0% found this document useful (0 votes)
13 views6 pages

Homework-1 A

Uploaded by

luhhesbwwm
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
13 views6 pages

Homework-1 A

Uploaded by

luhhesbwwm
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

Homework-1 /Linear Algebra.

/2024-2025 academic year/ by Jandigulov AR

Content
1. Solving a system of linear equations .......................................................................................................... 2
2. Linear independence.................................................................................................................................... 4
3. A matrix equation ........................................................................................................................................ 5
1. Solving a system of linear equations
Solve a system of linear equations in three ways:
a) by the RREF method;
b) according to Kramer's formulas;
c) using the inverse matrix

4 − 3 2 10  − 2 1 2 3 
   
1.  3 − 1 −2 3 2.  − 3 6 − 2 − 12 
5 2 25  −3 6 
 3  4 2
1 − 2 5 6 5 1 1 21
   
3.  3 2 5 38  4.  − 1 1 2 6
3 2 32  −1 5 3 21
 2 

 2 − 2 − 2 − 10   5 1 − 1 22 
   
5.  − 3 4 1 13  6.  − 3 5 5 20 
 1 − 5 − 3 − 37   5 − 3 5 44 
   
1 2 6 36   6 − 3 − 5 − 12 
   
7.  3 2 6 44  8.  1 4 1 36 
3 −1 − 2 0  − 2 2 6 
   1

 2 2 3 22   6 2 − 1 27 
   
9.  − 5 − 3 4 − 26  10.  4 − 2 − 3 1 
− 5 5 −1 − 12   6 − 5 − 5 − 6
  
 5 3 2 60   3 − 5 − 3 − 12 
   
11.  − 3 − 1 5 6 12.  − 5 1 3 −8 
 1 42   6 42 
 5 1  5 1

 1 −5 −2 − 22  1 − 3 3 5 
   
13.  − 5 4 3 12  14.  3 − 2 −1 − 7
 5 −3 2  5 2 −5 − 7 
 2 
3 −2 6 30  1 1 −3 3
   
15.  1 1 3 18  16.  3 − 1 6 19 
3 −3 12  −1 1 3 
 1  1
2
− 2 1 2 0 1 5 − 3 15 
   
17.  2 4 3 20  18.  4 5 2 54 
 3 − 3 5 13  1 1 − 5 − 21
 
4 − 1 2 27   1 −2 − 1 − 10 
   
19.  5 − 1 2 33  20.  3 2 − 1 10 
2 3 2 27  − 5 2 2 
  1

6 − 5 5 40  5 −3 1 21
   
21.  1 − 3 − 5 − 21 22.  2 3 2 29 
 3 6 − 2 19   −1 2 8 
   1
−1 − 5 5 4  2 −1 −1 4 
   
23.  5 3 5 56  24.  5 −3 − 2 10 
1 1 4 24  1 −1 − 5 − 13 
 

3
2. Linear independence
Will vector 𝐛 be a linear combination of vectors {a1 , a2 , a2 }?

4
3. A matrix equation
Solve the matrix equation .
Check the answer by substituting it into the equation.

5
6

You might also like