IAS -EDEXCEL
PURE MATHS 1&2
Transformation of
Trigonometric Functions
Menuka Suwinda
ht
tp
s:/
9. (i)
br/
y
iti
sh
st
3
ud
y = f (x)
en
tro
2
om
.co
1
m
/
–2π –π O π 2π x
–1
–2
–3
Figure 3
Figure 3 shows part of the graph of the trigonometric function with equation y = f (x)
(a) Write down an expression for f (x)
(2)
On a separate diagram,
π
(b) sketch, for –2π < x < 2π , the graph of the curve with equation y = f x +
4
Show clearly the coordinates of all the points where the curve intersects the
coordinate axes.
(3)
(ii)
–2π –π O π 2π x
–1
y = g (x)
Figure 4
Figure 4 shows part of the graph of the trigonometric function with
equation y = g (x)
(a) Write down an expression for g(x)
(2)
On a separate diagram,
(b) sketch, for –2π < x < 2π , the graph of the curve with equation y = g (x) – 2
Show clearly the coordinates of the y intercept.
(2)
24
*P72868RRA02432*
ht
tp
s:/
Question 9 continued
br/
iti
_____________________________________________________________________________________
sh
st
ud
en
_____________________________________________________________________________________
tro
om
_____________________________________________________________________________________
.co
m
/
25
*P72868RRA02532* Turn over
ht
tp
s:/
Question 9 continued
br/
iti
_____________________________________________________________________________________
sh
st
ud
en
_____________________________________________________________________________________
tro
om
_____________________________________________________________________________________
.co
m
/
26
*P72868RRA02632*
6.
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
O x
Figure 2
Figure 2 shows a plot of part of the curve C1 with equation
y = 5 cos x
with x being measured in degrees.
The point P, shown in Figure 2, is a minimum point on C1
(a) State the coordinates of P
(2)
The point Q lies on a different curve C2
Given that point Q
• is a maximum point on the curve
• is the maximum point with the smallest x coordinate, x > 0
(b) find the coordinates of Q when
(i) C2 has equation y = 5 cos x – 2
(ii) C2 has equation y = –5 cos x
(4)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
14
*P74310A01428*
Question 6 continued
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 6 is 6 marks)
15
*P74310A01528* Turn over
9. In this question you must show detailed reasoning.
Solutions relying entirely on calculator technology are not acceptable.
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
(i) Solve, for 0 x < 360°, the equation
sin x tan x = 5
giving your answers to one decimal place.
(6)
(ii)
y
O R θ
Figure 1
Figure 1 shows a sketch of part of the curve with equation
3
y A sin 2 2
8
where A is a constant and θ is measured in radians.
The points P, Q and R lie on the curve and are shown in Figure 1.
Given that the y coordinate of P is 7
(a) state the value of A,
(1)
(b) find the exact coordinates of Q,
(3)
(c) find the value of θ at R, giving your answer to 3 significant figures.
(4)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
26
*P74311A02632*
Question 9 continued
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
27
*P74311A02732* Turn over
Question 9 continued
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
28
*P74311A02832*
10.
y
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
C1
P
O x
Figure 4
Figure 4 shows a sketch of part of the curve C1 with equation
x
y 3cos x0
n
where n is a constant.
The curve C1 cuts the positive x-axis for the first time at point P(270, 0), as shown
in Figure 4.
(a) (i) State the value of n
(ii) State the period of C1
(2)
The point Q, shown in Figure 4, is a minimum point of C1
(b) State the coordinates of Q.
(2)
The curve C2 has equation y 2sin x k , where k is a constant.
12 3
The point R a, and the point S a, , both lie on C2
5 5
Given that a is a constant less than 90
(c) find the value of k.
(2)
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
28
*P74316A02832*
Question 10 continued
_____________________________________________________________________________________
DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
(Total for Question 10 is 6 marks)
29
*P74316A02932* Turn over