LA LS QN
LA LS QN
STER M. Tee
H, INiERNA
t., L EXAMINATION
'"OVe n,b
er 2023
Depa rt
ment of El 8
ctrlca1 E
nglne ering
contr ol Syste ms Guid ance N .
• av,gation
Powe r Ele
ctronics & p and Control p
ower Syste~s ower Systems,
22 1TEEtoo
LINEAR ALG
EBRAA
ND LINEAR SYSTEMS
Time: 2 hours
Max . Marks: 40
Part A
LAns wer all guest ionsj
Q. Marks co KL
no
l 4 1 K3
l
2 2 -1 0 1
A= -1-1 2 - 3 1
1 1-2 0-1
0 0 1 1 1
3 2
d by 4 2 K3
2 Check wheth er the following transformation T: R to R define
T[n~ rx ~ 2:.z: Jz]is linear ornot. Also, find the matrix representation.
th e K3
Find a matrix P so that by performing P· AP will diagonalize
1 2
4
J
o o - 2]
A matr ix A= 1 2 1
[1 0 3
1
vabilitY of th e sy
st em de sc rib ed b
·1·rv an d o bser
Ch ec k for controlla 11 4
4 b ; y
0 l) x
fl lr t~
~n sw er any four
qu es tio ns }
a.no. Marks
C()
Find the rank, nulli
ty, row space, and 6
5 co lu m n sp ac e of
-1 2 0 4 5 -
31
A==
l 3 -7 2 0 1
z -5 2 4 6 41
4 -9 z - 4 - 4
7
by . ._
ror t11c sys tem des cribed x - Ax + Bu and y ::::: 6 4 K3
~
-
w1I ere A -.
sh ow that 6 1 K4
o vector 1 .
a) A subset containing a zer a one is a subspace
or not.
b) A set of rea.l numbers ov
er a field of complex
not.
numbers IS a vector space or
c) A set of co~plex numb
ers over a field of real
or not.
numbers IS a vector space
Definition
r spaces.
Apply the concepts of vecto
on s in linear systems
Apply linear transformati
November 2023
De
Max. Marks: 40
r;me,. 2 hours
Part A
ANSWER KEY Answer all uestions
Ma rks co KL
l 1
RREF= [~
1
0
0
0
0
1
0
0
0
0
1
0
1
1
0
0
~l 2 marks
4 1 K3
K3
T (x2) check an d ven·ry . I mark 4 2
( I +x2) = T(x I)+
2 Property! -T x k dverify. l mark
T (C (xi)= CT(xl) chec an
Property2 -
T (v2) T (v3)]
Tu= [T (v1)
2 MARKS
4 2
3
( \ - 1) ( ,\ _ ) 2 I &
2 () \
l
cigcn va lues I ,11:.1 rk
.. 2
\ I.
I• l
.
- (J1 '
I
v,-m ,\ = 1 1'3 =
l ~1 \\
I
l·.igc n vc c.:·t.rm,- 2 \
ma rk I
p - [ - I
(J
I
()
I
CJ -:1
Writi n g I' I mark
1 l 2+ J • 4mark."
_ _ ·i
-- -- 4 5
4 K3
Steps and showing Rank(Qc)=2 1,5 mark
2 +2 = 4marks
Part B
Q.no .
Rank =2 3 marks
Marks co Kl
5
6 1 K3
Nullity= 4 1 marks
I -
•' I' (I I I OJ. II OO j. [00 II } fn rR ' 6 2 KJ
ti
, \) i11
Steps nnd nns\\ cr upto ti nt.lin g 1 (v i ) l'( , 2) I'( I
standnrd bnsis - I .5 lllnrk
) in
Steps und answer upto findin g T(v l) T(v2 ) T(v3
I standard basis - t .5 lllark
(T(v3))E]
Steps and answer l o rewrite [(T( v I ))E (T(v 2))E \
in tenn s of E= 1.5 mark
·-
.... K4
6 3
7 Row reductio n - 3 marks
r combinations of b I .
I Unique solution - not possible for any linea
I
r
b2. b3 ,b4 1 marks
6 4 K3
8 Finding the solution for x(t) 3 mark
a step sign al 3 mark
Finding the total response when the input is
6 1 K4
9 Sho w that
tor alone is a
a) Stat ing subset containing a zero vec
subspace)0.5 mark)
cation
( vec tor addition 1 mark and scalar multipli
O.Smark)
will not result in a real
b) Sho win g scalar multipli cation
space 1 ma rk
num ber 1 mar k and stating not a vec tor \
'· ks for 8 axioms I
c) Sho win g a vec tor space 0.25 mar
co Definition
sys te ms
co 2 Apply lin ear tran sfor m atio ns in line a r
D1
0
aa1TJDB1
Timar 2 hr■
Max, Markis 40
Marlul CO Kl,
4 COl K:J
4 CO2 K2
4 003 K2
4 004 K3
0 001 1(2
' /
' (, I
:.;
I; I
IV
Marks
6
X1 - 2X3 == -4
-3
2x 1 - 3x2 + 4x3 --
6 C04 K2
.b I by x(t) = A(t)x(t)
st clescn ec · ·
n
9. Solve the linear time varying sy em
·where
A( t)- u
Given, x 0 = ( X10)
X20
Course Outcomes:
COI: Explain the concepts of vec
tor spaces .
in line ar systems.
CO2: Apply linear transformations
ns and inte rpre t their results.
C03: Solve systems of linear equatio
C04: Solve LTI and LTV Systems.
•. l II l· . hil l !
1 A n s,ver a ll q u estio n s
I. P rov(' that l-F 1 U H ·2 is a subspace if a nd only if W ;; \\''2 m it·_~ :t
wh e re l\ '1 a nd lF2 are subspace. ·
( COl ( 0 .5 marK
•) Pro\·\., t hat e\·e11 when B 1 and B2 are two differem bas.5 :or · he 5ame
\·error :--pace t he number of elements in both basis will ~e · he ... =~"'
( C Ol ) (0 . 25 ma:K )
C03 )1 l mark }
,.---...------:-
-----
1- ,-;-----:=-;t:::_~o:,f;-;v:e~c;to;:;-;:-r s paces. - -
COl : .-\pp y t ie conce p ~ . d interpret their results.
C03 : Solve systems of linear equations _a_ n _ __:_:.~ - - - - -
:221 TEE J . Quiz 2
OO Line ar Algebra and Liuca r Systc 111s
A=[ ~ ~ ~]
-8 - 14 - 7
2. Find a . eigen space and b. dimensi on of eigen space assocai ted with each
cigen va lues of
0
Also. state with reaso11 whether the ubove matrix is cliagontllisahll'
(C02 ,K4 )(l mark)
• t L .•
Quiz 3
22 1TE El 00 Lin ear Alg ebr a and Lin ear Sy ste ms
T im e: I ho ur To ta l: 2 ,narks
io ns
1 A n sw e r a ll q u e st
r m desc ri bed by
I. Evuluu t.r t he sol u1 io n ,o r l 1l C syste
•
(0 )x 2( 0) J' = ll OI'
(1)
+ x2 ,y = x, /o r !x 1
.i:1 = .c, . :i-2 = x,
)
i11 pu1 re sp on se (C 04 ,K3 )( l m a rk
A lso liu d I he ze ro
described by
ar e fe ed back co nt ro ller for lh e sy st em
'J. . Dcsiv;n II full st (2)
tLling
syijt cm exh ib its o response with o se
su t hu t t hi: resulti
ng closed lo op o percentage
l I sec (w ith 2% tolerance) and
eq ua lO
ti me less than or
k)
ov ers ho ot < 16 % {C05 ,K 3) ( 1 m ar
Systems.
Solve LT I and LTV 1., uml design t·ontroller::, an d obSt•rvcr
s.
C 04 : ea r ;._\-slen
Analyse lin
C OS :
• - L tl · •- .. - .-
I
--
'
Qui:l 5
221 TEE l00 Line ar Algebra and Linear Systems
Time: l hour
ToLal · 2 mar.r.s
±1 = - 0.5x1 + u,
0 (C05 ,K4)( 1 mark
2. Desig n a full order observer for the system descri bed by
I
Ana yse
r r systems and design controllers and observers.
C OS: