverse Z-transform s
Sl.No Z 1 F ( z ) f ( n)
z
1. Z 1 1
z 1
z
2. Z 1 ( 1)n
z 1
z
3. Z 1 an
za
z
Z 1 a
n
4.
za
z
5. Z 1 n
z 1 2
z
6. Z 1 na n1
z a 2
z
n a
n 1
7. Z 1
z a 2
z 2
n
8. Z 1 2 cos
z 1 2
z2 n
9. Z 1 2 2 a n cos
z a 2
z
10. Z 1 2 n
z 1 sin
2
z n
11. Z 1 2 2 a n1 sin
z a 2
8) Inverse form of Convolution Theorem
Z 1[F ( z ).G( z )] Z 1[F ( z )] Z 1[G( z )]
n
and by the defn. of Convolution of two functions f ( n) g( n) f ( r ) g( n r )
r 0
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 12
Engineering Mathematics 2014
9) Solving Difference Equations
a) Z[ y(n)] F ( z )
b) Z[ y(n 1)] zF ( z ) zy(0)
c) Z[ y(n 2)] z 2 F ( z ) z 2 y(0) zy(1)
d) Z[ y(n 3)] z 3 F ( z ) z 3 y(0) z 2 y(1) zy(2)
----All the Best----
Prepared by C.Ganesan, M.Sc., M.Phil., (Ph: 9841168917) Page 13