0% found this document useful (0 votes)
36 views6 pages

Trigo-2 DPP

Uploaded by

alokwarrior1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
36 views6 pages

Trigo-2 DPP

Uploaded by

alokwarrior1
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

NEWTON PRIVATE TUTORIAL

Subject : Mathematics Paper Set : 1


Standard : 12 trigo-2 Date : 17-08-2024
Total Mark : 400 Time : 1H:0M

........................................... Mathematics - Section A (MCQ) ...........................................


( )
cos( 15π
4 )−1
(1) The value of tan −1
sin( π
is equal to
4)

(A) − π4 (B) − π8 (C) − 5π


12 (D) − 4π
9
(1)
(2) If sin−1 x + cot−1 2 = π
2, then x is

(A) 0 (B) √1
5
(C) √2
5
(D) 2
3

(3) cot−1 34 + sin−1 13


5
=
(A) sin−1 63
65 (B) sin−1 12
13 (C) sin−1 68
65
(D) sin−1 12
5

(4) Solve tan−1 1−x


= 1
tan−1 x, (x > 0)
1+x 2

(A) x = √1
2
(B) x = √1
3
(C) x = 1
2 (D) x = 3
−1 −1
(5) The solution of sin x − sin 2x = ± π3 is

(A) ± 13 (B) ± 14 (C) ± 2
3
(D) ± 12
(6) If tan−1 (x + 2) + tan−1 (x − then sum of value(s) of x is equal to-

l
2) = tan−1 ( 12 ),
(A) 1 (B) −5 (C) −4
ia (D)
or 1
( ) ( ) 2
(7) 2tan −1 1
3 ( + )tan
−1 1
7 =
ut
(A) tan −1 49
29 (B) π
2 (C) 0 (D) π
4
tT

(8) cos−1 12 + 2sin−1 12 is equal to


(A) π
(B) π
(C) π
(D) 2π
Pv

4 6 3 3
−1
(9) If sin x + sin−1 y + sin−1 z = 2,
π
then the value of x2 + y 2 + z 2 + 2xyz is equal to
n

(A) 0 (B) 1 (C) 2 (D) 3


( )
to

(10) Find the values of tan sin−1 3


5 + cot−1 3
2
w

(A) 17
(B) 6
(C) 5
(D) 5
Ne

6 17 16 4
( )
−1
(11) If we consider only the principal values of the inverse trigonometric functions, then the value of tan cos−1 5√
1
2
− sin √4 is
(17)
√ √
(A) 29/3 (B) 29/3 (C) 3/29 (D) 3/29
( )
(12) Find the principal value of sec−1 √23
(A) π
6 (B) π
3 (C) π
4 (D) π
2
(13) tan−1 34 + tan−1 35 − tan−1 19
8
=
(A) π4 (B) π
3 (C) π
6 (D) None of these
[ ]
a cos x−b sin x
(14) Simplify tan−1 b cos x+a sin x , if a
b tan x > −1
(A) tan−1 b
a +x (B) tan−1 b
a −x (C) tan−1 a
b −x (D) tan−1 a
b +x
(15) Find the principal value of cosec −1
(2)
(A) π
6 (B) π
2 (C) π
3 (D) 0
[ ]
(16) cos 2cos−1 15 + sin−1 15 =
√ √
(A) 2 6
(B) − 2 5 6 (C) 1
(D) − 15
5
( −1 ) 5
(17) Find the value of cot tan a + cot−1 a
(A) π
3 (B) π
4 (C) 0 (D) π
2
(18) tan−1 √x12 −1 =
(A) π2 + cosec−1 x (B) π
2 + sec−1 x (C) cosec−1 x (D) sec−1 x
[ ]
cos x
(19) tan−1 1+sin x =
(A) π
4 − x
2 (B) π
4 + x
2 (C) x
2 (D) π
4 −x

1

(20) If 2cos−1 1+x
2 = π
2, then x =
(A) 1 (B) 0 (C) −1/2 (D) 1/2
(21) If tan −1
2x + tan −1
3x = 4,
π
then x =
(A) −1 (B) 1
(C) −1, 1
(D) None of these
( ) 6 6
(22) sin 4tan−1 13 =
(A) 12
25 (B) 24
25 (C) 1
5 (D) None of these
(√ )
(23) tan−1 1+x2 −1
x =
(A) tan−1 x (B) 2 tan
1 −1
x (C) 2tan−1 x (D) None of these
( √ )
−1
(24) A possible value of tan 1
4 sin 63
8 is :
√ √
(A) √1
7
(B) 2 2 − 1 (C) 7−1 (D) 1

2 2
cos x
(25) Express tan−1 1−sin x , − 2

<x< π
2 in the simplest form.
(A) − π4 − x2 (B) − π4 + x
2 (C) π
4 − x
2 (D) π
4 + x
2
(26) If tan−1 x−1
x−2 + tan−1 x+1
x+2 = π
4, then find the value of x

(A) ± √13 (B) ± √12 (C) ± 12 (D) ± 2
3

(27) sec −1
[sec(−30o )] = ....... o

(A) −60 (B) −30 (C) 30 (D) 150


( )
(28) Write cot−1 √ 1
x2 −1
, x > 1 in the simplest form.
(A) sec−1 x (B) cosec−1 x (C) tan−1 x (D) cot−1 x
( ) [ ( )]
(29) The value of tan sin−1 35 + cos−1 √313 is

l

ia
(A) 6
17 (B) √6
13
(C) 13
5
(D) 17
6
[ ( )]
(30) cosec 2 cot−1 (5) + cos −1 4
is equal to ..... .
or
5
(A) (B) (C) (D)
ut
56 65 65 75
33 56 33 56
( )
(31) Write the function in the simplest form: tan−1
tT

√ 1
x2 −1
, |x| > 1
(A) π
− sec−1 x (B)
π
2 + sec−1 x (C) π
+ cosec−1 x (D) π
− cosec−1 x
Pv

2
( ) 2 2
(32) The principal value of tan −1
cot 4 is
43π

(A) − 3π (B) 3π (C) − π4 (D)


n

π
4 4 4
to

(33) 2tan−1 13 + tan−1 12 =


(A) 90o (B) 60o (C) 45o (D) tan−1 2
w

(34) Find the principal value of tan−1 (−1)


Ne

(A) − π6 (B) π
4 (C) − π2 (D) − π4

(35) tan −1
3 − sec (−2) is equal to
−1

(A) π
3

3 (B) (C) π (D) − π3
(36) If tan−1 x−1
x+1 + tan −1 2x−1
2x+1 = tan 36 , then
−1 23
x=
(A) 4 , 8
3 −3
(B) 34 , 38 (C) 4 3
3, 8 (D) None of these
(37) sin−1 x + sin−1 x1 + cos−1 x + cos−1 x1 =
(A) π (B) π2 (C) 3π
(D) None of these
[ −1 1 ] 2
(38) cos tan 3 + tan−1 12 =

(A) √12 (B) 23 (C) 1
2 (D) π
4
( )
(39) cos−1 cos 7π 6 =
(A) 7π6 (B) 5π6 (C) π
6 (D) None of these
(40) tan−1 1+ab
a−b
+ tan−1 1+bc
b−c
=
(A) tan −1
a − tan
−1
b −1
(B) tan a − tan−1 c (C) tan−1 b − tan−1 c (D) tan−1 c − tan−1 a
[ ]
(41) Find the value of tan 12 sin−1 + cos−1 1−y
1+y 2 , |x| < 1, y > 0 and xy < 1
2
2x
1+x2

(A) x+y
1+xy (B) 1+xy
x−y
(C) x−y
1−xy (D) x+y
1−xy
( )
(42) Find the principal value of cos−1 − √12
(A) 2π
3 (B) 5π
6 (C) 3π
4 (D) 3π
2
( ) −1 ( )
(43) The value of cos −1
cos 5π
3 + sin sin 5π
3 is
(A) 0 (B) π
2 (C) 2π
3 (D) 10π
3

2

(44) cot−1 (− 3) =
(A) − π6 (B) 5π
6 (C) π
3 (D) 2π
3
(45) sec2 (tan−1 2) + cosec2 (cot−1 3) =
(A) 5 (B) 13 (C) 15 (D) 6
(46) cot −1
(1) + cot−1 ( 12 ) + cot−1 ( 13 ) =
(A) 0 (B) 3π
4 (C) 2π
3 (D) π
(47) 4tan−1 15 − tan−1 239
1
is equal to
(A) π (B) π
2 (C) π
3 (D) π
4
(48) If sin−1 x = y, then
(A) − π2 < y < π
2 (B) 0 ≤ y ≤ π (C) − π2 ≤ y ≤ π
2 (D) 0 < y < π
−1 −1
(49) If cos −1
x + cos −1
y = 2π, then sin x + sin y is equal to
(A) π (B) −π (C) π
2 (D) None of these
(50) cos−1 45 + tan−1 35 =
(A) tan−1 27
11 (B) sin−1 11
27 (C) cos−1 11
27 (D) None of these

........................................... Mathematics - Section B (MCQ) ...........................................

(51) 4 tan−1 15 − tan−1 70


1
+ tan−1 99
1
=
(A) π
2 (B) π
3 (C) π
4 (D) None of these
( )
(52) cos sin−1 13
5
=
(A) 12
(B) − 12 (C) 5
(D) None of these
[13 ] 13 12

l
(53) tan cos−1 45 + tan−1 23 =
(A) 6/17 (B) 17/6 (C) 7/16
ia (D) 16/7
or
( 1)
(54) Find the principal value of cos −2 −1
ut
(A) π
2 (B) π
6 (C) 2π
3 (D) 5π
6
tT

(55) If tan−1 x + tan−1 y = π


4 then
(A) x + y − xy = 1 (B) x + y + xy = 1 (C) x + y + xy + 1 = 0 (D) x + y − xy + 1 = 0
Pv

( )
(56) tan 90o − cot−1 13 =
(A) 3 (B) (C) (D)
n

2 1 √1
3 3 10
to

(57) If tan−1 x − tan−1 y = tan−1 A, then A


w

(A) x − y (B) x + y (C) x−y


1+xy (D) x+y
1−xy
( ) ( )
Ne

(58) tan−1 xy − tan−1 x+y isx−y

(A) π
(B) π
(C) π
(D) 4 or − 4
π 3π
2 3 4
( ( ( )) ( ( )))
(59) If the inverse trigonometric functions take principal values, then cos −1
10 cos tan
3 −1 4
3 + 5 sin tan
2 −1 4
3 is equal to
(A) 0 (B) (C) π3
π
4 (D) π
6
√ √
(60) The number of real roots of the equation tan−1 x(x + 1) + sin−1 x2 + x + 1 = π
4 is:
(A) 0 (B) 4 (C) 1 (D) 2
(61) If tan−1 x−1 + tan−1 x+2
x+1
= 4,
π
then x =
x+2

(A) √12 (B) − √12 (C) ± 5 (D) ± 12
2
(5)
(62) If sin−1 x5 + cosec−1 4 = π
2, then x =
(A) 4 (B) 5 (C) 1 (D) 3
( )
(63) If sin sin−1 15 + cos−1 x = 1, then x is equal to
(A) 1 (B) 0 (C) 4
5 (D) 1
5
(64) If cos−1 x + cos−1 y + cos−1 z = π, then
(A) x2 + y 2 + z 2 + xyz = 0 (B) x2 + y 2 + z 2 + 2xyz = 0 (C) x2 + y 2 + z 2 + xyz = 1 (D) x2 + y 2 + z 2 + 2xyz = 1
( )
(65) Solve tan−1 xy − tan−1 x−y x+y is equal to

(A) π4 (B) −3π


4 (C) π
2 (D) π
3
[ ( )]2
(66) sin tan−1 34 =
(A) 3
5 (B) 5
3 (C) 9
25 (D) 25
9

3
(67) If x + 1
x = 2, the principal value of sin−1 x is
(A) π/4 (B) π/2 (C) π (D) 3π/2

(68) Find the principal value of cosec−1 (− 2)
(A) − π6 (B) π
3 (C) − π2 (D) − π4

(69) Write the function in the simplest form: tan−1 ( 1−cos x
1+cos x ), x <π
(A) 2x (B) x
2 (C) π
2 (D) π
−1 −1
(70) Solve sin (1 − x) − 2 sin x= π
2, then x is equal to
(A) 1
2 (B) 0, 12 (C) 1, 21 (D) 0
−1
(71) 1 + cot (sin 2
x) =
(A) 1
2x (B) x2 (C) 1
x2 (D) 2
x
(72) If tan x + 2cot
−1
then x =
−1
x= 2π
3 ,
√ √ √
(A) 2 (B) 3 (C) 3 (D) √3−1
( ) ( ) 3+1
(73) Find the value of tan (1) + cos−1 − 12 + sin−1 − 12
−1

(A) 3π
4 (B) 2π
3 (C) 5π
4 (D) 5π
6

(74) Write the function in the simplest form: tan−1 1+x2 −1
x ,x ̸= 0
(A) 12 sin−1 x (B) tan−1 x (C) 1
2 cot−1 x (D) 1
2 tan−1 x
(75) A solution of the equation tan−1 (1 + x) +tan−1 (1 − x) = π
2 is
(A) x = 1 (B) x = −1 (C) x = 0 (D) x = π
( )
(76) The domain of the function cosec−1 1+xx is :
( ] [ 1 ) ( ) [ )
(A) −1, − 2 ∪ (0, ∞)
1
(B) − 2 , 0 ∪ [1, ∞) (C) − 12 , ∞ − {0} (D) − 12 , ∞ − {0}
(77) tan−1 √a2x−x2 =

l
ia
( ) (x) (x) (a)
(A) a1 sin−1 xa (B) asin−1 a (C) sin−1
or a (D) sin−1 x
(78) If cos−1 35 − sin−1 54 = cos−1 x, then x =
ut
(A) 0 (B) 1 (C) −1 (D) 2
[ √ ]
tT

(79) tan sec−1 1 + x2 =


(A) 1
(B) x (C) √ 1 (D) √ x
Pv

x 1+x2 1+x2
( ) ( )
(80) The value of cos −1
cos 5π
3 + sin−1 cos 5π
3 is
n

(A) π
2 (B) 5π
3 (C) 10π
3 (D) 0
to

(81) Write the function in the simplest form: tan−1 √a2x−x2 , |x| <a
w

(A) tan−1 xa (B) tan−1 xa (C) sin−1 a


(D) sin−1 x
( ) x a
Ne

(82) Solve sin tan−1 x , |x| < 1 is equal to


(A) √1+x
1
2
(B) √1−x
1
2
(C) √ x
1+x2
(D) √ x
1−x2
(83) cos(tan−1 x) =

(A) 1 + x2 (B) √1+x
1
2
(C) 1 + x2 (D) None of these

(84) Find the principal value of cot ( 3)
−1

(A) 2π
3 (B) π
6 (C) π
2 (D) π
3
−1
(85) If sin x + sin−1 y = 2π
3 , then cos −1
x + cos−1 y =
(A) 2π
3 (B) π
3 (C) π
6 (D) π
−1
(86) If 4sin x + cos −1
x = π, then x is equal to

(A) 0 (B) 12 (C) − 2
3
(D) √1
2
(87) If tan−1 x + tan−1 y + tan−1 z = π2 , then
(A) x + y + z − xyz = 0 (B) x + y + z + xyz = 0 (C) xy + yz + zx + 1 = 0 (D) xy + yz + zx − 1 = 0
(88) Ifsin−1 12 = tan −1
x, then x =

(A) 3 (B) √13 (C) √1
2
(D) None of these
[ ( )]
(89) The principal value of sin−1 sin 2π
3 is
(A) − 2π (B) 2π
(C) 4π
(D) None of these
3
[ ( 3
)] 3

(90) Find the value of tan −1


2 cos 2 sin−1 12
(A) π
(B) π
(C) π
(D) π
2 4
( ) 6 3
cos x−sin x
(91) Write the function in the simplest form: tan−1 cos x+sin x

(A) − π4 + x (B) − π4 − x (C) π


4 −x (D) π
4 +x

4
(92) tan−1 1 + tan−1 2 + tan−1 3 =
(A) π
2 (B) π4 (C) 0 (D) None of these
( ( ))
(93) Find the values of sin π3 − sin−1 − 12 is equal to
(A) 1
(B) 1
(C) 1 (D) 1
[2 ( ) ] 3 4
(94) sin cos−1 35 + tan−1 2 =
(A) √25 (B) −2
√ (C) √3 (D) −3

[ ( √ )] 5 5 5

(95) sin π2 − sin−1 − 23 =


√ √
(A) 2
3
(B) − 2
3
(C) 1
2 (D) − 12
( )
(96) 2π − sin−1 4
5 + sin−1 5
13 + sin−1 16
65 is equal to
(A) 7π
4 (B) 5π
4 (C) 3π
2 (D) π
2
( ) ( )
(97) sin−1 35 + tan −1 1
=
7 (4)
(A) π4 (B) π
2 (C) cos−1 5 (D) π
(98) If cot −1
x + tan −1
3= 2,
π
then x =
(A) 1/3 (B) 1/4 (C) 3 (D) 4

(99) Find the principal value of tan−1 (− 3)
(A) π
3 (B) − π3 (C) − π6 (D) 5π
6
−1
(100) If sin x= π
5 for some x ∈ (−1, 1), then the value of cos−1 x is
(A) 3π
10 (B) 5π
10 (C) 7π
10 (D) 9π
10

l
ia
or
ut
tT
Pv
n
to
w
Ne

5
NEWTON PRIVATE TUTORIAL
Subject : Mathematics Paper Set : 1
trigo-2 Date : 17-08-2024
Standard : 12
Total Mark : 400 (Answer Key) Time : 1H:0M

Mathematics - Section A (MCQ)

1-B 2-B 3-A 4-B 5-D 6-A 7-D 8-D 9-B 10 - A


11 - D 12 - A 13 - A 14 - C 15 - A 16 - B 17 - C 18 - C 19 - A 20 - B
21 - B 22 - B 23 - B 24 - A 25 - D 26 - B 27 - C 28 - A 29 - D 30 - B
31 - A 32 - C 33 - D 34 - D 35 - D 36 - D 37 - A 38 - A 39 - B 40 - B
41 - D 42 - C 43 - A 44 - B 45 - C 46 - D 47 - D 48 - C 49 - B 50 - A

Mathematics - Section B (MCQ)

51 - C 52 - A 53 - B 54 - C 55 - B 56 - C 57 - C 58 - C 59 - C 60 - A
61 - C 62 - D 63 - D 64 - D 65 - A 66 - C 67 - B 68 - D 69 - B 70 - D

l
ia
71 - C 72 - C 73 - A 74 - D 75 - C 76 - D 77 - C
or 78 - B 79 - B 80 - A
81 - D 82 - C 83 - B 84 - B 85 - B 86 - B 87 - D 88 - B 89 - D 90 - B
ut
91 - C 92 - D 93 - C 94 - A 95 - C 96 - C 97 - A 98 - C 99 - B 100 - A
tT
Pv
n
to
w
Ne

You might also like