Engineering Mathematics Material
2013
SUBJECT NAME
: Transforms and Partial Differential Equations
SUBJECT CODE
: MA2211
MATERIAL NAME
: FormulaMaterial
MATERIAL CODE
: JM08AM3005
Unit I (Fourier Series)
1)
Dirichlets Conditions:
Any function f ( x ) can be expanded as a Fourier
a0
series an cos nx bn sin nx where a0 , an , bn are constants provided the
2 n 1
n 1
following conditions are true.
f ( x ) is periodic, single valued and finite.
f ( x ) has a finite number of discontinuities in any one period.
f ( x ) has at the most a finite number of maxima and minima.
2)
The Fourier Series in the interval (0,2):
a
f ( x ) 0 an cos nx bn sin nx
2 n 1
n 1
Where a0
3)
f ( x )dx , an
f ( x )cos nxdx , bn
f ( x )sin nxdx
The Fourier Series in the interval (-,):
a
f ( x ) 0 an cos nx bn sin nx
2 n 1
n 1
2
0
0
0
In this interval, we have to verify the function is either odd function or
even function. If it is even function then find only a0 and an ( bn 0 ). If it is odd
function then find only bn ( a0 an 0 ).
Where a0
f ( x )dx , an
f ( x )cos nxdx , bn
f ( x )sin nxdx
Engineering Mathematics Material
2013
If the function is neither odd nor even then you should find
1
a0 , an and bn by using the following formulas a0 f ( x )dx ,
an
4)
f ( x )cos nxdx , bn
f ( x )sin nxdx .
The half range Fourier Series in the interval (0,):
The half range Cosine Series in the interval (0,):
a
f ( x ) 0 an cos nx
2 n 1
2
0
0
The half range Sine Series in the interval (0,):
Where a0
f ( x )dx , an
f ( x )cos nxdx
f ( x ) bn sin nx
n 1
7)
8)
f ( x )sin nxdx
a02 2
[an bn2 ]
0
4 n 1
The Parsevals Identity in the interval (-,):
a02 2
2
2
[
f
(
x
)]
dx
[an bn2 ]
0
4 n 1
The Parsevals Identity for half range cosine series in the interval (0,):
a02 2
2
2
[
f
(
x
)]
dx
an
0
4 n 1
The Parsevals Identity for half range sine series in the interval (0,):
2
2
[
f
(
x
)]
dx
bn2
6)
0
The Parsevals Identity in the interval (0,2):
Where bn
5)
2
[ f ( x )] dx
n 1
Change of interval:
9)
The Fourier Series in the interval (0,2):
a
n x
n x
f ( x ) 0 an cos
bn sin
2 n 1
n 1
Where a0
f ( x )dx , an
f ( x )cos
n x
dx , bn
f ( x )sin
n x
dx
Engineering Mathematics Material
10)
2013
The Fourier Series in the interval (-, ):
a
n x
n x
f ( x ) 0 an cos
bn sin
2 n 1
n 1
Where a0
f ( x )dx , a
f ( x )cos
n x
dx , bn
f ( x )sin
n x
dx
In this interval, you have to verify the function is either odd function or even
function. If it is even function then find only a0 and an ( bn 0 ). If it is odd
function then find only bn ( a0 an 0 ).
11)
The half range Fourier Series in the interval (0, ):
The half range Cosine Series in the interval (0, ):
a
n x
f ( x ) 0 an cos
2 n 1
Where a0
f ( x )dx , a
f ( x )cos
n x
dx
The half range Sine Series in the interval (0, ):
n x
f ( x ) bn sin
n 1
Where bn
f ( x )sin
n x
dx
12)
13)
14)
15)
The Parsevals Identity in the interval (0,2):
2
a02 2
1
2
[
f
(
x
)]
dx
[an bn2 ]
0
4 n 1
The Parsevals Identity in the interval (-,):
a02 2
2
2
[
f
(
x
)]
dx
[an bn2 ]
0
4 n 1
The Parsevals Identity for half range cosine series in the interval (0,):
a02 2
2
2
an
0 [ f ( x )] dx 4
n 1
The Parsevals Identity for half range sine series in the interval (0,):
2
2
2
[ f ( x )] dx bn
0
n 1
Engineering Mathematics Material
16)
2013
Harmonic Analysis:
The method of calculation of Fourier constants by means of numerical
calculation is called as Harmonic analysis.
f ( x)
a0
an cos nx bn sin nx
2 n 1
n 1
where
2
2
2
2
a0 y , a1 y cos x , a2 y cos 2 x , a3 y cos 3 x , ...
n
n
n
n
b1
2
2
2
y sin x , b 2 y sin 2 x , b 3 y sin 3 x , ...
n
n
n
2 x
.
T
Where T is period, n is the number of values given. If the first and last y values
are same we can omit one of them.
When the values of x is given as numbers the is calculated by
Complex form of Fourier Series:
17)
18)
19)
20)
The Complex form of Fourier Series in the interval (0,2):
2
1
inx
where cn
f ( x ) cn e
f ( x )e inx dx
n
0
The Complex form of Fourier Series in the interval (-,):
1
inx
where cn
f ( x ) cn e
f ( x )e inx dx
2
n
The Complex form of Fourier Series in the interval (0,2):
2
in x
in x
1
f ( x ) cn e
where cn
f ( x )e
dx
2 0
n
The Complex form of Fourier Series in the interval (-,):
in x
in x
1
f ( x ) cn e
where cn
f
(
x
)
e
dx
2
n
Unit II (Fourier Transforms)
1)
Fourier Integral theorem
The Fourier integral theorem of f ( x ) in the interval ,
f ( x)
f ( x )cos ( t )dxd
is
Engineering Mathematics Material
2)
2013
Convolution Theorem
If F [ s ] and G[ s ] are the Fourier transform of the functions f ( x ) and
g ( x ) respectively, then F [ f ( x )* g( x )] F s .G s
3)
4)
5)
6)
7)
8)
9)
The Fourier Transform of a function f ( x ) is given by F [ f ( x )] is denoted by
F [ s] .
Fourier Transform F [ s ] F [ f ( x )]
Inverse Fourier Transform f ( x )
11)
f ( x )e isx dx
F [ s]e
isx
0
If f ( x ) e ax then the Fourier Cosine and Sine transforms as follows
Fourier Cosine Transform Fc [ s ] Fc [ f ( x )]
f ( x )cos sx dx
a
a s2
2
s
b) Fs [ f ( x )]
2
a s2
Property
d
a) Fs [ xf ( x )] Fc [ f ( x )]
ds
d
b) Fc [ xf ( x )] Fs [ f ( x )]
ds
Parsevals Identity
a)
b)
12)
ds
2
The Fourier transforms and Inverse Fourier transforms are called Fourier
transforms pairs.
2
Fourier Sine Transform Fs [ s ] Fs [ f ( x )]
f ( x )sin sx dx
a) Fc [ f ( x )]
10)
F ( s ) ds
f ( x ) dx
Fc ( s )Gc ( s )ds f ( x ) g( x )dx (Or)
Condition for Self reciprocal F [ f ( x )] f ( s )
Fc ( s ) ds f ( x ) dx
2
Engineering Mathematics Material
2013
Unit III (Partial Differential Equation)
1) Lagranges Linear equation
The equation of the form Pp Qq R
dx dy dz
then the subsidiary equation is
P
Q
R
2) Homogeneous Linear Partial Differential Equation of higher order with constant
coefficients:
2z
2z
2z
The equation of the form a 2 b
c 2 f ( x, y)
x
x y
y
The above equation can be written as
aD2 bDD cD2 z f ( x, y ) .. (1)
where D 2 , D
and D 2 , D
y
y
x
x
The solution of above equation is z = C.F + P.I
Complementary Function (C.F) :
2
Sl.No.
1
To find C.F consider the auxiliary equation by replacing D by m and D by
1.The equation (1) implies that am 2 bm c 0 , solving this equation
we get two values of m. The following table gives C.F of the above
equation.
Nature of m
Complementary Function
C.F = f1 ( y m1 x ) f 2 ( y m2 x )
m1 m2
m1 m2
C.F = f1 ( y mx ) xf 2 ( y mx )
m1 m2 m3
C.F = f1 ( y m1 x ) f 2 ( y m2 x ) f 3 ( y m3 x )
m1 m2 m3
C.F = f1 ( y mx ) xf 2 ( y mx ) x 2 f 3 ( y mx )
m1 m2 , m3 is different
C.F = f1 ( y mx ) xf 2 ( y mx ) f 3 ( y m3 x )
Particular Integral (P.I) :
To find P.I consider ( D, D) aD2 bDD cD 2 .
Type: 1 If f ( x , y ) 0 , then P.I 0 .
Type: 2
If f ( x, y ) e ax by
P .I
1
e ax by
( D , D )
Engineering Mathematics Material
2013
Replace D by a and D by b. If ( D , D ) 0 , then it is P.I.
If ( D , D ) 0 , then diff. denominator w.r.t D and multiply x in
numerator. Again replace D by a and D by b. If again
denominator equal to zero then continue the same procedure.
Type: 3
If f ( x , y ) sin( ax by ) (or ) cos( ax by )
1
sin(ax by ) (or ) cos(ax by )
( D , D )
Here replace D 2 by a 2 , D 2 by b 2 and DD by ab . Do not
replace for D and D . If the denominator equal to zero, then
apply the same producer as in Type: 2.
P .I
Type: 4
If f ( x, y ) x m y n
1
xm yn
( D , D )
1
xm yn
1 g ( D , D )
P .I
1 g ( D , D ) x m y n
1
Here we can use Binomial formula as follows:
1
i) 1 x 1 x x 2 x 3 ...
ii) 1 x 1 x x 2 x 3 ...
1
iii) 1 x 1 2 x 3 x 2 4 x 3 ...
2
iv) 1 x 1 2 x 3 x 2 4 x 3 ...
2
v) (1 x )3 1 3 x 6 x 2 10 x 3 ...
vi) (1 x )3 1 3 x 6 x 2 10 x 3 ...
Type: 5 If f ( x, y ) e ax by V , where
V=sin(ax by ) (or) cos(ax by ) (or) x m y n
1
e ax by V
( D , D )
First operate e ax by by replacing D by D a and D by D a .
1
P . I e ax by
V , Now this will either Type: 3 or
( D a , D b )
Type: 4.
P .I
Engineering Mathematics Material
2013
Type: 6 If f ( x , y ) y sin ax (or) y cos ax
1
y sin ax
( D , D )
1
y sin ax
D m1 D D m2 D
P .I
y c m2 x
1
c m2 x sin ax dx (Apply Bernouilis method)
D m1 D
3) Solution of Partial Differential Equations:
Standard Type: 1
Equation of the form f ( p, q ) 0
Standard Type: 2
Assume that z ax by c be the solution the above
equation.put p a and q b in equation (1), we get
f (a , b ) 0 . Now, solve this, we get b (a ) .
z ax (a ) y c which is called Complete solution.
Equation of the form z px qy f ( p, q ) (Clairauts form)
The Complete solution is z ax by f (a , b) . To find
Singular integral diff. partially w.r.t a & b , equate to zero
and eliminate a and b .
Standard Type: 3
Equation of the form f1 ( x, p) f 2 ( y, q)
The solution is z pdx qdy .
Standard Type: 4
Equation of the form f ( z , p, q ) 0
In this type put u x ay , then p
dz
dz
,q a
du
du
Unit IV (Application of Partial Differential Equation)
1) The One dimensional Wave equation:
2
2 y
2 y
a
t 2
x 2
The three solutions of the above equation are
i)
y( x , t ) Ae px Be px Ce pat De pat
ii)
y( x , t ) A cos px B sin px C cos pat D sin pat
iii)
y( x , t ) Ax B Ct D
Engineering Mathematics Material
2013
But the correct solution is ii),
y( x , t ) A cos px B sin px C cos pat D sin pat .
2) The One dimensional Heat flow equation:
u
2u
2 2
t
x
k
c
2
k Thermal Conductivity
where Density
c Specific Heat
The three solutions of the above equation are
i)
u( x , t ) Ae px Be px Ce
ii)
u( x , t ) A cos px B sin px Ce
iii)
u( x , t ) Ax B C
2 2
p t
2
p2 t
But the correct solution is ii), u( x , t ) A cos px B sin px Ce
p2 t
3) The Two dimensional Heat flow equation:
2u 2u
0
x 2 y 2
The three solutions of the above equation are
i)
u( x , y ) Ae px Be px C cos py D sin py
(Applicable when given value is parallel to y-axies)
ii)
u( x , y ) A cos px B sin px Ce py De py
(Applicable when given value is parallel to x-axies)
iii)
u( x, y ) Ax B Cy D (Not applicable)
Unit V (Z - Transform)
1) Definition of Z-transform:
Let f ( n) be the sequence defined for all the positive integers n such that
Z f ( n ) f ( n ) z n
n 0
Engineering Mathematics Material
2013
2)
Sl.No
Z f ( n )
1.
Z 1
2.
Z ( 1)n
3.
Z a n
4.
Z n
5.
Z n 1
6.
7.
8.
F [z]
z
z 1
z
z 1
z
za
z
z 1
z2
z 1
z
log
z 1
z
2
z 1
Z cos
2
z2
z2 1
If Z f ( n) F [ z ] , then Lt F [ z ] Lt f ( n)
z
n 0
4) Statement of Final value theorem:
If Z f ( n) F [ z ] , then Lt f ( n) Lt ( z 1)F ( z )
n
z 1
Z a n f ( n) Z f ( n) z z
6)
Z nf (n) z
d
Z f ( n)
dz
7) Inverse Z-transform
Sl.No
1.
2.
3.
1
Z
n
n
Z sin
2
3) Statement of Initial value theorem:
5)
Z 1 F ( z )
z
Z 1
z 1
z
Z 1
z 1
z
Z 1
za
f (n)
( 1)n
an
Engineering Mathematics Material
2013
z
Z 1
za
Z 1
2
z 1
Z 1
2
z a
Z 1
2
z a
2
z
Z 1 2
z 1
4.
5.
6.
7.
8.
9.
z2
Z 1 2
2
z a
10.
z
Z 1 2
z 1
11.
z
Z 1 2
2
z a
na n 1
n a
cos
n
2
a n cos
sin
n 1
n
2
n
2
a n1 sin
n
2
8) Inverse form of Convolution Theorem
Z 1[F ( z ).G( z )] Z 1[F ( z )] Z 1[G( z )]
n
and by the defn. of Convolution of two functions f ( n) g ( n) f ( r ) g ( n r )
r 0
9) a) Z [ y ( n )] F ( z )
b) Z [ y ( n 1)] zF ( z ) zy (0)
c) Z[ y(n 2)] z 2 F ( z ) z 2 y(0) zy(1)
d) Z[ y(n 3)] z 3 F ( z ) z 3 y(0) z 2 y(1) zy(2)
----All the Best----