0% found this document useful (0 votes)
20 views6 pages

Differentitation A 4

Uploaded by

alokwarrior1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
20 views6 pages

Differentitation A 4

Uploaded by

alokwarrior1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

CLASS : XIIth SUBJECT : MATHS

DATE : SOLUTIONS DPP NO. :4

Topic :-DIFFERENTITATION
1 (b)

|
𝑦 𝑦1 𝑦2
Let 𝐷 = 𝑦3 𝑦4 𝑦5
𝑦6 𝑦7 𝑦8 |
|
― 𝑝2 sin 𝑝𝑥
|
sin 𝑝𝑥 𝑝 cos 𝑝𝑥
⇒𝐷 = ― 𝑝3 cos 𝑝𝑥 𝑝4 sin 𝑝𝑥 𝑝5 cos 𝑝𝑥
― 𝑝6 sin 𝑝𝑥 ― 𝑝7 cos 𝑝𝑥 𝑝8 sin 𝑝𝑥
Taking 𝑝3 and 𝑝6common from 𝑅2 and 𝑅3row

|
― 𝑝2 sin 𝑝𝑥
|
sin 𝑝𝑥 𝑝 cos 𝑝𝑥
= 𝑝9 ― cos 𝑝𝑥 𝑝 sin 𝑝𝑥 𝑝2 cos 𝑝𝑥
― sin 𝑝𝑥 ―𝑝 cos 𝑝𝑥 𝑝2 sin 𝑝𝑥

|
― 𝑝2 sin 𝑝𝑥
|
sin 𝑝𝑥 𝑝 cos 𝑝𝑥
=―𝑝 ― cos 𝑝𝑥 9
𝑝 sin 𝑝𝑥 𝑝2 cos 𝑝𝑥
sin 𝑝𝑥 𝑝 cos 𝑝𝑥 ― 𝑝2 sin 𝑝𝑥
= 0 (𝑅1and 𝑅3rows are identical)
2 (d)
𝑥2 𝑥3
𝑦=1―𝑥+ ― + ...
2! 3!
―𝑥
⇒𝑦 = 𝑒
On differentiating w.r.t. 𝑥, we get
𝑑𝑦
= ― 𝑒―𝑥
𝑑𝑥
Again differentiating w.r.t. 𝑥, we get
𝑑2𝑦
= ― 𝑒―𝑥( ―1) = 𝑒―𝑥 = 𝑦
𝑑𝑥2
3 (b)
We have, 𝑓(4) = 4 and 𝑓′(4) = 1
―𝑓′(𝑥)
2 ― 𝑓(𝑥) 2 𝑓(𝑥)
∴ lim = lim [Using L′Hospital′s Rule]
𝑥→4 2 ― 𝑥 𝑥→4 ― 1
2 𝑥
2 ― 𝑓(𝑥) 𝑥 𝑓′(𝑥) 2𝑓′(4) 2
⇒ lim = lim = = =1
𝑥→4 2 ― 𝑥 𝑥→4 𝑓(𝑥) 𝑓(4) 2
4 (c)
2𝑎𝑡 2𝑎𝑡2
∵ 𝑥= and 𝑦 =
1 + 𝑡3 (1 + 𝑡3)2
∴ 2𝑎𝑦 = 𝑥2
𝑑𝑦 𝑥
⇒ =
𝑑𝑥 𝑎
5 (c)
―1
Given, 𝑦 = 𝑒𝑎 sin 𝑥
On differentiating w.r.t. 𝑥, we get
―1 1
𝑦1 = 𝑒𝑎 sin 𝑥
𝑎. 1 ― 𝑥2

⇒ 𝑦1 1 ― 𝑥2 = 𝑎𝑦
⇒ (1 ― 𝑥2)𝑦21 = 𝑎2𝑦2
Again, differentiating w.r.t. 𝑥, we get
(1 ― 𝑥2)2𝑦1𝑦2 ―2𝑥𝑦21 = 𝑎22𝑦𝑦1
⇒(1 ― 𝑥2)𝑦2 ― 𝑥𝑦1 ― 𝑎2𝑦 = 0
Using Leibnitz’s rule,
(1 ― 𝑥2)𝑦𝑛+2 + 𝑛𝐶1𝑦𝑛+1( ―2𝑥) + 𝑛𝐶2𝑦𝑛( ― 2)
―𝑥𝑦𝑛+1 ― 𝑛𝑐1𝑦𝑛 ― 𝑎2𝑦𝑛 = 0
⇒ (1 ― 𝑥2)𝑦𝑛+2 +𝑥𝑦𝑛+1( ― 2𝑛 ― 1)
+ 𝑦𝑛[ ―𝑛(𝑛 ― 1) ― 𝑛 ― 𝑎2] = 0
⇒ (1 ― 𝑥2)𝑦𝑛+2 ― (2𝑛 + 1)𝑥𝑦𝑛+1 = (𝑛2 + 𝑎2)𝑦𝑛
6 (a)
𝑥―𝑦
Since, 𝑥+𝑦 = sec―1 𝑎
(𝑥 + 𝑦)(1 ― ) ― (𝑥 ― 𝑦)(1 + )
𝑑𝑦 𝑑𝑦

⇒ 𝑑𝑥
2
𝑑𝑥
=0
(𝑥 + 𝑦)
𝑑𝑦 𝑑𝑦 𝑦
⇒𝑥 + 𝑦 ― 𝑥 + 𝑦 ― (𝑥 + 𝑦 + 𝑥 ― 𝑦) = 0⇒ =
𝑑𝑥 𝑑𝑥 𝑥
7 (c)
𝑥
Given, 𝑦 = 𝑥 + 𝑥2 + 𝑥3 +...⇒𝑦 = 1 ― 𝑥
𝑦
⇒𝑥= = 𝑦 ― 𝑦2 + 𝑦3 ― ...
1+𝑦
On differentiating w.r.t. 𝑦, we get
𝑑𝑥
= 1 ― 2𝑦 + 3𝑦2 ― ...
𝑑𝑦
8 (b)
1 ― sin 2𝑥 cos 𝑥 ― sin 𝑥
Let 𝑦 = 1 + sin 2𝑥
= cos 𝑥 + sin 𝑥
1 ― tan 𝑥 𝜋
=
1 + tan 𝑥 (
= tan ― 𝑥
4
)
𝑑𝑦
= ― sec2 ( ― 𝑥)
𝜋
⇒ 𝑑𝑥 4

9 (b)
Let 𝑢 = log10 𝑥 and 𝑣 = 𝑥2
𝑑𝑢 log10 𝑒 𝑑𝑣
∴ = and = 2𝑥
𝑑𝑥 𝑥 𝑑𝑥
𝑑𝑢 𝑑𝑢 /𝑑𝑥 log10 𝑒
∴ 𝑑𝑣
= 𝑑𝑣 /𝑑𝑥 = 𝑥
/2𝑥
log10 𝑒
=
2𝑥2
10 (d)
∵ 𝑦 = 𝑥 In (𝑎 +𝑥 𝑏𝑥) = 𝑥(In 𝑥 ― In(𝑎 + 𝑏𝑥))
𝑦
or ( ) = In 𝑥 ― In (𝑎 + 𝑏𝑥)
𝑥
On differentiating both sides w.r.t. 𝑥, we get
𝑑𝑦
𝑥
𝑑𝑥
𝑥2
― 𝑦.1
=
(1

𝑏
=
𝑎
)
𝑥 𝑎 + 𝑏𝑥 𝑥(𝑎 + 𝑏𝑥)
…(i)

𝑎𝑥
or (𝑥 ― 𝑦) = 𝑎 + 𝑏𝑥
𝑑𝑦
𝑑𝑥
On taking log on both sides, we get
𝑑𝑦
𝑑𝑥 (
In 𝑥 )
― 𝑦 = In (𝑎𝑥) ― In (𝑎 + 𝑏𝑥)

On differentiating both sides w.r.t. 𝑥, we get


𝑑2𝑦 𝑑𝑦 𝑑𝑦
𝑥 2+ ―
𝑑𝑥 𝑑𝑥 𝑑𝑥 1 𝑏 𝑎
= ― =
𝑑𝑦
𝑥
𝑑𝑥
―𝑦 ( )
𝑥 𝑎 + 𝑏𝑥 𝑥(𝑎 + 𝑏𝑥)

𝑑𝑦
𝑥
𝑑𝑥
―𝑦 ( )
= [from Eq.(i)]
𝑥2
𝑑2𝑦 2
or 𝑥3𝑑𝑥2 = (𝑥 ― 𝑦)
𝑑𝑦
𝑑𝑥
12 (a)
On differentiating given equation w.r.t. 𝑥, we get
𝑑𝑦 𝑑𝑦 𝑑𝑦
4𝑥 ― 3𝑥 ― 3𝑦 + 2𝑦 +1+2 ―0=0
𝑑𝑥 𝑑𝑥 𝑑𝑥
𝑑𝑦 3𝑦 ― 4𝑥 ― 1
⇒ =
𝑑𝑥 2𝑦 ― 3𝑥 + 2
13 (c)
Given, 𝑦 = sin 𝑥 + 𝑦 ⇒ 𝑦2 = sin 𝑥 + 𝑦
𝑑𝑦 𝑑𝑦
⇒2𝑦 = cos 𝑥 +
𝑑𝑥 𝑑𝑥
𝑑𝑦
⇒(2𝑦 ― 1) = cos 𝑥
𝑑𝑥
14 (b)
We have,
2𝑥 + 2𝑦 = 2𝑥+𝑦
Differentiating with respect to 𝑥, we get
𝑑𝑦 𝑑𝑦
2𝑥 log 2 + 2𝑦 log 2
𝑑𝑥 (
= 2𝑥+𝑦 log 2 1 +
𝑑𝑥)
𝑑𝑦 𝑑𝑦
⇒2𝑥 + 2𝑦
𝑑𝑥 (
= 2𝑥+𝑦 1 +
𝑑𝑥 )
𝑑𝑦 2 ― 2𝑥 𝑥+𝑦 𝑑𝑦 2―4

𝑑𝑥 2
= 𝑥+𝑦 ⇒ ( ) =
― 2𝑦 𝑑𝑥 (1, 0) 4 ― 2
= ―1

15 (a)
Given, 𝑦 = sec( tan―1 𝑥)
⇒ 𝑦 = sec( sec―1 1 + 𝑥2) = 1 + 𝑥2
On differentiating w.r.t. 𝑥,we get
𝑑𝑦 1 𝑥
= (2𝑥) =
𝑑𝑥 2 1 + 𝑥 2
1 + 𝑥2
16 (b)
Given, 𝑓(𝑥) = (𝑥 ― 7)2(𝑥 ― 2)7
⇒ 𝑓(𝜃) = (𝜃 ― 7)2(𝜃 ― 2)7
On differentiating w.r.t. 𝜃, we get
⇒ 𝑓′(𝜃) = 2(𝜃 ― 7)(𝜃 ― 2)7 + 7(𝜃 ― 2)6(𝜃 ― 7)2
put 𝑓′(𝜃) = 0
⇒ (𝜃 ― 7)(𝜃 ― 2)6[2(𝜃 ― 2) + 7(𝜃 ― 7)] = 0
53
⇒ 9𝜃= 53⇒𝜃 = 9
17 (b)
We have,
1 1
𝑥2 + 𝑦2 = 𝑡 ― 𝑡 and 𝑥4 + 𝑦4 = 𝑡2 + 𝑡2
2 1
⇒(𝑥2 + 𝑦2) = 𝑡2 + ―2
𝑡2
2
⇒(𝑥2 + 𝑦2) = 𝑥4 + 𝑦4 ― 2
⇒2𝑥2𝑦2 = ―2
⇒𝑥2𝑦2 = ―1
1 𝑑𝑦 2 𝑑𝑦
⇒𝑦2 = ― 2 ⇒2𝑦 = 3 ⇒𝑥3𝑦 =1
𝑥 𝑑𝑥 𝑥 𝑑𝑥
18 (b)
Let 𝑓(𝑥) = |𝑥 ― 1| +|𝑥 ― 5|

{
―2𝑥 + 6, 𝑥<1
⇒𝑓(𝑥) = 4 1≤𝑥<5
2𝑥 ― 6 𝑥≥5
{
𝑑 ―2, 𝑥<1
∴ (𝑓(𝑥)) = 0 1<𝑥<5
𝑑𝑥 2 𝑥>5
Hence, ( (𝑓(𝑥)))𝑥=3 = 0
𝑑
𝑑𝑥
19 (b)
π
sin―1 𝑥 + sin―1 𝑦 =
2
―1
π ―1
⇒ sin 𝑥 = ― sin 𝑦
2
⇒sin―1 𝑥 = cos―1 𝑦
⇒𝑦 = 1 ― 𝑥2
On differentiating w.r.t. 𝑥, we get
𝑑𝑦 1 𝑥
= ( ―2𝑥) = ―
𝑑𝑥 2 1 ― 𝑥2 𝑦
20 (c)

𝑓[𝑓(𝑓(𝑥))] = 𝑓 𝑓[ (1 ―1 𝑥)] = 𝑓(1 ― 1 1 )


1―𝑥

[ ∵ 𝑓(𝑥) = 1 ―1 𝑥]
1―𝑥 1
= 𝑓( ) =
1―𝑥
―𝑥 1+( )
𝑥
⇒ 𝑓[𝑓(𝑓(𝑥))] = 𝑥
∴ The derivative of composite function is equal to 1.
ANSWER-KEY
Q. 1 2 3 4 5 6 7 8 9 10
A. B D B C C A C B B D

Q. 11 12 13 14 15 16 17 18 19 20
A. D A C B A B B B B C

You might also like