Engineering Math for Bio Majors
Engineering Math for Bio Majors
COURSE MATERIAL
____________________________________________________________________________
Definition 1. Differentiation
The rate at which a function changes with respect to the independent variable is called the
derivative of the function.
(i.e) If y= f(x) be a function, where x and y are real variables which are independent and
                                                                                dy
dependent variables respectively, then the derivative of y with respect to x is dx.
Definition 2. Derivative of addition or subtraction of functions
                                              d[f(x) ± g(x)]   d[f(x)]   d[g(x)]
If f(x) and g(x) are two functions of x, then                =         ±
                                                      dx                    dx            dx
    2.
         d n
         dx
               
            x  nx n1 .
    3.
         d
            log e x   1 .
         dx              x
    4.
         d x
         dx
               
            a  a x log a
    5.
         d x
         dx
               
            e  ex .
    6.
         d
            sin x   cos x .
         dx
    7.
         d
            cos x    sin x .
         dx
    8.
         d
            tan x   sec 2 x .
         dx
       9.
            d
               cot x    cos ec 2 x .
            dx
       10.
             d
                sec x   sec x tan x .
             dx
       11.
             d
                cos ecx    cos ecx cot x .
             dx
       12.
             d
                 
                sin 1 x 
                            1
                                .
             dx            1 x2
                            1
       13.
             d
                 
                cos 1 x       .
             dx            1 x2
       14.
             d
             dx
                 
                tan 1 x 
                             1
                              
                           1 x2
                                 .
                            1
       15.
             d
             dx
                 
                cot 1 x     
                           1 x2
                                 .
       16.
             d
                 
                sec 1 x     
                              1
                                   .
             dx            x 1 x2
                                1
       17.
             d
                 
                cos ec 1 x          
             dx               x 1 x2
   Problems
   I. Ordinary Differentiation Problems
                                  𝟏
1. Differentiate 𝐱 + 𝐱
                                          1
   Solution Let 𝑦 = x + x
                                               1
                      dy       d(x + )                 d(x)   d(x−1 )          1
                                               x
             Then dx =                dx
                                                   =    dx
                                                            +   dx
                                                                        =1 − x2
           (1−sinx)cosx+cosx(1+sinx)
       =        (1+sinx)(1−sinx)
1. Differentiate 𝐱 𝐬𝐢𝐧𝐱
       Solution: Let y = x sinx
       Taking log on both sides, we get logy = sinx logx
         Now differentiating with respect to x
              1 dy                        1
         ⇒     y dx
                    = logx(cosx) + sinx x (Using         product rule)
             dy                            1
          ⇒ dx = y (logx( cosx) + sinx x)
             dy      y(xcosx logx+sinx)
          ⇒ dx =              x
             𝑑𝑦       sinx xcosx logx+sinx
          ⇒ 𝑑𝑥 = x         (        x
                                          )
                                   𝐝𝐲      𝐥𝐨𝐠𝐱
2. If   𝐱 𝐲 = 𝐞𝐱−𝐲, prove that 𝐝𝐱 = (𝟏+𝐥𝐨𝐠𝐱)𝟐
                          y      x−y
   Solution: Given x = e
      Taking log on both sides, we get logx y = logex−y
         ⇒ ylogx = (x − y)log e e
         ⇒ ylogx = (x − y)………(1)
            1         dy        dy
         ⇒ x y + logx dx = 1 − dx
                      dy   dy              y
         ⇒ logx          +      =1−
                      dx   dx              x
           dy                           x−y
         ⇒ dx
              (logx + 1) =               x
           dy      x−y
         ⇒ dx = x(1+logx)
            dy      ylogx
         ⇒ dx = x(1+logx)….(2)
         Again from (1) y + ylogx = x
                            y     1
         ⇒ y(1 + logx) = x, x = 1+logx
                 dy       logx
         ⇒            =
                 dx     (1+logx)2
                     …∞                     𝐝𝐲
                  𝐱𝐱
3. If y = 𝐱            , then find
                                            𝐝𝐱
   Solution:
                             x…∞
         Given y = x x    = xy
         Taking log on both sides
         logy = ylogx
         Differentiating w. r. to x we get
            1 dy     1          dy
         ⇒ y dx = y x + logx dx
                 1          dy          y
         ⇒( − logx)              =
                 y          dx          x
                 1−ylogx dy         y
         ⇒(         y
                        ) dx    =x
             dy       y    y                    y2
         ⇒           = (       )        =
             dx       x 1−ylogx             x(1−ylogx)
                                            𝐱 𝟐 +𝟏
4. Differentiate 𝐲 = 𝐥𝐨𝐠 (𝐱 𝟐 −𝟏)
   Solution:
   y = log(x 2 + 1) − log(x 2 − 1)
        dy         1         1
   ⇒         =         2x − 2 2x
        dx       x2 +1     x −1
        dy              1        1
   ⇒dx = 2x (x2 +1 − x2 −1)
      dy                x2 −1−(x2 +1)                   x2 −1−x2 −1)              −2)      −4x
   ⇒dx = 2x ((x2 +1)(x2 −1)) = 2x (                         x4 −1
                                                                     )     = 2x (x4 −1) = x4 −1
                                          𝟐
5. Differentiate 𝐲 = 𝐞𝟑𝐱 +𝟐𝐱+𝟑
            dy       2
   Solution: dx = e3x +2x+3 (6x + 2)
   Problems
         𝒅𝒚
1. Find 𝒅𝒙 , if 𝒙𝟑 +𝒚𝟑 = 𝟑𝒂𝒙𝒚
   Solution:
      Differentiating w.r.to x, we get
                    dy         dy
      ⇒ 3x 2 + 3y 2 dx = 3a [x dx + y]
                     dy              dy
       ⇒ 3y 2 dx − 3ax dx = 3ay − 3x 2
               dy
       ⇒          (3y 2 − 3ax)            = 3ay − 3x 2
               dx
               dy   (3ay−3x2 )                3(ay−x2 )         (ay−x2 )
       ⇒            =                 =                     =
             dx          3y2 −3ax             3(y2 −ax)         (y2 −ax)
            𝐝𝐲
2. Find       𝐱 𝟐 + 𝐲 𝟐 = 𝟏𝟔
                , 𝐢𝐟
            𝐝𝐱
   Solution:
      Given x 2 + y 2 = 16
      ⇒ y 2 = 16 − x 2
       ⇒ y = √16 − x 2
               dy        1                 −1⁄
       ⇒ dx = 2 (16 − x 2 )                   2     × (−2x)
       dy                    x            x
    ⇒ dx = −                     = −y
                     √16−x2
               𝒅𝒚
3. Find 𝒅𝒙, if 𝐱 = 𝐚𝐭 𝟐 , 𝐲 = 𝟐𝐚𝐭
   Solution: Given x = at 2 , y = 2at
       dx        dy
       dt
          = 2at, dt = 2a
                    dy         dy dx          2a        1
       Now               =       /        =         =
                    dx         dt dt          2at       t
            𝐝𝐲               𝟐    𝟑
4. Find , if 𝐲 + 𝐱 − 𝐱𝐲 + 𝐜𝐨𝐬𝐲 = 𝟎
         𝐝𝐱
   Solution:
       Given y 2 + x 3 − xy + cosy = 0
             dy          d             dy
       ⇒ 2y dx + 3x 2 − dx (xy) − siny dx = 0
                                     dy                     dy
           ⇒ (2y − siny) dx + 3x 2 − (x dx + y × 1) = 0
                                              dy
           ⇒ (2y − siny − x) dx + 3x 2 − y = 0
                                              dy
           ⇒ (2y − siny − x)                       = y − 3x 2
                                              dx
               dy            y−3x2
           ⇒        =
               dx        2y−siny−x
   IV.Successive Differentiation
   The process of differentiating a given function again and again is called as successive
   differentiation and the results of such differentiation are called successive derivatives.
Notations:
   dy d 2 y d 3 y           th
                                              dny
i)   ,     ,      ,....... n order derivative: n
   dx dx 2 dx 3                               dx
ii) f ′(x) , f ′′(x) , f ′′′(x),…..., nth order derivative: f   n
                                                                    x 
iii) Dy,D2y,D3y……., nth order derivative: Dny
iv) y′ , y′′ , y′′′ ,……, nth order derivative: y(n)
v) y1,y2,y3,……..,nth order derivative: yn
   Problems
                                     d2y          dy
1. If y=sin(sinx), prove that           2
                                          + tan x    + y cos 2 x  0
                                     dx           dx
Solution:
Given y=sin(sinx)…………………(1)
Differentiating (1) with respect to x we get,
dy
   = cos(sinx).cosx………………..(2)
dx
Differentiating (2) with respect to x we get,
d2y
     =cos(sinx)(-sinx)+cosx(-sin(sinx).cosx) [Product Rule]
dx 2
d2y
     = -sinxcos(sinx) – cos2xsin(sinx)……………..(3)
dx 2
Therefore,
d2y          dy
   2
     + tan x    + y cos 2 x  -sinxcos(sinx) – cos2xsin(sinx) +(tanx) cos(sinx).cosx +y cos2x
dx           dx
                              = - sinxcos(sinx) – y cos2x + sinxcos(sinx) + y cos2x
                              =0
                                                                d2y
2.If x = a(cost + tsint), y = a(sint – tcost), find
                                                                dx 2
Solution:
                   a sin t  t cos t  sin t   at cos t.
             dx
             dt
                   acos t  t sin t  cos t   at sin t.
             dy
             dt
                    dy
             dy dt at sin t
                                    tan t.
             dx dx at cos t
                    dt
            d y d  dy  d  dy  dt
              2
                                                     sec 2 t    1
                                                          .
            dx  2
                     dx  dx  dt  dx  dx at cos t at cos 3 t
                                                                            d2y   h 2  ab
3. If ax  2hxy  by  1 then prove that                                        
               2                            2
                                                                            dx 2 hx  by 3
Solution:
                   Given ax  2hxy  by  1 …………………………(1)
                                        2                  2
                   h      2          
                                ab  y  x
                                              ax  hy  
                                                                            
                                              hx  by   h 2  ab ax 2  by 2  2hxy
                                                            
                                                                                                      
                                   hx  by 2                      hx  by 3
                               d2y   h 2  ab
               Thus,                           (from(1))
                               dx 2 hx  by 3
nth derivative of some standard functions:
3.               1                                                           1n n!a n
               ax  b                                                       ax  b n1
4.             log ax  b                                                  1n1 n  1!a n
                                                                                ax  b n
5.             sin ax  b                                                          n          
                                                                            a n sin      ax  b 
                                                                                     2           
6.             cosax  b                                                          n          
                                                                            a n cos     ax  b 
                                                                                    2           
                                           3
4. Find yn, where y 
                                   ( x  1)( 2 x  1)
Solution:
   Resolving into partial fractions,
          2         1
     y        
        2x 1 x  1
           2 1 2 n n!  1 n!
                  n            n
     yn               
            2 x  1n1 x  1n1
5. Find the nth derivative of log(9x2-1).
Solution:
             Let y  log( 9 x  1)  log 3x  13x  1
                                   2
              yn 
                       1n1 n  1!3n   1n1 n  1!3n
                           3x  1n               3x  1n
                                           7 x 5
6. Find yn, where y  e
Solution:
                          7 x 5
             Let y  e
                        d n 7 x 5
                                       
                                    d n 5 7x
                                                                    
                                                  n
                                              5 d
             Then y n  n e         n e e e      n
                                                     e7x
                        dx          dx          dx
               yn  e 7 e
                       5 n 7x
     
          1n1 n  1! x 2  n 1n2 n  2!2 x   nn  1 1n3 n  3!2
                x n                    x n1                    2 x 
                                                                          n2
               2 1 n  3!
                       n2
           
                    x n2
                                             1                             1
   8. If y = x2ex, show that y n              n(n  1) y 2  n(n  2) y1  (n  1)( n  2) y where yn stands for
                                             2                             2
    dny
    dx n
   Solution:
                  Take u =ex ,v = x2
                                         d n1 x                          d n2
    yn           
               dn 2 x
                    x e      
                          dn x 2
                               e x    
                                     nc         e             d 2
                                                                        
                                                                   x  nc2 n 2 e x 
                                                                                       d2 2
                                                                                            x 
                                         dx n1
                                       1
               dx n       dx n                                  dx        dx           dx 2
                  ( since all the other terms are zero)
            y n  e x x 2  2nxe x  nn  1e x
           Now,
                  y1  x 2 e x  2 xex , y2  x 2 e x  4 xex  2e x
                                                          
                                               nn  2 x 2 e x  2 xex        n  1n  2x 2 e x
                                                                                               2
              nn  1              n  1n  2  xex 2nn  1  2nn  2  nn  1e x
     x 2e x            nn  2                
              2                           2
   =yn on simplification.
   V. Partial Differentiation
   Consider z = f(x, y), here z is a function of two independent variables x and y. z can be
   differentiated with respect to x or y but when we are differentiating z with respect to x (or y ) we
   must keep the variable y (or x ) as a constant.
   Notations:
   Let z=f(x,y)
   First order partial derivatives of f(x, y) with respect to x and y.
    ∂f        ∂f
       = fx ,    = fy
    ∂x            ∂y
   Second order partial derivatives of f(x, y) with respect to x and y
    ∂2 f              ∂2 f
           = fxx ,           = fyy
    ∂x2               ∂y2
   Second order mixed partial derivatives of f(x, y)
    ∂2 f               ∂2 f
            = fxy,            = fyx
   ∂x ∂y              ∂y ∂x
   Problems:
                                        𝛛𝐮   𝛛𝐮
1. If u = 𝐱 𝟑 + 𝐲 𝟑 + 𝟑𝐱𝐲, find         𝛛𝐱
                                           , 𝛛𝐲
   Solution: Given If u = x 3 + y + 3xy  3
   ∂u                 ∂u
   ∂x
      = 3x 2 + 3y , ∂y = 3y 2 + 3x
                                                               𝛛𝐮      𝛛𝐮        𝛛𝐮           𝟑
2. If u = log (𝐱 𝟑 + 𝐲 𝟑 + 𝐳 𝟑 − 𝟑𝐱𝐲𝐳), show that              𝛛𝐱
                                                                    + 𝛛𝐲 +       𝛛𝐳
                                                                                      =   (𝐱 +𝐲 +𝐳)
   Solution: u = log (x 3 + y 3 + z 3 − 3xyz)
   ∂u            1
   ∂x
      = x3 + y3 + z3 −3xyz 3x 2 − 3yz ,
   ∂u            1
   ∂y
      = x3 + y3 + z3 −3xyz 3y 2 − 3xz,
    ∂u            1
    ∂z
       = x3 + y3 + z3 −3xyz 3z 2 − 3xy
        ∂u    ∂u      ∂u    3x2 +3y2 +3z2 −3yz−3xz−3xy
   Now ∂x + ∂y + ∂z =             x3 + y3 + z3 −3xyz
                                 3(x2 + y2 + z2 −xy−yz−zx )                     3
                         = (x+y+z)(x2 + y2 + z2 −xy−yz−zx )                = x+y+z
                     𝟐               𝟐
3. 𝐈𝐟 𝐟(𝐱, 𝐲) = 𝐱 𝐬𝐢𝐧 𝐲 + 𝐲 𝐜𝐨𝐬 𝐱, then find its all first and 2nd order partial derivatives.
   Solution: Given f(x, y) = x 2 sin y + y 2 cos x
   fx = 2x sin y − y 2 sin x; fy = x 2 cos y + 2y cos x.
   fxx = 2 sin y − y 2 cos x; fyy = −x 2 sin y + 2 cos x;
   fxy = 2x cos y − 2y sin x; fyx = 2x cos y − 2y sin x.
                𝐲
4. If 𝐟(𝐱, 𝐲) = 𝐱 𝐥𝐨𝐠 𝐱 , 𝐭𝐡𝐞𝐧 𝐟𝐢𝐧𝐝 𝐢𝐭𝐬 𝐚𝐥𝐥 𝟏𝐬𝐭 𝐚𝐧𝐝 𝟐𝐧𝐝 𝐨𝐫𝐝𝐞𝐫 𝐝𝐞𝐫𝐢𝐯𝐚𝐭𝐢𝐯𝐞𝐬.
                              y 1                –y       y                   logx
   Solution: fx =                   + logx (          )=     (1 − logx), fy =       ,
                              x x                x2       x2                    x
               y          1          2y                       y                                y
    fxx =           (− x ) −               (1   − log x) = x3 (−1 − 2 (1 − log x        )) =      (log x   −3);
               x2                    x3                                                        x3
                                1                               1 1    1           1
     fyy = 0, fyx =                   (1 −      log x); fxy = x x – x2 log x = x2       (1 − log x).
                                x2
          𝛛𝐮 𝛛𝐮 𝛛𝐮
5. Find     , ,
          𝛛𝐱 𝛛𝐲 𝛛𝐳
                          for 𝐮 = 𝐬𝐢𝐧(𝐚𝐱 + 𝐛𝐲 + 𝐜𝐳)
   Solution:
   ∂u
   ∂x
      = a cos(ax + by + cz)
   ∂u
        = b cos(ax + by + cz)
   ∂x
   ∂u
   ∂x
        = c cos(ax + by + cz)
   Euler’s theorem:
   1). If f(x, y) is a homogeneous function of degree n, then
         ∂f      ∂f
       x ∂x + y ∂y = nf
    Solution:
              1        1    logx−logy
    f(x, y) = 2 +         + 2 2
                x      xy     x +y
                           1       1    logtx−logty
    Now f(tx, ty)      = (tx)2 + txty + (tx)2 +(ty)2
                                                               tx
                             1               1      log
                       =               +        + 2 2 ty 2
                            t2 x2           2
                                           t xy  t (x +y )
                           1       1        1        logx−logy
                      = t2 (x2 + xy +                  x2 +y2
                                                               )
                                                1      1   logx−logy
                               = t −2 ( 2 +               + 2 2 )
                                                x      xy    x +y
    Therefore f(x, y) is a homogeneous function of degree -2
                             𝜕𝑓   𝜕𝑓
    By Euler’s theorem , 𝑥 𝜕𝑥 + y 𝜕𝑦 = −2𝑓
          𝜕𝑓    𝜕𝑓
   ⇒𝑥 𝜕𝑥 + y 𝜕𝑦 + 2𝑓 = 0
                     𝐱 𝟑 +𝐲 𝟑                                  𝛛𝐮         𝛛𝐮
4. If u = t𝐚𝐧−𝟏 (      𝐱−𝐲
                              ),   show that 𝐱                 𝛛𝐱
                                                                    + 𝐲   𝛛𝐲
                                                                               = 𝐬𝐢𝐧𝟐𝐮
                                                    x3 +y3
   Solution: Given u = tan−1 (                       x−y
                                                           )
                  x3 +y3
    ⇒ tanu = (     x−y
                         )
                          x3 +y3
    Let z =    tanu = ( x−y )
    And z is a homogeneous function of order 2.
                   ∂u     ∂u      f(u)
We know that x ∂x + y ∂y = n f′(u)
Here f(u) = tanu
⇒ f ′ (u) = sec 2 u
Therefore by the result,
  ∂u      ∂u      tanu     sinu
x ∂x + y ∂y = 2 sec2 u = 2 cosu × cos2 u
                    = 2sinu × cosu = sin2u
                   (Or)
                     ∂z    ∂z
By Euler’s theorem, x + y = nz
                             ∂x      ∂y
        2     ∂u        2 ∂u
⇒   xsec u + ysec u             = 2z
              ∂x            ∂y
              ∂u            ∂u
⇒   xsec 2 u + ysec 2 u         = 2tanu
              ∂x            ∂y
        1 ∂u          1 ∂u         sinu
⇒   x cos2 u ∂x + y cos2 u ∂y = 2 cosu
        1 ∂u         1 ∂u        sinu
⇒   x cosu ∂x + y cosu ∂y = 2 1
       ∂u      ∂u
⇒   x ∂x + y ∂y = 2sinu cosu = sin 2u.