0% found this document useful (0 votes)
47 views6 pages

Exercise 1

New pdf of thermo

Uploaded by

manish yadav
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
47 views6 pages

Exercise 1

New pdf of thermo

Uploaded by

manish yadav
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

Solutions Slot – 2 (Physics) Page # 1

COM
EXERCISE – I SINGLE CORRECT
1. D

a'
COM lie on this line
C' C''


5. B
C'  r 4r  C''
   M
 2 3 
M/3
 r 4r 
2
(2r )  
 2 3  L–x x
a' = r 2 M L
2r 2  (L – x) = M – x  x=
2 3 4
a' = 2(3r  8r) 6. C
3(4  )

4r m
Required Ans = a' + COM 2m
3 x1
R/2
2(3r  8r) 4r 2r
= + = m.R R
3(4  ) 3 3(4  ) = 2mx1  x1 =
2 4
2. C
R 5R
 Distance = R + =
4 4
a 7. C
M1 M2

a/3 COM of triangle


a/3

20m

M2   a2 a
r1 = M  M = 2 2 × 3
1 2 a  a x 8–x
2 80 (8 – x) = 200x
a a a
= 2 = 640 – 80x = 200x
3a (  1) 3(  1)
x = 2.3 m
3. B Now, Required distance
= 20 – (8 – x)
= 20 – (8 – 2.3) = 20 – 5.7
= 14.3 m
8. [C]

4  6
= 8cm
3

T T
Center of mass coincides a a
4. D m nm
nmg – T = nma

394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671


IVRS No : 0744-2439051, 52, 53, www.motioniitjee.com, info@motioniitjee.com
Page # 2 Solutions Slot – 2 (Physics)

T – mg = ma 16. (a) [B] (b) [C]


After solving (a) It could be non-zero, but it must be
constant.
(n  1)g
a= (b) It could be non-zero and it might not
n1 be constant.
  17. (a) [C] (b) [B]
m1a1  m2 a2
aCOM = Mv0 = (Nm + M)v'
m1  m2
Mv0
ma  nma v' =
a  na (Nm  M)
= = 18. A
(n  1)m n1
2 L sin 
n  1
=  g
n  1 v2
9. A L/2 cos
 x1
CMi
L /2 x2

L –x 2x x L(1 – cos )
L+ x a= g= g CMf
2L L
mx1 = mx2 [ Fx = 0]
x1 = x2
10. C
Now x1 + x2 = L sin 
L sin 
Initial  CMf =
 1 2
2L mg = mv2  u = g 19. D
2 2
VCMx = 0 and Fx = 0
11. B mv1 = mv2  v1 = v2 = v(let)
When internal force acts. Now E.C.
Net force is zero.
1 2
dP mg (1 – cos ) = 2  mv 
F= Momentum conserved.  2 
dt
v2 = g (1 – cos )
Internal force will not change the linear
momentum. 
Distance from centre of mass = R =
But due to force, K.E. increases. 2
12. D
Speed constant K.E.  Constant mv2 mg(1  cos )
So T = =
Gravitational potential energy change. R  /2
 T = 2mg (1 – cos )
 Momentum = mv
 Direction of v changes 20. A
 Momentum changes vmax = V = g(1  cos )1 / 2
13. D
21. B
P2 Only in vertical direction
= K.E. [ fx = 0 always]
2m
L L
P2 So displacement = – cos 
ln = ln K.E. 2 2
2m
L
2ln P – ln (2m) = ln K.E. = [1 – cos ]
Straight line with intercept. 2
22. D
14. D
Positive Negative
m1(g)  m2 (g)
acom = m1  m2 = –g urel–v'

15. C
C1 will move but C2 will be stationary with M1 M M2
respect to the ground. A B
v'

394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671


IVRS No : 0744-2439051, 52, 53, www.motioniitjee.com, info@motioniitjee.com
Solutions Slot – 2 (Physics) Page # 3
By momentum conservation
O = m1 (urel – v') – (m2v' + Mv') 4F/3 2M M 4F/3
m1(urel – v') = m1v' + Mv'
x2 x1
m1urel
v' = m  m  M
1 2
4F 4F 1
23. D x1 + x2 = k (x1 + x2)2
3 3 2
A B (u–v')
rel

8F
v' = (x1 + x2)
3K
m2(urel – v') = (m1 + M)v' 28. [B]
m2 urel – m2v' = m1v' + Mv'
v'(m1 + M + m2) = m2 urel
m2urel
v' = m  M  m
1 2
2d
24. A Time between two collisions = v
  0
Fnet  0 Vcom  0 v0
 COM is at rest. So no. of collision/sec =
2d
u u Impulse in one collision = v0 – (–mv0)
= 2mv0
v'
v0 mv20
–m1u + m2u + Mv = 0 F = 2mv0 × =
2d d
(m1  m2 ) 29. B
v' = u
M (i) From M.C. mv = 2mv'
25. [A] v' = v/2
m1 m2 (ii) from M.C. mv = 2mv'
urel+v'
v' = v/2
(iii) Impulse = mv = 3mv'
urel–v' v'
v
m2(Urel + v') + Mv' = m1(urel – v') v' =
3
| m1  m2 | Urel 30. B
v' = m1  m2  M –I = –m2v – mv
I = 3mv
26. D
1 1
W.D. = m(2v)2 – mv
v2
(urel –v') 2 2
1 3 2
m(u – v') = (M + m)v' = m u
2
murel
v' = u
(M  2m) Iu
W.D. =
2 2u I
(Urel + v'')
31. B
v''
m
(M  m)murel
m(urel + v'') + Mv'' =  
(M  2m)
27. B
P = 2mv cos 
2F 2M M F Favg unit volume
F = (2mv cos ) (nv) = 2mnv2 cos 
aCOM = F
3M
Pressure = = 2mnv2 cos  cos 
w.r. to COM area

394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671


IVRS No : 0744-2439051, 52, 53, www.motioniitjee.com, info@motioniitjee.com
Page # 4 Solutions Slot – 2 (Physics)

32. C 20 m/s

 F.dt = P 25 m/s

Given  F.dt  J e=
V1  20
Now 45

F.2dt  J'  J' = 2J V1

33. D v1 = 65 m/s
39. C
e=1
So K = 0
(at the time 1
T of collision) kf = ki = m u12  u 22 
2
v v 40. C
3m 2m
So, –Tt = 2mv – mu (for bullet) N N N

I = Tt = 3mv (for mass 3m)
3mv = 2mv – mu 3R/2 3R/2
v = u/5
u'
3mu
I= 
5 2R
34. B
N N
If e = 1 then angle = 45°
If 0 < e < 1 then angle is less than
45° with the horizontal.
35. B
 2Nsin  .dt  mv 0 ..........(i)
N
 Ncos  . dt  mv 0

mv 0
Vf  N.dt =
2 5
.3
3

(3 / 2)R 2  R 2
si
n

sin  =
30

3 / 2R
°

3 cos 30°
=
1.

5 2
5

3 m/sec
sin  = ; cos
3 3
Vf cos 30° = 1.5
vf = 3 m/s mv 0 3 2 v0
= mv'  v' =
36. D 2 5 3 5
1 41. C
0.25 × 0.45 × 10 = 1 + (0.25)v2 mv 0
2 2N sin dt =
v = 1 m/s  2
Ball B is heavy
37. B
From momentum conservation
 N. cos dt = mv'
1 × 21 – 2 × 4 = 1 × 1 + 2 × v' mv 0
1m/s 6m/s
 2N sin dt  2
v' = 6 m/sec. A B  N cos dt  mv'
1 mv 0
e= = = 0.2 5
38. A
5  2N  3
dt 
2
2N
 dt  mv'
3
394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671
IVRS No : 0744-2439051, 52, 53, www.motioniitjee.com, info@motioniitjee.com
Solutions Slot – 2 (Physics) Page # 5
On dividing 46. A
2N  5 3 v0
× = 1
3 2N 2v' mgh = mv2 h
2
v0
v' = v= 2gh
2 5
By momentum conservation
42. D
m 2gh + 0 = 2mv'
O
h/2

hOO n 2gh
t= v' =
g 2
gt
By energy conservation
2 1 (2gh)
h h 1  h (2m)v'2 = 2mgh', m = 2mgh'
=v – g   2 4
2 g 2  g
 
h
h' =
h 4
h=v , v= hg 47. B
g
v
h 2m m v 2mv  em(0  v)
vf = hg  g = e=1
g 3 3m
1 2
vf = 0 48. D
Now mg.t = 3mv' –1 before
gt/3 = v' v(ms) collision collision after collision
1.0
1 h 1 0.8
 3m (gt/3)2 + 3mg = 3m.v12
2 2 2

10gh
v1 =
3 0.2
43. A
1 2 t(s)
u v1 v2
u=0 (i)  v is +ve for both.
A B  A B (ii) Yes (when maximum compression)
(iii)  S have greater velocity after collision then R
v 2  v1 have before collision and K.E. of S will be less
c=  cu = v2 – v1 ....... (1) then initial K.E. of R
u
Now mu = mv1 + mv2 1 1
msVs2 < mR (VR)2
u = v1 + v2 ....... (2) 2 2
v1 but VS > VR So ms < mR
1e
from (1) and (2) v = 49. C
2 1e v2 – u2 = 2aS
44. D
Infinite
45. A h
4
0 v v'  2gh
5
1 st m m 4m
v 2gh
A B C
2
4 
mv  4m(0  v) 3m 0–  2gh  = 2x – g × h
2nd v= = 5 
5m 5
16
3v/5 × 2gh = 2gh
25
m m
16
h' = h
 3v/5 m m 25

394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671


IVRS No : 0744-2439051, 52, 53, www.motioniitjee.com, info@motioniitjee.com
Page # 6 Solutions Slot – 2 (Physics)

16 dm
or h' = e2h = h [e = 4/5] Ft = Vr
25 dt
50. A dm
Vr – mg = m + a
2gh dt

1 2 1 dm
2
m  2gh + mgh =
2
mv2 980 ×
dt
– 4000 × 9.8 = 4000 + 196

1 v  2gh
dm
v = 2 gh  e , = 120 kg/sec.
2 dt
51. C 57. D
P = mv
2  10  5 = 10 m/sec. dP dv dm
=m +v
dt dt dt
10 2  e  10 2  e2  10
 + + + ....
10 10 10 dv
Fnet = (m0t) + v
1 + 2 [e + e2 + ....] dt
2e
1+ = 3 sec.
1e
52. B

2v cos 
g

53. D
dm
Fthurst = Vrel.
dt
dm
= (10 × (10–2)3 × 103) = 0.1 kg/sec.
dt
Volume
AVrel = = 10 × (10–2)3
sec .

10 5 20
= 2 =
 1  10  3  
 
 2 
 

20
Fthrust = × 0.1 = 0.127 N

54. C
5 × 103 × 1.2 = 6 × 103 × v
v = 1 m/sec.
55. D
dm
Fthurst = Vrel .
dt
dm
210 = 300 .
dt
dm
= 0.7 kg/sec.
dt
56. C

394,50 - Rajeev Gandhi Nagar Kota, Ph. No. : 93141-87482, 0744-2209671


IVRS No : 0744-2439051, 52, 53, www.motioniitjee.com, info@motioniitjee.com

You might also like