0% found this document useful (0 votes)
39 views58 pages

02-Mod (E+h+s)

The document outlines various methods of differentiation, including the derivative from first principles and standard functions. It also covers fundamental theorems of differentiation, logarithmic differentiation, parametric differentiation, and differentiation of implicit functions. Illustrations and examples are provided to demonstrate the application of these methods.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
39 views58 pages

02-Mod (E+h+s)

The document outlines various methods of differentiation, including the derivative from first principles and standard functions. It also covers fundamental theorems of differentiation, logarithmic differentiation, parametric differentiation, and differentiation of implicit functions. Illustrations and examples are provided to demonstrate the application of these methods.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 58

Methods of Differentiation


METHODS OF DIFFERENTIATION
The process of calculating derivative is called differentiation.
1. DERIVATIVE OF f(x) FROM THE FIRST PRINCIPLE :
y f(x  x)  f(x) dy
Obtaining the derivative using the definition Lim  Lim  f '(x)  is
x 0 x x 0 x dx
called calculating derivative using first principle or ab initio or delta method.
dy dy
Note : can also be represented as y1 or y' or Dy or ƒ '(x). represents instantaneous rate of
dx dx
change of y w.r.t. x.

Illustration 1 : Differentiate each of following functions by first principle :


(i) f(x) = tanx (ii) f(x) = esinx
tan(x  h)  tan x tan(x  h  x) 1  tan x tan(x  h) 
Solution : (i) f'(x) = lim = lim
h 0 h h 0 h
tanh
= lim . (1 + tan2x) = sec2x. Ans.
h 0 h
esin(x  h)  esin x esin(x  h)sin x  1  sin(x  h)  sin x 
(ii) f'(x) = lim = lim esin x  
h 0 h h 0 sin(x  h)  sin x  h 
sin(x  h)  sin x
= esin x lim = esinxcosx Ans.
h 0 h
Do yourself -1 :
(i) Differentiate each of following functions by first principle:
1
(a) f(x) = nx (b) f(x) =
x

2. DERIVATIVE OF STANDARD FUNCTIONS :


f(x) f'(x) f(x) f'(x)
(i) xn nxn–1 (ii) ex ex
(iii) ax axna, a > 0 (iv) nx 1/x
(v) logax (1/x) logae, a > 0, a 1 (vi) sinx cosx
(vii) cosx – sinx (viii) tanx sec2x
(ix) secx secx tanx (x) cosecx – cosecx . cotx
(xi) cotx – cosec2x (xii) constant 0
1 1
(xiii) sin–1 x , 1  x  1 (xiv) cos–1 x , 1  x  1
1  x2 1  x2
1 1
(xv) tan–1 x , xR (xvi) sec–1 x , | x | 1
1  x2 | x | x2  1
1 1
(xvii) cosec–1 x , | x | 1 (xviii) cot–1 x , xR
| x | x2  1 1  x2

E 3

JEE-Mathematics

3. FUNDAMENTAL THEOREMS :
If f and g are derivable functions of x, then,
d df dg d df
(a) (f  g)   (b) (cf)  c , where c is any constant
dx dx dx dx dx
d dg df
(c) (fg)  f g known as “PRODUCT RULE”
dx dx dx
 df   dg 
g   f  
d f  dx   dx  where g  0 known as “QUOTIENT RULE”
(d)   
dx  g  g2
dy dy du
(e) If y = f(u) & u = g (x) then  . known as “CHAIN RULE”
dx du dx
dy du
Note : In general if y = f(u) then  f '(u). .
dx dx

dy
Illustration 2 : If y = ex tan x + xlogex, find .
dx
Solution : y = ex.tan x + x · logex
On differentiating we get,
dy 1
= ex · tan x + ex · sec2x + 1 · log x + x ·
dx x
dy
Hence, = ex(tanx + sec2 x) + (logx + 1) Ans.
dx
log x dy
Illustration 3 : If y = + ex sin2x + log5x, find .
x dx
Solution : On differentiating we get,
1
·x  log x .1
dy d  log x  d x d x
    (e sin 2x)  (log 5 x) 
dx dx  x  dx dx x2
1
+ exsin2x + 2ex.cos2x +
x log e 5
dy  1  log x  x 1
Hence,   + e (sin2x + 2cos2x) + Ans.
dx  x 2
 x log e 5
dy
Illustration 4 : If y = loge (tan 1 1  x2 ) , find .
dx
Solution : y = loge (tan 1 1  x2 )
On differentiating we get,
1 1 1
= . . .2x
1
tan 1  x 1  ( 1  x ) 2 1  x2
2 2 2

x x
=  Ans.
 
 tan 1 1  x 2  1   1  x 2  1  x 2  tan 1 1  x 2   2  x 2  1  x 2
2

4 E
Methods of Differentiation

Do yourself -2 :
dy
(i) Find if -
dx
(a) y = (x + 1) (x + 2) (x + 3) (b) y = e5x tan(x2 + 2)

4. LOGARITHMIC DIFFERENTIATION :
To find the derivative of a function :
(a) which is the product or quotient of a number of functions or
(b) of the form [f(x)]g (x) where f & g are both derivable functions.
It is convenient to take the logarithm of the function first & then differentiate.

dy
Illustration 5 : If y = (sin x)n x, find
dx
Solution :  n y = n x. n (sin x)
On differentiating we get,
1 dy 1 cos x dy  n(sin x) 
 n (sinx) + n x.  = (sinx)n x   cot x n x  Ans.
y dx x sin x dx  x 
 1  y  x 2   dy
Illustration 6 : If x = exp  tan  2   , then equals -
  x  dx
(A) x [1 + tan (log x) + sec2 x] (B) 2x [1 + tan (log x)] + sec2 x
(C) 2x [1 + tan (log x)] + sec x (D) 2x + x[1 + tan(logx)]2
Solution : Taking log on both sides, we get
 y  x2 
log x = tan–1  2   tan (log x) = (y – x2) / x2   y = x2 + x2 tan (log x)
 x 
On differentiating, we get
dy
 = 2x + 2x tan (log x) + x sec2 (log x)  2x [1 + tan (log x)] + x sec2 (log x)
dx
= 2x + x[1 + tan(logx)]2 Ans. (D)
x (1  2x)
1/2 2/3
dy
Illustration 7 : If y = find
(2  3x) (3  4x)
3/4 4/5
dx
1 2 3 4
Solution :  n y = n x + n (1 – 2x) – n (2 – 3x) – n (3 – 4x)
2 3 4 5
On differentiating we get,
1 dy 1 4 9 16
     
y dx 2x 3(1  2x) 4(2  3x) 5(3  4x)
dy  1 4 9 16 
     y        Ans.
dx  2x 3(1  2x) 4(2  3x) 5(3  4x) 

E 5

JEE-Mathematics

Do yourself -3 :
dy dy 2 3 4
(i) Find if y = xx (ii) Find if y  e x .e x .e x .e x
dx dx

5. PARAMETRIC DIFFERENTIATION :
dy dy / d ƒ '()
If y  f() & x  g() where  is a parameter, then  
dx dx / d g'()

dy 
Illustration 8 : If y = a cos t and x = a(t – sint) find the value of at t =
dx 2
dy a sin t dy
Solution :    1 Ans.
dx a(1  cos t) dx t  
2

Illustration 9 : Prove that the function represented parametrically by the equations.


1 t 3 2
x  3 ;y  2 
t 2t t
dy
satisfies the relationship : x(y')3 = 1 + y' (where y' = )
dx
1 t 1 1
Solution : Here x =  3 2
t3 t t
Differentiating w.r. to t
dx 3 2
 4  3
dt t t
3 2
y 
2t 2 t
Differentiating w.r. to t
dy 3 2
 3  2
dt t t
dy dy / dt
  t  y'
dx dx / dt
1 t 1 y'
Since x = 3
 x or x(y')3 = 1 + y' Ans.
t (y ')3
6. DERIVATIVE OF A FUNCTION W.R.T. ANOTHER FUNCTION :
dy dy / dx f '(x)
Let y= f (x) ; z = g (x) then  
dz dz / dx g'(x)

Illustration 10 : Differentiate loge (tan x) with respect to sin–1(ex).


d
(log e tan x)
d(log e tan x) dx cot x.sec 2 x e  x 1  e 2x
Solution :    Ans.
d(sin 1 (e x )) d
sin 1 (e x ) e x .1 / 1  e 2x sin x cos x
dx

6 E
Methods of Differentiation

Do yourself-4 :
dy 
(i) Find at t  if y = cos4t & x = sin4t .
dx 4
(ii) Find the slope of the tangent at a point P(t) on the curve x = at2 , y = 2at.
(iii) Differentiate xnx with respect to nx.

7. DIFFERENTIATION OF IMPLICIT FUNCTIONS : (x, y)  0


(a) To find dy /dx of implicit functions, we differentiate each term w.r.t. x regarding y as a
function of x & then collect terms with dy/dx together on one side.

dy 
(b) Also   x , where = partial derivative of (x, y) w.r.t. x taking y as a constant
dx  x
y

and = partial derivative of (x, y) w.r.t. y taking x as a constant.
y
(c) In the case of implicit functions, generally, both x & y are present in answers of dy/dx.

dy
Illustration 11 : If xy + yx = 2, then find .
dx
Solution : Let u = xy and v = yx
du dv
u+v=2    0
dx dx
Now u = xy and v = yx
 n u = y nx and n v = x n y

1 du y dy 1 dv x dy
  + nx and = n y +
u dx x dx v dx y dx
du y dy  dv  x dy 
 = xy   nx  and  yx  n y 
dx x dx  dx  y dx 

 x y
 y ny  x y . 
y dy   x dy  dy
    xy   n x  + yx  ny  = 0   x Ans.
x dx   y dx  dx  y x x
 x nx  y . y 
 
Aliter :
(x, y)  xy  yx  2  0

dy  / x yx y 1  y x ny
 
dx  / y x y nx  xy x 1

E 7

JEE-Mathematics

sin x dy 1  y  cos x  y sin x


Illustration 12 : If y = , prove that  .
cos x dx 1  2y  cos x  sin x
1
sin x
1
1  cos x.....
sin x (1  y) sin x
Solution : Given function is y = =
cos x 1  y  cos x
1
1 y
or y + y2 + y cos x = (1 + y) sin x ......(i)
Differentiate both sides with respect to x,
dy dy dy dy
 2y  cos x  y sin x = (1 + y) cosx + sin x
dx dx dx dx
dy
(1 + 2y + cosx – sinx) = (1 + y) cosx + ysinx
dx
dy 1  y  cos x  y sin x
or  Ans.
dx 1  2y  cos x  sin x
Aliter :
From (i) (x,y) = (1 + y)sinx – y – y2 – ycosx = 0
dy  / x (1  y) cos x  y sin x (1  y) cos x  y sin x
  
dx  / y sin x  1  2y  cos x 1  2y  cos x  sin x

Do yourself -5 :
dy
(i) Find , if x + y = sin(x – y)
dx
(ii) If x2 + xey + y = 0, find y', also find the value of y' at point (0, 0).

8. DIFFERENTIATION BY TRIGONOMETRIC TRANSFORMATION :


Some Standard Substitutions :
Expression Substitution

a2  x2 x = asin or acos

a2  x2 x = tan or acot

x2  a2 x = asec or acosec

ax ax
or x = acos or acos2
ax ax

2ax  x 2 x = a(1 – cos)

8 E
Methods of Differentiation

 2x 
Illustration 13 : If f(x) = sin–1   then find
 1  x2 

1
(i) f'(2) (ii) f'   (iii) f'(1)
2

 
Solution : x = tan, where    y = sin–1(sin2)
2 2

 
   2 2
 2  
    2 tan 1 x x 1
    1
y = 2   2   f(x) =  2 tan x 1  x  1
 2 2 (  2 tan 1 x)
 x  1
 
(  2)   2   2

 2
 1  x 2 x 1

 2
 f ' (x) =  1  x  1
 1 x
2

 2
 1  x 2 x  1

2 1 8
(i) f ' (2) =  (ii) f'    (iii) f ' (1+) = –1 and f ' (1–) = +1 f ' (1) does not exist Ans.
5 2 5

d  2  1 1  x   
Illustration 14 : sin  cot   =
dx 
  1  x  

1 1
(A)  (B) 0 (C) (D) –1
2 2

 1 x   
Solution : Let y = sin2  cot 1  . Put x = cos 2    0, 
 1  x   2

 1  cos 2 
 y = sin2 cot–1  = sin2 cot–1 (cot )
 1  cos 2 
 

1  cos 2 1  x 1 x
 y = sin2  =   
2 2 2 2
dy 1
  . Ans (A)
dx 2

E 9

JEE-Mathematics

1  x2  1 1  1  x2
Illustration 15 : Obtain differential coefficient of tan–1 with respect to cos–1
x 2 1  x2
Solution : Assume u = tan–1, v = cos–1
  
The function needs simplification before differentiation Let x = tan     , 
 2 2
 sec   1  –1  1  cos     
 u = tan–1   = tan   = tan
–1
 tan  =
 tan    sin    2 2

1  sec  1  cos    
v = cos–1 = cos–1 = cos–1  cos  = u = v
2 sec  2  2 2
du
 = 1. Ans.
dv
Do yourself : 6
(i) If y = cos–1(4x3 – 3x), then find :
 3  3
(a) ƒ '   , (b) ƒ ' (0), (c) ƒ '  .
 2   2 
   

9. DERIVATIVE OF A FUNCTION AND ITS INVERSE FUNCTION :


If g is inverse of f, then
(a) g{f(x)} = x (b) f{g(x)} = x
g'{f(x)}f'(x)=1 f '{g(x)}g'(x) = 1

1
Illustration 16 : If g is inverse of f and f'(x) = , then g'(x) equals :-
1  xn
(A) 1 + xn (B) 1 + [f(x)]n (C) 1 + [g(x)]n (D) none of these
Solution : Since g is the inverse of f. Therefore
f(g(x)) = x for all x
d
   f(g(x))  1 for all x
dx
1
 f'(g(x)) g'(x) = 1  g'(x) = = 1 + (g(x))n Ans. (C)
f '(g(x))

Do yourself -7 :
(i) If g is inverse of ƒ and ƒ (x) = 2x + sinx; then g’(x) equals:
3 1 1
(A)   (B) 2 + sin–1x (C) 2 + cos g(x) (D)
x 2
1  x2 2  cos(g(x))

10 E
Methods of Differentiation

10. HIGHER ORDER DERIVATIVES :
Let a function y = ƒ (x) be defined on an interval (a, b). If ƒ (x) is differentiable function, then its
derivative ƒ '(x) [or (dy/dx) or y'] is called the first derivative of y w.r.t. x. If ƒ '(x) is again
differentiable function on (a, b), then its derivative ƒ "(x) [or d2y/dx2 or y"] is called second
derivative of y w.r.t. x. Similarly, the 3rd order derivative of y w.r.to x, if it exists, is defined by
d3y d  d 2 y 
   and denoted by ƒ '''(x) or y''' and so on.
dx 3 dx  dx 2 
dy dy / d d 2 y d  dy  dx
Note : If x = f() and y = g() where '' is a parameter then  & 
dx dx / d dx 2 d  dx  d
d n y d  d n 1y  dx
In general    .
dx n d  dx n 1  d

11. ANALYSIS AND GRAPHS OF SOME INVERSE TRIGONOMETRIC FUNCTIONS :


2 tan 1 x | x | 1
 2x  
(a) y  f(x)  sin 1  2 
    2 tan 1 x x  1
 1  x   1
 (  2 tan x) x  1
Important points : y
   /2
(i) Domain is x  R & range is   , 
 2 2 I
(ii) f is continuous for all x but not differentiable
D
at x = 1,–1
2 x
 for | x |  1 –1 0 1
1  x
2

dy  D 1
(iii)   non existent for | x |  1
dx 
 2 –/2
 for | x |  1
1 x 2

(iv) Increasing in ( –1 , 1) & Decreasing in ( , 1)  (1, )


1  1  x2  2 tan 1 x if x0
(b) Consider y  f(x)  cos  2 
 
1 x 
1
 2 tan x if x0
Important points :
(i) Domain is x  R & range is [0, ) f(x)
(ii) Continuous for all x but not differentiable
at x = 0

2
 for x0 /2
1  x
2

dy 
(iii)   non existent for x0 x
dx  –1 0 1
 2
 for x0
1  x2
(iv) Increasing in (0, ) & Decreasing in (,0)

E 11

JEE-Mathematics

2 tan 1 x | x | 1
12x 
(c) y  f(x)  tan     2 tan 1 x x  1
1  x2  (  2 tan 1 x)
 x 1

Important points :
  
(i) Domain is R – {1, – 1} & range is   , 
 2 2
(ii) It is neither continuous nor differentiable f(x)
at x = 1, –1
/2
2
 | x | 1
dy 1  x 2
(iii)  x
dx 
 non existent | x |  1 –1 0 1

(iv) Increasing  x in its domain


/2
(v) It is bounded for all x

 1 1
 (  3sin x) if 1  x  
2

1 1
(d) y  f(x)  sin (3x  4x )  3sin 1 x
1 3
if  x
 2 2

   3sin 1 x 1
if  x 1
 2
Important points : y

(i) Domain is x  [ 1, 1] & range is

   D
 2 , 2  I
 
(ii) Continuous everywhere in its domain x
–1 0 1
1 1
(iii) Not derivable at x   ,
2 2 I
D
 3 1 1
 if x  ( , )
dy  1  x 2 2 2
(iv) 
dx  3 1 1
 if x  (1,  )  ( ,1)
 1 x
2 2 2

 1 1  1 1 
(v) Increasing in   ,  and Decreasing in  1,  2    2 ,1
 2 2    

12 E
Methods of Differentiation

 1 1
3cos x  2  if 1  x  
2

1 1
(e) y  f(x)  cos1 (4x  3x)  2   3cos 1 x
3
if  x
 2 2

3cos1 x 1
if  x 1
 2
Important points :
(i) Domain is x  [ 1, 1] & range is [0, ]
(ii) Continuous everywhere in its domain
y

D I D

/2

x
–1 O 1

1 1
(iii) Not derivable at x   ,
2 2
 3  1 1
 if x    , 
dy  1  x 2  2 2
(iv) 
dx  3  1 1 
 if x   1,     ,1 
 1 x
2
 2 2 

 1 1
(v) Increasing in   ,  &
 2 2
 1 1 
Decreasing in  1,     ,1 
 2 2 
GENERAL NOTE :
Concavity is decided by the sign of 2nd derivative as :
d2y d2y
 0  Concave upwards ;  0  Concave downwards
dx 2 dx 2

E 13

JEE-Mathematics

Illustration 17 : Find the interval for which f(x) = x3 + x + 1 is


(i) concave upwards (ii) concave downwards.
3
Solution : f(x) = x + x + 1
f'(x) = 3x2 + 1
f"(x) = 6x
(i) f"(x) = 6x > 0  Concave upwards
 x  [0, )
(ii) f"(x) = 6x < 0   Concave downwards
 x  (–, 0] Ans.
d2y
Illustration 18 : If x = a (t + sin t) and y = a(1 – cos t), find .
dx 2
Solution : Here x = a (t + sin t) and y = a (1–cos t)
Differentiating both sides w.r.t. t, we get :
dx dy
= a(1 + cos t) and = a (sin t)
dt dt
t t
2 sin .cos

dy

a sin t
 2 2  tan  t 
 
dx a 1  cos t  2 cos2
t 2
2
Again differentiating both sides, we get,
t
2 sec 2  
d y  t  1 dt 1 1 1 2
= sec2      sec 2  t / 2    
dx 2
 2  2 dx 2 
a 1  cos t  2a  2 t 
2  cos 
 2
d2y 1 t
Hence,   sec 4   Ans.
dx 2
4a 2
Illustration 19 : y = f(x) and x = g(y) are inverse functions of each other then express g'(y) and g''(y)
in terms of derivative of f(x).
dy dx
Solution :  f '(x) and  g '(y)
dx dy
1
 g'(y)  ...........(i)
f '(x)
Again differentiating w.r.t. to y
d  1  d  1  dx f ''(x)  1 
g ''(y)       .  .
dy  f '(x)  dx  f '(x)  dy (f '(x)) 2  f '(x) 
f ''(x)
 g''(y)   ...........(ii)
(f '(x))3
d2y
2
d x dx 2
Which can also be remembered as = – 3
Ans.
dy 2  dy 
 dx 
 

14 E
Methods of Differentiation

Do yourself : 8
2
(i) If y = xe x then find y''.
(ii) Find y" at x = /4, if y = x tan x.
(iii) Prove that the function y = ex sin x satisfies the relationship y'' – 2y' + 2y = 0.

12. DIFFERENTIATION OF DETERMINANTS :


f(x) g(x) h(x)
If F(x)  l(x) m(x) n(x) , where f, g, h. l, m, n, u, v, w are differentiable functions of x
u(x) v(x) w(x)
f '(x) g'(x) h '(x) f(x) g(x) h(x) f(x) g(x) h(x)
then F '(x)  l(x) m(x) n(x)  l '(x) m '(x) n '(x)  l(x) m(x) n(x)
u(x) v(x) w(x) u(x) v(x) w(x) u '(x) v '(x) w '(x)

Note : Sometimes it is batter to expand the determinant first & then differentiate.

x x2 x3
Illustration 20 : If f(x) = 1 2x 3x 2 , find f'(x).
0 2 6x
x x2 x3
Solution : Here, f(x) = 1 2x 3x 2
0 2 6x
On differentiating, we get,
d d 2 d  3
(x) (x ) x x x2 x3
dx dx dx x x2 x3
d   d   d  2
  f'(x) = 1 2x 3x 2  1 2x 3x  1 2x 3x 2
dx dx dx
0 2 6x d   d   d  
0 2 6x 0 2 6x
dx dx dx
1 2x 3x 2 x x2 x3 x x2 x3
or f'(x) = 1 2x 3x 2  0 2 6x  1 2x 3x 2
0 2 6x 0 2 6x 0 0 6
As we know if any two rows or columns are equal, then value of determinant is zero.
x x2 x3
= 0 + 0 + 1 2x 3x 2  f'(x) = 6 (2x2 – x2)
0 0 6
Therefore, f'(x) = 6x2 Ans.

Do yourself : 9
x 2
2x x2 x3
e x
(i) If ƒ(x)  , then find ƒ '(1). (ii) If ƒ(x)  x 2  2x 1 3x  1 , then find ƒ ' (1).
nx sin x
2x 1  3x 2 5x

E 15

JEE-Mathematics

13. ˆ
L ' HOPITAL ' S RULE :

0 
(a) This rule is applicable for the indeterminate forms of the type , . If the function f(x)
0 
and g(x) are differentiable in certain neighbourhood of the point 'a', except, may be, at the
point 'a' itself and g'(x)  0, and if
lim f(x)  lim g(x)  0 or lim f(x)  lim g(x)   ,
x a x a x a x a

f(x) f '(x)
then lim  lim
x a g(x) x a g '(x)
f '(x)
provided the limit lim exists (L' Hôpital's rule). The point 'a' may be either finite or
x a g '(x)
improper (+  or –).
0 
(b) Indeterminate forms of the type 0.  or –  are reduced to forms of the type or by
0 
algebraic transformations.
(c) Indeterminate forms of the type 1, 0 or 00 are reduced to forms of the type 0 ×  by
taking logarithms or by the transformation [f(x)](x) = e(x).nf(x).

sin x
Illustration 21 : Evaluate lim x
x 0

log e x
sin x lim
Solution : lim x  lim e sin x loge x
e x0 cosecx

x 0 x 0

1/x
lim
= ex 0  cosecxcot x (applying L'Hôpital's rule)
2
sin 2 x  sin x   x 
lim  lim      2  0 
=e x 0 x cos x
e x 0  x   cos x 
 e 1  e0  1 Ans.
Illustration 22 : Solve lim logsin x sin 2x.
x0

Solution : Here lim logsin x sin 2x


x0

log sin 2x   
= lim  form 
x 0 log sin x   
1
 2 cos 2x
= lim sin 2x {applying L'Hôpital's rule}
x 0 1
 cos x
sin x
  2x  
    cos 2x cos 2x
= lim 
sin 2x 
 lim 1 Ans.
x 0  x  x 0 cos x
  cos x
 sin x 

16 E
Methods of Differentiation

1/ n
 en 
Illustration 23 : Evaluate lim   .
n    

1/ n
 en 
Solution : Here, A = lim   (0 form)
n    

1  en  n log e  log    
 log A = lim log    lim  form 
n  n  n  n  
log e  0
= lim {applying L'Hôpital's rule}
n  1
1/ n
1  en 
logA = 1  A = e or lim   = e Ans.
n    

Do yourself : 10
tan x  x ex  x  1
(i) Using L' Hopital
ˆ 's rule find (a) lim (b) lim
x 0 x3 x 0 x2
sin x  tan x 1 n(1  x)
(ii) Using L' Hopital
ˆ 's rule verify that : (a) lim 3
= (b) lim 1
x 0 x 2 x  0 x

Miscellaneous Illustrations :
Illustration 24 : Find second order derivative of y = sinx with respect to z = ex.
dy dy / dx cos x
Solution :   x 
dz dz / dx e
d 2 y d  cos x  dx e x sin x  cos xe x 1
     .  . x
dz 2 dx  e x  dz e x
2
 
e


d2y

 sin x  cos x  Ans.
2
dz e 2x
 x  y  ƒ(x)  ƒ(y)
Illustration 25 : Let a function ƒ satisfies ƒ    x, y  R and ƒ '(0) = a, ƒ (0) = b,
 2  2
then find ƒ (x) hence find ƒ ''(x).
 x  y  ƒ(x)  ƒ(y)
Solution : ƒ 
 2  2
Diff. w.r.t. 'x'
xy 1 1  dy 
ƒ '  .  ƒ '(x)  x & y are independent to each other,   0
 2  2 2  dx 
xy
ƒ '   ƒ '(x)
 2 

E 17

JEE-Mathematics

x
Let x = 0 & y = x ƒ '    ƒ '(0)  a
2

 ƒ '(x) = a

On integrating, we get ƒ (x) = ax + b ( ƒ (0) = b)

 ƒ ''(x) = 0
1 x 1 x 1 x 1
Illustration 26: Prove that 2
sec2  4 sec2 2  6 sec2 3  ..... = cosec2 x  2
2 2 2 2 2 2 x
x x x
Solution : Let cos .cos 2 .cos 3 .......
2 2 2
x x x x
= lim cos .cos 2 .cos 3 .......cos n
n  2 2 2 2
sin x sin x x x x sin x
 lim    cos .cot 2 cos 3 ........ 
n  x x 2 2 2 x
2 n sin
2n

 x  x   x
 n  cos   n  cos 2   n  cos 3   ....  n sin x  nx
 2  2   2 

Diff. w.r.t. x

1 x 1 x  1
  tan  2 tan 2  ......   cot x 
2 2 2 2  x

Diff. w.r.t. x again


1 x 1 x 1 x 1
2
sec 2  4 sec 2 2  6 sec 2 3  ......  cosec 2 x  2
2 2 2 2 2 2 x
Hence proved

18 E
Methods of Differentiation

Elementary Problems on Differentiation
Differentiate the given functions with respect to x :
x 1
1. y 2. y  tan 3 x  tan x  x 3. y  xsec2 x  tan x
sin x  cos x 3
x x 1
4. y  a cos 5. y  tan 6. y  1  2 tan x
3 2
x
7. y  cos3 4x 8. y  tan 9. y  sin 1  x 2
2
 1
10. y  cot 3 1  x2 11. y  (1  sin 2 x)4 12. y  1  tan  x  
 x
1 x
13. y  cos2 14. y  sin2 (cos3x) 15. y  x arcsin x
1 x
arcsin x 1
16. y 17. y  (arcsin x)2 18. y
arccos x arcsin x
x
19. y  xsin x arctan x 20. y  (arccos x  arcsin x)n 21. y  arctan x
1  x2
14
22. y  arctan x2 23. y arcsin x 2  2x
2
 b  a cos x 
24. y  arccos   ; (a, b > 0, sinx > 0) 25. y  x 2 log3 x
 a  b cos x 
nx
26. y nx 27. y  xsin x nx 28. y
xn
1  nx
29. y 30. y  n(x2  4x) 31. y  n tan x
1  nx
x3
32. y  log2 [log3 (log5 x)] 33. y  n arctan 1  x 2 34. y  3 n sin
4
x3  2x cos x
35. y  x.10x 36. y 37. y
ex ex
x
1  10 x
38. y2 nx
39. y 40. y  3sin x
1  10 x
2 2 2 x
41. y  ae  b x 42. y  Ae  k x sin(x  ) 43. y  xx
44. y  (sin x)cosx 45. y  ( nx)x 46. y  x nx
(x  1)3 4 x  2 1
47. y 48. y  x sin x 1  e x 49. y  xx
5
(x  3)2
3 x(x 2  1)
50. y  2x x
51. y  (x2  1)sin x 52. y
(x 2  1)2
 1 
53. Prove that the function y = n   satisfies the relationship xy'+1= ey (where dash denotes derivative)
1 x 
arcsin x
54. Prove that the function y  satisfies the relationship (1 – x2)y' – xy = 1(where dash
1 x 2

denotes derivative).
E 19

JEE-Mathematics

EXERCISE # (O-1)
Single Correct Choice Type
1 1 1 dy
1. If y    
    
   
, then is equal to-
1 x x 1 x x 1 x x dx

(A) 0 (B) 1 (C) ( +  + )x++–1 (D)


DF0001
Ans. A
1 1 1
Sol. y   
x x  x x  x x 
1    1    1   
x x x x x x

x x x
 y  
x   x  x  x   x  x  x   x  x 

x   x  x 
 y  y=1
x   x  x 

dy
 0
dx

1 x dy
2. If y = , then equals-
1 x dx

y y y y
(A) (B) (C) (D)
1  x2 x 1
2
1  x2 y 1
2

DF0005
Ans. B
1
 1  x 2
Sol. y   
 1 x 
1  1 x 
ny  n 
2  1 x 
1
ny = (n(1–x) – n(1 + x))
2

y ' 1  1 1 
    
y 2  1 x 1 x 

y ' 1  2 
   
y 2  1  x2 
y
 y' 
x 1
2

20 E
Methods of Differentiation

dy
3. If x3 – y3 + 3xy2 – 3x2y + 1 = 0, then at (0, 1) equals-
dx
(A) 1 (B) –1 (C) 2 (D) 0
DF0012
Ans. A
Sol. x3 – y3 + 3xy2 – 3x2y + 1 = 0
(x – y)5 + 1 = 0
Differentiate wrt. x :
3(x – y)2 (1 – y') + 0 = 0
x = 0, y = 1
 3(1 – y') = 0
 y' = 1
  
4. If y2 + loge (cos2 x) = y, x    ,  , then :
 2 2
(A) |y"(0)| = 2 (B) |y'(0)| + |y"(0)| = 3
(C) |y'(0)| + |y"(0)| = 1 (D) y"(0) = 0 DF0173
Ans. A
Sol. y2 + loge(cos2x) = y …(1)
Put x = 0 y2 – y = 0
y = 0 or y = 1
Differentiate equation (1)
2yy' – 2tanx = y' …..(2)
Put x = 0 y'(x) = 0 for both y = 0 and y = 1
Differentiate equation (2)
2yy" + 2(y')2 – 2sec2x = y"
Put x = 0 y"(0) = –2 for y = 0
y"(0) = 2 for y = 1
|y"(0)| = 2
dy
5. If (cosx)y = (siny)x, then equals-
dx
log sin y  y tan x log sin y  y tan x log sin y  y tan x log sin y  y tan x
(A) (B) (C) (D)
log cos x  x cot y log cos x  x cot y log cos x  x cot y log cos y  y cot x
DF0008
Ans. B
Sol. (cosx)y = (sin y)x

E 21

JEE-Mathematics

Taking log on both sides :


yn(cos x) = xn(sin y)

y( sin x) x(cos y)


 y ' n(cos x)  y ' n(sin y)
cos sin y
n sin y  y tan x
 y' 
n cos x  x cot y
dy
6. If 2x + 2y = 2x+y, then is equal to-
dx

2x  2y 2x  2y  2y 1  2x  y  2x
(A) (B) (C) 2x–y  x 
(D)
2x  2y 1  2x  y  1 2  2y
DF0009
Ans. C
Sol. 2x + 2y = 2x+y
2xn2 + (2yn2)y1 = 2x+y(n2)(1 + y1)

 2x + 2yy1 = 2x+y(n2)(1 + y1)

 y1(2y – 2x+y) = 2x+y – 2x


2x y  2x
 y1  
2y  2x y
2 x (2 y  1)
  y1  
2 y (1  2 x )

(2 y  1)
  y  2
1 x y

(1  2x )
7. If x2 + y2 = 1, then-
(A) yy" – 2(y')2 + 1 = 0 (B) yy" + (y')2 + 1 = 0
(C) yy" + (y')2 – 1 = 0 (D) yy" + 2(y')2 + 1 = 0
DF0018
Ans. B
Sol. x2 + y2 = 1
 2x + 2yy' = 0
 x + yy' = 0
 1 + (y')2 + yy" = 0
dy
For x >1, if (2x)2y = 4e2x–2y, then 1  loge 2x 
2
8. is equal to :
dx

22 E
Methods of Differentiation

x log e 2x  log e 2 x log e 2x  log e 2
(A) loge2x (B) (C) xloge2x (D)
x x
DF0104
Ans. D
Sol. (2x)2y = 4e2x–2y
2yn2x = n4 + 2x – 2y

x  n2
y
1  n2x
1
(1  n 2x)(x  n 2)
y'  x
(1  n2x)2

 x n 2x  n 2 
y '(1  n 2x)   
 x

 dy d 2 y 
9. If ey + xy = e, the ordered pair  , 2  at x = 0 is equal to :
 dx dx 
 1 1 1 1  1 1  1 1
(A)   , 2  (B)  , 2  (C)  ,  2  (D)   ,  2 
 e e  e e  e e   e e 
DF0106
Ans. A
Sol. ey + xy = e
differentiate w.r.t. x
dy dy
ey x y 0 …..(1)
dx dx

dy dy 1
(x  e y )  y, 
dx dx (0,1) e

again differentiate w.r.t. x in (1)


d 2 y dy y dy d 2 y dy dy
ey .  .e .  x.   0
dx 2 dx dx dx 2 dx dx
2
d 2 y  dy  y dy
(x  e y ) 2
   .e  2 0
dx  dx  dx

d2 y 1  1
e 2
 2 e  2   0
dx e  e

d2 y 1
 2
 2
dx e

E 23

JEE-Mathematics

10. Let y = y(x) be a function of x satisfying y 1  x 2  k  x 1  y 2 where k is a constant and


1 1 dy 1
y     . Then at x = , is equal to :
2 4 dx 2
5 5 2 5
(A) (B)  (C) (D)  DF0154
2 2 5 4
Ans. B
Sol. Put x = sin, y = sin

y 1  x2  k  x 1  y2

 sin.cos + cos.sin = k

 sin(.cos) = k

   +  = sin–1k

  sin–1k + sin–1y = sin–1k

1 1 dy
    0
1  x2 1  x2 dx

1 1
  at x = ,y=
2 4

dy  5

dx 2

11. Suppose the function f (x) – f (2x) has the derivative 5 at x = 1 and derivative 7 at x = 2. The
derivative of the function f (x) – f (4x) at x = 1, has the value equal to
(A) 19 (B) 9 (C) 17 (D) 14
DF0023
Ans. A
Sol. (f(x) – f(2x))' = f'(x) – 2f'(2x)|x=1 = 5
f'(1) – 2f'(2) = 5 ……(1)
at x = 2  f'(2) – 2f'(4) = 7 ……(2)
(f(x) – f(4x))' = f'(x) – 4f'(4)
at x = 1  f'(1) – 4f'(1)
equation (1) + 2 × equation (2)
f'(1) – 4f'(4) = 19

24 E
Methods of Differentiation

12. Suppose that f (0) = 0 and f '(0) = 2, and let g (x) = f  x  f  f(x)   . The value of g ' (0) is equal

to
(A) 0 (B) 1 (C) 6 (D) 8
DF0028
Ans. C
Sol. g(x) = f(–x + f(f(x)))
g'(x) = f'(–x + f(f(x)) (–1 + f'(f(x))f'(x))
g'(0) = f'(f(f(0)) (–1 + f'(f(0))f'(0))
= f'(0)(–1 + f'(0)f'(0))
= 2(–1 + 22)
g'(0) = 6
 1  x2  1   2x 1  x 2  1
13. The derivative of tan–1   with respect to tan–1   at x = is :
 x   1  2x 
2
2

3 3 2 3 2 3
(A) (B) (C) (D) DF0174
12 10 5 3
Ans. B
   2 
Sol. Let y1 = tan–1  1  x  1  and y2 = tan–1  2x 1  x 
2

 x   1  2x 2 

 sec   1  1  
Let x = tan y1 = tan–1    tan  tan 
 tan    2

y1 
2
1
y1  tan 1 (x)
2
 2 sin  cos  
Let x = sin y2 = tan 1  1
  tan (tan 2)
 cos 2  
y2 = 2 = 2tan–1(x)
1 1
dy1 dy1 / dx 1  x 2 . 2 1  x2
  
dy 2 dy 2 / dx 2. 1 4(1  x 2 )
1  x2

1 dy1 3
x 
2 dy 2 10
dy
14. If y = tan–1(cotx) + cot–1(tanx), then is equal to-
dx

E 25

JEE-Mathematics

(A) 1 (B) 0 (C) –1 (D) –2


DF0015
Ans. D
Sol. y = tan–1(cotx) + cot–1(tanx)
 
y= –cot–1(cotx) + – tan–1(tanx)
2 2
 y = p – 1((x + )) + (x + )
(where a, b depends on the interval of x)
y' = –2
 1  sin x  1  sin x    dy 5
15. If y(x) = cot 1   , x   ,   , then at x  is :
 1  sin x  1  sin x  2  dx 6

1 1
(A)  (B) –1 (C) (D) 0 DF0175
2 2
Ans. A
 1  sin x  1  sin x 1  sin x  1  sin x 
Sol. y(x) = cot–1   
 1  sin x  1  sin x 1  sin x  1  sin x 

 
y(x) = cot–1  2  2 1  sin x 
2

 2 sin x 

 2  2 | cos x |   
y  (x)  cot 1   x  , 
 sin x  2 

 x
y(x)  tan 1  cot 
 2
 x
y(x)  
2 2
1
y '(x)  
2
16. Let ƒ and g be differentiable functions on R such that fog is the identity function. If for some a,
b  R, g'(a) = 5 and g(a) = b, then ƒ'(b) is equal to :
2 1
(A) (B) 1 (C) (D) 5 DF0172
5 5
Ans. C
Sol. f(g(x)) = x
f '(g(x)).g'(x) = 1
Put x = x

26 E
Methods of Differentiation

1
f '(g(a)) =
g '(a)
1
f ' (b) =
5
1
17. If g is the inverse of f and f'(x) = then g'(x) is equal to-
1  x3
1 1 1
(A) 1 + [g(x)]3 (B) (C) (D)
2(1  x 2 ) 2(1  x 2 ) 1   g  x  
3

DF0017
Ans. A
Sol. g is inverse o f :
g(f(x)) = x and f(g(x)) = x
 g'(f(x)).f '(x) = 1

1
 g'(f(x)) =
f '(x)

1
 g'(f(x)) = 1  1  x3
(1  x 3 )

Replace x  g(x)

g'(f(g(x))) = 1 + (g(x))3

18. Let ƒ : R  R be a differentiable function satisfying ƒ'(3) + ƒ'(2) = 0.


1
 1  ƒ  3  x   ƒ  3  x
Then lim   is equal to
x 0  1  ƒ  2  x   ƒ  2  
 
(A) e2 (B) e (C) e–1 (D) 1
DF0171
Ans. D
Sol. f '(3) + f '(2) = 0
1/x
 1  f(3  x)  f(3) 
lim  , from 1
x 0 1  f(2  x)  f(2) 
 
f (3 x)f (3) f (2)  f (2 x) 
lim   
 e x0 x x 

ef '(3)+f '(2) = e0 = 1

E 27

JEE-Mathematics

 1 1  x2 
19. The value of Lim  1
  is equal to
x 0
 xsin x x2 

5 5 6 6
(A)  (B) (C) (D) 
6 6 5 5
DF0087
Ans. B
x  (1  x 2 )sin 1 x
Sol. lim
x 0 x 2 sin 1 x
x  sin 1 x  x 2 sin 1 x
 lim
x 0 sin 1 x
x2 x
x
x  sin 1 x  x 2 sin 1 x
 lim
x 0 sin 1 x
x2 x
x
x  sin 1 x  x 2 sin 1 x
 lim
x 0 x3
Applying
1 x2
1   2x sin 1 x
 lim 1 x 2
1 x 2
 
x 0 3x 2
 2
1  1  x  2x sin 1 x
  lim 1  x2 
x 0 3x 2

1  1  x 2  2x sin 1 x
 lim 
x 0 3x 2
1 1 2x
x    (2x)  2 sin 1 x 
2 1 x 2
1  x2
  lim
x 0 6x
3 3x 1 2
     (2x) 
(1  x )
2 3/2
 2 
lim 1  x 1  x2 
2

x 0 6
5
 
6

20. The value of Lim


x n  x2  1  x  is equal to
3
x 0 x

28 E
Methods of Differentiation

1 1 1
(A) (B)  (C) (D) 6
6 6 12
DF0088
Ans. A
1  2x 
1   1
Sol. lim
 x 1  x  2 x 1 
2 2

x 0 3x 2
1
1
 lim x2  1
x 0 3x 2
1
1  2x
2  (x  1)3/2
2
 lim
x 0 6x
1
 lim
x 0 6(x  1)3/2
2

1

6

EXERCISE # (O-2)
Single Correct Choice Type
u(x) u '(x)  u(x)  '
1. Let u(x) and v(x) are differentiable functions such that  7 . If  p and   q,
v(x) v '(x)  v(x) 
pq
then has the value equal to -
pq
(A) 1 (B) 0 (C) 7 (D) –7
DF0021
Ans. A
u(x)
Sol. 7
v(x)
u'(x)
p
v'(x)

 u '(x)  '
 v '(x)   q
 
u(x) = 7v(x)
u'(x) = 7v'(x)
u '(x)
7q
v '(x)

E 29

JEE-Mathematics

d  u(x)  d
 (7)
dx  v(x)  dx

q=0
pq 70
 1
pq 70
2. Let f (x) be a polynomial function of second degree. If f (1) = f (–1) and a, b, c are in A.P., then f
'(a), f '(b) and f '(c) are in
(A) G.P. (B) H.P. (C) A.G.P. (D) A.P.
DF0022
Ans. D
Sol. Let f(x) = Ax2 + Bx + C
f(1) = f(–1)
A+B+C=A–B+C
B=0
f(x) = Ax2 + C
f'(x) = 2ax
a, b, c are in A.P.
2Aa, 2Ab, 2Ac are in A.P.
f'(a), f'(b), f'(c), are in A.P.
d2x
3. If y = x + ex then is :
dy 2
ex ex 1
(A) ex (B)  (C)  (D)
(1  e x )3 (1  e x )2 (1  e x )3
DF0030
Ans. B
Sol. y = x + ex
dy
 1  ex
dx
dy 1

dx 1  e x
d2 x 1 dx
 .e x .
dy 2
(1  e )
x 2
dy

d2 x e x

dy 2 (1  e x )3

30 E
Methods of Differentiation

3
d 2 x  dy  d 2 y
4. If + = K then the value of K is equal to
dy 2  dx  dx 2
(A) 1 (B) –1 (C) 2 (D) 0
DF0033
Ans. D
Sol. we know that
d2 x d2y
 
dy 2 dx 2
3
 dy 
 
 dx 
3
d 2 x  dy  d 2 y
   0
dy 2  dx  dx 2
k=0
 1 
5. Let f (x) = x + sin x. Suppose g denotes the inverse function of f. The value of g'    has
4 2
the value equal to
2 1
(A) 2 1 (B) (C) 2  2 (D) 2 1
2
DF0036
Ans. C
  1
Sol. f(x) = x + sinx f  
4 4 2
1 1
g'(f(x)) = 
f '(x) 1  cos x

Put x =
4
 1  1
 g'   
4 2  1  cos   
 
4

1 2 2 1
  

1  cos   2 1 2 1
4

2 2

f(4)  f(x 2 )
6. If f is differentiable in (0, 6) & f '(4) = 5, then Limit =
x 2 2x

E 31

JEE-Mathematics

(A) 5 (B) 5/4 (C) 10 (D) 20


DF0029
Ans. D
f(4)  f(x 2 )  0 
Sol. lim  form 
x 2 2x 0 
Apply L'hospital Rule
1  f '(x 2 ).2x
lim
x 2 0 1
4f'(4)
= 20
(x  h)ƒ(x)  2hƒ(h)
7. Let ƒ(x) be differentiable at x = h, then Lim is equal to -
xh xh
(A) ƒ(h) + 2hƒ'(h) (B) 2ƒ(h) + hƒ'(h)
(C) hƒ(h) + 2ƒ'(h) (D) hƒ(h) – 2ƒ'(h)
DF0034
Ans. A
(x  h)f(x)  2hf(h) 0 
Sol. lim  from 
x h xh 0 
Applying L'hospital Rule
(x  h)f '(x)  f '(x)  0
lim
x h 1 0
2hf'(h) + f(h)
Multiple Correct Choice Type
4
8. If ƒ(x) = (2x – 3)5 + x  cos x and g is the inverse function of ƒ, then
3
7 3 7
(A) g'(2) = (B) g'(2) = (C) g''(2) = (D) g''(2) = 0
3 7 3
DF0037
Ans. B,D
4
Sol. If f(x) = (2x – 3)5 + x + cos x and g is the inverse function of f, then find right answer :
3
4
f(x) = (2x – 3x)5 + x + cosx
3
 3  1
f    2 , g '(f(x)) 
 2  f '(x)

32 E
Methods of Differentiation

1
g '(f(x)) 
4
5(2x  3)4 2   sin x
3
3
Put x =
2
  3   1
g' f   
  2   5(2. 3  3)4 .2  4  sin  3 
 
2 3  2 
1 3
g'(2) = 
4 7
1
3
1
g'(f(x)) =
f '(x)
1
g"(f(x))f'(x) = – .f "(x)
f '(x)2
1
g"(f(x)) = .f "(x)
f '(x)3

1  3  
g"(2 )  20.2(2x  3) .2  cos  2  
3
3

4   
  1
3 
g"(2) = 0
 B&D
9. If ƒ(x) = x.|x|, then its derivative is :
(A) 2x (B) –2x (C) 2|x| (D) 2xsgnx
DF0038
Ans. C,D
Sol. If f(x) = x, |x| then its derivative is
 x2 , x  0
f(x) =  2
x , x  0
 2x , x  0
f '(x)  
2x , x  0
f'(0+) = 0, f'(0–) = 0
 f'(0) = 0
 f'(x) = 2|x|
= 2x sgn(x)

E 33

JEE-Mathematics

 C&D
x   x
10. Lim is equal to -
x  x x  
e 
(A) log e   (B) log e  
 e
(C) tan(cot–1(n) – cot–1(1)) (D) tan(tan–1(1) – tan–1(n))

DF0042
Ans. A,C,D
x   x
Sol. Lim x
x  x  

x 1   n 
Lim x
x  x (1  n x)

n  
e
1 
.   n  1  n  e
      loge  
x (1  n x)
x
1 n  n(e) 

 nge(e/)

(C) tan[cot–1(n) – cot–1(1)]

  1  
tan  tan 1  1
  tan (1) 
  n 

 1 
 1 n   1 
tan  tan
1 
 1 
 n
1 n  e
 log e  
1 n  

(D) tan[tan–1(1) – tan–1(n)]

1 n 
1 n 
e
log e  

 ACD

34 E
Methods of Differentiation

EXERCISE # (O-3)
Numerical Grid Type
1. Let f, g and h are differentiable functions. If f(0) = 1 ; g(0) = 2 ; h(0) = 3 and the derivatives of
their pair wise products at x = 0 are (f g)' (0) = 6 ; (g h)' (0) = 4 and (h f)' (0) = 5 then the value of
(fgh)'(0) is
DF0046
Ans. 16
(fg)'(0)h(0)  (fh)'(0)g(0)  (gh)'(0)f '(0)
Sol. (fgh)'(0) =
2

6  3  5  2  4 1
  16
2
2. A twice differentiable function f(x) is defined for all real numbers and satisfies the following
conditions
f(0) = 2; f '(0) = –5 and f "(0) = 3.
The function g(x) is defined by g(x) = eax + f (x)  x  R, where 'a' is any constant, if a1, a2, ..., an
n
are the values of 'a' such that g'(0) + g"(0) = 0 then the value of a
i 1
2
i is

DF0139
Ans. 5
Sol. g(x) = eax + g(x)

g'(x) = aeax + f'(x)

g'(0) = ae0 + f'(0) = a + (–5)

=a–5

g"(x) = a2eax + f"(x)

g"(0) = a2 + f"(0) = a2 + 3

g'(0) + g"(0) = 0

a – 5 + a2 + 3 = 0

a2 + a – 2 = 0

a = –2, 1
3. Let f(x) be a polynomial function such that f(2x) = f '(x) f "(x), then the value of f(3) is :-
DF0140
Ans. 12
Sol. Let degree of f(x) be n

 Degree of f(2x) = n

E 35

JEE-Mathematics

Degree of f'(x) = n – 1

Degree of f"(x) = n – 2

Since f(2x) = f'(x)f"(x)

 Degree of LHS n = Degree of RHS

= n – 1 + n – 2 = 2n – 3

 n = 2n – 3 n=3

Let f(x) = ax3 + bx2 + cx + d (a  0)

f(2x) = 8ax3 + 4bx2 + 2cx + d

f'(x) = 3ax2 + 2bx + c

f"(x) = 6ax + 2b

8ax3 + 4bx2 + 2cx + d = (3ax2 + 2bx + c)(6ax + 2b)

Equating the coefficients of x3, x2, x and constant, we get

4
8a = 18a2  a = [ a  0]
9

4b = 6ab + 12ab = 18ab

 a = 2/9 or b = 0

b=0 [ a = 4/9]

2c = 4b2 + 6ac  2c = 6ac

1
 a= or c = 0
3

c=0[ a = 4/9]

d = 2bc = 0

4 3
 f(x)  x
9
1 1
 d2y dy
4. If 2x = y 5  y 5
then (x2 – 1) 2
x  ky , then the value of 'k' is :-
dx dx
DF0076
Ans. 25

36 E
Methods of Differentiation

1 1

Sol. y 5  y 5
 2x ……(1)

 1 1 1 1  1 1 
  y5  y 5  y '  2
5 5 

1 1  15 1  15 
 y y  y   2
5  5 

 y '  y 5  y  5   10y 
1 1

 

  1
 y '2 y 5  y  5   100 y 
1 2 2

  y '2  5 
 y y

5
1
  4  100 y 
1 2 2

 4y'2[x2 – 1] = 100y2

y'2(x2 – 1) = 25y2

y'2.2x + (x2 – 1)2y'.y" = 50 y.y'

 (x2 – 1)y" + xy' = 25y

 k = 25
5. The function f: R  R satisfies f(x2) · f"(x) = f'(x) · f'(x2) for all real x. Given that f(1) = 1 and
f"'(1) = 8, then the value of f'(1) + f"(1) is :-
DF0079
Ans. 6
Sol. f(x2).f"(x) = f'(x).'(x2) x R …….(1)

 f(x2).f"'(x) + f"(x).f'(x2).2x

 f'(x)f"(x2).2x + f'(x2).f"(x)

Put x = 1

 f(1).f"'(1) + f"(1).f'(1).2 = f'(1).f"(1).2 + f'(1).2 + f'(1).f"(1)

 1.8 = '(1).f"(1)

 f'(1).f"(1) = 8 …….(2)

Put x = 1 in equation (1)

E 37

JEE-Mathematics

 f(1).f"(1) = f '(1).f '(1)

 f"(1) = [f '(1)]2 …….(3)

From equation (2) and (3)

[f '(1)]3 = 8  f '(1) = 2

 f"(1) = 4

 f '(1) + f"(1) = 6
6. Let f : R  R is a function such that f(x) = x3 + x2 f'(1) + x f"(2) + f"'(3) for all x  R, then the
value of f(2) – f(1) + f(0) is
DF0141
Ans. 0
Sol. f(x) = x3 + x2f '(1) + xf "(2) + f "'(3)  x R ……(1)

 f '(x) = 3x3 + xf ' (1) + f "(2)  x R ……(2)

 f "(x) = 6x + 2f ' (1)  x R ……(3)

 f '"(x) = 6  x R ……(4)

  f '"(3) = 6

Put x = 2 in (3)

 f "(2) = 12 + 2f ' (1)

Put x = 1 in (2)

 f "(1) = 3 + 2f ' (1) + f "(2)

 f '(1) = 3 + 2f ' (1) + 12 + 2f '(1)

  3f '(1) = –15

  f ' (1) = –5

  f "(2) = 12 + 2f '(1) = 12 + 2(–5)

  f "(2) = 2

  f(x) = x3 – 5x2 + 2x + 6

f(2) = 8 – 20 + 4 + 6 = –2

f(1) = 1 – 5 + 2 + 6 = 4

38 E
Methods of Differentiation

f(0) = 6

 f(2) = f(1) – f(0)


 g(x), x0

7. Let g(x) be a polynomial, of degree one & f(x) be defined by f(x) =  1  x 1/x
, x0
 2  x 

  9 
If f(x) be a continuous function satisfying f'(1) = f (–1), then the value of 6  f  3   n    is
  4 
DF0142
Ans. 2
Sol. g(x) = ax + b

 ax  b x0

f(x) =  1  x 1/x
  x0
 2  x 

f(0+) = f(0) = f(0)



1
  =b=b
2

b=0
1/x
 1 x 
In vicinity of '1' say f(x) =  
2x

 1 x 
y 
2x

1
In y = (ln(1 + x) – ln(2 + x))
x

1 1 ln(1  x) 1 1 ln(2  x)
.  . 
1 (2  x) x x2
y '  1 x x 2 x
2

y x x2

At 1

 11  2
y=  
 2 1 3

2  1  1  ln 2 
1 1
  ln 3 
y'   2 1 1
3 3 1 
 1 1 
E 39

JEE-Mathematics

21  2 
y '    ln   
36  3 

f(–1) = –a + b (b = 0)

= –a

2  1 3
y'(1) = f(–1)  a   ln 
3 6 2

 2  1 3
 3  6  ln 2  x, x  0

 1/x
  1 x  , x0
  2  x 

8. Let f : R  R be defined as f(x) = x3 + 3x2 + 6x – 5 + 4e2x and g(x) = f –1 (x), then the value of
28(g'(–1)) is
DF0144
Ans. 2
Sol. f(x) = x3 + 3x2 + 6x – 5 + 4e2x

1
g'(f(x)) = g'(–1) =
f '(x)/x 0

1

3x  6x  6  8e 2x
2

1 1
 
0  0  6  8 14
1
9. Suppose f –1 is the inverse function of a differentiable function f and let G(x) = 1
.
f (x)
1 G (2)
If f(3) = 2 and f'(3) = , then the value of is DF0145
9 2
Ans. 0.50
1
Sol. G(x) = 1
f (x)

1
G '(x)  (f –1 (x))'
f (x) 
1 2

1
= 9
 f 1 (2)
2

40 E
Methods of Differentiation

1
=  9  1
32

1
 f 1 (x)  
f '(x)

1

f '(3)

1
 9
1/ 9
f(3) = 2
f–1(2) = 3
d2y dy
10. If y = (A + Bx) emx + (m – 1)–2 ex and if 2
 2m  m 2 y  e kx , then the value of k is
dx dx
DF0153
Ans. 1
ex
Sol. y = (A + Bx)emx +
(m  1)

ex
y' = (A + Bx)emxm + Bemx +
(m  1)

ex
y" = (A + Bx)emxm2 + mBemx + Bemxm +
(m  1)

ex
 y" – 2my' + m2y = (A + Bx)m2emx + 2mBemx +
(m  1)

2me x m2ex
–2m2(a + Bx)emx – 2mBemx – +m 2
(A + Bx)e mx
+ 
(m  1)2 (m  1)2

(m  1)2 e x
  
(m  1)2

 = ex

So k = 1
cos x sin x cos x

11. Let f(x) = cos 2x sin 2x 2 cos 2x then the value of f    is
2
cos3x sin 3x 3cos3x
DF0151

E 41

JEE-Mathematics

Ans. 4
cos x sin x cos x
Sol. f(x) = cos 2x sin 2x 2 cos 2x
cos3x sin 3x 3cos3x

 sin x sin x cos x cos x cos x cos x cos x sin x  sin x


f '(x) =  sin 2x sin 2x 2 cos 2x  cos 2x 2 cos 2x 2 cos 2x  cos 2x sin 2x 4 sin 2x
3sin 3x sin 3x 3cos3x cos3x 3cos3x 3cos3x cos3x sin 3x 9sin 3x

1 1 0 0 1 0 0 1 1

f '    0 0 2  1 2 2  1 0 0
2
3 1 0 0 0 0 0 1 9


f '    4  0  8  4
2
logsin2 x cos x
12. lim has the value equal to
x 0 x
log 2  x  cos  
sin  
2
2
DF0150
Ans. 4
logsin2 x cos x
Sol. lim
cos  
x 0 x
log
sin 2  
x
2
2

loge sin 2  
x
loge cos x 2
 lim 
loge cos  
x 0 x loge (sin 2 x)
2

n sin 2  
x
n cos x 2
 lim  lim
n cos  
2
x 0 x x 0 n(sin x)
2

Use L-Hospital

42 E
Methods of Differentiation

x 1
2 sin   cos   
x
2
(x / 2) 2 2 2

1 ( sin x) sin 2  
x x x
 x    
 lim cos x x  lim 2 2 2
x 0  x  x  0  1  sin x
  sin  1 
1
 2   x  x 2
 sin x   2
2 cos x  x
    x
 x 
2
cos   x
x 2 2
 
2 2

4×1=4

Aliter :

x
log sin 2
log cos x 2
lim 
x  0 log sin 2 x x
log cos
2

x
log sin 2
cos x  1 2
lim 
x 
cos2  1 log  4 sin 2 cos2 
x 0 x x
2  2 2

x
2 sin 2
2 1
lim
2 x
log  4 cos2 
x 0 x
2 sin
4
1  2
log  sin 2 
x
 2

x
lim 4 cos2 1  4
x 02 2
1
13. If the value of lim 1
is k then the value of [k2] is :-
x 0
(1  cosecx) n(sin x)

(where [.] denotes greatest integer function) DF0149


Ans. 7
1

Sol.  lim(1

 cosecx) nsin x
x 0

n(1  cosecx)
n  lim 
x 0 n sin x

Applying L'Hospital Rule

E 43

JEE-Mathematics

1
   cot x cosecx
(1  cosecx)
 n  lim
x 0 1
 cos x
sin x

cosecx
= lim
x 0 1  cosecx

1
= lim
x 0 1
1
cosecx

n  1

= e

n
  
 1  tan 2n 
14. If the value of Lim   is e/k then the value of k is
 1  sin 
n 

 3n 
DF0148
Ans. 6
n
  
 1  tan 2n 
Sol. lim  
 1  sin  
n 

 3n 

  
1 tan 2n 
lim  1n
n    
1sin
 3n 
 e 

  
 tan 2n sin 3n 
lim n
n  
1 sin
 e 3n


1
Let n =
t

   
 tan sin 3 t 
lim  2
t 0   
1 sin 3 t  t
 e

Applying L'Hospital Rule :

44 E
Methods of Differentiation

 2   
sec 2 t. 2  cos 3 t. 3 
lim 
t 0     x
 1 sin t   t cos t.
  e  3  3 3

 
lim 
  e t 0 23


  e6 
15. Given a real valued function f(x) as follows :
x 2  2cosx  2 sin x  l n(e x cos x)
f(x) = for x < 0 ; f(0) = k & f(x) = for x > 0 and if f(x) is
x4 6x 2
continuous at x = 0, then the value of 3k is :-
DF0147
Ans. 0.25
Sol. For Continuity

L.H.L.

x 2  2 cos x  2
 lim
x 0 x4

2x  2 sin x
 lim
x 0 4x 3

2  2 cos x
 lim
x 0  12x 2

2sin x
 lim
x 0 24x

2 cos x
 lim
x 0 24

2 1
 
24 12

R.H.L.

sin x  n(e x cos x)


 lim
x 0 6x 2

1
cos x  x
 (e x cos x  e x ( sin x))
 lim e cos x
x 0  12x

E 45

JEE-Mathematics

(cos x  sin x)
cos x 
 lim cos x
x 0 12x

cos x  1  tan x
 lim
x 0 12x

 sin x  0  sec2 x

12

1

12

R.H.L. = L.H.L.

1
f(0) =
12

So f(x) is continuous

1
3k  3   0.25
12
1  sin x  cosx  n(1  x)
16. The value of Lim 2
is 'a' then a2 is
x 0 x·tan x
DF0146
Ans. 0.25
1  sin x  cos x  n(1  x)
Sol. lim
x 0 tan 2 x
x  2  x2
x

1  sin x  cos x  n(1  x)


 lim
x 0 x3

1
cos x  sin x 
(1  x)
 lim  
x 0 3x3

1
 sin x  cos x 
(1  x)2
  lim 
x 0 6x

2
 cos x  sin x 
(1  x)3
  lim 
x 0 6

46 E
Methods of Differentiation

1  0  2
  
6

3 1
   
6 2
x 6000  (sin x)6000
17. The value of Lim is DF0091
x 0 x 2 .(sin x)6000
Ans. 1000
x6000  (sin x)6000
Sol. lim
x 0 (sin x)6000
x 
2
6000
 x6000
x

x6000  (sin x)6000


 lim 
x 0 x 6002
6000

1  
sin x 

  lim  x2  
x 0 x

  Applying L'Hospital Rule


5999
x cos x  sin x
1  6000  
sin x 
 
   x  x2 
lim
x 0 2x

x cos x  sin x
  lim  3000  
x 0 x3

[cos x  sin x  cos x]


  lim  3000  
x 0 3x 2

3000 x sin x
  lim  2
x 0 3 x

 1000 
Paragraph for Question 18 to 20
Consider the function defined implicitly y2 + y – x = 2 on various intervals on the real line. If
 1
y   ,   , then equation implicitly defines a unique real valued differentiable function
 2
y = ƒ (x).
On the basis of above informations, answer the following questions.
18. The value of ƒ ''(4) is -
2 125 1 1
(A) (B) (C) (D)
125 2 5 125

E 47

JEE-Mathematics

DF0165
Ans. A
dy dy
Sol. y2 + y – x = 2  2y  1
dx dx

dy 1
 
dx 2y  1

Put x = 4  y = 2, – 3

 1
y   ,    y = –3
 2

dy 1 1
   
dx x 4 2y  1 y 3 5

2
d2y  dy 
Now (1 + 2y) 2
 2   0
dx  dx 

d2 y 2 2
   f "(4)  
dx 2 x 4 125 125

19. If y = g(x) is inverse of y = ƒ (x), then g'(–2) is -


1
(A)  (B) –3 (C) –2 (D) 0
3
DF0166
Ans. B
Sol. g(x) is inverse of f(x)

 intercehanging x and y, we get

x2 + x – y = 2 where y = g(x)

 g'(x) = 2x + 1  g'(–2) = –3
20. If y = h(x) is mirror image of y = ƒ (x) about the line 2y + 1 = 0, then ƒ ''(x0) + h''(x0), where
 9 
x0    ,   is -
 4 
2 2
(A) 2x0 (B) (C) (D) 0 DF0167
2ƒ(x 0 )  1 (2ƒ(x 0 )  1)3
Ans. D
1
Sol. h(x) is mirror image of f(x) in y =
2

f(x)  h(x) 1
   f(x) + h(x) = –1
2 2

48 E
Methods of Differentiation

 9 
 f"(x) + h"(x) = 0  x    ,  
 4 

EXERCISE # (JM)

 tan   cot   1  3  dy 5
1. If y()  2    2 ,   ,   , then at   is :
 1  tan   sin 
2
 4  d 6
[JEE(Main)-2020]
1 4
(1) 4 (2)  (3) (4) –4
4 3
DF0155
Ans. 1
 tan   cot   1  3 
Sol. y()  2    2 ,  , 
 1  tan   sin 
2
 4 

| sin   cos  | (sin   cos )


 
| sin  | sin 

= –1 – cot

y'() = cosec2

 5 
y '   4
 6 

6
3 4  dy
2. If y   k cos
k 1
1
 cos kx  sin kx  , then
5 5  dx
at x = 0 is________. [JEE(Main)-2020]

DF0156
Ans. 91
3 4 
Sol. Put cos  ,sin   ,0   
5 5 2
3 4 
Now cos  ,sin   ,0   
5 5 2
3 4
Now coskx – sinkx
5 5
= cos.coskx – sin.sinkx
= cos( + kx)
As we have to find derivate at x = 0
We have cos–1(cos( + kx))
= ( + kx)
6
 y   (  kx)
k 1

E 49

JEE-Mathematics

dy 6
6  7  13
  k   91
dx at x 0 k 1 6
 P x
 ; x2
3. Consider the function f  x    sin  x  2 
 7 ; x2

Where P(x) is a polynomial such that P"(x) is always a constant and P(3) = 9. If f(x) is continuous at
x = 2, then P(5) is equal to ______. [JEE(Main)-2021]
DF0157
Ans. 39
 P(x)
 , x2
Sol. f '(x)   sin(x  2)
 7, x2

P"(x) = const.  P(x) is atmost 2nd degree polynomial f(x) is cont. at x = 2
f(x) is cont. at x = 1
f(2+) = f(2–) = f(2)
P(x)
lim 7
x 2 sin(x  2)

(x  2)(ax  b)
lim  7  2a + b = 7
x 2 sin(x  2)
P(x) = (x – 2)(ax + b)
P(3) = (3 – 2)(3a + b) = 9  3a  b  9
a  2,b  3
P(5) = (5 – 2)(2.5 + 3) = 3.13 = 39
  1 x 
4. Let f(x) = cos  2tan 1 sin  cot 1   , 0 < x < 1. Then : [JEE(Main)-2021]
  x 
(1) (1 – x)2 f'(x) – 2(f(x))2 = 0 (2) (1 + x)2 f'(x) + 2(f(x))2 = 0
(3) (1 – x)2 f'(x) + 2(f(x))2 = 0 (4) (1 + x)2 f'(x) – 2(f(x))2 = 0
DF0158
Ans. 3
  
Sol. f(x)  cos  2 tan 1 sin  cot 1 1  x   (0 < x < 1)
  x 

1 x
cot 1  sin 1 x
x

 f(x) = cos(2tan–1 x )
  
= cos  tan 1  2 x  
  1 x 

50 E
Methods of Differentiation

1 x
f(x) =
1 x
2
Now f '(x) =
(1  x)2
2
2  1 x 
 f ' (x) (1 – x) = –2  
 1 x 
 (1 – x)2 f '(x) + 2(f(x))2 = 0
5. Let f (x) be a polynomial function such that f (x) + f ' (x) + f ''(x) = x5 + 64. Then, the value of
f(x)
lim
x 1 x  1

(A) –15 (B) –60 (C) 60 (D) 15


[JEE(Main)-2022]
DF0168
Ans. A
f(x)
Sol. lim  f '(1) (and f(1) = 0)
x 1 x 1
f(x) + f '(x) + f "(x) = x5 + 64
f ' (x) + f "(x) + f '"(x) = 5x4
f " (x) + f '"(x) + f iv (x) = 20x3
f '" (x) + f iv (x) + f v (x) = 60x2
 f v (x) – f '' (x) = 60x2 – 20x3
 120 – f''(1) = 40  f "(1) = 80
Also f(1) + f '(1) + f "(1) = 65  f ' (1) = –15.
f '(4)
6. Let f :  satisfy f(x + y) = 2xf(y) + 4yf(x),  x, y  . If f(2) = 3, then 14. is equal to
f '(2)
_____.
[JEE(Main)-2022]
DF0169
Ans. 248
Sol. Put y = 2

f(x + y) = 2x.f(y) + 4y.f(x)

f(x + 2) = 2x . 3 + 16 f(x)

f ' (x + 2) = 16 f '(x) + 3.2x ln2

E 51

JEE-Mathematics

f ' (4) = 16 f '(2) + 12ln2 …….(1)

f(y + 2) = 4f(y) + 3.4y

f '(y + 2) = 4f '(y) + 3.4yln4

f ' (4) = 4f ' (2) + 96 ln2 ……(ii)

solving equation (i) and (ii), we get

f '(2) = 7 ln2

from equation (i), we get

f '(4) = 124 ln2

f '(4)
Now,  14.
f '(2)

124 ln 2
14 
7 ln 2

= 248

a 1 0
7. Let f(x)  ax a 1 , a  R. Then the sum of the squares of all the values of a for which
ax 2 ax a
2f (10)  f (5)  100  0 is :
(A) 117 (B) 106 (C) 125 (D) 136
[JEE(Main)-2022]
DF0170
Ans. C
a 1 0
Sol. f(x)  ax a 1
ax 2 ax a

1 1 0
f(x)  a x a 1
2
x ax a

52 E
Methods of Differentiation

= a[1(a2 + ax) + 1(ax + x2)]
 f(x) = a(x + a)2
so, f '(x) = a(x + a)2
as, 2f '(10) – f ' (5) + 100 = 0
 2 × 2a(10 + a) – 2a(5 + a) + 100 = 0
 40a + 4a2 – 10a – 2a2 + 100 = 0
2a2 + 30a + 100 = 0
 a2 + 15a + 50 = 0
(a + 10)(a + 5) = 0
a = –10 or a = –5
Required = (–10)2 + (–5)2 = 125
    3

8. Let y  f  x   sin 3   cos 
  
4x 3  5x 2  1 2    . Then, at x = 1,

3 3 2   

(1) 2y' 32 y  0 (2) 2y ' 32 y  0

(3) 2y' 32 y  0 (4) y ' 32 y  0


[JEE(Main)-2023]
Official Ans. by NTA (2)
Allen Ans. (2)
Sol. y = sin3(/3cosg(x))

gx   4x 
3/2
3
 5x 2  1
3 2
g(1) = 2/3
   
y '  3sin 2  cos g  x    cos  cos g  x  
3  3 


3
 sin g  x   g'  x 
     2 
y ' 1  3sin 2    .cos   .   sin g' 1
 6 6 3 3 


g'  x    4x   12x 
1/2
3
 5x 2  1 2
 10x
3 2

g' 1 
2 2

 2   2   
3 3  3 32
y' 1  . .      
4 2 3  2  16

E 53

JEE-Mathematics

1
y 1  sin 3   / 3cos2  / 3   
8
2y' 1  32 y 1  0
9. If f(x) = x2 + g(1)x + g(2) and g(x) = f(1)x2 + xf(x) + f(x), then the value of f(4) – g(4) is
equal to _______.
[JEE(Main)-2023]
Official Ans. by NTA (14)
Allen Ans. (14)
Sol. f(x) = x2 + g(1)x + g (2)
f (x) = 2x + g(1)
f(x) = 2
g(x) = f(1) x2 + x [2x + g(1)] + 2
g(x) = 2f(1) x + 4x + g(1)
g(x) = 2f(1) + 4
g(x) = 0
2f(1) + 4 = 0
f(1) = – 2
–2 = 1 + g(1) = g(1) = – 3
So, f’(x) = 2x – 3
2
f(x) = x – 3x + c
c=0
f(x) = x2 – 3x
g(x) = – 3x + 2
f(4) – g(4) = 14
1 1 1
10. For the differentiable function f :  – {0} , let 3f(x)  2f     10 , then f (3)  f '   is
x x 4
equal to
33 29
(1) 7 (2) (3) (4) 13
5 5
[JEE(Main)-2023]
Official Ans. by NTA (4)
Allen Ans. (4)
 1 1 
Sol. 3f (x)  2f     10   3
  
x x 
 1 
 2f (x)  3f  x   x  10   2
   

54 E
Methods of Differentiation

3
5f (x)   2x  10
x
1 3 
f (x)    2x  10 
5 x 
1 3 
f '(x)    2  2 
5 x 

1 1 1
f (3)  f '    (1  6  10)  (48  2)
4 5 5
= |–3–10| = 13

11. Suppose

2 x
 
 2  x tan x tan 1 x 2  x  1 
f x  ,
 7x  3x  1
3
2

Then the value of f '(0) is equal to



(1)  (2) 0 (3)  (4)
2
[JEE(Main)-2024]
Ans. (3)
f(h)  f(0)
Sol. f '(0)  lim
h 0 h

(2h  2h ) tan h tan 1(h 2  h  1)  0


= lim
h0 (7h2  3h  1)3 h

= 
12. Let ƒ(x) = x5 + 2ex/4 for all x  R. Consider a function g(x) such that (gof) (x) = x for all x  R.
Then the value of 8g(2) is :
(1) 16 (2) 4 (3) 8 (4) 2
[JEE(Main)-2024]
Ans. (1)
Sol. f(x) = 2
when x = 0
 g(f(x)) f(x) = 1

1
g  2  
f 0
 

E 55

JEE-Mathematics

2 x/4
 f(x) = 5x4 + e
4

g(2) = 2
Ans = 16
Option (1)

EXERCISE (JA)
1. Let ƒ :   , g :    and h :    be differentiable functions such that ƒ(x) = x3 + 3x + 2,

g(ƒ(x)) = x and h(g(g(x))) = x for all x  . Then- [JEE(Advanced)-2016, 4(–2)]

1
(A) g '  2   (B) h'(1) = 666 (C) h(0) = 16 (D) h(g(3)) = 36
15
DF0113
Ans. B,C
Sol. Given
g(f(x)) = x
 g'(f(x)).f ' (x) = 1
1
 g'(f(x)) =
f '(x)
1
 g'(x3 + 3x + 2) =
3x  3
2

Put x = 0

1
 g'(2) 
3
option A is wrong
* h(g(g(x))) = x ; given
x 
replace
 f(x)

 h(g(g(f(x)))) = f(x) ; given g(f(x))  x

 h(g)(x)  f(x) 


Put
x 3
h(g(3)) = f(3) = 33 + 3 × 3 + 2  h(g(3))  38

 x 
Replace
f(x)

 h (g(f(x)))  f(f(x))
x

 h(x)  f((x)) 


Put
x 0
h(0)  f (f(0))  f(2)  16  h(0)  16
2

56 E
Methods of Differentiation

 h'(x) = f '(f(x)).f '(x)
 h'(x) = f '(x3 + 3x + 2).(3x2 + 3)
Put x = 1
 h'(1) = f '(6).6
 h'(1) = f '(6).6
 h'(1) = 111 × 6  h'(1) = 666

E 57

JEE-Mathematics

ANSWER KEY
Do yourself -1

1 1
(i) (a) (b) 
x x2

Do yourself -2

(i) (a) 3x2 + 12x + 11 (b) 5e5x tan (x2 + 2) + 2xe5x sec2(x2 + 2)

Do yourself -3

(i) xx (nx + 1) (ii) y(1 + 2x + 3x2 + 4x3)

Do yourself -4

1
(i) –1 (ii) (iii) 2(xnx)(nx)
t

Do yourself -5

cos(x  y)  1  2x  e y 
(i) (ii) y '    y  , –1
cos(x  y)  1  xe  1 

Do yourself -6

(i) (a) –6 (b) 3 (c) –6

Do yourself -7

(i) D

Do yourself -8

(i) y'' = 4y + 2xy' (ii) +4

Do yourself -9

(i) e( sin 1 + cos 1) – 1 (ii) 9

Do yourself -10

1 1
(i) (a) (b)
3 2

58 E
Methods of Differentiation

Elementary Problems on Differentiation
sin x  cos x  x(sin x  cos x) sin x
1. 2. tan4x 3. 2x
1  sin 2x cos3 x
a x 1 1
4.  sin 5. 6.
3 3 x 1
2 1  2 tan x.cos2 x
2 cos
2
1 x cos 1  x 2
7. –12cos24x sin4x 8. 9.
x x 1  x2
4 tan .cos2
2 2
2x
10.  11. 4(1 + sin2x)3sin2x
3sin 2 3
1  x . (1  x )
2 3 2 2

1 x 
sin 2  
12.
x2  1
13. 1 x  14. –3sin3x sin(2cos3x)
 1   1  x(1  x)2
2x 2 cos2  x   1  tan  x  
 x  x
x  2 arcsin x
15. arcsin x  16. 17.
1  x2 2(arccos x) 2
1 x 2
1  x2
1 x sin x
18.  19. sin x.arctan x  x cos x.arctan x 
(arcsin x)2 1  x 2 1  x2
2x 2 2x
20. 0 21.  22.
(1  x 2 )2 1  x4
x 1 a 2  b2
23. 24.
8 4 (arcsin x 2  2x)3 (1  2x  x 2 )(x 2  2x) a  b cos x
x 1
25. 2x log3 x  26.
n3 2x nx
1  n nx 2
27. sin x nx  x cos x nx  sin x 28. n 1
29.
x x(1  nx) 2
2x  4 2
30. 31.
x  4x
2
sin 2x
1 x
32. 33.
x log 5 x log3 (log 5 x) n2 n3 n5 arctan 1  x 2 (2  x 2 ) 1  x 2
x3
cot
4 2x ( n2  1)  3x 2  x 3
34. 35. 10x (1 + x n10) 36.
3 2 x3 ex
12 n sin
4
sin x  cos x ( nx  1) n2 nx x
37. – 38. 2
ex n2x
2.10 x n10 2 2
39.  40. 3sin x cos x. n3 41. 2ab2 xe  b x
(1  10 )x 2

E 59

JEE-Mathematics
2
42. Ae  k x [  cos(x  )  k 2 sin(x  )]

x  1  cos2 x 
43. x x .x x  n 2 x  nx   44. (sin x)cosx   sin x n sin x 
 x  sin x 

 1  57x 2  302x  361 (x  1) 2 4 x  2


45. ( nx) x   n nx  46. 2x nx 1 nx 47. .
 nx  20(x  2)(x  3) 5
(x  3) 2

1 1 1 ex  1
2
48. x sin x 1  e x   cot x  .  49. x x (1  nx)
2 x 2 1  ex 
1
 2x sin x 
 
x
50. x 2
(2  nx) 51. (x 2  1)sin x  2  cos x n x 2  1 
 x 1 

x 4  6x 2  1 x(x 2  1)
52. 3
3x(1  x 4 ) (x 2  1)2

EXERCISE # O-1
Que. 1 2 3 4 5 6 7 8 9 10
Ans. A B A A B C B D A B
Que. 11 12 13 14 15 16 17 18 19 20
Ans. A C B D A C A D B A

EXERCISE # O-2
Que. 1 2 3 4 5 6 7 8 9 10
Ans. A D B D C D A B,D C,D A,C,D

EXERCISE # O-3
Que. 1 2 3 4 5 6 7 8 9 10
Ans. 16 5 12 25 6 0 2 2 0.50 1
Que. 11 12 13 14 15 16 17 18 19 20
Ans. 4 4 7 6 0.25 0.25 1000 A B D

EXERCISE # JEE-MAIN
Que. 1 2 3 4 5 6 7 8 9 10
Ans. 1 91 39 3 A 248 C 2 14 4
Que. 11 12
Ans. 3 1

EXERCISE # JEE-ADVANCED
Que. 1
Ans. B,C

60 E

You might also like