Math 10th A13 Solution
Math 10th A13 Solution
STATISTICS
Class 10 - Mathematics
1. (a) 10
Explanation:
Arithmetic mean of 7, 8, x, 11, 14 is x
7+8+x+11+14
⇒
5
=x
40+x
⇒
5
= x ⇒ 40 + x = 5x
⇒ 5x - x = 40 ⇒ 4x = 40
⇒ x = = 10
40
2.
(d) 315
n
Explanation:
150-155 is the modal class
i
Height in cm Number of students (f) Cumulative Frequency (CF)
es.
150-155 15 15
155-160 13 28
160-165
165-170
10
8 tut 38
46
sti
170-175 9 55
175-180 5 60
ein
Total 60
Here, N
2
= 30, the commulative frequency just above 30 is 38 and the corresponding class is
160-165 which is the median class.
hence the required sum = 115 + 165 = 315
ac
3.
w.
(c) 470
Explanation:
n
−c
Median = l +
ww
2
× h
f
44
−8
= 400 + 100
2
×
20
= 400 + 14
20
× 100
= 400 + 14 × 5
= 400 + 70
= 470
4.
(d) 26
Explanation:
mode = 3 median - 2 mean
= 3(30) - 2(32)
= 90 - 64
= 26
1 / 23
Email: aceclasses16@gmail.com Call: 9545182543
5.
(c) decreases by 2
Explanation:
decreased by 2.
6.
(c) Mean
Explanation:
Mode is the value with the maximum frequency. Thus, it can be determined from the graph.
Median is the middle value of the data. Thus, it can be determined from the graph.
Mean is the ratio of sum of all data values and the total number of values. Thus, it cannot be determined by graphically.
7. (a) 80
Explanation:
In the given data, Maximum frequency is 15.
n
Therefore, the modal class is 80 - 90.
i
The lower limit of the modal class is 80.
es.
8. (a) n
Explanation:
We know that the mean or average of observations, is the sum of the values of all the observations divided by the total number
of observations.
tut
and, we have first n odd natural numbers as
1, 3, ...., 2n - 1
sti
Clearly the above series is an AP(Arithmetic progression) with first term, a = 1 and common difference, d = 2
And no of terms is clearly n.
And last term is (2n - 1)
ein
We know, sum of terms of an AP if first and last terms are known is:
Sn = (a + an)
n
2 2
As,
Sum of all terms
Mean =
w.
no of terms
n2
⇒ Mean = n
=n
9.
ww
10.
(c) mean = mode = median
Explanation:
For a symmetrical distribution,
we have Mean = mode = median
0-5 2 2
2 / 23
Email: aceclasses16@gmail.com Call: 9545182543
5 - 10 9 11
10 - 15 6 17
15 - 20 7 24
20 - 25 1 25
25
Here, N
2
=
2
= 12.5
17 is just greater than 12.5
∴ Median class is (10 - 15)
n
Class Interval Frequency(fi) Class mark xi (f )
i
× xi
13. i
es.
1-3 12 2 24
3-5 22 4 88
5-7 27 6 162
7-9
tut 19
Σfi = 80
8 152
Σ (fi × xi ) = 426
sti
Σ( fi × xi )
∴ mean= Σf
=
426
80
= 5.325
i
0 - 10 5 5
10 - 20 8 13
20 - 30 7 20
ac
30 - 40 12 32
w.
40 - 50 28 60
50 - 60 20 80
ww
60 - 70 10 90
70 - 80 10 100
Total N = Σ fi = 100
2
= 50
which lies in the class 40 - 50 ...(∵ 32 < 50 < 60)
∴ Required Median class interval is 40 - 50
15. It is given that the mean of 100 observations is 50 . The value of the largest observation is 100.
Σf x
Mean = Σf
Σf x
⇒ 50 = 100
⇒ Σf x = 5000
It was later found that it is 110 not 100.
Correct, Σf x = 5000 + 110 - 100 = 5010
′
′
Σf x
Therefore, Correct Mean = Σf
=
5010
100
= 50.1
It is given that the median of 100 observations is 52.
Median will remain same i.e. = 52
3 / 23
Email: aceclasses16@gmail.com Call: 9545182543
16. ∵ the highest frequency is 14
∴ Modal class- 35 - 40
So, l = 35, h = 40 - 35 = 5,
f0 = 5, f1 = 14, f2 = 8
Now,
f1 − f0
Mode = l + ( 2f1 − f0 − f2
) × h
14−5
Mode = 35 + ( 28−5−8
) × 5
Mode = 35 + ( 9
3
)
Mode = 35 + 3
Mode = 37
17. We first, find the class mark xi of each class and then proceed as follows
10-20 15 2 30
n
20-30 25 4 100
i
es.
30-40 35 7 245
40-50 45 6 270
50-60 55 1 55
Therefore, mean x̄ = ¯
¯
Σ f×x
=
tut
700
20
= 35
∑ fi = 20 ∑ fi xi = 700
sti
Σ fi
(f − f )
Mode = l + 1 0
2f1 − f0 − f2
× h
(80−45)
=5+ × 2
2(80)−45−55
80−45
=5+
ac
× 2
160−45−55
35
=5+ 160−100
× 2
=5+ 35×2
w.
60
=5+ 70
60
= 5 + 1.17
= 6.17
ww
35-45 10 40 400
45-55 8 50 400
55-65 12 60 720
65-75 4 70 280
∑ fi = 40 ∑ fi xi = 1980
∑ fi xi
Mean =
∑ fi
1980
=
40
Mean = 49.5
4 / 23
Email: aceclasses16@gmail.com Call: 9545182543
10 - 20 23 15 345
20 - 30 34 25 850
30 - 40 25 35 875
40 - 50 6 45 270
= 24
xi fi fi xi
21.
2 3 6
4 2 8
6 3 18
n
10 1 10
i
p+5 2 2p + 10
es.
∑ fi = 11 ∑ fi xi = 2p + 52
Σfi = 11,
Σfi xi = 2p + 52
⇒ 6 =
Mean
2p+52
11
=
Σfi xi
∑ fi
tut
sti
⇒ 66 = 2p + 52
⇒ 2p = 14
⇒ p = 7
th
given, median = 30
10th observation is 30.
ac
= 1375
∴ mean = 1375
5 / 23
Email: aceclasses16@gmail.com Call: 9545182543
Number of days Number of students (fi) Class mark (xi) fixi
25.
0-6 11 3 33
6-10 10 8 80
10-14 7 12 84
14-20 4 17 68
20-28 4 24 96
28-38 3 33 99
38-40 1 39 39
n
∑ fi 40
i
26. We shall first convert the given data to continuous classes. Then, the data become
es.
Length (in mm) Number of leaves Cumulative frequency
117.5-126.5 3 3
tut
126.5-135.5 5 8
135.5-144.5 9 17
144.5-153.5 12 29
sti
153.5-162.5 5 34
162.5-171.5 4 38
ein
171.5-180.5 2 40
Now, n = 40
n 40
So, = = 20
ac
2 2
l = 144.5
h=9
ww
cf = 17
f = 12
n
−cf
20−17
∴ Median = l + ( 2
f
)× h = 144.5 + ( 12
)× 9
Frequency 30 45 75 35 25 15
Here the maximum frequency is 75, then the corresponding class 20 – 25 is the modal class.
l = 20, h = 25 - 20 = 5, f = 75 , f1 = 45, f2 = 35
f −f1
We know that, Mode = l + 2f − f1 − f2
× h
75−45
= 20 + 2×75−45−35
× 5
= 20 + 150
70
= 20 + 2.14
= 22.14
28. Calculation of mean:
6 / 23
Email: aceclasses16@gmail.com Call: 9545182543
xi −50
Class Mid-values (xi) Frequency (fi) di = xi -50 ui = fiui
20
20-40 30 p -20 -1 -p
40-60 50 10 0 0 0
60-80 70 9 20 1 9
80-100 90 13 40 2 26
N = ∑ f = 39 + p
i ∑ fi ui = 21 - p
According to the question, mean of the given data is 54.
From table,
A = 50,N = 39 + p, h = 20, Σf u = 21 - p i i
N
Σfi ui }
21−p
54 = 50 + 20 × {
n
⇒ }
39+p
21−p
⇒ 4 = 20 × { }
i
39+p
es.
21−p
⇒ 1=5( 39+p
)
⇒ 39 + p = 105 - 5p
⇒ 6p = 66
tut
⇒ p = 11
∑ fi ui
Mean = A + {h × }
∑ fi
−108
= 203.5 + {1 × }
70
20-30 p p
30-40 15 p + 15
40-50 25 40 + p
50-60 20 60 + p
60-70 q 60 + p + q
70-80 8 68 + p +q
80-90 10 78 + p + q
Total = 90
7 / 23
Email: aceclasses16@gmail.com Call: 9545182543
sum of cumulative frequencies = 90
78 + p + q = 90
⇒ p + q = 12 ...(i)
Given , Median = 50
Hence, median class is 50 - 60.
∴ l = 50, h = 10, f = 20, c.f.= 40 + p, N = 90
N
−c.f .
Now, Median = l + 2
f
× h
45−(40+p)
⇒ 50 = 50 + 20
× 10
5−p
⇒ 0= 2
⇒ 5-p=0
⇒ p = 5
Hence, p = 5 and q = 7
n
Percentage of marks Number of students
Cummulative frequency
i
(Class Interval) (fi)
31.
es.
30-35 16 16
35-40 14 30
40-45
45-50
18
20 tut 48
68
sti
50-55 18 86
55-60 12 98
60-65 2 100
ein
2
= 50
∴ Median class is 45-50
So, l = 45,
ac
n
−cf
∴ Median = l + ( 2
) × h
f
50−48
Median = 45 + (
ww
) × 5
20
Median = 45 + ( 2
4
)
Median = 45 + 0.5
Median = 45.5
32. Table:
Marks Frequency
0 - 10 3
10 - 20 5
20 - 30 7
30 - 40 10
40 - 50 12
50 - 60 15
60 - 70 12
8 / 23
Email: aceclasses16@gmail.com Call: 9545182543
70 - 80 6
80 - 90 2
90 - 100 8
10 - 20 8 11
20 - 30 15 26
30 - 40 10 36
40 - 50 8 44
Total 44
n
So. N = 44
= 22
i
N 44
⇒ =
2 2
es.
The cumulative frequency just greater than ( N
2
= 22) is 26, so the corresponding median class is 20 - 30 and accordingly we get
Cf = 11 (cumulative frequency before the median class).
Now, since median class is 20 - 30.
tut
∴ l = 20, h = 10 f = 15, = 22 and Cf = 11
N
Median = l + ( 2
) × h
sti
f
22−11
⇒ Median = 20 + ( 15
) × 10
= 20 + 7.33
ein
= 27.33
Thus, median marks is 27.33
34. For step - deviation method, we prepare the following table:
ac
xi −A
ui =
Class Interval Frequency fi Mid value xi xi −99
h
fiui
=
6
w.
84 - 90 15 87 -2 -30
90 - 96 22 93 -1 -22
ww
96 - 102 20 99 = A 0 0
∑ fi = 120 ∑ fi ui = 81
∑ fi ui
Mean = A + {h × }
∑ fi
81
= 99 + {6 × }
120
= 99 + 4.05
= 103.05
35. The given series is an inclusive series.
Making it an exclusive series, we get
Class interval Frequency fi Mid-value xi ui =
xi −A
fiui
h
xi −500.5
=
200
9 / 23
Email: aceclasses16@gmail.com Call: 9545182543
0.5-200.5 14 100.5 -2 -28
400.5-600.5 14 500.5 =A 0 0
600.5-800.5 7 700.5 1 7
∑ fi = 50 ∑ fiui = -36
−36
= 500.5 +{200 × 50
}
= 500.5 - 144
= 356.5
Thus, the mean daily income of employees is ₹ 356.50
36. Let us first construct the table for di × fi,
n
where di = xi - A (Assumed mean), as shown below:
i
Class Marks (xi) Frequency (fi) di = xi - A di × fi
es.
Class
10-15
15-20
12.5 = A
17.5
tut 10
13
0
5
0
65
sti
20-25 22.5 12 10 120
∑ fi = 50 ∑ fi di = 70
ein
Let A = 12.5,
Then ∑ f d = 70
i i
(x̄) = A +
∑ fi
= 12.5 + 70
50
= 12.5 + 1.4
w.
= 13.9
85-100 10 10
100-115 4 14
115-130 7 21
130-145 9 30
N
Here, N = 30 ⇒ 2
= 15
Now, Median
2
= 1 + {h × }
f
(15−14)
= 115 + {15 × }
7
1
= 115 + {15 × }
7
= 115 + 2.1
= 117.1
Thus, the median bowling speed is 117.1 km/hr.
10 / 23
Email: aceclasses16@gmail.com Call: 9545182543
38. Class interval (Indusive) Class interval (Exclusive) Frequency Cumulative frequency
160-162 159.5-162.5 15 15
N = 420
N = 420
∴
N
2
=
420
2
= 210
The cumulative frequency just greater than N
2
is 275.
so, 165.5-168.5 is the median class.
l = 165.5, f = 142, F = 133 ,h = 168.5 - 165.5 = 3
n
N
−F
∴ Median = l + 2
f
× h
i
210−133
= 165.5 + × 3
es.
142
77×3
= 165.5 + 142
= 165.5 + 1.63
= 167.13
39.
Class Interval
0 - 10 3tut
Frequency(fi) Mid Value xi
5
(fi × xi
15
)
sti
10 - 20 4 15 60
20 - 30 p 25 25p
ein
30 - 40 3 35 105
40 - 50 2 45 90
Σ( f × xi )
Now, mean= i
Σfi
270+25p
⇒ 24 =
w.
12+p
⇒ p = 18
0 - 10 7 5 -2 -14
10 - 20 10 15 -1 -10
20 - 30 15 25 = A 0 0
30 - 40 8 35 1 8
40 - 50 10 45 2 20
Σfi = 50 Σ (fi × ui ) = 4
A = 25, h = 10
∑ fi ui
we know that, Mean = A + {h × }
∑ fi
4
= 25 + {10 × }
50
= 25 + 0.8 = 25.8
11 / 23
Email: aceclasses16@gmail.com Call: 9545182543
0 38 0
1 144 144
2 342 684
3 287 861
4 164 656
5 25 125
1000
= 2.47
∑ fi
42.
n
50 - 52 18 51 -6 -108
i
52 - 54 21 53 -4 -84
es.
54 - 56 17 55 -2 -34
56 - 58 28 57 = A 0 0
58 - 60
60 - 62
62 - 64
16
35
15
tut 59
61
63
2
6
32
140
90
sti
Σfi = 150 Σ (fi × di ) = 36
Σ( f × di )
¯¯
¯ i
∴ x = A+
Σfi
36
= (57 + )
150
= 57 + 0.24
ac
= 57.24
Hence, mean weight = 57.24 kg
w.
xi −A
ui =
Class Interval Frequency(fi) Mid value xi h
xi −550
(f
i × ui )
=
43. 20
ww
Now,
∑ fi ui
Mean = A + {h × ∑f
}
i
= 550 + (20 ×
−12
40
) [ from (1) & (2) ]
12 / 23
Email: aceclasses16@gmail.com Call: 9545182543
= 550 - 6
= 544
Hence, the mean of the frequency distribution is 544.
44. Calculation of Mean:
xi −a
0 - 10 5 4 -3 -12
10 - 20 15 4 -2 -8
20 - 30 25 7 -1 -7
30 - 40 35 10 0 0
40 - 50 45 12 1 12
50 - 60 55 8 2 16
60 - 70 65 5 3 15
n
Total Σ fi = 50 Σ fi ui = 16
i
es.
a = 35, h = 10
we know that,
Σfi ui
Mean = a + Σfi
× h
tut
16
= 35+ × 10
50
= 35 + 3.2 = 38.2
45. First we prepare the following cumulative table to compute the median
sti
Class Frequency Cumulative frequency
5-10 5 5
ein
10-15 6 11
15-20 15 26
20-25 10 36
ac
25-30 5 41
30-35 4 45
w.
35-40 2 47
40-45 2 49
ww
N = 49
We have, N=49
49
∴
N
=
2
= 24.5
2
The cumulative frequency just greater than N/2 is 26 and the corresponding class is 15 - 20. Thus, 15 - 20 is the median class such
that
l = 15, f = 15, F = 11 and h = 5
N
−F
24.5−11
∴ Median = l +
2
f
× h = 15 +
15
× 5 = 15 +
13.5
3
= 19.5
46. We may find class marks for each interval by using the relation
upperlimit+ lowerclasslimit
x =
2
13 / 23
Email: aceclasses16@gmail.com Call: 9545182543
0.08 – 0.12 9 0.10 -0.04 -1 -9
Total ∑ fi = 30 ∑ fi ui = -31
let a = 0.14
∑ f ui
¯¯
¯ i
Mean x = a + ( ) × h
∑f
i
−31
= 0.14 + (0.04) ( 30
)
= 0.099 ppm
47. Let the missing frequency be f the assumed mean be A = 47 and h = 3.
Calculation of Mean
Class-Intervals mid-values xi fi di = xi - 47.5 ui =
xi −47.5
fiui
3
n
40-43 41.5 31 -6 -2 -62
i
43-46 44.5 58 -3 -1 -58
es.
46-49 47.5 60 0 0 0
49-52 50.5 f 3 1 f
52-55
tut
53.5
N = ∑ f = 176 + f
i
27 6 2 54
Σfi ui = f - 66
sti
We have,
¯¯¯
X
¯
= 47.2 , A = 47.5 and h = 3
∴ X
¯¯¯
¯
=A+h{ 1
Σfi ui }
ein
f −66
⇒ 47.2 = 47.5 + 3 × { 176+f
}
f −66
- 0.3 = 3 × { 176+f
}
−1 f −66
- 176 - f = 10 f - 660 ⇒ 11f = 484 ⇒ f = 44
ac
⇒ = ⇒
10 176+f
48.
0 - 10 5 5 -30 -3 -15
10 - 20 10 15 -20 -2 -20
ww
20 - 30 18 25 -10 -1 -18
30 - 40 30 35 0 0 0
40 - 50 25 45 10 1 20
50 - 60 12 55 20 2 24
60 - 70 5 65 30 3 15
Total 100 6
Σfi ui
mean = A + Σfi
× h
= 35 + 100
6
× 10
= 356
10
or 35.6
10-20 16 15 240
14 / 23
Email: aceclasses16@gmail.com Call: 9545182543
20-30 36 25 900
30-40 34 35 1190
40-50 6 45 270
∑ fi = 100
∑ fi x = 2640
i
∑ fi xi
mean(x̄) =
∑ fi
= 2640
100
= 264
10
= 26.4
10-20 16 24
n
20-30 36 60
i
30-40 34 95
es.
40-50 6 100
N = 100
N 100
= 50
tut
=
2 2
2
i.e 50 is 60
∴ median class = 20 - 30
lower limit (l) of median class = 20
sti
N
−cf
median = l + (
2
) × h
f
ein
50−24
= 20 + ( 36
)× 10
26
= 20 + 36
× 10
= 27.22
ac
l = 20
w.
f −f
mode = l + ( 1
2f − f − f
0
) × h
1 0 2
36−16
= 20 + ( 2×36−16−34
)× 10
ww
20×10
= 20 + 72−50
= 20 + 200
22
= 29.09
50. Let the missing frequencies are a and b.
Class Interval Frequency fi Cumulative frequency
0-5 12 12
5 - 10 a 12 + a
10 - 15 12 24 + a
15 - 20 15 39 + a
20 - 25 b 39 + a + b
25 - 30 6 45 + a + b
30 - 35 6 51 + a + b
35 - 40 4 55 + a + b = 70
15 / 23
Email: aceclasses16@gmail.com Call: 9545182543
Then, 55 + a + b = 70
a + b = 15 ......(1)
Median is 16, which lies in 15 - 20
So, The median class is 15 - 20
Therefore, l = 15, h = 5, N = 70, f = 15 and cf = 24 + a
Median is 16, which lies in the class 15 - 20. Hence, median class is 15 - 20.
∴ l = 15, h = 5, f = 15, c. f . = 24 + a
N
( −cf )
Now, Median = l + {h × 2
}
f
(35−24−a)
∴ 16 = 15 + {5 × }
15
11−a
⇒ 16 = 15 + { }
3
11−a
⇒ 1 =
3
⇒3 = 11 − a
⇒a = 8
n
Now, 55 + a + b = 70
i
⇒55 + 8 + b = 70
es.
⇒63 + b = 70
⇒ b = 7
tut
51.
65 - 85 7 7
85 - 105 8 15
sti
105 - 125 7 22
125 - 145 20 42
ein
145 - 165 14 56
165 - 185 9 65
185 - 205 5 70
ac
N 70
= = 35
2 2
N
−cf
Median = I + ( 2
f
) × h
ww
(35−22)
= 125 + × 20
20
= 125 + 13 = 138
Note: No marks to be deducted in case student substitutes the values correctly in the formula without writing values of l, cf, etc.
52. We may observe from the given data that maximum class frequency is 40 belonging to 1500 - 2000 interval.
Class size (h) = 500
f −f1
Mode = l + 2f − f − f
× h
1 2
16 / 23
Email: aceclasses16@gmail.com Call: 9545182543
1000-1500 24 1250 -1500 -3 -72
2500-3000 28 2750=a 0 0 0
n
¯
¯
x̄ = 2750 - 87.5
¯¯
x̄ = 2662.5
i
53. Modal Class: 45 - 60
es.
Mode = 55
15−a
55 = 45 + × 15
30−(a+10)
a=5
tut
⇒
6 + 7 + a + 15 + 10 + b = 51
⇒ a + b = 13
⇒ b = 13 - 5 = 8
sti
54. From the given data we have
Class internal Frequency fi Mid-value xi ui =
xi −A
=
x1 −162.5
fi × ui
h 5
ein
155-160 8 157.5 -1 -8
160-165 20 162.5 = A 0 0
ac
165-170 12 167.5 1 12
170-175 5 172.5 2 10
w.
∑ fi = 60 ∑ fi ui = −16
Now, Mode = x
k k−1
k + h{ }
(2f −f −f )
k k−1 k+1
20−8
= 160 + 5 { }
2(20)−8−12
12
= 160 + 5 ×
20
= 160 + 3
= 163
Thus, the modal height is 163 cm, which means the maximum number of students has height 163 cm.
Thus, A = 162.5, h = 5, ∑ fi = 60 and ∑ fiui = -16
∑ fi ui
Mean = A + {h × }
∑ fi
−16
= 162.5 + {5 × }
60
= 162.5 - 1.33
= 161.17
Thus, the mean height is 161.17 cm, which means on an average, the height of a student in a class is 161.17 cm.
17 / 23
Email: aceclasses16@gmail.com Call: 9545182543
55. Since value of number of mangoes and number of boxes are large numerically. So we use step-deviation method
xi −a
True Class Interval No. of boxes(fi) Class mark(xi) ui = fiui
h
49.5-52.5 15 51 -2 -30
55.5-58.5 135 57 0 0
61.5-64.5 25 63 2 50
∑ fi = 400 ∑ fiui = 25
∑ fi
=
400
= 0.0625 (approx.)
n
Using formula, Mean (x) = a + hu ¯¯
¯ ¯¯
¯
= 57 + 3 (0.0625
i
= 57 + 0.1875
es.
= 57.1875
= 57.19 (approx)
Therefore, the mean number of mangoes is 57.19
10
Cumulative frequency
10
sti
10-20 20 30
20-30 f1 30 + f1(F)
ein
30-40 40 (f) 70 + f1
40-50 f2 70 + f1 + f2
50-60 25 95 + f1 + f2
ac
60-70 15 110 + f1 + f2
w.
N = 170
According to the question ,
Given,
ww
Median = 35
then median class = 30 - 40
∴ l = 30, h = 40 - 30 = 10, f = 40, F = 30 + f1
N
−F
∴ Median = 1 + 2
f
× h
85−(30+ f )
⇒ 35 = 30 + 40
1
× 10
85−30−f1
⇒ 35 - 30 = 40
× 10
55−f
1
⇒ 5 =
4
⇒ 20 = 55 - f1
⇒ f1 = 55 - 20 = 35
Given
Sum of frequencies = 170
⇒ 10 + 20 + f1 + 40 + f2 + 25 + 15 = 170
⇒ 10 + 20 + 35 + 40 + f2 + 25 + 15 = 170
⇒ f2 = 170 - 10 - 20 - 35 - 40 - 25 - 15
18 / 23
Email: aceclasses16@gmail.com Call: 9545182543
⇒ f2 = 25
∴ f1 = 35 and f2 = 25
Age (in years) No. of patients (fi) Mid point (xi) xifi
57.
5 - 15 6 10 60
15 - 25 11 20 220
25 - 35 21 30 630
35 - 45 23 40 920
45 - 55 14 50 700
55 - 65 5 60 300
Total 80 2830
⇒ Mean =
2830
80
n
= 35.375
Modal class = (35 - 45)
i
es.
23−21
⇒ Mode = 35 + (
2×23−21−14
) × h
= 36.81
Therefore, mode and mean of given data are 36.81 years and 35.375 years respectively.
tut
58. Table:
Class Interval Frequency fi Mid value xi fixi Cumulative Frequency
0 -10 6 5 30 6
sti
10 - 20 8 15 120 14
20 - 30 10 25 250 24
ein
30 - 40 15 35 525 39
40 - 50 5 45 225 44
ac
50 - 60 4 55 220 48
60 - 70 2 65 130 50
w.
∑ fi = 50 ∑ fi ui = 1500
∑ fi xi 1500
i. Mean = ∑f
=
50
= 30
i
ww
ii. Median
N = 50⇒ N
2
= 25
Median = l + { h ×
2
}
f
25−24
= 30 + {10 × }
15
= 30 + 0.67 = 30.67
iii. Mode
Maximum frequency = 15
Hence, modal class is 30 - 40.
(f −f )
Now, Mode = x
k k−1
k + h{ }
(2f −f −f )
k k−1 k+1
15−10
= 30 + 10 { }
2(15)−10−5
= 30 + 3.33 = 33.33
19 / 23
Email: aceclasses16@gmail.com Call: 9545182543
0–6 3 -12 -2 -1 -14
6 – 12 9 -6 -1 5 -5
12 – 18 15 0 0 10 0
18 – 24 21 6 1 12 12
24 – 30 27 12 2 6 12
N = 40 ∑ fi ui =5
Let the assumed mean be (A) = 15
h=6
∑ f ui
Mean = A + h N
i
5
= 15 + 6( 40
)
= 15 + 0.75
= 15.75
n
60. i. Class intereval Frequency Cumulative frequency
i
10-20 12 12
es.
20-30 30 42
30-40 x 42 + x(F)
40-50
50-60 tut
65(f)
y
107 + x
107 + x + y
sti
60-70 25 132 + x + y
70-80 18 150 + x + y
ein
N = 230
let the unknown frequencies are 'x' and 'y'.
Median = 46
Then, median class = 40 - 50
ac
N
−F
∴ Median = l + 2
f
× n
Here,
w.
h = Class size.
∴ l = 40, h = 50 - 40 = 10, f = 65, F = 42 + x
115−(42+x)
⇒ 46 = 40 + 65
× 10
115−(42+x)
⇒ 46 - 40 = 65
× 10
⇒
6×65
10
= 73 - x
⇒ x = 73 - 39 = 34
Given
N = 230
⇒ 12 + 30 + 34 + 65 + y + 25 + 18 = 230
⇒ y = 230 - 184 = 46
20-30 25 30 750
30-40 35 34 1190
20 / 23
Email: aceclasses16@gmail.com Call: 9545182543
40-50 45 65 2925
50-60 55 46 2530
60-70 65 25 1625
70-80 75 18 1350
=
10550
230
= 45.87
61. i. Modal class is 19.5 - 24.5
Lowe limit = 19.5
14.5 - 19.5 - 24.5 - 29.5 - 34.5 - 39.5 - 44.5 - 49.5 -
Age (in years)
ii. a. 19.5 24.5 29.5 34.5 39.5 44.5 49.5 54.5
Number of
62 132 96 37 13 11 10 4
n
participants
i
cf 62 194 290 327 340 351 361 365
es.
n
2
=
365
2
= 182.5
median class = 19.5 - 24.5
OR
b. 62 + 132 + 96 + 37 + 13 + 11 + 10 = 361
iii. 3 median = mode + 2 mean
tut
62. i. The maximum class frequency is 15 belonging to class interval 150-155
sti
∴ 150 - 155 is the modal class
ii.
135-140 2 2
140-145 8 10
ac
145-150 10 20
150-155 15 35
w.
155-160 6 41
160-165 5 46
ww
165-170 4 50
∑ fi = 50
∑ fi = 2 + 8 + 10 + 15 + 6 + 5 + 4 =50 =N
N
2
=
50
2
= 25
c.f just greater that N
2
i.e, 25 is 35
∴ Median class 150-155
Height (in cm) frequency (fi) xi
iii.
135-140 2 137.5
140-145 8 142.5
145-150 10 147.5
150-155 15 152.5
155-160 6 157.5
21 / 23
Email: aceclasses16@gmail.com Call: 9545182543
160-165 5 162.5
165-170 4 167.5
lower limit+upper limit
xi = 2
Median = l ( 2
) × h
f
25−20
= 150 + ( 15
)× 5
= 150 + 5
15
× 5
= 150 + 5
= 150 + 1.67
= 151.67
n
63. Number announced 0 - 15 15 - 30 30 - 45 45 - 60 60 - 75
i
Number of times (f) 8 9 10 12 9
es.
cf 8 17 27 39 48 = N
i. N
2
= 24
∴ median class is 30 - 45
iii. a. Median = 30 +
(
48
2
−17)
× 15
37
75
tut
sti
10
= 40.5
OR
b. Modal class is 45 - 60
ein
12−10
Mode = 45 + 2×12−10−9
× 15
= 51
64. i. Median class : 100 - 110
ac
a. C.I f cf
w.
70-80 3 3
80-90 5 8
ww
90-100 9 17
100-110 12 29
110-120 5 34
120-130 4 38
130-140 2 40 = N
Median = 100 + 10
12
(20 − 17) = 102 ⋅ 5
OR
b. Modal class is 100 - 110
Mode = 100 + 10 × 12−9
24−9−5
= 103
l = 74, f1 = 8, f0 = 3, f2 = 7, h = 3
22 / 23
Email: aceclasses16@gmail.com Call: 9545182543
8−3
∴ Modal value = 74 + ( 16−3−7
) × 3
= 76.5
OR
65 - 68 2 2
68 - 71 4 6
71 - 74 3 9
74 - 77 8 17
77 - 80 7 24
80 - 83 4 28
83 - 86 2 30
n
N
−Cf
Median = I + 2
× h
f
i
(15−9)
= 74 + × 3
es.
8
= 76.25
66.
(d) A is false but R is true.
Explanation:
A is false but R is true.
tut
sti
67.
(c) A is true but R is false.
Explanation:
ein
= 1
3
(60 + 2 × 66) = 64
ac
68.
(d) A is false but R is true.
Explanation:
w.
23 / 23
Email: aceclasses16@gmail.com Call: 9545182543