Gravitation Solutions
Gravitation Solutions
me/Magazines4all
PHYSICS
SOLUTIONS
1. (a) The escape velocity on the earth is defined as r l
ve = 2g e R e
Where Re & ge are the radius & acceleration due to M m
gravity of earth.
Now for planet gP=2ge, RP=Re/4
ve x
So v P = 2g P R P = 2 ´ 2g e ´ R e / 4 =
2 r+l
r +l r +l
2. (c) Applying conservation of energy principle, we get GMm GMm 1
F= ò lx 2
dx =
l ò x2
dx
1 GMm GMm r r
mk 2 v e2 - =- r +l r +l
2 R r GMm GMm é x -2+1 ù
1 2GM GMm GMm
=
l ò x -2 dx =
l êë -2 + 1úû r
mk 2
r
Þ - =- r+l
2 R R r GMm -1 r + l GMm é 1 ù GMm
=- éx ù = - =
l ë ûr
2 2
Þ
k 1 1 1 1 k
- =- Þ = - l êë x úû r r (r + l )
R R r r R R
1 1 R k Mv 2
Þ = (1 - k 2 ) Þ r = 7. (b) F= = . Hence v µ R0
r R 1- k 2 R R
3. (d) The gravitational force due to the whole sphere at A mv 2 GmM GM
8. (d) = g= 2
point is (R + x ) (R + x ) 2 also R
GM e m o , where m is the assumed rest mass at
F1 = 0 mv 2 æ GM ö R 2
(2R ) 2 \ = mç
point A. (R + x) è R 2 ÷ø (R + x) 2
In the second case, when we made a cavity of radius mv 2 R2
(R/2), then gravitational force at point A is \ = mg
(R + x ) (R + x ) 2
GM e m o
F2 = \ F2/F1= 1/9 1/ 2
( R + R / 2) 2 gR 2 æ gR 2 ö
4. (c) According to Kepler’s law of period T2 µ R3 \ v2 = Þ v = çç ÷
÷
R+x èR+xø
T12 R13 (6 R )3 3
= = =8 9. (b) v= ve
T22 R23 (3 R )3 4
24 ´ 24 2
=8 1 1 æ3 ö 9
K.E. = mv 2 = m ç v e ÷ = mve2
T22 2 2 è4 ø 32
24 ´ 24 9 æ 2GM ö
T22 = = 72 = 36 × 2 = m
8 32 çè R ÷ø
T2 = 6 2 9 GMm GMm
K.E. = ; P.E. = -
16 R R
PE
5. (d) Total energy = – K E = 7 GMm
2 Total energy = K.E. + P.E. = -
1 16 R
K.E = mv 2 Let the height above the surface of earth be h, then
2
GMm
1 2 P.E. = -
\ Total energy = - mv h
2
6. (a) The force of attraction between sphere and shaded 7 GMm GMm 16R
- =- \ h=
æm ö 16 R h 7
ç dx ÷ 10. (a) When closer to the sun, velocity of planet will be greater.
l
position dF = GM è ø So time taken in covering a given area will be less.
x2
t.me/Ebooks_Encyclopedia27. t.me/Magazines4all
Dg æ GM ö 2
\ = -2 ´ (-1%) = 2% =ç ÷ (Q h = 3R)
g è 2R ø
16. (a) According to kepler's law of area 20. (a) Acceleration due to gravity at a height h above the
earth’s surface is
dA L
= æ 2h ö
dt 2m g h = g ç1 - ÷
è Rø
For central forces, torque = 0 Acceleration due to gravity at a depth d below the
\ L = constant earth’s surface is
dA æ dö
\ = constant g d = g ç1 - ÷
dt è Rø
21. (a) At the surface of earth, the value of g = 9.8m/sec2. If 28. (c) Applying the properties of ellipse, we have
we go towards the centre of earth or we go above the 2 1 1 r1 + r2
surface of earth, then in both the cases the value of g = + =
R r1 r2 r1 r2
decreases.
Instant position
Hence W1=mgmine, W2=mgsea level, W3=mgmoun of satellite
So W1< W2 > W3 (g at the sea level = g at the suface Sun
of earth) R
22. (d) Time period does not depend upon the mass of satellite major axis
2 pr 2pr 2 pr 3 / 2 2p
23. (a) T = = = = r1 r2
v0 ( gR 2 / r )1/ 2 gR 2 w
2 r1 r2
gR2 gR 2 R=
Hence, r 3/ 2
= or r 3 = 2 r1 + r2
w w 29. (c) In a circular or elliptical orbital motion, torque is always
or, r = (gR2 / w2)1/3
acting parallel to displacement or velocity. So, angular
24. (b) g ' = g - w2 R cos 2 l momentum is conserved. In attractive field, potential
energy is negative. Kinetic energy changes as velocity
To make effective acceleration due to gravity zero at
increase when distance is less. So, option (c) is correct.
equator l = 0 and g ' = 0
2GM 2GM
30. (a) Here, v = and kv = .
g 1 rad R R+R
\ 0 = g - w2 R Þ w = =
R 800 s 1
Solving k =
25. (a) mg = 72 N (body weight on the surface) 2
GM G (2M) GM
g= 31. (a) g = =
R2 (2R)2 2R 2
R 1 2
At a height H = , From h = gt [ Q U= 0]
2 2
GM 2h hR 2
g¢ = 2 4 GM t= =2
æ Rö = g GM
çè R + ÷ø 9 R2
2 R GMm é1 1 ù
32. (b) P.E. = ò dr = -GMm ê - ú
R 2
Body weight at height H = ,
R0 r ë R R0 û
2 1
The K.E. acquired by the body at the surface = m v2
4 GM 2
mg ¢ = m ´
9 R2 1 2 é1 1 ù
\ mv = -GMm ê - ú
4 4 2 ë R R0 û
= m´
´ g = mg
9 9
æ 1 1ö
4 v = 2G M ç - ÷
= ´ 72 = 32 N è R0 R ø
9
26. (c) At a height h, mv 2 k 2 k
2 33. (b) = or mv =
2
R2 æ R ö R R R
g' =g Þ mg ' = mg ç
(R + h)2 è R + h ÷ø 1 k
Kinetic energy = mv 2 =
2 2 2R
æ R ö
Þ W' = Wç In case of satellites P.E = – 2 K.E
è R + h ÷ø
Here, h = R/2 and T.E = P. E + K. E
4 k k k
\ W' = W Total energy = - =-
9 2R R 2R
27. (c) Gravitational P.E. = m × gravitational potential 34. (d) Variation of g with altitude is,
U = mV, so the graph of U will be same as that of V for é 2h ù
g h = g ê1 - ú ;
a spherical shell. ë Rû
t.me/Ebooks_Encyclopedia27. t.me/Magazines4all
variation of g with depth is, Now, if the shell shrinks then its radius decrease then
é dù density increases, but mass is constant. so from above
g d = g ê1 - ú expression if a decreases, then V increases.
ë Rû
Equating gh and gd, we get d = 2h æ dö g æ dö
42. (b) g ' = g ç1 - ÷ Þ = g ç1 - ÷
35. (a) The total momentum will be zero and hence velocity è Rø n è Rø
will be zero just after collisiion. The pull of earth will æ n -1 ö
Þd =ç ÷R R/4 Moon
make it fall down. è n ø
36. (b) Loss in potential energy = Gain in kinetic energy
43. (d) E earth = E moon
GMm æ 3 GMm ö 1 2
- -ç- ÷ = mv
R è 2 R ø 2 GM GM / 81
Þ = 60 R
2
GMm 1 GM x (60R - x) 2 x
Þ = mv 2 Þ v = = gR
2R 2 R 1 1
37. (d) Þ x = 9 (60R - x) R Earth
-GM 5GMm
V= , where a is radius of spherical shell Therefore minimum required energy, K =
a 6R