Class 10 Statistics Median Guide
Class 10 Statistics Median Guide
Class 10 - Mathematics
Section A
1. Arrange the given data in ascending order
73, 85, 89, 94, 94, 100, 104, 105, 120, 133
n = 10(even)
th th
n n
value+ ( +1) value
Median =
2 2
∴
2
th th
10 10
value+ ( +1) value
=
2 2
5
th
value + 6 th
value
= 2
90+104
= 2
= 97
r
2. The median class of a frequency distribution is 125-145, so l = 25, h = 20 n = 78
atu
The frequency f = 20 and cumulative frequency of the class preceding the median class cf = 22
median = 137
n
−cf
Median = l + ( 2
f
) × h
yL
n
−22
or, 120 + (
2
) × 20 = 137
20
n
− 22 = 137 − 120
2
n
= 17 + 22
2
em
n
= 39
2
n = 78
Hence, the required sum of frequencies = 78
Marks(xi) Frequency(fi) fixi
ad
3.
15 5 75
Ac
20 8 106
22 11 242
24 20 480
25 23 575
V²
30 18 540
33 13 429
M
38 3 114
45 1 45
i=l i=l
∑fi xi
i=l 2660
∴ x
¯¯¯
¯
=
9
=
102
= 26.078 = 26.08
∑ fi
i=l
xi fi Cumulative Frequency
4.
1 8 8
2 10 18
1 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
3 11 29
4 16 45
5 20 65
6 25 90
7 15 105
8 9 114
9 5 119
n = 119 (odd)
n+1
Median is the ( 2
) th Observation
119+1
=( 2
)
= 60th Observation.
From Cumulative Frequencies, we get 60th Observation as 5.
r
Therefore, Median = 5
atu
5. Table:
Marks Frequency c.f.
30 10 10
yL
40 4 14
50 12 26
60 6 32
em
70 1 33
80 8 41
ad
90 4 45
N = 45
45+1
Median = ( th
Ac
)
2
Σf
Σf x
⇒ 50 = 100
⇒ Σf x = 5000
M
′
Σf x
Therefore, Correct Mean = Σf
=
5010
100
= 50.1
It is given that the median of 100 observations is 52.
Median will remain same i.e. = 52
0 - 10 8 8
10 - 20 10 18
20 - 30 12 30
30 - 40 22 52
40 - 50 30 82
50 - 60 18 100
2 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
n = 100 ⇒ n
2
= 50 and cumulative frequency just greater than 50 is 52
Therefore, Median Class is 30 - 40.
0 - 10 12 12
10 - 20 8 20
20 - 30 8 28
30 - 40 15 43
40 - 50 3 46
∑f = n = 46
From table we get n = 46. So,
n
2
= = 23
46
Now 23 is close to 28
r
∴ median class is 20 - 30.
atu
9. Classes Frequency c.f.
5-7 55 55
7-9 55 110
yL
9 -11 70 180
11 - 13 150 330
13 - 15 86 416
em
15 - 17 84 500
N
2
=
500
2
= 250
Median class = 11 - 13
ad
0 - 10 5 5
10 - 20 8 13
20 - 30 7 20
V²
30 - 40 12 32
40 - 50 28 60
M
50 - 60 20 80
60 - 70 10 90
70 - 80 10 100
Total N = Σ fi = 100
2
= 50
which lies in the class 40 - 50 ...(∵ 32 < 50 < 60)
∴ Required Median class interval is 40 - 50
3 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
15+1
=( 2
) th term
= 8th term
= 716
12. Arrange the value of x is ascending order and then forming c.f table
X F C.F
2 13 13
3 7 20
5 8 28
6 9 37
7 12 49
9 14 63
10 11 74
tur
here, total frequency = 74 which is even, N
2
=
74
2
= 37 and N
2
+ 1 = 38
The values of 37th and 38th item are 6 and 7
La
∴ median = (6 + 7)
1
= 6.5
13. Total number of observations = N = 19 (odd)
th
given, median = 30
2
y
em
⇒ 10th observation is 30.
Now, two values 8 and 32 are added.
Since 8 < 30 and 32 > 30, each one of these two will go on either side of median.
Hence, median is not affected.
ad
⇒ Median = 30
0 - 10 4 4
10 - 20 4 8
20 - 30 8 16
V²
30 - 40 10 26
40 - 50 12 38
50 - 60 8 46
M
60 - 70 4 50
Here, N = 50 ⇒ N
2
= 25
The cumulative frequency just greater than 25 is 26.
Hence, median class is 30 - 40
Number of families 7 8 2 2 1
C.f. 7 15 17 19 20
Median class 3 - 5
N
−C
Median = l + 2
f
× h
10−7
=3+ 8
× 2
= 3.75
4 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
125 6 6
130 20 26
135 24 50
140 28 78
145 15 93
150 4 97
160 2 99
180 1 100
Total = 100
n = 100
100 100+2
Median is the mean of ( 2
) th and ( 2
th observations, i.e, 50th and 51th Observations.
)
r
135+140
Median = = 137.5
atu
2
Classes fi c.f.
17.
5 4 4
yL
9 5 9
10 6 15
12 12 27
em
13 11 38
16 6 44
ad
18 4 48
20 2 50
Ac
n
n = 50 ⇒ = 25
2
= 15 + 2
(30 - 15)
V²
= 15 + 2
3
× 15
= 15 + 10
= 25
M
19. The empirical relation between the three modes of central tendency is :
Mode = 3Median - 2 Mean
Since (Mode = 175, Mean = 169)
Therefore,
⇒ 175 = 3Median - 2(169)
⇒ Median =
513
⇒ Median = 171
Hence, Median of the distribution is 171.
0 - 10 9
10 - 20 11
5 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
20 - 30 10
30 - 40 8
40 - 50 8
50 - 60 3
Here, modal class = 10 - 20
Upper limit of modal class = 20
21. c = 5 + 7 = 12
a = 18 - 12 = 6
d = 18 + 5 = 23
b = 30 - 23 = 7
22. The given data is an inclusive series. So, we convert it into an exclusive form, as given below.
Class 159.5 - 162.5 162.5 - 165.5 165.5 - 168.5 168.5 - 171.5 171.5 - 174.5
tur
Clearly, the modal class is 165.5 - 168.5 as it has the maximum frequency.
∴ xk = 165.5, h = 3, fk = 142, fk-1 = 118, fk+1 = 127
La
(f −f )
Mode, Mo = x
k k−1
k + {h × }
(2f −f −f )
k k−1 k+1
(142−118)
= 165.5 + {3 × }
(2×142−118−127)
3×24
= 165.5 + { }
= 165.5 +
24
13
39
y
em
= 165.5 + 1.85
= 167.35 cm
This means that height of maximum number of players in the school is 167.35 cm(approx.).
23. Arranging the data in ascending order, we have
ad
2 2
∴ M edian =
2
th th
Size of 5 item+Size of 6 item
∴=
2
41+42
=
2
= 41.5 .
24. Given, mode = 36 , median = 43
V²
5 4 4
7 3 7
9 2 9
10 8 17
12 4 21
14 4 25
16 3 28
6 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
17 2 30
19 3 33
20 1 34
N = 34
Median = average of 17th and 18th Observation
10+12
=
2
= 11
Section B
Marks Number of Students
Cumulative frequency
26. (Class) (Frequency)
30-35 14 14
35-40 16 30
r
40-45 18 48
atu
45-50 23 71 (Median class)
50-55 18 89
55-60 8 97
yL
60-65 3 100
Here, N = 100
N
Therefore, 2
= 50, This observation lies in the class 45-50.
em
l (the lower limit of the median class) = 45
cf (the cumulative frequency of the class preceding the median class) = 48
f (the frequency of the median class) = 23
h (the class size) = 5
ad
n
−cf
Median = l + (
2
)h
f
50−48
= 45 + ( ) × 5
Ac
23
10
= 45 + = 45.4
23
5-10 5 5
10-15 6 11
M
15-20 15 26
20-25 10 36
25-30 5 41
30-35 4 45
35-40 2 47
40-45 2 49
N = 49
We have, N=49
∴ =
N
2
= 24.5
49
The cumulative frequency just greater than N/2 is 26 and the corresponding class is 15 - 20. Thus, 15 - 20 is the median class such
that
7 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
l = 15, f = 15, F = 11 and h = 5
N
−F
24.5−11 13.5
Median = 19.5
2
∴ = l + × h = 15 + × 5 = 15 +
f 15 3
28. Given:
Median value = 33
To find: M
Since the media is 33, it falls in the median class of 30-45
The formula for median= l + ( − cf ) ÷ f × h n
r
cf = 52, and
atu
n (112+m)
=
2 2
2
(3×80)
(8 + m) =
yL
15
8 + m= 16
m=8
29. Class interval (Indusive) Class interval (Exclusive) Frequency Cumulative frequency
em
160-162 159.5-162.5 15 15
N = 420
N = 420
N 420
∴
2
=
2
= 210
The cumulative frequency just greater than N
is 275.
V²
∴ Median = l + 2
f
× h
210−133
= 165.5 + 142
× 3
= 165.5 + 77×3
142
= 165.5 + 1.63
= 167.13
30. Converting given distribution continuous by subtracting 1
2
from lower limit and adding 1
2
to upper limit.
Table:
C.I. Frequency Cumulative Frequency
129.5 - 139.5 4 4
139.5 - 149.5 9 13
149.5 - 159.5 18 31
159.5 - 169.5 28 59
169.5 - 179.5 24 83
8 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
179.5 - 189.5 10 93
f
h
50−31
= 159.5 + ( ) × 10
28
19
= 159.5 + × 10
28
= 166.285
= 166.3
40-45 9 9
r
atu
45-50 5 14
50-55 8 22
55-60 9 31
yL
60-65 6 37
65-70 3 40
We know,
em
N
−cf
Median = l + {h × 2
f
}
Here,
l denotes lower limit of median class
ad
2
= 20
cumulative frequency just greater than 20 is 22
Therefore, median class is 50-55
V²
Median class is 50 - 55
So,
l = 50,
M
h = 5,
f = 8,
cf = cf of preceding class = 14
N
2
= 20
O substituting all the above values in the formula, we get
N
−cf
Median = l + {h × 2
f
}
20−14
Median = 50 + {5 × 8
}
6
Median = 50 + {5 × 8
}
Median = 50 + {5 × 3
4
}
Median = 50 + { 15
4
}
Median = 50 + 3.75
⇒ Median = 53.75
9 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
Speed (in km/h) (C.I.) No. of players (fi) c.f.
32.
85-100 11 11
100-115 9 20
115-130 8 28
130-145 5 33
N = 33
N = No. of observations = 33.
N 33
= = 16.5
2 2
Median= l +
2
r
f
33
atu
( −11)15
2
= 100 +
9
(16.5−11)15
= 100 +
9
5.5×15
= 100 +
9
yL
82.5
= 100 +
9
= 100 + 9.166
= 109.166.
Therefore, the median bowling speed is 109.166 km/h
em
33. Classes Number of students Cumulative Frequency
0 - 10 2 2
10 - 20 12 14
ad
20 - 30 22 36
30 - 40 8 44
Ac
40 - 50 6 50
n = 50,
n
2
=
50
2
= 25
Median Class = 20 - 30
V²
Median = l +
2
× h
f
M
(25−14)
= 20 + × 10
22
11
= 20 + × 10
22
= 20 + 5
= 25
0 - 10 6 6
10 - 20 16 22
20 - 30 30 52
30 - 40 9 61
40 - 50 4 65
Here, N = 65 ⇒ N
2
= 32.5
10 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
Hence, median class is 20 - 30.
∴ l = 20, h = 10, f = 30, cf = cf of preceding class = 22
N
( −cf )
Now, Median = l + {h ×
2
}
f
(32.5−22)
= 20 + {10 × }
30
10.5
= 20 + {10 × }
30
= 20 + 3.5
= 23.5
Thus, the median of the data is 23.5.
15-25 8 8
25-35 10 18
35-45 15 33
r
atu
45-55 25 58(F)
55-65 40(f) 98
65-75 20 118
yL
75-85 15 133
85-95 7 140
N = 140
em
N = 140
N 140
∴ = = 70
2 2
2
is 98.
ad
∴ Median = l +
2
× h
Ac
70−58
= 55 + × 10
40
= 55 + 3
= 58
f1 + 5 + 9 + 12 + f2 + 3 + 2 = 40
⇒ f1 + f2 = 9
Now, median = l + [h ×
2
]
f
20− f −14
1
⇒ 32.5 = [30 + (10 × )]
12
6−f
1
= [30 + (10 × )]
12
30−5f1
= [30 + ( )]
6
30−5f
1
= 2.5
6
30 - 5f1 = 15
5f1 = 15 ⇒ f 1 = 3
f1 = 3 and f2 = (9 - 3) = 6
37. a. According to the question,
Class interval Frequency Cumulative Frequency
11 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
10.5 - 20.5 141 141
2
= 1150
c. According to table,
r
maximum frequency = 529
atu
therefore, modal class is 40.5 − 50.5
the cumulative frequency of modal class is 1330.
Weight Cumulative
Number of students
38. (in kg) frequency
yL
40-45 2 2
45-50 3 5
50-55 8 13
em
55-60 6 19
60-65 6 25
65-70 3 28
70-75 2 30
ad
Now, n = 30
So, =n
2
30
= 15
2
f=6
cf = 13
n
−cf
15−13
Median = l + (
2
∴ ) × h = 55 + ( ) × 5
M
f 6
10 5
= 55 + = 55 +
6 3
= 55 + 1.67 = 56.67
Hence, the median weight of the students is 56.67 kg.
39. Calculation of Median:
Class Interval Frequency c.f.
9.5 - 19.5 2 2
19.5 - 29.5 4 6
29.5 - 39.5 8 14
39.5 - 49.5 9 23
49.5 - 59.5 4 27
59.5 - 69.5 2 29
12 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
69.5 - 79.5 1 30
n = 30, n
2
= 15, Median class = 39.5 - 49.5
l = 39.5, c. f . = 14, f = 9, h = 10
15−14
Median = 39.5 + ( 9
) × 10
= 39.5 + 1
9
× 10
0-10 2 2
10-20 5 7
20-30 x 7+x
30-40 12 19+x
40-50 17 36+x
r
atu
50-60 20 56+x
60-70 y 56+x+y
70-80 9 65+x+y
yL
80-90 7 72+x+y
90-100 4 76+x+y
Given, total frequency = 100
em
So, 76 + x + y = 100
Or, x + y = 100 - 76
Or, x + y = 24.......(1)
Median class = 50 - 60
ad
2
n/2−cf
Median = l + [ f
]× h
Ac
50−(36+x)
Or, 52.5 = 50 + [ 20
]× 10
Or, 52.5 = 50 + 25 - 18 - x
Or, 52.5 = 57 - x
∴
x
= 57 - 52.5
V²
2
x
⇒
2
= 4.5
Or, x = 9
Substituting x=9 in equation (1), we get :-
M
9 + y = 24
Or, y = 24 - 9
Or, y = 15
Hence, x = 9 & y = 15
80 - 90 9 9
90 - 100 17 26
100 - 110 19 45
110 - 120 45 90
13 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
n = 150 ⇒ n
2
= 50
Median Class = 110 - 120
l = 110, f = 45, c.f. = 45, h = 10
n
−cf
75−45
= 110 + 45
× 10
= 116.67
0 - 10 8 8
10 - 20 16 24
20 - 30 36 60
30 - 40 34 94
40 - 50 6 100
r
N
Here, N = 100 ⇒
atu
= 50
2
yL
N
( −cf )
Now, Median = l + {h ×
2
}
f
(50−24)
= 20 + {10 × }
36
26
= 20 + {10 × }
em
36
= 20 + 7.22
= 27.2
Thus, the median of the data is 27.2.
ad
43. Let us first construct the table of cumulative frequency as shown below:
130-135 4 4
135-140 11 15
140-145 12 27
V²
145-150 7 34
150-155 10 44
155-160 6 50
M
∑ fi = 50
N 50
Here, 2
=
2
= 25, which lies in cumulative frequency of 27.
∴ The median class is 140-145.
So, l = 140, c.f. = 15, f = 12 and h = 5
N
− c.f.
Now, as median (Me) = l + 2
f
× h
25−15
∴ Required median = 140 + 12
× 5
= 140 + 10
12
× 5
= 140 + 4.17
= 144.17
44. Observations in ascending order are:
29, 32, 48, 50, x, x + 2, 72, 78, 84, 95
Number of observations = n = 10 (even)
th th
n n
Value of ( ) observation + Value of ( +1) observation
Median
2 2
⇒ =
2
14 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
10
th 10
th
Value of ( ) observation + Value of ( +1) observation
2 2
⇒ 63 =
?
⇒ 126 = 2x + 2
⇒ 2x = 124
⇒ x = 62
45. We shall first convert the given data to continuous classes. Then, the data become
Length (in mm) Number of leaves Cumulative frequency
117.5-126.5 3 3
126.5-135.5 5 8
135.5-144.5 9 17
144.5-153.5 12 29
r
153.5-162.5 5 34
atu
162.5-171.5 4 38
171.5-180.5 2 40
yL
Now, n = 40
So, =n
2
= 20
40
f = 12
n
−cf
20−17
Median = l + ( h = 144.5 + ( 9
2
∴ )× )×
f 12
Ac
⇒ f1 + f2 = 25
Median is 32, which lies in 30-40. So, the median class is 30-40.
∴ l = 30, h = 10, f = 30, N = 100 and cf = 10 + f1 + 25 = f1 + 35.
M
N
( −cf )
Now, Median, M =l + {h ×
2
}
f
50−( f1 +35)}
⇒ 30 + [10 × ] = 32
30
(15− f )
1
⇒ 30 + = 32
3
⇒ (15 − f1 ) = 6
⇒ f1 = 9
f2 = 25 - 9 = 16
Hence, f1 = 9 and f2 = 16.
47. First, we will convert the graph given into tabular form as shown below:
Class interval Frequency (fi) Mid value (xi) fixi Cumulative Frequency
1–4 6 2.5 15 6
15 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
7 – 10 40 8.5 340 76
10 – 13 16 11.5 184 92
13 – 16 4 14.5 58 96
16 – 19 4 17.5 70 100
i. N = 100
Σfi xi
Mean = N
=
832
100
= 8.32
ii. N
2
=
100
2
= 50
The cumulative frequency just greater than N
2
is 76, then the median class is 7 - 10 such that
l = 7, h = 10 - 7 = 3, f = 40, F = 36
N
−F
Median = l + 2
f
× h
50−36
=7+ × 3
r
40
42
= 7 + 1.05 = 8.05
atu
= 7 +
40
yL
48.
60.5 - 70.5 5 5
70.5 - 80.5 15 20
80.5 - 90.5 20 40
em
90.5 - 100.5 30 70
100.5 - 110.5 20 90
ad
110.5 - 120.5 8 98
N = 98⇒ N
2
= 49
The cumulative frequency just greater than 49 is 70 and the corresponding class is 90.5 - 100.5.
Ac
Now, Median = l + {h ×
2
}
f
V²
49−40
= 90.5 + [10 × ]
30
= 90.5 + 3 = 93.50
M
5-10 49 49
15-20 63 245
20-25 15 260
25-30 6 266
30-35 7 273
35-40 4 277
40-45 2 279
45-50 1 N = 280
N
2
= 280
2
= 140
140 lie in the interval 10-15
16 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
So, Median class is interval 10-15
Median = l + ( - C)h
f
N
133
= 10 + 3.421
= 13.421
Medium salary is ₹ 13.421 thousand, i.e., ₹ 13420
35-40 14 30
40-45 18 48
tur
45-50 20 68
50-55 18 86
La
55-60 12 98
60-65 2 100
Now, N= 100 So, N
2
= 50 my
∴ Median class is 45-50
So, l = 45,
cf (cummulative frequency of preceding class) = 48
f (frequency of median class) = 20
de
h=5
n
−cf
∴ Median = l + ( 2
f
) × h
ca
50−48
Median = 45 + ( 20
) × 5
Median = 45 + ( 2
4
)
A
Median = 45 + 0.5
Median = 45.5
Class Interval Frequency Cumulative frequency (Cf)
51.
V²
0-10 6 6
10-20 3 9
M
20-30 x 9+x
30-40 12 21 + x
40 - 50 19 40 + x
Total ∑ fi = 40 + x
Total frequency = 40 + x
i.e., N = 40 + x
N 40+x
∴ =
2 2
Median = 35
∴ Median class = 30 - 40
Median = l + (
2
) × h
f
17 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
40+x
{ −(9+x)}
(22−x)×10
⇒ 35 - 30 = 2×12
(22−x)×5
⇒ 5= 12
⇒ 12 = 22 - x
⇒ x = 10
52. Class interval Mid value (x) Frequency (f) fx Cumulative frequency
0 - 20 10 6 60 6
20 - 40 30 8 240 17
40 - 60 50 10 500 24
60 - 80 70 12 840 36
80 - 100 90 6 540 42
tur
100 - 120 110 5 550 47
N = 50 Σf x = 3120
La
Σf x
Mean = N
=
3120
50
= 62.4
We have,
N = 50 my
Then, N
=
2
50
2
= 25
The cumulative frequency just greater than N
2
is 36, then the median class is 60 - 80 such that
l = 60, h = 80 - 60 = 20, f = 12, F = 24
N
−F
Median = l + 2
× h
de
f
25−24
= 60 + 12
× 20
20
= 60 + 12
ca
= 60 + 1.67
= 61.67
Here the maximum frequency is 12, then the corresponding class 60 - 80 is the modal class
A
12−10
= 60 + 2×12−10−6
× 20
= 60 + 40
= 65
M
53. We have,
Class Intervals Frequency (f) C.F
Below 140 4 4
140-145 7 11
145-150 18 29
150-155 11 40
155-160 6 46
160-165 5 51
N = ∑ f = 51
Here, N
2
=
51
2
= 25.5 which is in the class 145-150
Here, l1 = 145, h = 5, N = 51, C = 11, F = 18
18 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
N
−C
∴ Median = l 1 +
2
f
× h
25.5−11
= 145 + × 5
18
72.5
= 145 + ⇒ 149.03
18
20 - 25 13 21
25 - 30 21 42
30 - 35 12 54
35 - 40 5 59
40 - 45 4 63
tur
N = Σf = 63
Now, N = 63
⇒
N
=
63
= 31.5
La
2 2
The cumulative frequency just greater than 31.5 is 42 and the corresponding class is 25-30.
Thus, the median class is 25-30.
∴ l = 25, h = 5, f = 21, cf = 21, = 31.5 N
Now,
N
−cf
my
Median, M = l + {h × ( 2
f
)}
31.5−21
= 25 + {5 × ( 21
)}
de
= 25 + 2.5
= 27.5
Hence, the median = 27.5
ca
10 - 20 8 11
20 - 30 15 26
V²
30 - 40 10 36
40 - 50 8 44
M
Total 44
So. N = 44
⇒
N
2
=
44
2
= 22
The cumulative frequency just greater than ( N
2
= 22) is 26, so the corresponding median class is 20 - 30 and accordingly we get
Cf = 11 (cumulative frequency before the median class).
Now, since median class is 20 - 30.
∴ l = 20, h = 10 f = 15, = 22 and Cf = 11
N
Median = l + (
2
) × h
f
22−11
⇒ Median = 20 + ( 15
) × 10
= 20 + 7.33
19 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
= 27.33
Thus, median marks is 27.33
0-10 6 6
10-20 9 15
20-30 10 25
30-40 8 33
40-50 x 33 + x
∑ fi = 33 + x
Total frequency = 33 + x
i.e., N = 33 + x
N 33+x
∴ =
tur
2 2
Median = 25
So, class corresponding to this 20-30,
So, l = 20, Cf = 15, f = 10 and h = 10
La
N
− cf
Median = l + (
2
) × h
f
33+x
−15
⇒ 25 = 20 + ( 2
10
) × 10 my
33+x−30
⇒ 25 = 20 + 2
..[Given, Median = 25]
3+x
⇒ 25 - 20 = 2
⇒ 10 = 3 + x
de
⇒ x=7
57. To calculate the median age, we need to find the class intervals and their corresponding frequencies.
It is shown below:
ca
Below 20 2 2
A
20-25 4 6
25-30 18 24
V²
30-35 21 45
35-40 33 78
40-45 11 89
M
45-50 3 92
50-55 6 98
55-60 2 100
Now, n = 100
So, = n
2
= 50
100
20 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
n
−cf
50−45
Median = l + ( h = 35 + ( 5
2
∴ )× )×
f 33
25
= 35 + 33
= 35 + 0.76 = 35.76 years
Hence, the median age is 35.76 years.
58. First, let us convert the graphical distribution in the form of a table as shown below:
Weight No. of Students
40-44 4
44-48 6
48-52 10
52-56 14
56-60 10
60-64 8
tur
64-68 6
68-72 2
i. The modal class is the class with the highest frequency. As the maximum frequency is 14 and the class corresponding to it is
La
52-56, so
Modal class = 52-56
f −f
ii. Mode = l + ( 1 0
2f1 − f0 − f2
) × h my
where l is lower limit of the modal class,
h is the size of the class interval,
f1 is the frequency of the modal class,
f0 is frequency of the class preceding the modal class,
de
14−10
Thus, Mode = 52 + 28−10−10
× 4 = 54
Hence, mode weight of the students is 54 kg.
iii. Given: Mean = 55.2 kg
A
20-30 p p
M
30-40 15 p + 15
40-50 25 40 + p
50-60 20 60 + p
60-70 q 60 + p + q
70-80 8 68 + p +q
80-90 10 78 + p + q
Total = 90
sum of cumulative frequencies = 90
78 + p + q = 90
⇒ p + q = 12 ...(i)
Given , Median = 50
Hence, median class is 50 - 60.
21 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
∴ l = 50, h = 10, f = 20, c.f.= 40 + p, N = 90
N
−c.f .
Now, Median = l + h
2
×
f
45−(40+p)
⇒ 50 = 50 + 20
× 10
5−p
⇒ 0= 2
⇒ 5-p=0
⇒ p = 5
Hence, p = 5 and q = 7
60. First, we will convert the graph into the tabular form as shown below:
Marks obtained 0 - 20 20 - 40 40 - 60 60 - 80 80 -100
Number of students 15 18 21 29 17
tur
Here, maximum frequency is 29 and it belongs to class 60-80, so Modal class = 60-80
f1 − f0
ii. Mode = = l + × h
2f1 − f0 − f2
La
29−21
Mode = 60 + 2×29−21−17
× 20
= 60 +
8
58−38
× 20 = 68
iii. Mode = 3 median - 2 mean
Mode = 68 and mean = 53 (given)
my
∴ 3 median = mode + 2 mean
3 median = 68 + 2 × 53
174
Median = 3
= 58
de
Hence, Median = 58
61. Calculation of median
xi fi cf
ca
5 1 1
6 5 6
A
7 11 17
8 14 31
V²
9 16 47
10 13 60
M
11 10 70
12 70 140
13 4 144
15 1 145
18 1 146
20 1 147
N = Σf = 147
i
We have
147
N = 147 ⇒ N
2
=
2
= 73.5
N
The cumulative frequency just greater than 2
is 140 and the corresponding value of variable x is 12.
Hence, median = 12. This means that for about half the number of days, more than 12 students were absent.
22 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
15-25 8 8
25-35 10 18
35-45 X 18+x
45-55 25 43+x
55-65 40 83+x
65-75 Y 83+x+y
75-85 15 98+x+y
85-95 7 105+x+y
median = 58
∴ median class = 55 - 65
∴ l = 55
∑ f = 140
tur
i
105 + x + y = 140
x + y = 35 ...(i)
N
−c⋅f
median = l + (
La
2
)h
f
70−(43+x)
58 = 55 + ( 40
) 10
70−43−x
58 = 55 + ( 40
)× 10 my
27−x
58 = 55 + ( 40
)× 10
27−x
58 = 55 + ( 4
)
27−x
3= 4
de
12 = 27 - x
x = 27 - 12
x = 15
ca
from (i)
x + y = 35
15 + y = 35
A
y = 35 - 15
y = 20
N = 100
We have
N = 100
∴
N
2
=
100
2
= 50
The cumulative frequency just greater than N
2
is 65 then median class is 70 - 90 such that
l = 70, f = 22, F = 43, h = 90 - 70 =20
23 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
N
−F
∴ Median = l + 2
f
× h
50−43
= 70 + 22
× 20
7×20
= 70 + 22
= 70 + 6.36
= 76.36
0-10 5 5
10-20 25 30
20-30 x 30 + x
30-40 18 48 + x
40-50 7 55 + x
N = 55 + x
tur
Let the missing frequency be x
Given, Median = 24 ...(1)
From table, total frequency N = 55 + x Or, ( N
= 27.5 + ( x
La
) )
2 2
2
) is (30 + x), which corresponding class is 20 - 30.
Then, median class = 20 - 30
∴ l = 20, h = 30 - 20 =10, f =x, F = 30 my
N
−F
∴ Median= l + 2
× h
f
55+x
−30
⇒ 24 = 20 + 2
x
× 10
55+x
−30
24 - 20 = 2
10
de
⇒ ×
x
55+x
⇒ 4x = ( 2
− 30) × 10
⇒ 4x = 5 (55 + x) - 300
ca
⇒ 4x - 5x = -25
⇒ -x = -25
⇒ x = 25
A
∴ Missing frequency = 25
1400 - 1550 6 8
1550 - 1700 13 21
1700 - 1850 25 46
M
1850 - 2000 10 56
∑f = n = 54
Here, n = 54
54
⇒
n
2
=
2
= 27
The cumulative frequency greater than or equal to 27 is 46 or 27th term lies in the class interval 1700-1850.
∴ Median class is 1700-1850.
66. Here, the frequency table is given in inclusive form. So, we first transform it into exclusive form by subtracting and adding h
2
to
the lower and upper limits respectively of each class, where h denotes the difference of lower limit of a class and the upper limit
of the previous class.
Here, h = 1 So, = 0.5 h
Transforming the above table into exclusive form and preparing the cumulative frequency table, we get:-
Weekly wages (in ₹) No of workers Cumulative frequency
59.5-69.5 5 5
24 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
69.5-79.5 15 20
79.5-89.5 20 40
89.5-99.5 30 70
99.5-109.5 20 90
109.5-119.5 8 98
N = Σf = 98
i
2
= 49
The cumulative frequency just greater than h
2
is 70 and the corresponding class is 89.5-99.5. So, 89.5-99.5 is the median class.
Now,
l = 89.5 (lower limit of median class),
h = 10 (length of interval of median class),
f = 30 (frequency of median class)
tur
F = 40 (cumulative frequency of the class just preceding the median class)
Now, Median is given by:-
N
−f
=l+ 2
F
× h
La
49−40
= 89.5 + 30
× 10
= 89.5 + 3 = 92.5
0-10 5 5
10-20 x 5+x
20-30 20 25 + x
de
30-40 15 40 + x
40-50 y 40 + x + y
ca
50-60 5 45 + x + y
N = Σf = 60
A
N = 60
45 + x + y = 60
⇒ x + y =15 ...(i)
V²
Median = 28.5
Clearly, it lies in the class interval 20 - 30.
So, 20 - 30 is the median class.
M
Median = l + 2
f
× h
30−(5+x)
⇒ 28.5 = 20 + 20
× 10
25−x
⇒ 28.5 = 20 + 2
25−x
⇒ 8.5 = 2
⇒ 25 - x = 17 ⇒ x = 8
Putting x = 8 in Eq(i), we get
8 + y = 15
y=7
Hence, x = 8 and y = 7
85-100 10 10
100-115 4 14
25 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
115-130 7 21
130-145 9 30
Here, N = 30 ⇒ N
2
= 15
Now, Median
2
= 1 + {h × }
f
(15−14)
= 115 + {15 × }
7
1
= 115 + {15 × }
7
= 115 + 2.1
= 117.1
Thus, the median bowling speed is 117.1 km/hr.
tur
69. Table:
Marks Frequency c.f.
15 8 8
La
20 10 18
25 12 30
30 5 35
my
35 4 39
40 7 46
45 6 52
de
60 4 56
70 8 64
ca
80 6 70
90 8 78
A
N = 78
35+40
Median = = 37.5
2
70. First, we will convert the graph into tabular form given below:
Monthly
Number of Class Cumulative
M
consumption di = xi - 135 ui =
xi −135
fiui
consumers (fi) mark (xi) 5
Frequency
(in units)
Total ∑ fi = 68 ∑ fi ui = 7
i. Let a = 135.
Now, h = 20
Using the step-deviation method,
26 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
∑ f ui
¯¯
¯ i 7
M ean, x = a + ( ) × h = 135 + ( ) × 20
∑ fi 68
= 135 +
35
17
= 135 + 2.05 = 137.05
ii. Now, N = 68
So,N
=
2
= 34
68
34−22
= 125 + (
20
) × 20 = 125 + 12 = 137
iii. Mode = 3 Median - 2 Mean
= 3× 137 - 2× 137.05 = 136.9
tur
0-6 4 4
6-12 x 4+x
12-18 5 9+x
La
18-24 y 9+x+y
24-30 my 1 10 + x + y
Total =20
10 + x + y = 20
⇒ x + y =10 ...(i)
Median = 14.4
de
Hence, median class is 12 - 18.
∴ l = 12, h = 6, f = 5, F = cumulative frequency of preceding class = 4 + x, N = 20
N
−F
Median= 1 + h
ca
2
×
f
10−(4+x)
⇒ 14.4 = 12 + 5
× 6
6−x
⇒ 2.4 = × 6
A
5
6−x
⇒ 0.4 = 5
⇒ x=4
substitute x value in (i), we get
V²
⇒ y = 10 - 4 = 6
20 - 40 12 12
40 - 60 18 30
60 - 80 23 53
80 - 100 15 68
100 - 120 12 80
120 - 140 12 92
∑ fi = 100
n
n = 100 ⇒ = 50
2
Median Class= 60 − 80
l = 60, c. f . = 30, f = 23, h = 20
27 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
n
−cf
50−30
= 60 + × 20
23
= 77.39
73. Class interval Mid value (x) Frequency (f) fx Cumulative frequency
0 – 50 25 2 50 2
50 – 100 75 3 225 5
tur
N = 25 Σf x = 4225
Σf x
Mean = N
=
4225
25
= 169
We have,
La
N = 25
N 25
Then, 2
=
2
= 12.5
The cumulative frequency just greater than N
2
is 16, then the median class is 150 - 200 such that
l = 150, h = 200 – 150 = 50, f = 6, F = 10
N
−F
my
Median = l + h
2
×
f
12.5−10
= 150 + 6
× 50
= 150 + 125
de
6
= 150 + 20.83
= 170.83
Here the maximum frequency is 6, then the corresponding class 150 - 200 is the modal class
ca
2f − f − f
1 2
6−5
= 150 + 2×6−5−5
× 50
50
= 150 + 2
= 150 + 25
V²
= 175
74. The given series is in inclusive form. Converting it to exclusive form and preparing cumulative frequency table, we get
M
0.5 - 5.5 13 13
5.5 - 11.5 10 23
11.5 - 17.5 15 38
17.5 - 23.5 8 46
23.5 - 29.5 11 57
Here, N = 57 ⇒ N
2
= 28.5
1 8 8
28 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537
2 10 18
3 11 29
4 16 45
5 20 65
6 25 90
7 15 105
8 9 114
9 6 120
N = 120
N = 120 ⇒ N
2
= 60.
The cumulative frequency just greater than N
i.e., 60 is 65 and
tur
2
La
my
de
A ca
V²
M
29 / 29
Founder Director:Mr. VRS Sir ||| Mob. 9373033537