1075 Sol
1075 Sol
                                                       PHYSICS
1.    T  kp x d y E z
x yz0 …(1)
 x  3y  2z  0 …(2)
 2 x  2z  1 …(3)
                        1
          xz                      …(4)
                        2
                    1
          y
                    2
                1
       y
                2
                                    3
       by equation (2)  x            2z  0
                                    2
                            3
             x  2z                          …(5)
                            2
       Adding (4) & (5)
                            1
            3 z  1, z 
                            3
                    1 1   5
       x           
                    2 3   6
       (A)
                                1
2.    Kinetic energy E           mv 2
                                2
            E         v 2  v 2
               100        2
                                   100 = [(1.5)2 – 1] × 100
             E             v
            E
               100  125 %
             E
       (D)
3. [] = L
            2 [ L]1/ 2
                 –2
       ML T =
                [ L]
                   5/ 2 2
        = [ M ][ L ][T ]
 (D)
                1          1                                                      2
                   2  8   (t  8)  (t  8)  1  0
                2          2
                (t  8)2  16                                                                        8    t   t (s)
                                                                                  P              6
                t8  4
                                                                                 -v
                t  12s
        (C)
5. v H  u cos   6 , v v  v 2  u2 cos2   8
        (D)
                                    1
                      d            2       1
6.     t                                   hr
                 um2  u2r        2
                                 4 3 2
                                          2 7
 (B)
7.     ucos53  v cos37
                          3      4
        100                v   v  75m/s
                          5      5
                                                                                               u=100m/s
       v y   v sin37  45m/s                                                             37°
                                                                                               53°            37°
                                                                                                                    v
       uy  u sin53  80m/s
v y  uy  gt  45  80  10t
       t  12.5s
        (B)
8. For collision,
or = 37°
 (D)
                                                            1 2 1  6 2
      Distance travelled perpendicular to OE in 2s =          at    2 = 6 m
                                                            2     2  2
Displacement = 62  82 = 10 m
 (D)
                                                                  20g g
        T  N  40a                                        a       
                                                                  80   4
                                                                  2g    g
      Net acceleration = a1  a 2 ,                        2a       
                                                                  4    2 2
                                                          g        g
      In condition (ii) 20g  T = 20a , T  40a , a        , a2 
                                                          3        3
           a1 g / 2 2    3
                     
           a2   g/3     2 2
 (A)
      mg      ma
11.      T                                                       …(i)
       2       2
                        ma
      T cos 60                                                   …(ii)
                      cos 60
                                                     2g
      Solving (i) and (ii), acceleration of ring =
                                                     9
       (C)
12. (B)
                                                          N2            N cos
                          N1
          N cos
         N                 a1                            a2                  N
        N sin                                                          N sin
                               mg sin            mg sin
         mg cos                                                        mg cos
                    mg                                          mg
a1  a 2
 N  mg tan 
                 at
13.   (B)               acc
              m1  m 2
                m1at 0
                         km1g
              (m1  m2 )
x2 = 7x1
a 2  7a1
 (D)
                dU
15.    F         = – 5(2x – 4) at mean position F = 0  x = 2 m,
                dx
                                                               
       U min = – 20 J as F  x and k = 10 N/m  T =              sec.
                                                               5
 (C)
                                                                     2
      20  gl(2  3 cos)                                cos  
                                                                     3
                                                        20 2
      Velocity at top =                   
                                  gl cos cos =
                                                        3 3
                                                             m/s
 (B)
17. (B)
                                  v2
      ac  k 2 rt 2    or             k 2 rt 2    or     v = krt
                                   r
                                                           dv
      Therefore, tangential acceleration, a                   kr
                                                           dt
      or tangential force,                Ft  mat  mkr
      Only tangential force does work,
       Power = Ft v  ( mkr)(krt )                 or     Power = mk 2 r 2 t
                  1
       30          5 v2 ,          v  2 3 ms1
                  2
 (C)
                                    2m1u A   u    2 gh
19.   u A  2 gh ,          vB              A 
                                    m1  m2   2   2
                                                                          2 gh
      To complete vertical circle,                v B2  5 gR                  5 gR
                                                                            4
 h  10R
 (D)
20. v  s 2 / 3
       ds
           s 2 / 3
       dt
       s           t
           ds
       0 s 2 / 3  0  dt               3 s1/ 3   t
             3 3        3 2
       s       t  ds =   t dt
             27          9
          3 2
       v   t
          9
                                            2
          1      1   3t 2     m 6 t 4
       W  mv 2  m        
          2      2  9           162
 (B)
                                                       u1     v  v1 u1  0      2
             3u1  2u 2  0  2u1 ,             u2       , e 2              =
                                                       2      u1  u2       u    3
                                                                        u1  1
                                                                             2
 (C)
22.    Before explosion, particle was moving along x-axis, i.e., it has no y-component of velocity.
       Therefore, the centre of mass will not move in y-direction or we can say y com  0.
                                 m1y1  m 2 y 2
       Now,            y com 
                                  m1  m 2
 (A)
            1                          1                           –3
             (800  200)  2  10 6   800  10  10 6 = 5 × 10 N-s
            2                          2
 (A)
                                                 2h
24.         Let height be h, so t 
                                                  g
and v  2gh  gt
                                2ev 2e 2 v
      Now           Tt                   .......
                                 g   g
                 2ev
         t         (1  e  e 2  ...)
                  g
                 2gt  e           1 e
        t                      t
                  g  1  e      1  e 
 (C)
                            2                          2
                 2  R           2  R          1       21
            I    M    M(2R)2  M    4MR 2  MR 2     MR 2
                 5  2           5  2          5       5
 (A)
                             R2  3R 
                 R 2 (0) 
                              14  4     R
27.    C.M. =                    2
                                         =–
                              R           20
                      R 2 
                               16
 (A)
 (B)
hence a  g(1  2 )
 (A)
             1 2                   2h 2  5
30.    h      at …(i)    or a             2.5m / s2
             2                     t2   4
mg  T  ma …(ii)
  I  RT …(iii)
 (D)
                                           CHEMISTRY
31.      (A)
                meqH  meqH2SO4  meq HCl  meqHNO3
                     = 50  10  25  12  40  5
                     = 1000
                eqH  1
V  1 lit  N  1 N
32.      (A)
         h = ho + KE
                     E                E
                E=      KE ;  K.E =
                     2                2
                           h  E
                 ho =       = .
                            2  2
                                                              8
         The oxidation state of M changes from                 to + 2, it is change of 0.67, there are three M
                                                              3
         resent per mole of M3O4 , the net change of electron is 0.67  3  2.0
                                at wt
               Eq.Wt. of M =
                                  2
34.      (A)
         Balmer series lines lies in visible region.
35.      (C)
                       0.50                        0.20
         Mole of A =        = 0.0083 ; Mole of B =      = 0.0044 ; Total mole = 0.0127
                        60                          45
                                                                                             mole of A
         Total pressure = 750 mm                                   ; Partial pressure of A = total moles x total pres-
         sure
             0.0083                                          0.0044
         =          x 750 = 490 mm ; Partial pressure of B =        x 750 = 260 mm
             0.0127                                          0.0127
36. (A)
                   a 
               P  2  V  RT
                  V 
                     a
        or    PV       RT
                     V
              PV   a
        or          1
              RT RTV
              PV      a 
        or       1      Z
              RT  RTV 
37. (B)
                        h         6.626  1034                                   25
              x                                                                      102  0.02 m
                      4P   6.626                                             4  3.14
                                    1032  4  3.14
                              25
38.     (D)
              Hardness = 200 PPm = 200 g CaCO3 in 106g water
              2g in 104 ml
              0.2 g in 1 lit
                                                                 0.2
        (D) 1 kg water = 100 g ; mCaCO3                              0.002
                                                                 100
 4 meq.
39.      (B)
         V.f of K 2 Cr2O7  6 & v.f. of KMnO 4  5
          nFeO   a / 72
               
         nFe2O3 b / 160
         nFe a / 72  2  b / 160   7 / 56
                                 
         no   b / 72  3  b / 160 2.5 / 16
         a : b = 9 : 10
41.      (A)                    42. (C)                   43. (B)                  44. (C)
45.      (C)                    46. (B)                   47. (D)                  48. (A)
49.      (D)                    50. (C)
51.      (D)
                      150ºC             200ºC        
         MgSO4 .7H2O    MgSO4 .H2O    MgSO4   MgO  SO3
52.      (B)
                                          1
         NaNO3 (S) 
                     NaNO2                O2
                                          2
                 
         4LiNO3   2Li2O  2NO2 (g)  O2 (g)
                
         MgCO3   MgO  CO2
                  
         Mg(OH)2   MgO  H2O
53.      (B)
         Ammoniated solution of sodium is highly paramagnetic blue coloured solution which act as
         strong R.A.
54.      (C)
         Factual
55.      (A)
         Electronegativity values of 2nd and 3rd period are as following.
         Li      Be       B        C         N     O      F
         1       1.5      2        2.5       3     3.5    4
         Na      Mg       Al       Si        P     S      Cl
         0.9     1.2      1.5      1.8       2.1   2.44   3
56.     (D)
57.     (D)
                 Ea
        Li  e  Li2 exothermic
        2S'               2S
58.     (A)
        acidic strength  O.S of metal (for oxides)
59.     (C)
        (i)     Hy  Number of +ve charge
                                              1
        (ii)   for isoelectronic, r 
                                        Atomic number
60.     (A)
        4KO2  2CO2  2K 2CO3  3O2
                                           MATHEMATICS
61.   (B)
      x 2  2(k  1)x  k 2  k  7  0.
      for both roots negative
      2(k  1)  0  k  1......(1)
64. (B)
a2  2a  0
             6a  a2  8
         &               0
             a2  6a  5
65.      (B)
                                                                       A
                                  1
         So, Maximum Area =         4  2  4 sq.unit
                                  2
         So, possible Area = 1, 2, 3, 4
         Corresponding to area 1 , 2 and 3
         Number of vertex for B are = 12
         and for Area = 4
         Number of vertex B are 2
         So, number of vertex = 12 + 2 = 14
67.      (D)
 x 2  2x  n  0
                2  4  4n
         x                 1  1  n
                     2
         for integer roots, n + 1 = perfect square of any integer
         n = 8, 15,....,80, 99.
         Total no. of values of n = 8
68.      (C)
         L1  4x – 7y + 10 = 0 & L2  7x + 4y = 15
         are perpendicular
         Hence, triangle is right angled. Orthocentre is point of intersection of L1 & L2
         i.e., (1, 2)
69.   (B)
      Equation of AB                                                      A
                                                                                  P(5,5)
                                                                              H
      5x + 5y – 9 = 0
      Orthocentre of  PAB is H
                                                                              B
      H will be image of (0,0) with respect to 5x + 5y – 9 = 0
           9 9
      i.e.  , 
           5 5
70.   (A)
      C’  reflection of C in x-axis  (5, –3)
C’(5, – 3)
                 B
                 •           y=0
A(1, 2) C(5, 3)
                        1 1 1
      Similarly, 2       
                       H2 b H1
      On adding and solving we get,
        1   1   1   1  1 1
      2             
        H1 H2   H1 H2  a b
       1   1 a  b 2A
                 2.
      H1 H2   ab   G
72.        (A)
           From sin x + sin2x = 1, we get sin x = cos2x, Now, the given expression is equal to
           cos6x (cos6x + 3cos4x + 3cos2x + 1) – 1 = cos6x (cos2x + 1)3 – 1
           = sin3x (sinx + 1)3 – 1 = (sin2x + sinx)3 – 1 = 1 –1 = 0
73.      (A)
         A.M .  G.M .
                                                          1       1
          a  a  ...  an1  2an
          1 2                                            n
                                    (a1,a2,....an 12an )  (2c) n
                     n
          Minimum value of
         a1  a2  .....  an1  2an  n(2c)1/n.
74. (D)
                                          1
         ab  log4 5.log5 6  log4 6       log 6
                                          2 2
                 1
         ab       (1  log2 3)  2ab  1  log2 3
                 2
                        1
          log3 2           .
                      2ab  1
75.      (A)
                                                      sin x
         The given equation can be written as                  2 cos x  1 + sin x = 2 cos2x = 2(1 –
                                                      cos x
         sin2x)
          2 sin2x + sin x – 1 = 0  (1 + sin x)(2 sin x – 1) = 0  sin x = 1 or 1/2
         Now sin x = 1  tan x and sec x not defined. Sin x = 1/2  x = /6 or 5/6.
          The required number of solution is 2.
77. (A)
             1             1              1
                                                  ....  
      (1  a)(2  a) (2  a)(3  a) (3  a)(4  a)
                1          1            1   1
      T1                       ;T2         , T3  1  1
             1 a 2  a                2a 3a       3a 4a
      ..........................
      ..........................
                     1      1           1       1
      Tn1                    ,Tn       
                 n  1 a n  a       n  a n  1 a
 S n  T1  T2  T3  ........  Tn
            1       1             n
                       
          1  a n  1  a (1  a)(n  1  a)
                           1
      Sn                           S  Sn,
                       1 a
              (1  a)  1   
                       n n
      when n  
                     1
       S               .
                  (1  a)
78.   (B)
                                                   3
      cos(A  B)  cos(B  C)  cos(C  A) 
                                                    2
                                             1                                         3
      Also, cos2A + cos2B + cos2C             (1  cos 2A  1  cos 2B  1  cos 2C)  .
                                             2                                         2
79.      (B)
         Clearly AB is common chord.
                    3        1                                                 A    r=3
         sin                                                                      (1,1)
                   3 2       2
                                                                        
                                                            P(4,4)
               4                                                                      B
                                     1
         AB  2r cos   2  3           3 2
                                      2
80.      (C)
                                        6 2
                        1  cos      1
                               12        4
         cot      
               24                      6 2
                          sin
                              12         4
                         4 6  2          6 2
                                                 6  2 2 3  2  3  4  6
                             6 2          6 2
81.      (B)
         Since the circle does not touch or intersect the coordinates axes, the absolute values of x
         and y coordinates of the centre are greater than the radius of the circle. Coordinates of the
         centre of the circle are (3, 5) and the radius      9  25  p
                         3  9  25  p  p  25         ..........(1)
         So that
                         5  9  25  p  p  9          ..........(2)
         And the point (1, 4) lies inside the circle  1  16  6  10  4  p  0  p  29 ..........(3)
         From (1), (2), (3) we get 25 < p < 29.
82.      (B)
         Image of A say A  w.r.t x – 2y + 1 = 0 lies on BC
                   x 1 y  2      (1  4  1) 4                            9 2
         Here,                2                                   A   , 
                     1   2          1  22     5                           5 5
                                        9 2
          Equation of BC joining A    ,  and B (2, 1) is
                                        5 5
                  2
                   1
                  5          3
         y 1      (x  2)   x  2 
                  9          1
               2
                  5
         3x – y – 5 = 0           a  b  3 1 2
83.   (B)
      S = 1 + 4x + 7x2 + 10x3 + ..........
      x.S = x + 4x2 + 7x3 + ..................
      Subtract
      S (1 – x) = 1 + 3x + 3x2 + 3x3 + ........
                                    1 
      S (1 – x) = 1 + 3x          , |x| < 1
                          1– x 
                1  2x
      S =
               (1– x)2
                     1  2x 35
      Given                
                    (1– x)2 16
                                                                                                               1 19
       16 + 32x = 35 + 35x2 – 70x                                     (5x – 1) (7x – 19) = 0  x =            ,
                                                                                                               5 7
                                               1
      But |x| < 1                      x =
                                               5
84.   (A)
                          1                  2r  3  (2r  1)
      Tr =                              
              (2r  1) (2r  1) (2r  3) 4(2r  1) (2r  1) (2r  3)
           1         1                  1             1          1                1           
                                                  =                     
        =
           4  (2r  1) (2r  1) (2r  1) (2r  3)     4  (2r  1) (2r  3) (2r  1) (2r  1) 
            1
        = -  Vr  Vr 1 
            4
              n
                          1                   1          1         1  1 1          1          
           T  4
             r 1
                     r        [Vn - V0] =                          =  
                                              4  (2n  1) (2n  3) 3  4  3 (2n  1) (2n  3) 
85.     (C)
        Given, ,  are roots of equation
                    x2 – 2x + 3 = 0
                   2  2  3  0                                                                  ...(i)
and 2  2  3  0 ...(ii)
  2  2  3   3  2 2  3
86. (B)
         Putting H  2ab
                     ab
 2[ ( H  a)( H  b)  H 2  H (a  b)  ab
                    2ab
          H2             (a  b)  ab  H 2  ab].
                  ( a  b)
                                  1        1
         Trick : Let a  1, H      and b  , then
                                  2        3
         H a Hb 3 / 2 5 / 6
                              2.
         H  a H  b 1/ 2 1/ 6
87.      (D)
         1 x2          1 x2      1                1 x2
                | x |       x                        . x  0  x [1, 1]  {0}
           x              x        x                  x
88.      (B)
         Point I and I1 divide AD in the same ratio internally & externally respectively
89.      (C)
(x  a)(x  8)  2
 x  a  2 & x  8  1  a  5 or x  a  2 & x  8  1  a  11
or x  a  1 & x  8  2  a  5 or x  a  1 & x  8  2  a  11
90. (D)