02-Mod (E+h+s)
02-Mod (E+h+s)
METHODS OF DIFFERENTIATION
The process of calculating derivative is called differentiation.
1. DERIVATIVE OF f(x) FROM THE FIRST PRINCIPLE :
y f(x x) f(x) dy
Obtaining the derivative using the definition Lim Lim f '(x) is
x 0 x x 0 x dx
called calculating derivative using first principle or ab initio or delta method.
dy dy
Note : can also be represented as y1 or y' or Dy or ƒ '(x). represents instantaneous rate of
dx dx
change of y w.r.t. x.
E 3
JEE-Mathematics
3. FUNDAMENTAL THEOREMS :
If f and g are derivable functions of x, then,
d df dg d df
(a) (f g) (b) (cf) c , where c is any constant
dx dx dx dx dx
d dg df
(c) (fg) f g known as “PRODUCT RULE”
dx dx dx
df dg
g f
d f dx dx where g 0 known as “QUOTIENT RULE”
(d)
dx g g2
dy dy du
(e) If y = f(u) & u = g (x) then . known as “CHAIN RULE”
dx du dx
dy du
Note : In general if y = f(u) then f '(u). .
dx dx
dy
Illustration 2 : If y = ex tan x + xlogex, find .
dx
Solution : y = ex.tan x + x · logex
On differentiating we get,
dy 1
= ex · tan x + ex · sec2x + 1 · log x + x ·
dx x
dy
Hence, = ex(tanx + sec2 x) + (logx + 1) Ans.
dx
log x dy
Illustration 3 : If y = + ex sin2x + log5x, find .
x dx
Solution : On differentiating we get,
1
·x log x .1
dy d log x d x d x
(e sin 2x) (log 5 x)
dx dx x dx dx x2
1
+ exsin2x + 2ex.cos2x +
x log e 5
dy 1 log x x 1
Hence, + e (sin2x + 2cos2x) + Ans.
dx x 2
x log e 5
dy
Illustration 4 : If y = loge (tan 1 1 x2 ) , find .
dx
Solution : y = loge (tan 1 1 x2 )
On differentiating we get,
1 1 1
= . . .2x
1
tan 1 x 1 ( 1 x ) 2 1 x2
2 2 2
x x
= Ans.
tan 1 1 x 2 1 1 x 2 1 x 2 tan 1 1 x 2 2 x 2 1 x 2
2
4 E
Methods of Differentiation
Do yourself -2 :
dy
(i) Find if -
dx
(a) y = (x + 1) (x + 2) (x + 3) (b) y = e5x tan(x2 + 2)
4. LOGARITHMIC DIFFERENTIATION :
To find the derivative of a function :
(a) which is the product or quotient of a number of functions or
(b) of the form [f(x)]g (x) where f & g are both derivable functions.
It is convenient to take the logarithm of the function first & then differentiate.
dy
Illustration 5 : If y = (sin x)n x, find
dx
Solution : n y = n x. n (sin x)
On differentiating we get,
1 dy 1 cos x dy n(sin x)
n (sinx) + n x. = (sinx)n x cot x n x Ans.
y dx x sin x dx x
1 y x 2 dy
Illustration 6 : If x = exp tan 2 , then equals -
x dx
(A) x [1 + tan (log x) + sec2 x] (B) 2x [1 + tan (log x)] + sec2 x
(C) 2x [1 + tan (log x)] + sec x (D) 2x + x[1 + tan(logx)]2
Solution : Taking log on both sides, we get
y x2
log x = tan–1 2 tan (log x) = (y – x2) / x2 y = x2 + x2 tan (log x)
x
On differentiating, we get
dy
= 2x + 2x tan (log x) + x sec2 (log x) 2x [1 + tan (log x)] + x sec2 (log x)
dx
= 2x + x[1 + tan(logx)]2 Ans. (D)
x (1 2x)
1/2 2/3
dy
Illustration 7 : If y = find
(2 3x) (3 4x)
3/4 4/5
dx
1 2 3 4
Solution : n y = n x + n (1 – 2x) – n (2 – 3x) – n (3 – 4x)
2 3 4 5
On differentiating we get,
1 dy 1 4 9 16
y dx 2x 3(1 2x) 4(2 3x) 5(3 4x)
dy 1 4 9 16
y Ans.
dx 2x 3(1 2x) 4(2 3x) 5(3 4x)
E 5
JEE-Mathematics
Do yourself -3 :
dy dy 2 3 4
(i) Find if y = xx (ii) Find if y e x .e x .e x .e x
dx dx
5. PARAMETRIC DIFFERENTIATION :
dy dy / d ƒ '()
If y f() & x g() where is a parameter, then
dx dx / d g'()
dy
Illustration 8 : If y = a cos t and x = a(t – sint) find the value of at t =
dx 2
dy a sin t dy
Solution : 1 Ans.
dx a(1 cos t) dx t
2
6 E
Methods of Differentiation
Do yourself-4 :
dy
(i) Find at t if y = cos4t & x = sin4t .
dx 4
(ii) Find the slope of the tangent at a point P(t) on the curve x = at2 , y = 2at.
(iii) Differentiate xnx with respect to nx.
dy
Illustration 11 : If xy + yx = 2, then find .
dx
Solution : Let u = xy and v = yx
du dv
u+v=2 0
dx dx
Now u = xy and v = yx
n u = y nx and n v = x n y
1 du y dy 1 dv x dy
+ nx and = n y +
u dx x dx v dx y dx
du y dy dv x dy
= xy nx and yx n y
dx x dx dx y dx
x y
y ny x y .
y dy x dy dy
xy n x + yx ny = 0 x Ans.
x dx y dx dx y x x
x nx y . y
Aliter :
(x, y) xy yx 2 0
dy / x yx y 1 y x ny
dx / y x y nx xy x 1
E 7
JEE-Mathematics
Do yourself -5 :
dy
(i) Find , if x + y = sin(x – y)
dx
(ii) If x2 + xey + y = 0, find y', also find the value of y' at point (0, 0).
a2 x2 x = asin or acos
a2 x2 x = tan or acot
x2 a2 x = asec or acosec
ax ax
or x = acos or acos2
ax ax
8 E
Methods of Differentiation
2x
Illustration 13 : If f(x) = sin–1 then find
1 x2
1
(i) f'(2) (ii) f' (iii) f'(1)
2
Solution : x = tan, where y = sin–1(sin2)
2 2
2 2
2
2 tan 1 x x 1
1
y = 2 2 f(x) = 2 tan x 1 x 1
2 2 ( 2 tan 1 x)
x 1
( 2) 2 2
2
1 x 2 x 1
2
f ' (x) = 1 x 1
1 x
2
2
1 x 2 x 1
2 1 8
(i) f ' (2) = (ii) f' (iii) f ' (1+) = –1 and f ' (1–) = +1 f ' (1) does not exist Ans.
5 2 5
d 2 1 1 x
Illustration 14 : sin cot =
dx
1 x
1 1
(A) (B) 0 (C) (D) –1
2 2
1 x
Solution : Let y = sin2 cot 1 . Put x = cos 2 0,
1 x 2
1 cos 2
y = sin2 cot–1 = sin2 cot–1 (cot )
1 cos 2
1 cos 2 1 x 1 x
y = sin2 =
2 2 2 2
dy 1
. Ans (A)
dx 2
E 9
JEE-Mathematics
1 x2 1 1 1 x2
Illustration 15 : Obtain differential coefficient of tan–1 with respect to cos–1
x 2 1 x2
Solution : Assume u = tan–1, v = cos–1
The function needs simplification before differentiation Let x = tan ,
2 2
sec 1 –1 1 cos
u = tan–1 = tan = tan
–1
tan =
tan sin 2 2
1 sec 1 cos
v = cos–1 = cos–1 = cos–1 cos = u = v
2 sec 2 2 2
du
= 1. Ans.
dv
Do yourself : 6
(i) If y = cos–1(4x3 – 3x), then find :
3 3
(a) ƒ ' , (b) ƒ ' (0), (c) ƒ ' .
2 2
1
Illustration 16 : If g is inverse of f and f'(x) = , then g'(x) equals :-
1 xn
(A) 1 + xn (B) 1 + [f(x)]n (C) 1 + [g(x)]n (D) none of these
Solution : Since g is the inverse of f. Therefore
f(g(x)) = x for all x
d
f(g(x)) 1 for all x
dx
1
f'(g(x)) g'(x) = 1 g'(x) = = 1 + (g(x))n Ans. (C)
f '(g(x))
Do yourself -7 :
(i) If g is inverse of ƒ and ƒ (x) = 2x + sinx; then g’(x) equals:
3 1 1
(A) (B) 2 + sin–1x (C) 2 + cos g(x) (D)
x 2
1 x2 2 cos(g(x))
10 E
Methods of Differentiation
10. HIGHER ORDER DERIVATIVES :
Let a function y = ƒ (x) be defined on an interval (a, b). If ƒ (x) is differentiable function, then its
derivative ƒ '(x) [or (dy/dx) or y'] is called the first derivative of y w.r.t. x. If ƒ '(x) is again
differentiable function on (a, b), then its derivative ƒ "(x) [or d2y/dx2 or y"] is called second
derivative of y w.r.t. x. Similarly, the 3rd order derivative of y w.r.to x, if it exists, is defined by
d3y d d 2 y
and denoted by ƒ '''(x) or y''' and so on.
dx 3 dx dx 2
dy dy / d d 2 y d dy dx
Note : If x = f() and y = g() where '' is a parameter then &
dx dx / d dx 2 d dx d
d n y d d n 1y dx
In general .
dx n d dx n 1 d
dy D 1
(iii) non existent for | x | 1
dx
2 –/2
for | x | 1
1 x 2
dy
(iii) non existent for x0 x
dx –1 0 1
2
for x0
1 x2
(iv) Increasing in (0, ) & Decreasing in (,0)
E 11
JEE-Mathematics
2 tan 1 x | x | 1
12x
(c) y f(x) tan 2 tan 1 x x 1
1 x2 ( 2 tan 1 x)
x 1
Important points :
(i) Domain is R – {1, – 1} & range is ,
2 2
(ii) It is neither continuous nor differentiable f(x)
at x = 1, –1
/2
2
| x | 1
dy 1 x 2
(iii) x
dx
non existent | x | 1 –1 0 1
1 1
( 3sin x) if 1 x
2
1 1
(d) y f(x) sin (3x 4x ) 3sin 1 x
1 3
if x
2 2
3sin 1 x 1
if x 1
2
Important points : y
D
2 , 2 I
(ii) Continuous everywhere in its domain x
–1 0 1
1 1
(iii) Not derivable at x ,
2 2 I
D
3 1 1
if x ( , )
dy 1 x 2 2 2
(iv)
dx 3 1 1
if x (1, ) ( ,1)
1 x
2 2 2
1 1 1 1
(v) Increasing in , and Decreasing in 1, 2 2 ,1
2 2
12 E
Methods of Differentiation
1 1
3cos x 2 if 1 x
2
1 1
(e) y f(x) cos1 (4x 3x) 2 3cos 1 x
3
if x
2 2
3cos1 x 1
if x 1
2
Important points :
(i) Domain is x [ 1, 1] & range is [0, ]
(ii) Continuous everywhere in its domain
y
D I D
/2
x
–1 O 1
1 1
(iii) Not derivable at x ,
2 2
3 1 1
if x ,
dy 1 x 2 2 2
(iv)
dx 3 1 1
if x 1, ,1
1 x
2
2 2
1 1
(v) Increasing in , &
2 2
1 1
Decreasing in 1, ,1
2 2
GENERAL NOTE :
Concavity is decided by the sign of 2nd derivative as :
d2y d2y
0 Concave upwards ; 0 Concave downwards
dx 2 dx 2
E 13
JEE-Mathematics
14 E
Methods of Differentiation
Do yourself : 8
2
(i) If y = xe x then find y''.
(ii) Find y" at x = /4, if y = x tan x.
(iii) Prove that the function y = ex sin x satisfies the relationship y'' – 2y' + 2y = 0.
Note : Sometimes it is batter to expand the determinant first & then differentiate.
x x2 x3
Illustration 20 : If f(x) = 1 2x 3x 2 , find f'(x).
0 2 6x
x x2 x3
Solution : Here, f(x) = 1 2x 3x 2
0 2 6x
On differentiating, we get,
d d 2 d 3
(x) (x ) x x x2 x3
dx dx dx x x2 x3
d d d 2
f'(x) = 1 2x 3x 2 1 2x 3x 1 2x 3x 2
dx dx dx
0 2 6x d d d
0 2 6x 0 2 6x
dx dx dx
1 2x 3x 2 x x2 x3 x x2 x3
or f'(x) = 1 2x 3x 2 0 2 6x 1 2x 3x 2
0 2 6x 0 2 6x 0 0 6
As we know if any two rows or columns are equal, then value of determinant is zero.
x x2 x3
= 0 + 0 + 1 2x 3x 2 f'(x) = 6 (2x2 – x2)
0 0 6
Therefore, f'(x) = 6x2 Ans.
Do yourself : 9
x 2
2x x2 x3
e x
(i) If ƒ(x) , then find ƒ '(1). (ii) If ƒ(x) x 2 2x 1 3x 1 , then find ƒ ' (1).
nx sin x
2x 1 3x 2 5x
E 15
JEE-Mathematics
13. ˆ
L ' HOPITAL ' S RULE :
0
(a) This rule is applicable for the indeterminate forms of the type , . If the function f(x)
0
and g(x) are differentiable in certain neighbourhood of the point 'a', except, may be, at the
point 'a' itself and g'(x) 0, and if
lim f(x) lim g(x) 0 or lim f(x) lim g(x) ,
x a x a x a x a
f(x) f '(x)
then lim lim
x a g(x) x a g '(x)
f '(x)
provided the limit lim exists (L' Hôpital's rule). The point 'a' may be either finite or
x a g '(x)
improper (+ or –).
0
(b) Indeterminate forms of the type 0. or – are reduced to forms of the type or by
0
algebraic transformations.
(c) Indeterminate forms of the type 1, 0 or 00 are reduced to forms of the type 0 × by
taking logarithms or by the transformation [f(x)](x) = e(x).nf(x).
sin x
Illustration 21 : Evaluate lim x
x 0
log e x
sin x lim
Solution : lim x lim e sin x loge x
e x0 cosecx
x 0 x 0
1/x
lim
= ex 0 cosecxcot x (applying L'Hôpital's rule)
2
sin 2 x sin x x
lim lim 2 0
=e x 0 x cos x
e x 0 x cos x
e 1 e0 1 Ans.
Illustration 22 : Solve lim logsin x sin 2x.
x0
log sin 2x
= lim form
x 0 log sin x
1
2 cos 2x
= lim sin 2x {applying L'Hôpital's rule}
x 0 1
cos x
sin x
2x
cos 2x cos 2x
= lim
sin 2x
lim 1 Ans.
x 0 x x 0 cos x
cos x
sin x
16 E
Methods of Differentiation
1/ n
en
Illustration 23 : Evaluate lim .
n
1/ n
en
Solution : Here, A = lim (0 form)
n
1 en n log e log
log A = lim log lim form
n n n n
log e 0
= lim {applying L'Hôpital's rule}
n 1
1/ n
1 en
logA = 1 A = e or lim = e Ans.
n
Do yourself : 10
tan x x ex x 1
(i) Using L' Hopital
ˆ 's rule find (a) lim (b) lim
x 0 x3 x 0 x2
sin x tan x 1 n(1 x)
(ii) Using L' Hopital
ˆ 's rule verify that : (a) lim 3
= (b) lim 1
x 0 x 2 x 0 x
Miscellaneous Illustrations :
Illustration 24 : Find second order derivative of y = sinx with respect to z = ex.
dy dy / dx cos x
Solution : x
dz dz / dx e
d 2 y d cos x dx e x sin x cos xe x 1
. . x
dz 2 dx e x dz e x
2
e
d2y
sin x cos x Ans.
2
dz e 2x
x y ƒ(x) ƒ(y)
Illustration 25 : Let a function ƒ satisfies ƒ x, y R and ƒ '(0) = a, ƒ (0) = b,
2 2
then find ƒ (x) hence find ƒ ''(x).
x y ƒ(x) ƒ(y)
Solution : ƒ
2 2
Diff. w.r.t. 'x'
xy 1 1 dy
ƒ ' . ƒ '(x) x & y are independent to each other, 0
2 2 2 dx
xy
ƒ ' ƒ '(x)
2
E 17
JEE-Mathematics
x
Let x = 0 & y = x ƒ ' ƒ '(0) a
2
ƒ '(x) = a
ƒ ''(x) = 0
1 x 1 x 1 x 1
Illustration 26: Prove that 2
sec2 4 sec2 2 6 sec2 3 ..... = cosec2 x 2
2 2 2 2 2 2 x
x x x
Solution : Let cos .cos 2 .cos 3 .......
2 2 2
x x x x
= lim cos .cos 2 .cos 3 .......cos n
n 2 2 2 2
sin x sin x x x x sin x
lim cos .cot 2 cos 3 ........
n x x 2 2 2 x
2 n sin
2n
x x x
n cos n cos 2 n cos 3 .... n sin x nx
2 2 2
Diff. w.r.t. x
1 x 1 x 1
tan 2 tan 2 ...... cot x
2 2 2 2 x
18 E
Methods of Differentiation
Elementary Problems on Differentiation
Differentiate the given functions with respect to x :
x 1
1. y 2. y tan 3 x tan x x 3. y xsec2 x tan x
sin x cos x 3
x x 1
4. y a cos 5. y tan 6. y 1 2 tan x
3 2
x
7. y cos3 4x 8. y tan 9. y sin 1 x 2
2
1
10. y cot 3 1 x2 11. y (1 sin 2 x)4 12. y 1 tan x
x
1 x
13. y cos2 14. y sin2 (cos3x) 15. y x arcsin x
1 x
arcsin x 1
16. y 17. y (arcsin x)2 18. y
arccos x arcsin x
x
19. y xsin x arctan x 20. y (arccos x arcsin x)n 21. y arctan x
1 x2
14
22. y arctan x2 23. y arcsin x 2 2x
2
b a cos x
24. y arccos ; (a, b > 0, sinx > 0) 25. y x 2 log3 x
a b cos x
nx
26. y nx 27. y xsin x nx 28. y
xn
1 nx
29. y 30. y n(x2 4x) 31. y n tan x
1 nx
x3
32. y log2 [log3 (log5 x)] 33. y n arctan 1 x 2 34. y 3 n sin
4
x3 2x cos x
35. y x.10x 36. y 37. y
ex ex
x
1 10 x
38. y2 nx
39. y 40. y 3sin x
1 10 x
2 2 2 x
41. y ae b x 42. y Ae k x sin(x ) 43. y xx
44. y (sin x)cosx 45. y ( nx)x 46. y x nx
(x 1)3 4 x 2 1
47. y 48. y x sin x 1 e x 49. y xx
5
(x 3)2
3 x(x 2 1)
50. y 2x x
51. y (x2 1)sin x 52. y
(x 2 1)2
1
53. Prove that the function y = n satisfies the relationship xy'+1= ey (where dash denotes derivative)
1 x
arcsin x
54. Prove that the function y satisfies the relationship (1 – x2)y' – xy = 1(where dash
1 x 2
denotes derivative).
E 19
JEE-Mathematics
EXERCISE # (O-1)
Single Correct Choice Type
1 1 1 dy
1. If y
, then is equal to-
1 x x 1 x x 1 x x dx
x x x
y
x x x x x x x x x
x x x
y y=1
x x x
dy
0
dx
1 x dy
2. If y = , then equals-
1 x dx
y y y y
(A) (B) (C) (D)
1 x2 x 1
2
1 x2 y 1
2
DF0005
Ans. B
1
1 x 2
Sol. y
1 x
1 1 x
ny n
2 1 x
1
ny = (n(1–x) – n(1 + x))
2
y ' 1 1 1
y 2 1 x 1 x
y ' 1 2
y 2 1 x2
y
y'
x 1
2
20 E
Methods of Differentiation
dy
3. If x3 – y3 + 3xy2 – 3x2y + 1 = 0, then at (0, 1) equals-
dx
(A) 1 (B) –1 (C) 2 (D) 0
DF0012
Ans. A
Sol. x3 – y3 + 3xy2 – 3x2y + 1 = 0
(x – y)5 + 1 = 0
Differentiate wrt. x :
3(x – y)2 (1 – y') + 0 = 0
x = 0, y = 1
3(1 – y') = 0
y' = 1
4. If y2 + loge (cos2 x) = y, x , , then :
2 2
(A) |y"(0)| = 2 (B) |y'(0)| + |y"(0)| = 3
(C) |y'(0)| + |y"(0)| = 1 (D) y"(0) = 0 DF0173
Ans. A
Sol. y2 + loge(cos2x) = y …(1)
Put x = 0 y2 – y = 0
y = 0 or y = 1
Differentiate equation (1)
2yy' – 2tanx = y' …..(2)
Put x = 0 y'(x) = 0 for both y = 0 and y = 1
Differentiate equation (2)
2yy" + 2(y')2 – 2sec2x = y"
Put x = 0 y"(0) = –2 for y = 0
y"(0) = 2 for y = 1
|y"(0)| = 2
dy
5. If (cosx)y = (siny)x, then equals-
dx
log sin y y tan x log sin y y tan x log sin y y tan x log sin y y tan x
(A) (B) (C) (D)
log cos x x cot y log cos x x cot y log cos x x cot y log cos y y cot x
DF0008
Ans. B
Sol. (cosx)y = (sin y)x
E 21
JEE-Mathematics
2x 2y 2x 2y 2y 1 2x y 2x
(A) (B) (C) 2x–y x
(D)
2x 2y 1 2x y 1 2 2y
DF0009
Ans. C
Sol. 2x + 2y = 2x+y
2xn2 + (2yn2)y1 = 2x+y(n2)(1 + y1)
(2 y 1)
y 2
1 x y
(1 2x )
7. If x2 + y2 = 1, then-
(A) yy" – 2(y')2 + 1 = 0 (B) yy" + (y')2 + 1 = 0
(C) yy" + (y')2 – 1 = 0 (D) yy" + 2(y')2 + 1 = 0
DF0018
Ans. B
Sol. x2 + y2 = 1
2x + 2yy' = 0
x + yy' = 0
1 + (y')2 + yy" = 0
dy
For x >1, if (2x)2y = 4e2x–2y, then 1 loge 2x
2
8. is equal to :
dx
22 E
Methods of Differentiation
x log e 2x log e 2 x log e 2x log e 2
(A) loge2x (B) (C) xloge2x (D)
x x
DF0104
Ans. D
Sol. (2x)2y = 4e2x–2y
2yn2x = n4 + 2x – 2y
x n2
y
1 n2x
1
(1 n 2x)(x n 2)
y' x
(1 n2x)2
x n 2x n 2
y '(1 n 2x)
x
dy d 2 y
9. If ey + xy = e, the ordered pair , 2 at x = 0 is equal to :
dx dx
1 1 1 1 1 1 1 1
(A) , 2 (B) , 2 (C) , 2 (D) , 2
e e e e e e e e
DF0106
Ans. A
Sol. ey + xy = e
differentiate w.r.t. x
dy dy
ey x y 0 …..(1)
dx dx
dy dy 1
(x e y ) y,
dx dx (0,1) e
d2 y 1 1
e 2
2 e 2 0
dx e e
d2 y 1
2
2
dx e
E 23
JEE-Mathematics
y 1 x2 k x 1 y2
sin.cos + cos.sin = k
sin(.cos) = k
+ = sin–1k
1 1 dy
0
1 x2 1 x2 dx
1 1
at x = ,y=
2 4
dy 5
dx 2
11. Suppose the function f (x) – f (2x) has the derivative 5 at x = 1 and derivative 7 at x = 2. The
derivative of the function f (x) – f (4x) at x = 1, has the value equal to
(A) 19 (B) 9 (C) 17 (D) 14
DF0023
Ans. A
Sol. (f(x) – f(2x))' = f'(x) – 2f'(2x)|x=1 = 5
f'(1) – 2f'(2) = 5 ……(1)
at x = 2 f'(2) – 2f'(4) = 7 ……(2)
(f(x) – f(4x))' = f'(x) – 4f'(4)
at x = 1 f'(1) – 4f'(1)
equation (1) + 2 × equation (2)
f'(1) – 4f'(4) = 19
24 E
Methods of Differentiation
12. Suppose that f (0) = 0 and f '(0) = 2, and let g (x) = f x f f(x) . The value of g ' (0) is equal
to
(A) 0 (B) 1 (C) 6 (D) 8
DF0028
Ans. C
Sol. g(x) = f(–x + f(f(x)))
g'(x) = f'(–x + f(f(x)) (–1 + f'(f(x))f'(x))
g'(0) = f'(f(f(0)) (–1 + f'(f(0))f'(0))
= f'(0)(–1 + f'(0)f'(0))
= 2(–1 + 22)
g'(0) = 6
1 x2 1 2x 1 x 2 1
13. The derivative of tan–1 with respect to tan–1 at x = is :
x 1 2x
2
2
3 3 2 3 2 3
(A) (B) (C) (D) DF0174
12 10 5 3
Ans. B
2
Sol. Let y1 = tan–1 1 x 1 and y2 = tan–1 2x 1 x
2
x 1 2x 2
sec 1 1
Let x = tan y1 = tan–1 tan tan
tan 2
y1
2
1
y1 tan 1 (x)
2
2 sin cos
Let x = sin y2 = tan 1 1
tan (tan 2)
cos 2
y2 = 2 = 2tan–1(x)
1 1
dy1 dy1 / dx 1 x 2 . 2 1 x2
dy 2 dy 2 / dx 2. 1 4(1 x 2 )
1 x2
1 dy1 3
x
2 dy 2 10
dy
14. If y = tan–1(cotx) + cot–1(tanx), then is equal to-
dx
E 25
JEE-Mathematics
1 1
(A) (B) –1 (C) (D) 0 DF0175
2 2
Ans. A
1 sin x 1 sin x 1 sin x 1 sin x
Sol. y(x) = cot–1
1 sin x 1 sin x 1 sin x 1 sin x
y(x) = cot–1 2 2 1 sin x
2
2 sin x
2 2 | cos x |
y (x) cot 1 x ,
sin x 2
x
y(x) tan 1 cot
2
x
y(x)
2 2
1
y '(x)
2
16. Let ƒ and g be differentiable functions on R such that fog is the identity function. If for some a,
b R, g'(a) = 5 and g(a) = b, then ƒ'(b) is equal to :
2 1
(A) (B) 1 (C) (D) 5 DF0172
5 5
Ans. C
Sol. f(g(x)) = x
f '(g(x)).g'(x) = 1
Put x = x
26 E
Methods of Differentiation
1
f '(g(a)) =
g '(a)
1
f ' (b) =
5
1
17. If g is the inverse of f and f'(x) = then g'(x) is equal to-
1 x3
1 1 1
(A) 1 + [g(x)]3 (B) (C) (D)
2(1 x 2 ) 2(1 x 2 ) 1 g x
3
DF0017
Ans. A
Sol. g is inverse o f :
g(f(x)) = x and f(g(x)) = x
g'(f(x)).f '(x) = 1
1
g'(f(x)) =
f '(x)
1
g'(f(x)) = 1 1 x3
(1 x 3 )
Replace x g(x)
g'(f(g(x))) = 1 + (g(x))3
ef '(3)+f '(2) = e0 = 1
E 27
JEE-Mathematics
1 1 x2
19. The value of Lim 1
is equal to
x 0
xsin x x2
5 5 6 6
(A) (B) (C) (D)
6 6 5 5
DF0087
Ans. B
x (1 x 2 )sin 1 x
Sol. lim
x 0 x 2 sin 1 x
x sin 1 x x 2 sin 1 x
lim
x 0 sin 1 x
x2 x
x
x sin 1 x x 2 sin 1 x
lim
x 0 sin 1 x
x2 x
x
x sin 1 x x 2 sin 1 x
lim
x 0 x3
Applying
1 x2
1 2x sin 1 x
lim 1 x 2
1 x 2
x 0 3x 2
2
1 1 x 2x sin 1 x
lim 1 x2
x 0 3x 2
1 1 x 2 2x sin 1 x
lim
x 0 3x 2
1 1 2x
x (2x) 2 sin 1 x
2 1 x 2
1 x2
lim
x 0 6x
3 3x 1 2
(2x)
(1 x )
2 3/2
2
lim 1 x 1 x2
2
x 0 6
5
6
28 E
Methods of Differentiation
1 1 1
(A) (B) (C) (D) 6
6 6 12
DF0088
Ans. A
1 2x
1 1
Sol. lim
x 1 x 2 x 1
2 2
x 0 3x 2
1
1
lim x2 1
x 0 3x 2
1
1 2x
2 (x 1)3/2
2
lim
x 0 6x
1
lim
x 0 6(x 1)3/2
2
1
6
EXERCISE # (O-2)
Single Correct Choice Type
u(x) u '(x) u(x) '
1. Let u(x) and v(x) are differentiable functions such that 7 . If p and q,
v(x) v '(x) v(x)
pq
then has the value equal to -
pq
(A) 1 (B) 0 (C) 7 (D) –7
DF0021
Ans. A
u(x)
Sol. 7
v(x)
u'(x)
p
v'(x)
u '(x) '
v '(x) q
u(x) = 7v(x)
u'(x) = 7v'(x)
u '(x)
7q
v '(x)
E 29
JEE-Mathematics
d u(x) d
(7)
dx v(x) dx
q=0
pq 70
1
pq 70
2. Let f (x) be a polynomial function of second degree. If f (1) = f (–1) and a, b, c are in A.P., then f
'(a), f '(b) and f '(c) are in
(A) G.P. (B) H.P. (C) A.G.P. (D) A.P.
DF0022
Ans. D
Sol. Let f(x) = Ax2 + Bx + C
f(1) = f(–1)
A+B+C=A–B+C
B=0
f(x) = Ax2 + C
f'(x) = 2ax
a, b, c are in A.P.
2Aa, 2Ab, 2Ac are in A.P.
f'(a), f'(b), f'(c), are in A.P.
d2x
3. If y = x + ex then is :
dy 2
ex ex 1
(A) ex (B) (C) (D)
(1 e x )3 (1 e x )2 (1 e x )3
DF0030
Ans. B
Sol. y = x + ex
dy
1 ex
dx
dy 1
dx 1 e x
d2 x 1 dx
.e x .
dy 2
(1 e )
x 2
dy
d2 x e x
dy 2 (1 e x )3
30 E
Methods of Differentiation
3
d 2 x dy d 2 y
4. If + = K then the value of K is equal to
dy 2 dx dx 2
(A) 1 (B) –1 (C) 2 (D) 0
DF0033
Ans. D
Sol. we know that
d2 x d2y
dy 2 dx 2
3
dy
dx
3
d 2 x dy d 2 y
0
dy 2 dx dx 2
k=0
1
5. Let f (x) = x + sin x. Suppose g denotes the inverse function of f. The value of g' has
4 2
the value equal to
2 1
(A) 2 1 (B) (C) 2 2 (D) 2 1
2
DF0036
Ans. C
1
Sol. f(x) = x + sinx f
4 4 2
1 1
g'(f(x)) =
f '(x) 1 cos x
Put x =
4
1 1
g'
4 2 1 cos
4
1 2 2 1
1 cos 2 1 2 1
4
2 2
f(4) f(x 2 )
6. If f is differentiable in (0, 6) & f '(4) = 5, then Limit =
x 2 2x
E 31
JEE-Mathematics
32 E
Methods of Differentiation
1
g '(f(x))
4
5(2x 3)4 2 sin x
3
3
Put x =
2
3 1
g' f
2 5(2. 3 3)4 .2 4 sin 3
2 3 2
1 3
g'(2) =
4 7
1
3
1
g'(f(x)) =
f '(x)
1
g"(f(x))f'(x) = – .f "(x)
f '(x)2
1
g"(f(x)) = .f "(x)
f '(x)3
1 3
g"(2 ) 20.2(2x 3) .2 cos 2
3
3
4
1
3
g"(2) = 0
B&D
9. If ƒ(x) = x.|x|, then its derivative is :
(A) 2x (B) –2x (C) 2|x| (D) 2xsgnx
DF0038
Ans. C,D
Sol. If f(x) = x, |x| then its derivative is
x2 , x 0
f(x) = 2
x , x 0
2x , x 0
f '(x)
2x , x 0
f'(0+) = 0, f'(0–) = 0
f'(0) = 0
f'(x) = 2|x|
= 2x sgn(x)
E 33
JEE-Mathematics
C&D
x x
10. Lim is equal to -
x x x
e
(A) log e (B) log e
e
(C) tan(cot–1(n) – cot–1(1)) (D) tan(tan–1(1) – tan–1(n))
DF0042
Ans. A,C,D
x x
Sol. Lim x
x x
x 1 n
Lim x
x x (1 n x)
n
e
1
. n 1 n e
loge
x (1 n x)
x
1 n n(e)
nge(e/)
1
tan tan 1 1
tan (1)
n
1
1 n 1
tan tan
1
1
n
1 n e
log e
1 n
1 n
1 n
e
log e
ACD
34 E
Methods of Differentiation
EXERCISE # (O-3)
Numerical Grid Type
1. Let f, g and h are differentiable functions. If f(0) = 1 ; g(0) = 2 ; h(0) = 3 and the derivatives of
their pair wise products at x = 0 are (f g)' (0) = 6 ; (g h)' (0) = 4 and (h f)' (0) = 5 then the value of
(fgh)'(0) is
DF0046
Ans. 16
(fg)'(0)h(0) (fh)'(0)g(0) (gh)'(0)f '(0)
Sol. (fgh)'(0) =
2
6 3 5 2 4 1
16
2
2. A twice differentiable function f(x) is defined for all real numbers and satisfies the following
conditions
f(0) = 2; f '(0) = –5 and f "(0) = 3.
The function g(x) is defined by g(x) = eax + f (x) x R, where 'a' is any constant, if a1, a2, ..., an
n
are the values of 'a' such that g'(0) + g"(0) = 0 then the value of a
i 1
2
i is
DF0139
Ans. 5
Sol. g(x) = eax + g(x)
=a–5
g"(0) = a2 + f"(0) = a2 + 3
g'(0) + g"(0) = 0
a – 5 + a2 + 3 = 0
a2 + a – 2 = 0
a = –2, 1
3. Let f(x) be a polynomial function such that f(2x) = f '(x) f "(x), then the value of f(3) is :-
DF0140
Ans. 12
Sol. Let degree of f(x) be n
Degree of f(2x) = n
E 35
JEE-Mathematics
Degree of f'(x) = n – 1
Degree of f"(x) = n – 2
= n – 1 + n – 2 = 2n – 3
n = 2n – 3 n=3
f"(x) = 6ax + 2b
4
8a = 18a2 a = [ a 0]
9
a = 2/9 or b = 0
b=0 [ a = 4/9]
1
a= or c = 0
3
c=0[ a = 4/9]
d = 2bc = 0
4 3
f(x) x
9
1 1
d2y dy
4. If 2x = y 5 y 5
then (x2 – 1) 2
x ky , then the value of 'k' is :-
dx dx
DF0076
Ans. 25
36 E
Methods of Differentiation
1 1
Sol. y 5 y 5
2x ……(1)
1 1 1 1 1 1
y5 y 5 y ' 2
5 5
1 1 15 1 15
y y y 2
5 5
y ' y 5 y 5 10y
1 1
1
y '2 y 5 y 5 100 y
1 2 2
y '2 5
y y
5
1
4 100 y
1 2 2
4y'2[x2 – 1] = 100y2
y'2(x2 – 1) = 25y2
k = 25
5. The function f: R R satisfies f(x2) · f"(x) = f'(x) · f'(x2) for all real x. Given that f(1) = 1 and
f"'(1) = 8, then the value of f'(1) + f"(1) is :-
DF0079
Ans. 6
Sol. f(x2).f"(x) = f'(x).'(x2) x R …….(1)
f(x2).f"'(x) + f"(x).f'(x2).2x
f'(x)f"(x2).2x + f'(x2).f"(x)
Put x = 1
1.8 = '(1).f"(1)
f'(1).f"(1) = 8 …….(2)
E 37
JEE-Mathematics
[f '(1)]3 = 8 f '(1) = 2
f"(1) = 4
f '(1) + f"(1) = 6
6. Let f : R R is a function such that f(x) = x3 + x2 f'(1) + x f"(2) + f"'(3) for all x R, then the
value of f(2) – f(1) + f(0) is
DF0141
Ans. 0
Sol. f(x) = x3 + x2f '(1) + xf "(2) + f "'(3) x R ……(1)
f '"(3) = 6
Put x = 2 in (3)
Put x = 1 in (2)
3f '(1) = –15
f ' (1) = –5
f "(2) = 2
f(x) = x3 – 5x2 + 2x + 6
f(2) = 8 – 20 + 4 + 6 = –2
f(1) = 1 – 5 + 2 + 6 = 4
38 E
Methods of Differentiation
f(0) = 6
9
If f(x) be a continuous function satisfying f'(1) = f (–1), then the value of 6 f 3 n is
4
DF0142
Ans. 2
Sol. g(x) = ax + b
ax b x0
f(x) = 1 x 1/x
x0
2 x
b=0
1/x
1 x
In vicinity of '1' say f(x) =
2x
1 x
y
2x
1
In y = (ln(1 + x) – ln(2 + x))
x
1 1 ln(1 x) 1 1 ln(2 x)
. .
1 (2 x) x x2
y ' 1 x x 2 x
2
y x x2
At 1
11 2
y=
2 1 3
2 1 1 ln 2
1 1
ln 3
y' 2 1 1
3 3 1
1 1
E 39
JEE-Mathematics
21 2
y ' ln
36 3
f(–1) = –a + b (b = 0)
= –a
2 1 3
y'(1) = f(–1) a ln
3 6 2
2 1 3
3 6 ln 2 x, x 0
1/x
1 x , x0
2 x
8. Let f : R R be defined as f(x) = x3 + 3x2 + 6x – 5 + 4e2x and g(x) = f –1 (x), then the value of
28(g'(–1)) is
DF0144
Ans. 2
Sol. f(x) = x3 + 3x2 + 6x – 5 + 4e2x
1
g'(f(x)) = g'(–1) =
f '(x)/x 0
1
3x 6x 6 8e 2x
2
1 1
0 0 6 8 14
1
9. Suppose f –1 is the inverse function of a differentiable function f and let G(x) = 1
.
f (x)
1 G (2)
If f(3) = 2 and f'(3) = , then the value of is DF0145
9 2
Ans. 0.50
1
Sol. G(x) = 1
f (x)
1
G '(x) (f –1 (x))'
f (x)
1 2
1
= 9
f 1 (2)
2
40 E
Methods of Differentiation
1
= 9 1
32
1
f 1 (x)
f '(x)
1
f '(3)
1
9
1/ 9
f(3) = 2
f–1(2) = 3
d2y dy
10. If y = (A + Bx) emx + (m – 1)–2 ex and if 2
2m m 2 y e kx , then the value of k is
dx dx
DF0153
Ans. 1
ex
Sol. y = (A + Bx)emx +
(m 1)
ex
y' = (A + Bx)emxm + Bemx +
(m 1)
ex
y" = (A + Bx)emxm2 + mBemx + Bemxm +
(m 1)
ex
y" – 2my' + m2y = (A + Bx)m2emx + 2mBemx +
(m 1)
2me x m2ex
–2m2(a + Bx)emx – 2mBemx – +m 2
(A + Bx)e mx
+
(m 1)2 (m 1)2
(m 1)2 e x
(m 1)2
= ex
So k = 1
cos x sin x cos x
11. Let f(x) = cos 2x sin 2x 2 cos 2x then the value of f is
2
cos3x sin 3x 3cos3x
DF0151
E 41
JEE-Mathematics
Ans. 4
cos x sin x cos x
Sol. f(x) = cos 2x sin 2x 2 cos 2x
cos3x sin 3x 3cos3x
1 1 0 0 1 0 0 1 1
f ' 0 0 2 1 2 2 1 0 0
2
3 1 0 0 0 0 0 1 9
f ' 4 0 8 4
2
logsin2 x cos x
12. lim has the value equal to
x 0 x
log 2 x cos
sin
2
2
DF0150
Ans. 4
logsin2 x cos x
Sol. lim
cos
x 0 x
log
sin 2
x
2
2
loge sin 2
x
loge cos x 2
lim
loge cos
x 0 x loge (sin 2 x)
2
n sin 2
x
n cos x 2
lim lim
n cos
2
x 0 x x 0 n(sin x)
2
Use L-Hospital
42 E
Methods of Differentiation
x 1
2 sin cos
x
2
(x / 2) 2 2 2
1 ( sin x) sin 2
x x x
x
lim cos x x lim 2 2 2
x 0 x x 0 1 sin x
sin 1
1
2 x x 2
sin x 2
2 cos x x
x
x
2
cos x
x 2 2
2 2
4×1=4
Aliter :
x
log sin 2
log cos x 2
lim
x 0 log sin 2 x x
log cos
2
x
log sin 2
cos x 1 2
lim
x
cos2 1 log 4 sin 2 cos2
x 0 x x
2 2 2
x
2 sin 2
2 1
lim
2 x
log 4 cos2
x 0 x
2 sin
4
1 2
log sin 2
x
2
x
lim 4 cos2 1 4
x 02 2
1
13. If the value of lim 1
is k then the value of [k2] is :-
x 0
(1 cosecx) n(sin x)
n(1 cosecx)
n lim
x 0 n sin x
E 43
JEE-Mathematics
1
cot x cosecx
(1 cosecx)
n lim
x 0 1
cos x
sin x
cosecx
= lim
x 0 1 cosecx
1
= lim
x 0 1
1
cosecx
n 1
= e
n
1 tan 2n
14. If the value of Lim is e/k then the value of k is
1 sin
n
3n
DF0148
Ans. 6
n
1 tan 2n
Sol. lim
1 sin
n
3n
1 tan 2n
lim 1n
n
1sin
3n
e
tan 2n sin 3n
lim n
n
1 sin
e 3n
1
Let n =
t
tan sin 3 t
lim 2
t 0
1 sin 3 t t
e
44 E
Methods of Differentiation
2
sec 2 t. 2 cos 3 t. 3
lim
t 0 x
1 sin t t cos t.
e 3 3 3
lim
e t 0 23
e6
15. Given a real valued function f(x) as follows :
x 2 2cosx 2 sin x l n(e x cos x)
f(x) = for x < 0 ; f(0) = k & f(x) = for x > 0 and if f(x) is
x4 6x 2
continuous at x = 0, then the value of 3k is :-
DF0147
Ans. 0.25
Sol. For Continuity
L.H.L.
x 2 2 cos x 2
lim
x 0 x4
2x 2 sin x
lim
x 0 4x 3
2 2 cos x
lim
x 0 12x 2
2sin x
lim
x 0 24x
2 cos x
lim
x 0 24
2 1
24 12
R.H.L.
1
cos x x
(e x cos x e x ( sin x))
lim e cos x
x 0 12x
E 45
JEE-Mathematics
(cos x sin x)
cos x
lim cos x
x 0 12x
cos x 1 tan x
lim
x 0 12x
sin x 0 sec2 x
12
1
12
R.H.L. = L.H.L.
1
f(0) =
12
So f(x) is continuous
1
3k 3 0.25
12
1 sin x cosx n(1 x)
16. The value of Lim 2
is 'a' then a2 is
x 0 x·tan x
DF0146
Ans. 0.25
1 sin x cos x n(1 x)
Sol. lim
x 0 tan 2 x
x 2 x2
x
1
cos x sin x
(1 x)
lim
x 0 3x3
1
sin x cos x
(1 x)2
lim
x 0 6x
2
cos x sin x
(1 x)3
lim
x 0 6
46 E
Methods of Differentiation
1 0 2
6
3 1
6 2
x 6000 (sin x)6000
17. The value of Lim is DF0091
x 0 x 2 .(sin x)6000
Ans. 1000
x6000 (sin x)6000
Sol. lim
x 0 (sin x)6000
x
2
6000
x6000
x
1
sin x
lim x2
x 0 x
x cos x sin x
lim 3000
x 0 x3
3000 x sin x
lim 2
x 0 3 x
1000
Paragraph for Question 18 to 20
Consider the function defined implicitly y2 + y – x = 2 on various intervals on the real line. If
1
y , , then equation implicitly defines a unique real valued differentiable function
2
y = ƒ (x).
On the basis of above informations, answer the following questions.
18. The value of ƒ ''(4) is -
2 125 1 1
(A) (B) (C) (D)
125 2 5 125
E 47
JEE-Mathematics
DF0165
Ans. A
dy dy
Sol. y2 + y – x = 2 2y 1
dx dx
dy 1
dx 2y 1
Put x = 4 y = 2, – 3
1
y , y = –3
2
dy 1 1
dx x 4 2y 1 y 3 5
2
d2y dy
Now (1 + 2y) 2
2 0
dx dx
d2 y 2 2
f "(4)
dx 2 x 4 125 125
x2 + x – y = 2 where y = g(x)
g'(x) = 2x + 1 g'(–2) = –3
20. If y = h(x) is mirror image of y = ƒ (x) about the line 2y + 1 = 0, then ƒ ''(x0) + h''(x0), where
9
x0 , is -
4
2 2
(A) 2x0 (B) (C) (D) 0 DF0167
2ƒ(x 0 ) 1 (2ƒ(x 0 ) 1)3
Ans. D
1
Sol. h(x) is mirror image of f(x) in y =
2
f(x) h(x) 1
f(x) + h(x) = –1
2 2
48 E
Methods of Differentiation
9
f"(x) + h"(x) = 0 x ,
4
EXERCISE # (JM)
tan cot 1 3 dy 5
1. If y() 2 2 , , , then at is :
1 tan sin
2
4 d 6
[JEE(Main)-2020]
1 4
(1) 4 (2) (3) (4) –4
4 3
DF0155
Ans. 1
tan cot 1 3
Sol. y() 2 2 , ,
1 tan sin
2
4
= –1 – cot
y'() = cosec2
5
y ' 4
6
6
3 4 dy
2. If y k cos
k 1
1
cos kx sin kx , then
5 5 dx
at x = 0 is________. [JEE(Main)-2020]
DF0156
Ans. 91
3 4
Sol. Put cos ,sin ,0
5 5 2
3 4
Now cos ,sin ,0
5 5 2
3 4
Now coskx – sinkx
5 5
= cos.coskx – sin.sinkx
= cos( + kx)
As we have to find derivate at x = 0
We have cos–1(cos( + kx))
= ( + kx)
6
y ( kx)
k 1
E 49
JEE-Mathematics
dy 6
6 7 13
k 91
dx at x 0 k 1 6
P x
; x2
3. Consider the function f x sin x 2
7 ; x2
Where P(x) is a polynomial such that P"(x) is always a constant and P(3) = 9. If f(x) is continuous at
x = 2, then P(5) is equal to ______. [JEE(Main)-2021]
DF0157
Ans. 39
P(x)
, x2
Sol. f '(x) sin(x 2)
7, x2
P"(x) = const. P(x) is atmost 2nd degree polynomial f(x) is cont. at x = 2
f(x) is cont. at x = 1
f(2+) = f(2–) = f(2)
P(x)
lim 7
x 2 sin(x 2)
(x 2)(ax b)
lim 7 2a + b = 7
x 2 sin(x 2)
P(x) = (x – 2)(ax + b)
P(3) = (3 – 2)(3a + b) = 9 3a b 9
a 2,b 3
P(5) = (5 – 2)(2.5 + 3) = 3.13 = 39
1 x
4. Let f(x) = cos 2tan 1 sin cot 1 , 0 < x < 1. Then : [JEE(Main)-2021]
x
(1) (1 – x)2 f'(x) – 2(f(x))2 = 0 (2) (1 + x)2 f'(x) + 2(f(x))2 = 0
(3) (1 – x)2 f'(x) + 2(f(x))2 = 0 (4) (1 + x)2 f'(x) – 2(f(x))2 = 0
DF0158
Ans. 3
Sol. f(x) cos 2 tan 1 sin cot 1 1 x (0 < x < 1)
x
1 x
cot 1 sin 1 x
x
f(x) = cos(2tan–1 x )
= cos tan 1 2 x
1 x
50 E
Methods of Differentiation
1 x
f(x) =
1 x
2
Now f '(x) =
(1 x)2
2
2 1 x
f ' (x) (1 – x) = –2
1 x
(1 – x)2 f '(x) + 2(f(x))2 = 0
5. Let f (x) be a polynomial function such that f (x) + f ' (x) + f ''(x) = x5 + 64. Then, the value of
f(x)
lim
x 1 x 1
f(x + 2) = 2x . 3 + 16 f(x)
E 51
JEE-Mathematics
f '(2) = 7 ln2
f '(4)
Now, 14.
f '(2)
124 ln 2
14
7 ln 2
= 248
a 1 0
7. Let f(x) ax a 1 , a R. Then the sum of the squares of all the values of a for which
ax 2 ax a
2f (10) f (5) 100 0 is :
(A) 117 (B) 106 (C) 125 (D) 136
[JEE(Main)-2022]
DF0170
Ans. C
a 1 0
Sol. f(x) ax a 1
ax 2 ax a
1 1 0
f(x) a x a 1
2
x ax a
52 E
Methods of Differentiation
= a[1(a2 + ax) + 1(ax + x2)]
f(x) = a(x + a)2
so, f '(x) = a(x + a)2
as, 2f '(10) – f ' (5) + 100 = 0
2 × 2a(10 + a) – 2a(5 + a) + 100 = 0
40a + 4a2 – 10a – 2a2 + 100 = 0
2a2 + 30a + 100 = 0
a2 + 15a + 50 = 0
(a + 10)(a + 5) = 0
a = –10 or a = –5
Required = (–10)2 + (–5)2 = 125
3
8. Let y f x sin 3 cos
4x 3 5x 2 1 2 . Then, at x = 1,
3 3 2
g' x 4x 12x
1/2
3
5x 2 1 2
10x
3 2
g' 1
2 2
2 2
3 3 3 32
y' 1 . .
4 2 3 2 16
E 53
JEE-Mathematics
1
y 1 sin 3 / 3cos2 / 3
8
2y' 1 32 y 1 0
9. If f(x) = x2 + g(1)x + g(2) and g(x) = f(1)x2 + xf(x) + f(x), then the value of f(4) – g(4) is
equal to _______.
[JEE(Main)-2023]
Official Ans. by NTA (14)
Allen Ans. (14)
Sol. f(x) = x2 + g(1)x + g (2)
f (x) = 2x + g(1)
f(x) = 2
g(x) = f(1) x2 + x [2x + g(1)] + 2
g(x) = 2f(1) x + 4x + g(1)
g(x) = 2f(1) + 4
g(x) = 0
2f(1) + 4 = 0
f(1) = – 2
–2 = 1 + g(1) = g(1) = – 3
So, f’(x) = 2x – 3
2
f(x) = x – 3x + c
c=0
f(x) = x2 – 3x
g(x) = – 3x + 2
f(4) – g(4) = 14
1 1 1
10. For the differentiable function f : – {0} , let 3f(x) 2f 10 , then f (3) f ' is
x x 4
equal to
33 29
(1) 7 (2) (3) (4) 13
5 5
[JEE(Main)-2023]
Official Ans. by NTA (4)
Allen Ans. (4)
1 1
Sol. 3f (x) 2f 10 3
x x
1
2f (x) 3f x x 10 2
54 E
Methods of Differentiation
3
5f (x) 2x 10
x
1 3
f (x) 2x 10
5 x
1 3
f '(x) 2 2
5 x
1 1 1
f (3) f ' (1 6 10) (48 2)
4 5 5
= |–3–10| = 13
11. Suppose
2 x
2 x tan x tan 1 x 2 x 1
f x ,
7x 3x 1
3
2
=
12. Let ƒ(x) = x5 + 2ex/4 for all x R. Consider a function g(x) such that (gof) (x) = x for all x R.
Then the value of 8g(2) is :
(1) 16 (2) 4 (3) 8 (4) 2
[JEE(Main)-2024]
Ans. (1)
Sol. f(x) = 2
when x = 0
g(f(x)) f(x) = 1
1
g 2
f 0
E 55
JEE-Mathematics
2 x/4
f(x) = 5x4 + e
4
g(2) = 2
Ans = 16
Option (1)
EXERCISE (JA)
1. Let ƒ : , g : and h : be differentiable functions such that ƒ(x) = x3 + 3x + 2,
1
(A) g ' 2 (B) h'(1) = 666 (C) h(0) = 16 (D) h(g(3)) = 36
15
DF0113
Ans. B,C
Sol. Given
g(f(x)) = x
g'(f(x)).f ' (x) = 1
1
g'(f(x)) =
f '(x)
1
g'(x3 + 3x + 2) =
3x 3
2
Put x = 0
1
g'(2)
3
option A is wrong
* h(g(g(x))) = x ; given
x
replace
f(x)
x
Replace
f(x)
h (g(f(x))) f(f(x))
x
56 E
Methods of Differentiation
h'(x) = f '(f(x)).f '(x)
h'(x) = f '(x3 + 3x + 2).(3x2 + 3)
Put x = 1
h'(1) = f '(6).6
h'(1) = f '(6).6
h'(1) = 111 × 6 h'(1) = 666
E 57
JEE-Mathematics
ANSWER KEY
Do yourself -1
1 1
(i) (a) (b)
x x2
Do yourself -2
(i) (a) 3x2 + 12x + 11 (b) 5e5x tan (x2 + 2) + 2xe5x sec2(x2 + 2)
Do yourself -3
Do yourself -4
1
(i) –1 (ii) (iii) 2(xnx)(nx)
t
Do yourself -5
cos(x y) 1 2x e y
(i) (ii) y ' y , –1
cos(x y) 1 xe 1
Do yourself -6
Do yourself -7
(i) D
Do yourself -8
Do yourself -9
Do yourself -10
1 1
(i) (a) (b)
3 2
58 E
Methods of Differentiation
Elementary Problems on Differentiation
sin x cos x x(sin x cos x) sin x
1. 2. tan4x 3. 2x
1 sin 2x cos3 x
a x 1 1
4. sin 5. 6.
3 3 x 1
2 1 2 tan x.cos2 x
2 cos
2
1 x cos 1 x 2
7. –12cos24x sin4x 8. 9.
x x 1 x2
4 tan .cos2
2 2
2x
10. 11. 4(1 + sin2x)3sin2x
3sin 2 3
1 x . (1 x )
2 3 2 2
1 x
sin 2
12.
x2 1
13. 1 x 14. –3sin3x sin(2cos3x)
1 1 x(1 x)2
2x 2 cos2 x 1 tan x
x x
x 2 arcsin x
15. arcsin x 16. 17.
1 x2 2(arccos x) 2
1 x 2
1 x2
1 x sin x
18. 19. sin x.arctan x x cos x.arctan x
(arcsin x)2 1 x 2 1 x2
2x 2 2x
20. 0 21. 22.
(1 x 2 )2 1 x4
x 1 a 2 b2
23. 24.
8 4 (arcsin x 2 2x)3 (1 2x x 2 )(x 2 2x) a b cos x
x 1
25. 2x log3 x 26.
n3 2x nx
1 n nx 2
27. sin x nx x cos x nx sin x 28. n 1
29.
x x(1 nx) 2
2x 4 2
30. 31.
x 4x
2
sin 2x
1 x
32. 33.
x log 5 x log3 (log 5 x) n2 n3 n5 arctan 1 x 2 (2 x 2 ) 1 x 2
x3
cot
4 2x ( n2 1) 3x 2 x 3
34. 35. 10x (1 + x n10) 36.
3 2 x3 ex
12 n sin
4
sin x cos x ( nx 1) n2 nx x
37. – 38. 2
ex n2x
2.10 x n10 2 2
39. 40. 3sin x cos x. n3 41. 2ab2 xe b x
(1 10 )x 2
E 59
JEE-Mathematics
2
42. Ae k x [ cos(x ) k 2 sin(x )]
x 1 cos2 x
43. x x .x x n 2 x nx 44. (sin x)cosx sin x n sin x
x sin x
1 1 1 ex 1
2
48. x sin x 1 e x cot x . 49. x x (1 nx)
2 x 2 1 ex
1
2x sin x
x
50. x 2
(2 nx) 51. (x 2 1)sin x 2 cos x n x 2 1
x 1
x 4 6x 2 1 x(x 2 1)
52. 3
3x(1 x 4 ) (x 2 1)2
EXERCISE # O-1
Que. 1 2 3 4 5 6 7 8 9 10
Ans. A B A A B C B D A B
Que. 11 12 13 14 15 16 17 18 19 20
Ans. A C B D A C A D B A
EXERCISE # O-2
Que. 1 2 3 4 5 6 7 8 9 10
Ans. A D B D C D A B,D C,D A,C,D
EXERCISE # O-3
Que. 1 2 3 4 5 6 7 8 9 10
Ans. 16 5 12 25 6 0 2 2 0.50 1
Que. 11 12 13 14 15 16 17 18 19 20
Ans. 4 4 7 6 0.25 0.25 1000 A B D
EXERCISE # JEE-MAIN
Que. 1 2 3 4 5 6 7 8 9 10
Ans. 1 91 39 3 A 248 C 2 14 4
Que. 11 12
Ans. 3 1
EXERCISE # JEE-ADVANCED
Que. 1
Ans. B,C
60 E