BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC KINH TẾ QUỐC DÂN
Bài giữa kì môn dự báo kinh tế xã hội
Sinh viên thực hiện:
Trần Quốc Tuấn : 47
Nguyễn Thị Phương Thảo: 45
Nguyễn Thu Phương : 39
Hà nội,tháng 10 năm 2023
EXAMINATION ECONOMIC FORECASTING 1
Take-home exam
(ODD number)
Question 1: Give some comments on the application of forecasting methods in
0
enterprises in Vietnam,
The application of forecasting methods in enterprises in Vietnam can be beneficial in
many ways. Forecasting is the process of making predictions about future events or trends
using historical data and statistical models. It can help businesses in Vietnam make better
decisions about their operations, resources, and investments, ultimately leading to increased
profitability and competitiveness.
One common application of forecasting in Vietnam is in supply chain management.
Accurately forecasting demand for products can help companies optimize their inventory
levels, minimize stockouts, and reduce wastage. This can be particularly important in
industries such as manufacturing and retail, where supply chain disruptions and
inefficiencies can have significant cost implications.
Another area where forecasting can be useful is in financial planning and budgeting.
By forecasting future revenue and expenses, businesses in Vietnam can better plan their
cash flow and ensure they have the resources to meet their financial obligations. This can
be especially important for small and medium-sized enterprises (SMEs), which may have
limited access to capital.
Finally, forecasting can also be used in marketing and sales. By forecasting
customer demand and trends, businesses in Vietnam can tailor their marketing strategies
and product offerings to meet the needs of their target audience. This can help them
increase customer loyalty and gain a competitive edge in their industry.
However, there are also challenges to using forecasting methods in enterprises in
Vietnam. These include issues with data quality and availability, as well as a lack of
0
technical expertise and resources. Additionally, economic and political instability can
make it difficult to accurately forecast business conditions and trends.
Overall, the application of forecasting methods in enterprises in Vietnam can
provide significant benefits, but it is important for businesses to carefully consider
their data sources and methodologies to ensure the accuracy and reliability of their
forecasts.
Question 2: By using annual Exports of Goods and Services (EXPGSA) of
America from 1929 to 2022 at https://fred,stlouisfed,org/series/EXPGSA, studen
ts have to answer all the following questions:
1. Based on the graph form, it is possible that the definitions are non-linear
trend, Specifically, it is a Sigmoidal graph.
2. In this exercise, we work on mathematical and statistical databases. This series
of data is collected and statistically based on the time series from 1929 to 2022.
According to the chart above, we can see that in general, the data in the series does
not fluctuate very much and the data collected in the time series is evenly spaced.
Therefore, we think of the “moving average” method to be able to smooth out the
0
irregular fluctuations in the time series, then put in the moving average data, we will
forecast the demand in the next period.
Besides, it can be seen that the data and data are quite a lot, so for the convenience
of calculations, we should use a calculator (excel). Therefore, the “exponential
smoothing” method is also a method that can be used in this exercise. This method has a
fairly strict formula for calculating future demand, so its forecast can be trusted.
In this exercise, the forecast amount is relatively large (exports of goods and
services), and this is also a major turnover, related to the economic development of a
country. Therefore, “extrapolation” is also a method to be considered in this
situation.
In short, moving average method, exponential moving average method
and extrapolation method can be used to forecast the movement of the variable.
3. Forecast values of EXPGSA in 2023 and 2024 by using:
5-period moving average
1
With m=5
∑m yt − i
Using the recipe: Ft+1 = .
m i=0
We have the data table
below:
Observation date Year t Y Ŷ |Y-Ŷ|/Y
1929-01-01 1929 1 5,939
1930-01-01 1930 2 4,444
1931-01-01 1931 3 2,906
1932-01-01 1932 4 1,975
1933-01-01 1933 5 1,987
0
1934-01-01 1934 6 2,561 3,450 0,347
0
1935-01-01 1935 7 2,769 2,775 0,002
1936-01-01 1936 8 3,007 2,440 0,189
1937-01-01 1937 9 4,039 2,460 0,391
1938-01-01 1938 10 3,811 2,873 0,246
1939-01-01 1939 11 3,969 3,237 0,184
1940-01-01 1940 12 4,897 3,519 0,281
1941-01-01 1941 13 5,482 3,945 0,280
1942-01-01 1942 14 4,375 4,440 0,015
1943-01-01 1943 15 4,034 4,507 0,117
1944-01-01 1944 16 4,880 4,551 0,067
1945-01-01 1945 17 6,781 4,734 0,302
1946-01-01 1946 18 14,156 5,110 0,639
1947-01-01 1947 19 18,740 6,845 0,635
1948-01-01 1948 20 15,547 9,718 0,375
1949-01-01 1949 21 14,484 12,021 0,170
1950-01-01 1950 22 12,350 13,942 0,129
1951-01-01 1951 23 17,099 15,055 0,120
0
1952-01-01 1952 24 16,459 15,644 0,050
1953-01-01 1953 25 15,313 15,188 0,008
1954-01-01 1954 26 15,836 15,141 0,044
1955-01-01 1955 27 17,677 15,411 0,128
1956-01-01 1956 28 21,284 16,477 0,226
1957-01-01 1957 29 24,017 17,314 0,279
1958-01-01 1958 30 20,560 18,825 0,084
1959-01-01 1959 31 22,725 19,875 0,125
1960-01-01 1960 32 27,045 21,253 0,214
1961-01-01 1961 33 27,602 23,126 0,162
1962-01-01 1962 34 29,066 24,390 0,161
1963-01-01 1963 35 31,074 25,400 0,183
1964-01-01 1964 36 35,019 27,502 0,215
1965-01-01 1965 37 37,146 29,961 0,193
1966-01-01 1966 38 40,920 31,981 0,218
1967-01-01 1967 39 43,467 34,645 0,203
1968-01-01 1968 40 47,906 37,525 0,217
0
1969-01-01 1969 41 51,922 40,892 0,212
1970-01-01 1970 42 59,709 44,272 0,259
1971-01-01 1971 43 62,963 48,785 0,225
1972-01-01 1972 44 70,843 53,193 0,249
1973-01-01 1973 45 95,269 58,669 0,384
1974-01-01 1974 46 126,650 68,141 0,462
1975-01-01 1975 47 138,706 83,087 0,401
1976-01-01 1976 48 149,515 98,886 0,339
1977-01-01 1977 49 159,349 116,197 0,271
1978-01-01 1978 50 186,883 133,898 0,284
1979-01-01 1979 51 230,129 152,221 0,339
1980-01-01 1980 52 280,772 172,916 0,384
1981-01-01 1981 53 305,239 201,330 0,340
1982-01-01 1982 54 283,210 232,474 0,179
1983-01-01 1983 55 276,996 257,247 0,071
1984-01-01 1984 56 302,380 275,269 0,090
1985-01-01 1985 57 303,211 289,719 0,044
0
1986-01-01 1986 58 320,998 294,207 0,083
1987-01-01 1987 59 363,943 297,359 0,183
1988-01-01 1988 60 444,601 313,506 0,295
1989-01-01 1989 61 504,289 347,027 0,312
1990-01-01 1990 62 551,873 387,408 0,298
1991-01-01 1991 63 594,931 437,141 0,265
1992-01-01 1992 64 633,053 491,927 0,223
1993-01-01 1993 65 654,799 545,749 0,167
1994-01-01 1994 66 720,937 587,789 0,185
1995-01-01 1995 67 812,810 631,119 0,224
1996-01-01 1996 68 867,589 683,306 0,212
1997-01-01 1997 69 953,803 737,838 0,226
1998-01-01 1998 70 952,979 801,988 0,158
1999-01-01 1999 71 992,910 861,624 0,132
2000-01-01 2000 72 1096,111 916,018 0,164
2001-01-01 2001 73 1026,812 972,678 0,053
2002-01-01 2002 74 997,979 1004,523 0,007
0
2003-01-01 2003 75 1035,165 1013,358 0,021
2004-01-01 2004 76 1176,363 1029,795 0,125
2005-01-01 2005 77 1301,580 1066,486 0,181
2006-01-01 2006 78 1470,170 1107,580 0,247
2007-01-01 2007 79 1659,295 1196,251 0,279
2008-01-01 2008 80 1835,280 1328,515 0,276
2009-01-01 2009 81 1582,774 1488,538 0,060
2010-01-01 2010 82 1857,247 1569,820 0,155
2011-01-01 2011 83 2115,864 1680,953 0,206
2012-01-01 2012 84 2217,700 1810,092 0,184
2013-01-01 2013 85 2286,981 1921,773 0,160
2014-01-01 2014 86 2377,408 2012,113 0,154
2015-01-01 2015 87 2268,651 2171,040 0,043
2016-01-01 2016 88 2232,110 2253,321 0,010
2017-01-01 2017 89 2388,260 2276,570 0,047
2018-01-01 2018 90 2538,089 2310,682 0,090
2019-01-01 2019 91 2538,450 2360,904 0,070
0
2020-01-01 2020 92 2148,616 2393,112 0,114
2021-01-01 2021 93 2539,648 2369,105 0,067
2022-01-01 2022 94 2975,843 2430,613 0,183
Sum 4465 17,588
Forecast value:
F₂₀₂₃ = 1 . (y₂₀₁₈ + y₂₀₁₉ + y₂₀₂₀ + y₂₀₂₁ + y₂₀₂₂) = 2548,129
5
Can’t forecast the value for 2024 because we don’t have y2023
5-period exponential moving average
With m=5 ⇒ = 2/(m+1) = ⅓ = 0,333
Using recipe: Ft+1 = α.yt + (1-α).Ft
We have the data table below:
Observation date Year t t*t Y Y mũ |Y-Ŷ|/Y
1929-01-01 1929 1 1 5,939 5,939 0
1930-01-01 1930 2 4 4,444 5,939 0,336
1931-01-01 1931 3 9 2,906 5,4407 0,872
1932-01-01 1932 4 16 1,975 4,5958 1,327
1933-01-01 1933 5 25 1,987 3,7222 0,873
1934-01-01 1934 6 36 2,561 3,1438 0,228
1935-01-01 1935 7 49 2,769 2,9495 0,065
0
1936-01-01 1936 8 64 3,007 2,8894 0,039
1937-01-01 1937 9 81 4,039 2,9286 0,275
1938-01-01 1938 10 100 3,811 3,2987 0,134
1939-01-01 1939 11 121 3,969 3,4695 0,126
1940-01-01 1940 12 144 4,897 3,6360 0,258
1941-01-01 1941 13 169 5,482 4,0563 0,260
1942-01-01 1942 14 196 4,375 4,5315 0,036
1943-01-01 1943 15 225 4,034 4,4794 0,110
1944-01-01 1944 16 256 4,880 4,3309 0,113
1945-01-01 1945 17 289 6,781 4,5139 0,334
1946-01-01 1946 18 324 14,156 5,2696 0,628
1947-01-01 1947 19 361 18,740 8,2318 0,561
1948-01-01 1948 20 400 15,547 11,7345 0,245
1949-01-01 1949 21 441 14,484 13,0053 0,102
1950-01-01 1950 22 484 12,350 13,4982 0,093
1951-01-01 1951 23 529 17,099 13,1155 0,233
1952-01-01 1952 24 576 16,459 14,4433 0,122
0
1953-01-01 1953 25 625 15,313 15,1152 0,013
1954-01-01 1954 26 676 15,836 15,1811 0,041
1955-01-01 1955 27 729 17,677 15,3994 0,129
1956-01-01 1956 28 784 21,284 16,1586 0,241
1957-01-01 1957 29 841 24,017 17,8671 0,256
1958-01-01 1958 30 900 20,560 19,9171 0,031
1959-01-01 1959 31 961 22,725 20,1314 0,114
1960-01-01 1960 32 1024 27,045 20,9959 0,224
1961-01-01 1961 33 1089 27,602 23,0123 0,166
1962-01-01 1962 34 1156 29,066 24,5422 0,156
1963-01-01 1963 35 1225 31,074 26,0501 0,162
1964-01-01 1964 36 1296 35,019 27,7247 0,208
1965-01-01 1965 37 1369 37,146 30,1562 0,188
1966-01-01 1966 38 1444 40,920 32,4861 0,206
1967-01-01 1967 39 1521 43,467 35,2974 0,188
1968-01-01 1968 40 1600 47,906 38,0206 0,206
1969-01-01 1969 41 1681 51,922 41,3157 0,204
0
1970-01-01 1970 42 1764 59,709 44,8512 0,249
1971-01-01 1971 43 1849 62,963 49,8038 0,209
1972-01-01 1972 44 1936 70,843 54,1902 0,235
1973-01-01 1973 45 2025 95,269 59,7411 0,373
1974-01-01 1974 46 2116 126,650 71,5837 0,435
1975-01-01 1975 47 2209 138,706 89,9392 0,352
1976-01-01 1976 48 2304 149,515 106,1948 0,290
1977-01-01 1977 49 2401 159,349 120,6349 0,243
1978-01-01 1978 50 2500 186,883 133,5396 0,285
1979-01-01 1979 51 2601 230,129 151,3207 0,342
1980-01-01 1980 52 2704 280,772 177,5901 0,367
1981-01-01 1981 53 2809 305,239 211,9841 0,306
1982-01-01 1982 54 2916 283,210 243,0691 0,142
1983-01-01 1983 55 3025 276,996 256,4494 0,074
1984-01-01 1984 56 3136 302,380 263,2983 0,129
1985-01-01 1985 57 3249 303,211 276,3255 0,089
1986-01-01 1986 58 3364 320,998 285,2873 0,111
0
1987-01-01 1987 59 3481 363,943 297,1909 0,183
1988-01-01 1988 60 3600 444,601 319,4416 0,282
1989-01-01 1989 61 3721 504,289 361,1614 0,284
1990-01-01 1990 62 3844 551,873 408,8706 0,259
1991-01-01 1991 63 3969 594,931 456,5381 0,233
1992-01-01 1992 64 4096 633,053 502,6690 0,206
1993-01-01 1993 65 4225 654,799 546,1304 0,166
1994-01-01 1994 66 4356 720,937 582,3532 0,192
1995-01-01 1995 67 4489 812,810 628,5478 0,227
1996-01-01 1996 68 4624 867,589 689,9686 0,205
1997-01-01 1997 69 4761 953,803 749,1754 0,215
1998-01-01 1998 70 4900 952,979 817,3846 0,142
1999-01-01 1999 71 5041 992,910 862,5827 0,131
2000-01-01 2000 72 5184 1096,111 906,0251 0,173
2001-01-01 2001 73 5329 1026,812 969,3871 0,056
2002-01-01 2002 74 5476 997,979 988,5287 0,009
2003-01-01 2003 75 5625 1035,165 991,6788 0,042
0
2004-01-01 2004 76 5776 1176,363 1006,1742 0,145
2005-01-01 2005 77 5929 1301,580 1062,9038 0,183
2006-01-01 2006 78 6084 1470,170 1142,4625 0,223
2007-01-01 2007 79 6241 1659,295 1251,6984 0,246
2008-01-01 2008 80 6400 1835,280 1387,5639 0,244
2009-01-01 2009 81 6561 1582,774 1536,8026 0,029
2010-01-01 2010 82 6724 1857,247 1552,1264 0,164
2011-01-01 2011 83 6889 2115,864 1653,8333 0,218
2012-01-01 2012 84 7056 2217,700 1807,8435 0,185
2013-01-01 2013 85 7225 2286,981 1944,4623 0,150
2014-01-01 2014 86 7396 2377,408 2058,6352 0,134
2015-01-01 2015 87 7569 2268,651 2164,8928 0,046
2016-01-01 2016 88 7744 2232,110 2199,4789 0,015
2017-01-01 2017 89 7921 2388,260 2210,3559 0,074
2018-01-01 2018 90 8100 2538,089 2269,6573 0,106
2019-01-01 2019 91 8281 2538,450 2359,1345 0,071
2020-01-01 2020 92 8464 2148,616 2418,9063 0,126
0
2021-01-01 2021 93 8649 2539,648 2328,8096 0,083
2022-01-01 2022 94 8836 2975,843 2399,0890 0,194
Sum 4465 281295 19,975
Forecast value:
F₂₀₂₃ = α.y2022 + (1-α).F2022 = 2591,3404
Can’t forecast the value for 2024 because we don’t have y2023
Extrapolation with an appropriate trend
T = 2022 - 1929 + 1 = 94
Using OLS: T. lnα + β. t= Y
α. t + β. t2 = Y.t
Giải hệ phương trình ta được: lnα = 0,746 α = 2,108
β = 0,083
Using the recipe: Yt = α.eβ.t
We have the data table
below:
Observation date Year t t*t Y Y mũ |Y-Ŷ|/Y
1929-01-01 1929 1 1 5,939 2,291 0,614
1930-01-01 1930 2 4 4,444 2,490 0,440
1931-01-01 1931 3 9 2,906 2,707 0,068
1932-01-01 1932 4 16 1,975 2,943 0,490
1933-01-01 1933 5 25 1,987 3,199 0,610
0
0
1934-01-01 1934 6 36 2,561 3,477 0,358
1935-01-01 1935 7 49 2,769 3,780 0,365
1936-01-01 1936 8 64 3,007 4,109 0,366
1937-01-01 1937 9 81 4,039 4,466 0,106
1938-01-01 1938 10 100 3,811 4,855 0,274
1939-01-01 1939 11 121 3,969 5,278 0,330
1940-01-01 1940 12 144 4,897 5,737 0,171
1941-01-01 1941 13 169 5,482 6,236 0,138
1942-01-01 1942 14 196 4,375 6,779 0,549
1943-01-01 1943 15 225 4,034 7,369 0,827
1944-01-01 1944 16 256 4,880 8,010 0,641
1945-01-01 1945 17 289 6,781 8,707 0,284
1946-01-01 1946 18 324 14,156 9,465 0,331
1947-01-01 1947 19 361 18,740 10,288 0,451
1948-01-01 1948 20 400 15,547 11,184 0,281
1949-01-01 1949 21 441 14,484 12,157 0,161
1950-01-01 1950 22 484 12,350 13,215 0,070
0
1951-01-01 1951 23 529 17,099 14,365 0,160
1952-01-01 1952 24 576 16,459 15,615 0,051
1953-01-01 1953 25 625 15,313 16,974 0,108
1954-01-01 1954 26 676 15,836 18,451 0,165
1955-01-01 1955 27 729 17,677 20,057 0,135
1956-01-01 1956 28 784 21,284 21,802 0,024
1957-01-01 1957 29 841 24,017 23,700 0,013
1958-01-01 1958 30 900 20,560 25,762 0,253
1959-01-01 1959 31 961 22,725 28,004 0,232
1960-01-01 1960 32 1024 27,045 30,441 0,126
1961-01-01 1961 33 1089 27,602 33,091 0,199
1962-01-01 1962 34 1156 29,066 35,970 0,238
1963-01-01 1963 35 1225 31,074 39,101 0,258
1964-01-01 1964 36 1296 35,019 42,503 0,214
1965-01-01 1965 37 1369 37,146 46,202 0,244
1966-01-01 1966 38 1444 40,920 50,223 0,227
1967-01-01 1967 39 1521 43,467 54,594 0,256
0
1968-01-01 1968 40 1600 47,906 59,345 0,239
1969-01-01 1969 41 1681 51,922 64,509 0,242
1970-01-01 1970 42 1764 59,709 70,123 0,174
1971-01-01 1971 43 1849 62,963 76,226 0,211
1972-01-01 1972 44 1936 70,843 82,859 0,170
1973-01-01 1973 45 2025 95,269 90,070 0,055
1974-01-01 1974 46 2116 126,650 97,909 0,227
1975-01-01 1975 47 2209 138,706 106,429 0,233
1976-01-01 1976 48 2304 149,515 115,691 0,226
1977-01-01 1977 49 2401 159,349 125,759 0,211
1978-01-01 1978 50 2500 186,883 136,704 0,269
1979-01-01 1979 51 2601 230,129 148,600 0,354
1980-01-01 1980 52 2704 280,772 161,532 0,425
1981-01-01 1981 53 2809 305,239 175,590 0,425
1982-01-01 1982 54 2916 283,210 190,871 0,326
1983-01-01 1983 55 3025 276,996 207,481 0,251
1984-01-01 1984 56 3136 302,380 225,537 0,254
0
1985-01-01 1985 57 3249 303,211 245,165 0,191
1986-01-01 1986 58 3364 320,998 266,501 0,170
1987-01-01 1987 59 3481 363,943 289,693 0,204
1988-01-01 1988 60 3600 444,601 314,904 0,292
1989-01-01 1989 61 3721 504,289 342,308 0,321
1990-01-01 1990 62 3844 551,873 372,098 0,326
1991-01-01 1991 63 3969 594,931 404,480 0,320
1992-01-01 1992 64 4096 633,053 439,680 0,305
1993-01-01 1993 65 4225 654,799 477,944 0,270
1994-01-01 1994 66 4356 720,937 519,537 0,279
1995-01-01 1995 67 4489 812,810 564,750 0,305
1996-01-01 1996 68 4624 867,589 613,898 0,292
1997-01-01 1997 69 4761 953,803 667,322 0,300
1998-01-01 1998 70 4900 952,979 725,396 0,239
1999-01-01 1999 71 5041 992,910 788,525 0,206
2000-01-01 2000 72 5184 1096,111 857,146 0,218
2001-01-01 2001 73 5329 1026,812 931,740 0,093
0
2002-01-01 2002 74 5476 997,979 1012,825 0,015
2003-01-01 2003 75 5625 1035,165 1100,967 0,064
2004-01-01 2004 76 5776 1176,363 1196,779 0,017
2005-01-01 2005 77 5929 1301,580 1300,930 0,000
2006-01-01 2006 78 6084 1470,170 1414,144 0,038
2007-01-01 2007 79 6241 1659,295 1537,210 0,074
2008-01-01 2008 80 6400 1835,280 1670,987 0,090
2009-01-01 2009 81 6561 1582,774 1816,406 0,148
2010-01-01 2010 82 6724 1857,247 1974,479 0,063
2011-01-01 2011 83 6889 2115,864 2146,310 0,014
2012-01-01 2012 84 7056 2217,700 2333,093 0,052
2013-01-01 2013 85 7225 2286,981 2536,132 0,109
2014-01-01 2014 86 7396 2377,408 2756,841 0,160
2015-01-01 2015 87 7569 2268,651 2996,756 0,321
2016-01-01 2016 88 7744 2232,110 3257,551 0,459
2017-01-01 2017 89 7921 2388,260 3541,041 0,483
2018-01-01 2018 90 8100 2538,089 3849,202 0,517
0
2019-01-01 2019 91 8281 2538,450 4184,181 0,648
2020-01-01 2020 92 8464 2148,616 4548,312 1,117
2021-01-01 2021 93 8649 2539,648 4944,131 0,947
2022-01-01 2022 94 8836 2975,843 5374,397 0,806
Sum 4465 25,592
Forecast value:
F₂₀₂₃ = α.eβ.95= 5842,107
Can’t forecast the value for 2024 because we don’t have y2023
4. Calculate MAPE
Using the
recipe:
MAPE =
Moving average method: 17,588 = 19,762
Exponential moving average: 19,975 = 21,250
Extrapolation (exponential trend): 25,592 = 27,225
5. In the long-term, we should use extrapolation forecasting because this is a
relatively simple method that can be done quickly and with little cost and can be used
when the number of forecasts is very large.
0
In the short-term, we see that the MAPE value of the moving average method
is the lowest, so this is the most optimal method that we should choose to use for
forecasting.