0% found this document useful (0 votes)
20 views17 pages

11 Time Series

Uploaded by

No Anime No Life
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
20 views17 pages

11 Time Series

Uploaded by

No Anime No Life
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

CHAPTER 1: Modelling and Forecasting Stationary Univariate

Time Series

1. Time series and random process

1.1 Definitions

 Definition : Time series= succession of the observations of a


variable over time.

 Example : Daily value of the Dow Jones Index from January


2000 to January 2007

 Definition : Let X be a random variable. The set of values


taken by X over time t is called a random process  X t tZ .
A time series is a time indexed random process.

1.2 Some useful characteristics of a random process


 Expectation E ( X t )   xf ( x)dx (continuous random variable)
 t
1 T
- Estimator calculated on a sample of T observations of the process  X t t Z : X T   Xt
T t 1

1
Variance V ( X t )  E  X t  E ( X t )  E ( X t ²)  E ( X t )²
2

1 T
- Estimator calculated on a sample of T observations: S T 
2
t 1
X t  X T 2
T

 Autocovariance cov( X t , X t  h )  E  X t  E ( X t ) X t  h  E ( X t  h )  E  X t X t  h   E  X t E  X t  h 


1 1 T 1
ˆ ( h) 
- Estimator :  
T
 X  X  X   X   with X   X et X   
T
X t h
t  h 1 t 1
T  h t  h 1
t T t h T h T t T h
T h T

cov( X t , X t h )
 Autocorrelation (ACF) cor ( X t , X t h ) 
X X
t t h

- Remark: in the case of a stationary process


 X  X
t t h
 cor ( X t , X t  h )  cov( X t , X t  h ) / V ( X t )  (h) / (0)

- Estimator calculated on a sample of T observations (the case of a stationary process) :


ˆ 1
ˆ (h)  (h) ˆ
(0)
ˆ ( h) 
with  
T
t  h 1
X t  X T X t  h  X T  h  and ˆ (0)  ST2  1 Tt1 X t  X T 2 .
T h T

- Definition : Correlogram of a process = graph of  (h) as a function of h .

 Partial Autocorrelation (PACF)


- It measures the correlation between an observation h periods ago and the current observation, after
controlling for observations at intermediate lags (i.e. all lags < h). So it measures the correlation between
X t and X t h after removing the effects of Xt-h+1 , Xt-h+2 , …, Xt-1 .

2
- Estimator ˆhh of  hh : OLS estimator of the last parameter in the regression below
X t  cˆ  ˆh1 X t 1  ˆh 2 X t  2    ˆh, h 1 X t  h 1  ˆhh X t  h  ˆt


- Definition : Partial Correlogram of a process = graph of  hh as a function of h .

1.3 The concept of stationarity


 Definition : The process X t  is called second-order stationary (or weakly Stationary) if its two first moments
are finite and time invariant (they don't depend on the period t), that is:
i) E( X t )  m
ii) V (Xt )   2  
iii) cov( X t , X t h )   (h) t , h  Z
t
 Examples and counter-examples: X t  a   t , X t    i , X t  a  bt   t with  t i.i.d .(0,   ²)
i 1
 Graphically : one must observe regular fluctuations around one a stationary point
Example Counter-example

3
2. ARMA (Autoregressive Moving Average) processes.

2.1 Definitions and properties

a) Definitions

 Definition 1 : A standard white noise process  t  has the following properties:


(i) E  t   0 t (null expectation)
(ii) V  t    2 t (homoskedastic)
(iii) cov( t ,  t ' )  0 for t  t ' ( not autocorrelated)
In what follows we will denote it by  t ~ BB(0,  2 ) .

 Definition 2 : A process  X t  is a moving average of order q (MA(q)) if it satisfies the following equation:
X t  m   t  1 t 1   2  t 2     q  t q  X t  m  ( L) t with ( L)  1  1 L     q Lq
, where the coefficients  i  IR , i  1,, q ,  q  0 and  t ~ BB(0, 2 ) .

 Definition 3 : A process  X t  is a p order autoregressive process (AR(p)) if it satisfies the following equation:
X t  c  1 X t 1   2 X t 2     p X t  p   t   ( L) X t  c   t avec  ( L)  1  1 L     p L p
, where the coefficients i  IR , i  1,, p ,  p  0 and  t ~ BB(0,  2 ) .

 Definition 4 : A process X t  is an autoregressive moving average of order p and q (ARMA(p,q)) if it satisfies


the following equation:
X t  c  1 X t 1   2 X t 2     p X t  p   t  1 t 1   2  t 2     q  t q
  ( L) X t  c  ( L) t with  ( L)  1  1 L     p L p et ( L)  1  1 L     q Lq

4
,where i  IR , i  1,, p ,  i  IR , i  1,, q ,  p  0 ,  q  0 and  t ~ BB(0,  2 ) .

Note: It enables to get a more parsimonious representation of the data since it permits to approximate, in an
appropriate way, a particular time series modeled with a relatively large order of the pure AR or pure MA model.

b) Properties

 Theorem 1 : A MA(q) process such that:


X t  m  ( L) t avec ( L)  1  1 L     q Lq
is said to be invertible if all the roots in L of the ( L) polynomial lie outside the unit circle (i.e. have all modulus
strictly higher than one).

 Theorem 2 : An AR(p) process such that:


 ( L) X t  c   t avec  ( L)  1  1 L     p L p
is said to be stationary if all the roots in L of the  ( L) polynomial lie outside the unit circle (i.e. have all modulus
strictly higher than one).

 Theorem 3 : An ARMA(p,q) process such that:


 ( L) X t  c  ( L) t avec  ( L)  1  1 L     p L p et ( L)  1  1 L     q Lq
is said to be stationary and invertible if all the roots in L of the  ( L) and ( L) polynomials lie outside the unit circle
(i.e. have all modulus strictly higher than one).

1
 Example : (1  L) X t  c   t is stationary if  1      1.

 Implication : if the process is stationary then the effect diminishes towards zero over time.

5
Proof in the case of an AR(1) process: (1   L) X t   t

1
(1  L) X t   t  X t  t    i Li  t if   1.  X t   t   t 1   2  t 2   3 t 3  ........
1  L i 0

Assuming a  t shock in t, all other shocks being equal to zero, we have:


X t   t , X t 1   t , X t  2   2 t ,…, X t  i   i  t  0 if   1 ; On the contrary if   1 (unit root), → infinite
i 
persistence of the shock.

6
Some useful results for the identification of ARMA processes

 Result 1 : A stationary AR(p) process has the following features:

- Its autocorrelation function is geometrically declining (as in graph 1), or has a sinusoidal shape (as in graph 2).

- Only the p first terms of its partial autocorrelation function are significantly different from 0.

X t  0.9 X t 1  0.2 X t 2   t X t  0.9 X t 1  0.8 X t  2   t

7
 Result 2 : An inversible MA(q) process has the following features:

- Only the q first terms of its autocorrelation function are significantly different from 0.

- Its partial autocorrelation function is geometrically declining (as in graph 1), or has a sinusoidal shape (as in
graph 2).

X t   t  0.9 t 1  0.2 t 2 X t   t  0.9 t 1  0.8 t 2

8
 Result 3 : A stationary and inversible ARMA(p,q) process has the following features:

- Its autocorrelation function is geometrically declining (as in graph 1), or has a sinusoidal shape (as in graph 2).

- Its partial autocorrelation function is geometrically declining (as in graph 1), or has a sinusoidal shape (as in
graph 2).

X t  0.9 X t 1   t  0.5 t 1 X t  0.8 X t 1   t  0.5 t 1

9
2.2 Identification, estimation and forecast of stationary processes

a) Identification of the p and q orders

 1st method: correlogram and partial correlogram

- Principle: Calculation and representation of the empirical autocorrelations and empirical partial autocorrelations
ˆ (h) and ˆhh , h  1,, H max for the observations xt Tt1 and use of the results 1,2 and 3 to identify the nature and
the order of the process.

- Examples: Growth rate of the monthly French Growth rate of the Dow Jones Index from March 2000
unemployment over the 1989.12 to 2004.2 period to January 2007

10
 2nd method : Information Criteria

- Principle: Estimation of the ARMA(p,q) process for different lags p  0,1,  , p max and q  0,1, , q max and choice
of the model minimizing the Akaike information criterion (AIC), the Bayesian information criterion (BIC) or
Schwarz criterion.

- Definition :
2
The Akaike information criterion can be calculated as AIC ( K )  T ln ˆ e  2 K
2
The Bayesian information criterion can be calculated as BIC ( K )  T ln ˆ e  K ln T
2
, with ˆ e the estimated variance of the residuals, K the number of parameters of the model, and T the number
of observations.

- Example : Growth rate of the monthly French unemployment from 89.12 to 2004.2
Bayesian information criterion for the estimated ARMA(p,q) process
p/q 0 1 2 3 4 5 6 7 8 9 10 11 12
0 -6,55 -6,66 -6,74 -6,95 -6,92 -6,93 -6,98 -6,96 -6,96 -6,93 -6,90 -6,90 -6,88
1 -6,75 -6,98 -7,06 -7,04 -7,03 -7,02 -6,99 -6,97 -6,94 -6,91 -6,89 -6,88 -6,85
2 -6,92 -7,02 -7,04 -7,02 -6,99 -6,98 -6,96 -6,94 -6,92 -6,89 -6,86 -6,87 -6,84
3 -7,14 -7,11 -7,08 -7,06 -7,08 -7,08 -7,06 -7,04 -7,01 -6,98 -6,95 -6,92 -6,86
4 -7,11 -7,09 -7,06 -7,03 -7,08 -7,05 -7,01 -7,01 -6,98 -6,93 -6,86 -6,91 -6,93
5 -7,09 -7,08 -7,13 -7,04 -7,01 -7,04 -7,00 -7,03 -7,00 -6,97 -6,95 -6,92 -6,82
6 -7,07 -7,05 -7,06 -7,03 -6,98 -6,98 -7,03 -6,93 -6,97 -6,94 -6,92 -6,83 -6,81
7 -7,04 -7,01 -7,00 -6,99 -7,00 -6,95 -6,94 -6,90 -6,87 -7,01 -6,82 -6,85 -6,92
8 -7,01 -6,98 -7,04 -7,12 -7,00 -6,93 -6,87 -7,04 -6,92 -6,85 -6,90 -6,79 -6,83
9 -6,97 -6,99 -7,00 -6,93 -6,96 -6,96 -6,95 -6,91 -6,93 -6,84 -6,86 -6,81 -6,78
10 -6,94 -6,95 -6,97 -6,86 -6,96 -6,91 -6,95 -6,86 -6,89 -6,83 -6,78 -6,76 -6,73
11 -6,93 -6,90 -6,87 -6,94 -6,91 -6,90 -6,92 -6,89 -6,80 -6,75 -6,73 -6,77 -6,66
12 -6,89 -6,90 -6,87 -6,80 -6,87 -6,86 -6,82 -6,85 -6,77 -6,72 -6,62 -6,66 -6,66

11
b) Estimation of ARMA processes

 Method : Generally, using a maximum-likelihood estimation (MLE), or Ordinary Least Squares (OLS).

 Properties: The estimators of the coefficients i , i  1,, p et  i , i  1,, q , are convergent and asymptotically
normally distributed.
 Consequences : Usual t-statistics can be used to test for the significance of the estimated coefficients
(Student's t-test, Fisher's test).

c) Specification Tests

 Test for the significance of the estimated coefficients

 Test for serial autocorrelation: the Ljung Box test

Let  j denote the autocorrelation of order j of the  t error process of an ARMA(p,q).


- Assumption : H 0 : 1   2     H  0 against H 1 :  j  1,2,, H  such that  j  0
ˆ h2
- the Ljung-box test statistic: LB ( H )  T (T  2)h 1   ²( H  K ) , where K is the number of parameters of
H
T h H 0

the model.
2
- Decision rule: if LB ( H )   H  K ;1 , reject H 0 (or when Prob<  )

12
d) Forecasting with ARMA Models

 Definition
For a forecast horizon h, the optimal prediction made in T of X T  h , denoted Xˆ T ( h) ou Xˆ T  h T is given by:

Xˆ T (h)  E X T  h I T , I T   X 1 ,, X T  the set of information available at date T.


The associated forecast error eˆT (h) can be written as: eˆT (h)  X T  h  Xˆ T (h) .

 Proposition
Let  X t  be an ARMA process [  ( L) X t  c  ( L) t ] with all the roots in L of the  (L) and ( L) polynomials lying
outside the unit circle.
   
E  T i I T  0 et E  T 1i I T   T 1i i  1
E  X T i I T   Xˆ T (i ) et E  X T 1i I T   X T 1i i  1
, where I T   X 1 ,  , X T  denotes the set of information available at date T. The  t  process is called innovation
since it is the unpredictable part of the process.

 Example : Prediction of an AR(1) stationary process X t  X t 1   t ,  t i.i.d . N (0,  2 )


Xˆ T (1)  E  X T 1 I T   E X T I T   X T
Xˆ T (2)  E  X T  2 I T   E X T 1 I T   Xˆ T (1)   ² X T
Xˆ T (3)  E  X T 3 IT   E  X T  2 IT    Xˆ T (2)   3 X T

Xˆ T (h)  E  X T  h IT   E 1 X T  h 1  2 X T  h 2   T  h IT    Xˆ T (h  1)   h X T

13
TECHNICAL APPENDIX
Skewness coefficient, Kurtosis coefficient, and the Jarque–Bera test

 Definition : The Skewness coefficient of a variable X t of mean m X and standard deviation  X


is defined as:
  X t  m X 3 
SK X  E  
  3X 
Its estimator calculated on a sample of T observations of the X t process is given by:
1 T X  X 
3
SKˆ X  t 1 t 3 T
T SX
1 T 1 T
, with X T   X , SX 
t 1 t t 1
X t  X T 2 .
T T

 Definition : The Kurtosis coefficient of a variable X t of mean m X and standard deviation  X is


defined as:
  X t  m X 4 
K X  E 
  X4 
Its estimator calculated on a sample of T observations of the X t process is given by:
1 T X  X T 
4
Kˆ X  t 1 t
T S X 4
1 T 1 T
, with X T  t 1
X t , S X  t 1
X t  X T 2 .
T T

14
 Values of reference for these two coefficients: : those of the normal distribution

The Skewness coefficient

- SK=0: case of the normal distribution (symmetrical distribution)


- SK<0: asymmetric distribution, skewed to the left (i.e. smallest values have a higher frequency
of apparition than the highest ones)
- SK>0: asymmetric distribution, skewed to the right (i.e. highest values have a higher frequency
of apparition than the smallest ones)

SK<0 SK=0 SK>0


10% 8% 10%
9% 9%
7% P(X<m-a)=P(X>m+a)
8% 8%
6% P(X<m-a)<P(X>m+a)
P(X<m-a)>P(X>m+a)
7% 7%
5%
6% 6%
5% 4%
5%
4% 3% 4%
3% 3%
2%
2% 2%
1%
1% 1%
0% 0%
0%
-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
m-a m m+a -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
m-a m m+
m-a m m+a

Note : empirical distributions of same mean and standard deviation.

15
The Kurtosis coefficient

- Kx = 3: case of the normal distribution


- Kx<3: Fat-tailed distribution (platykurtic distribution)
- Kx>3: Heavy-tailed distributions (leptokurtic distribution); a sampling randomly taken from this
distribution will exhibit more extreme values than if taken from the normal distribution.

K=1.80 K=3 K=11


18% 18% 18%

16% 16% 16%

14% 14% 14%

12% 12% 12%

10% 10% 10%

8% 8% 8%

6% 6% 6%

4% 4% 4%

2% 2% 2%

0% 0% 0%
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

Note : empirical distributions of same mean and standard deviation.

16
 Normality test: the Jarque–Bera test

i) Null hypothesis : H 0 : the series is normally distributed.

T ˆ 1 ˆ 
ii) Test statistic and distribution under H0 : JB   S ²  ( K  3)²    ²(2) , where
6 4 H 0

T kˆ 1 ˆ 
JB   S ²  ( K  3)²    ²(2) .
6  4 H 0

, with T the number of observations, Ŝ the empirical Skewness coefficient, K̂ the empirical
Kurtosis coefficient (and k the number of estimated parameters of the model).

iii) Decision rule: if JB   22,1 at the  level, reject H 0 (or when Prob<  ).

17

You might also like