0% found this document useful (0 votes)
230 views18 pages

30 Diffrentiation Part 1 of 1

This document contains a study package for the topic of differentiation in mathematics. It includes: 1) An introduction to the first principle of differentiation. 2) An example problem demonstrating how to find the derivative of functions like x^2, tanx, and e^sinx using the first principle. 3) A table listing the derivatives of some common elementary functions. The package provides resources for students to learn about differentiation, including theory, examples, exercises and past exam questions. It contains contact information for the teacher and links to download additional materials from their websites.

Uploaded by

Gurkaran
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
230 views18 pages

30 Diffrentiation Part 1 of 1

This document contains a study package for the topic of differentiation in mathematics. It includes: 1) An introduction to the first principle of differentiation. 2) An example problem demonstrating how to find the derivative of functions like x^2, tanx, and e^sinx using the first principle. 3) A table listing the derivatives of some common elementary functions. The package provides resources for students to learn about differentiation, including theory, examples, exercises and past exam questions. It contains contact information for the teacher and links to download additional materials from their websites.

Uploaded by

Gurkaran
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 18

fo/u fopkjr Hkh# tu] ugha vkjEHks dke] foifr ns[k NksM+s rqjar e/;e eu dj ';keA

iq#"k flag ladYi dj] lgrs foifr vusd] ^cuk^ u NksM+s /;s; dks] j?kqcj jk[ks VsdAA
jfpr% ekuo /keZ iz.ksrk
ln~xq# Jh j.kNksM+nklth egkjkt

STUDY PACKAGE
Subject : Mathematics
Topic : DIFFRENTIATION
Available Online : www.MathsBySuhag.com

Index
1. Theory
2. Short Revision
3. Exercise (Ex. 1 + 5 = 6)
4. Assertion & Reason
5. Que. from Compt. Exams
6. 39 Yrs. Que. from IIT-JEE(Advanced)
7. 15 Yrs. Que. from AIEEE (JEE Main)

Students Name :______________________


Class :______________________
Roll No. :______________________

Address : Plot No. 27, III- Floor, Near Patidar Studio,


Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal
: 0 903 903 7779, 98930 58881, WhatsApp 9009 260 559
www.TekoClasses.com www.MathsBySuhag.com
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
Differentiation
A. First Principle Of Differentiation
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

1. The derivative of a given function f at a point x = a on its domain is defined as:


Limit f (a h)f (a) , provided the limit exists & is denoted by f (a).
h 0
h
f ( x )f (a)
i.e. f (a) = Limit
x a , provided the limit exists.
x a

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 2 OF 18
2. If x and x + h belong to the domain of a function f defined by y = f(x), then
Limit f ( x h)f ( x ) if it exists, is called the Derivative of f at x & is denoted by f (x) or dy . i.e., f (x) = Limit
h 0 dx h 0
h
f ( x h)f ( x )
This method of differentiation is also called ab-initio method or first principle.
h
Solved Example # 1 Find derivative of following functions by first principle
(i) f(x) = x 2 (ii) f(x) = tan x (iii) f(x) = esinx
2 2 2
( x h) x lim 2xh h = 2x.
Solution (i) f(x) = hlim 0 = h0
h h

tan( x h) tan x
(ii) f(x) = hlim
0
h
lim tan( x h x )[1 tan x tan( x h)] tan h
= h0 = hlim
0 . (1 + tan2x) = sec2x.
h h
sin ( x h ) sin x
e e
(iii) f(x) = hlim
0
h

= hlim e sin x

e sin ( x h )sin x 1 sin( x h) sin x

0 h
sin( x h) sin x
sin( x h) sin x
= esin x hlim
0 = esin x cos x
h
3. Differentiation of some elementary functions
f(x) f(x)
1. x n nx n 1 (x R, n R)
2. ax ax n a
1
3. n |x|
x
1
4. logax
x n a
5. sin x cos x
6. cos x sin x
7. sec x sec x tan x
8. cosec x cosec x cot x
9. tan x sec2 x
10. cot x cosec x
4. Basic Theorems
d
1. (f g) = f(x) g(x)
dx
d d
2. (k f(x)) = k f(x)
dx dx
d
3. (f(x) . g(x)) = f(x) g(x) + g(x) f(x)
dx
d f ( x ) g( x ) f ( x) f ( x ) g( x )
4. g( x) =
dx g2 ( x )
d
5. (f(g(x))) = f(g(x)) g(x)
dx
dy dy dz
This rule is also called the chain rule of differentiation and can be written as = .
dx dz dx
dy dy dx
Note that an important inference obtained from the chain rule is that =1= .
dy dx dy
dy 1
=
dx
Successful dx / dy Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
People
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
another way of expressing the same concept is by considering y = f(x) and x = g(y) as inverse functions of each
other.
dy dx 1
= f(x) and = g(y) g(y) =
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

dx dy f ( x)
Solved Example # 2
Find the differential of the following functions with respect to x.
x
(i) f(x) = esin x (ii) f(x) = sin( 2x 3) (iii) f(x) = (iv) f(x) = x . sin x
1 x2

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 3 OF 18
Solution. (i) f(x) =e sin x

d
f(x) = esin x (sin x) = esin x cos x
dx
(ii) f(x) = sin (2x 3)
1 d cos(2x 3)
= . (sin (2x + 3)) =
2 sin (2x 3) dx sin (2x 3)
x
(iii) f(x) =
1 x2
(1 x 2 ) x(2x) 1 x2
f(x) = =
(1 x 2 )2 (1 x 2 )2
(iv)
f(x) = x sin x
f(x) = x. cos x + sin x
Solved Example # 3 If f(x) = sin (x + tanx) then find value of f(0).
Solution. f(x) = cos (x + tanx) (1 + sec 2x) f(0) = 2
Self Practice Problems :
1. Find the derviative of following functions using first principle.
(i) f(x) = x sin x (ii) f(x) = sin2 x
Ans. (i) x cosx + sinx (ii) 2sin x cos x
lim f ( 5 t ) f (5 t )
2. Evaluate if f(5) = 7, then t0 Ans. 7.
2t
3. Differentiate the following functions
( x 1)
(i) (1 + 3x 2) (2x 3 1) (ii) (iii) 1 x 2
( x 2)( x 3)
1 x
(iv) (v) cos3 x sin x (vi) x ex sin x
1 x
sin x
(vii) (viii) n (sin x cos x)
1 cos x
x 2 2x 1 x 1
Ans. (i)6x (5x 3 + x 1) (ii) (iii) (iv) 1/ 2
2
( x 2) ( x 3) 2
1 x 2 (1 x ) (1 x )3 / 2
1 x cos x sin x
(v) cos4 x 3 cos2x sin2x (vi) ex ((sin x + cos x) x + sin x) (vii) sec2 (viii)
2 2 sin x cos x
B. Derivative Of Inverse Trigonometric Functions.

y = sin1 x y x = sin y
2 2
dx
= cos y
dy
dy 1 1 dy 1
= = = 1 < x < 1.
dx cos y 1 sin 2 y dx 1 x2

Note here that cos y 1 sin 2 y , rather cos y =
1 sin 2 y but for values of y , , cos y is always
2 2
positive and hence the result. similarly let us find derivative of other inverse trigonometric functions.
Let y = tan1x
x = tan y
dx dx
= sec2y = 1 + tan2 y dy
= 1 + x2
dy
dy 1
= (x R)
dx 1 x2

Also if y = sec1x y [0, ] x = secy
2
dx dy 1 dy 1
dy
= sec y tan y = =
dx x. tan y dx x sec 2 y 1

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
1
sec y 1
dy x x2 1 dy 1
= = x ( , 1) (1, )
dx 1 dx | x | x2 1
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

sec y 1
x x 2 1
results for the derivative of inverse trigonometric functions can be summarized as :
f(x) f(x)
1
sin1x ; |x| < 1

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 4 OF 18
1 x2
1
cos1x ; |x| < 1
1 x2
1
tan1x ; xR
1 x2
1
cot 1x ; xR
1 x2
1
sec1 x ; |x| > 1
| x | x2 1
1
cosec-1 x ; |x| > 1
| x | x2 1
Solved Example # 4 If f(x) = n (sin1 x 2) find f(x)
1 1 2x
Solution. f(x) = . . 2x =
1 2
(sin x ) 1 ( x 2 )12 (sin x ) 1 x 4
1 2

Solved Example # 5 1
If f(x) = 2x sec x cosec (x) then find f(2)
2x 1
Solution. f(x) = 2 sec1(x) 2 +
| x | x 1 | x | x2 1
2 1 4 5
f(2) = 2.sec1( 2) + + f(2) = + .
3 2 3 3 2 3
C. Methods Of Differentiation
1. Logrithmic Differentiation
The process of taking logarithm of the function first and then differentiate is called Logarithmic Differentiation.
It is useful if
(i) a function is the product or quotient of a number of functions OR
(ii) a function is of the form [f(x)] g(x) where f & g are both derivable,
dy
Solved Example # 6 If y = x x find
dx
1 dy 1 dy
Solution. n y = x n x . = x . + n x = x x (1 + n x)
y dx x dx
dy
Solved Example # 7 If y = (sin x) n x, find
dx
Solution. n y = n x . n (sin x)
1 dy 1 cos x dy n sin x
= n (sin x) + n x. = (sin x) n x cot x n x
y dx x sin x dx x
x1/ 2 (1 2x )2 / 3 dy
Solved Example # 8 If y= find
( 2 3 x )3 / 4 (3 4 x ) 4 / 5 dx
1 2 3 4
Solution. n y = n x + n (1 2x) n (2 3x) n (3 4x)
2 3 4 5
1 dy 1 4 9 16
y dx
= + 4 (2 3 x )
+ 5 (3 4 x )
2x 3(1 2 x)
dy 1 4 9 16
= y 2x 3 (1 2x ) 4(2 3 x ) 5 (3 4x )
dx
2. Implicit differentiation
If f(x, y) = 0, is an implicit function then in order to find dy/dx, we differentiate each term w.r.t. x regarding y as a
functions of x & then collect terms in dy/dx.
dy
Solved Example # 9 If x 3 + y3 = 3xy find
dx
Solution. Differentiation both sides w.r.t.x, we get
dy dy dy y x2
3x 2 + 3y2 = 3x + 3y = 2
dx dx dx y x
2
Note that above result holds only for points where y x 0
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
dy
Solved Example # 10 If x y = ex y, then find
dx
Solution.
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Taking log on both sides


y n x = (x y) .........(i)
differentiating w.r.t x, we get
y
1 xy
y dy dy dy x dy
+ lnx =1 = =
n x )

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 5 OF 18
x dx dx dx 1 n x dx x (1
dy
Solved Example # 11 If x y + yx = 2 then find
dx
du dv
Solution. u+v=2 + =0
dx dx
where u = x y & v = yx
n u = y n x & n v = x n y
1 du y dy 1 dv x dy
= + n x & = n y + y
u dx x dx v dx dx
du y dy dv x dy
= x y n x & = yx n y y dx
dx x dx dx
x y y
y n y x .
y dy x dy dy x
x y n x + y x n y

x dx y dx = 0.
dx
=
y x
x n x y x .
y
Self Practice Problems
1 x
1. Differentiate the following functions : (i) y = sec1 (x 2) (ii) y = tan1
1 x
x
1 x
(iii) y = 1 (iv) y = ex (v) y = (ln x)x + (x)sin x
x
dy
2. Find if
dx
(i) y = cos (x + y) (ii) x 2/3 + y2/3 = a2/3 (iii) x = y n (x y)
dy n x
3. If x y = ex y, then prove that
= .
dx (1 n x )2
x a dy x
4. If = log , prove that =2 .
xy xy dx y
x
2 1 1 1 1
Ans. 1. (i) (ii) (iii) 1 n 1 x 1 x
x x4 1 1 x2 x
1 sin x
(v) n (nx ) nx (n x)x + x sinx cos x nx
x
(iv) x x. e x (nx + 1)
x
1/ 3
sin( x y ) y y( x y )
2. (i) (ii) (iii)
1 sin( x y ) x x( x y )
3. Differentiation using substitution
Following substitutions are normally used to sumplify these expression.
(i) x2 a2 x = a tan or a cot
(ii) a2 x2 x = a sin or a cos
(iii) x 2 a2 x = a sec or a cosec
xa
(iv) x = a cos
ax
1 x 2 1

Solved Example # 12 : Differentiate y = tan1 .
x


Solution. Let x = tan = tan1x ; ,
2 2
| sec | 1
y = tan1 [ |sec| = sec , ]
tan 2 2

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
1 cos
y = tan1 y = tan1 tan

sin 2

FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com


y= [tan1 (tanx) = x for x , ]
2 2 2
1 dy 1
y = tan1 x =
2 dx 2(1 x 2 )

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 6 OF 18
dy 1 x 1 x
Solved Example # 13 : Find where y = tan1

dx 1 x 1 x
Solution. x = cos
= cos1 (x) ; [0, ]

1 cos 1 cos 2 cos 2 sin
2 2
y = tan1 1 cos 1 cos y = tan1

2 cos 2 sin
2 2

1 tan
2
y = tan1 y=
1 tan 4 2
2
1 dy 1
y= cos1x =
4 2 dx 2 1 x2

Note that 1 cos = 2 cos but for 0, 2 , 2 cos = 2 cos
2 2 2 2

Also tan1 (tan x) = x for x , .
2 2
2x
Solved Example # 14 If f(x) = sin1 then find
1 x2
1
(i) f(2) (ii) f (iii) f(1)
2
Solution. x = tan

= tan1(x) ; << y = sin1 (sin 2)
2 2
2
x 1
2 2 1 1 x2
2 2 tan x x 1 2
1 1 x 1
2 tan x 1 x 1 1 x2
y = 2 2
2 2 f(x) = f(x) =
( 2 tan 1 x ) x 1 2
( 2 ) 2 x 1
1 x 2
2
2 1 8
(i) f(2) = (ii) f = (iii) f(1+) = 1 & f(1) = + 1
5 2
5
f(1) does not exist.
Aliter Above problem can also be solved without any substution also, but in a little tedious way.
2x
f(x) = sin1
1 x2
1 2{(1 x 2 ) 2x 2 }
f(x) = .
4x 2 (1 x 2 )2
1
(1 x 2 )2
(1 x 2 ) 2(1 x 2 )
= 2 2 .
(1 x ) (1 x 2 )2
2
| x|1
2 (1 x ) 2 1 x 2
f(x) = . thus f(x) = 2
(1 x 2 ) | 1 x2 | |x|1
1 x 2
dy 1 y2
Solved Example # 15 If 1 x 2 + 1 y 2 = a(x y), then prove that = .
dx 1 x2
Solution. Put x = sin = sin1 (x)
y = sin = sin1 (y)
cos + cos = a (sin sin)
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com

2cos cos = 2a cos sin cot =a
2 2 2 2 2
= 2 cot 1 (a) sin1 x sin1 y = 2 cot 1(a)
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

differentiating w.r.t to x.
1 1 dy dy 1 y2
=0 =
1 x2 1 y2 dx dx 1 x2
Aliter Using implicit differention.

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 7 OF 18
x y dy dy
2 = a 1
1 x 1 y2 dx dx
x
a
y dy x dy 1 x2
a =a+ 2 =
1 y2 dx 1 x dx
a
y
1 y2
1 x2 1 y2 x

dy xy 1 x2
=
dx 1 x 2 1 y2 y

xy 1 y 2

dy (1 x 2 ) (1 x 2 )(1 y 2 ) x 2 xy 1 y2 1 (1 x 2 )(1 y 2 ) xy 1 y2
= . = .
dx (1 x 2 )(1 y 2 ) (1 y 2 ) xy y 2 1 x2 1 (1 x 2 )(1 y 2 ) xy 1 x2
dy 1 y2
= Hence proved
dx 1 x2
dy dy / d
4. Parametric Differentiation If y = f() & x = g() where is a parameter, then dx dx / d .
dy
Solved Example # 16 If x= a cos3t and y = a sin3t. Find
dx
2
dy dy / dt 3a sin t cos t
= = = tan t
dx dx / dt 3a cos 2 t sin t
dy
Solved Example # 17 If y = a cos t and x = a (t sint) find the value of at t = .
dx 2
dy a sin t )
= a(1 cos t )
dx
dy
dx
= 1.
t
2
5. Derivative of one function with respect to another
dy dy / dx f ' (x)
Let y = f(x); z = g(x) then .
dz dz / dx g'(x)
Solved Example # 18
Find derivative of y = n x with respect to z = ex.
dy dy / dx 1
= =
dz dz / dx xex
Self Practice Problems :
dy
1. Find when
dx
(i) x = a (cos t + t sin t) & y = a (sin t t cos t)
1 t 2 2t
(ii) x = a
2 & y=b.
1 t 1 t2
(t 2 1)b
Ans. (i) tan t (ii)
2at
x2
dy 2xa 2
2. If y = sin1 4 4 then prove that = .
x a dx x4 a4
2x dy 2
3. If y = tan1 2
then prove that = (| x | 1)
1 x dx 1 x2
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
du 1 u2
4. If u = sin (m cos1x) and v = cos (m sin1 x) then prove that = .
dv 1 v 2
D. Derivatives of Higher Order
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Let a function y = f(x) be defined on an open interval (a, b). Its derivative, if it exists on (a, b) is a certain function
f (x) [or (dy/dx) or y ] & is called the first derivative of y w. r. t. x.
If it happens that the first derivative has a derivative on (a, b) then this derivative is called the second derivative of
y w. r. t. x & is denoted by f (x) or (d2y/dx 2) or y .
d3 y d d2 y

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 8 OF 18
Similarly, the 3 order derivative of y w. r. t. x, if it exists, is defined by 3 dx 2 It is also denoted by f (x)
rd
dx dx
or y .
Solved Example # 19
If y = x 3 n x then yand y
1
Solution. y = 3x 2 n x + x 3
x
y = 3x 2 n x + x 2
1
y = 6x n x + 3x 2 . + 2x
x
y = 6x n x + 5x
y = 6 n x + 11
x
1
Solved Example # 20 If y = then find y(1)
x
Solution.
n y = x n x when x = 1 y=1
y
y
= (1 + n x) y = y (1 + n x) ......(i)
again diff. w.r.t. to x,
1 y
y = y(1 + n x) y . y = y (1 + ln x) 2 (using (i)) y(1) = 0
x x
It must be carefully noted that in case of parametric functions
dy dy / dt d2 y d2 y / dt 2 d2 y d dy / dt
although = but rather =
2 2 2
dx dx / dt dx dx / dt dx 2 dx dx / dt
which on applying chain rule can be resolved as
dx d2 y dy d2 x
. .
dt dt 2 dt dt 2
d2 y d dy / dt dt d2 y dt
2 = dt
. 2 = 2 .
dx dx / dt dx dx dx dx

dt
2
dx d y dy d x 2
. 2 .
2
d y dt dt dt dt 2
= 3
dx 2 dx

dt
d2 y
Solved Example # 21 If x = t + 1 and y = t 2 + t 3 then find .
dx 2
dy dx
Solution. = 2t + 3t 2 ; =1
dt dt
dy d2 y d dt
= 2t + 3t 2 2 = (2t + 3t 2) .
dx dx dt dx
2
d y
= 2 + 6t.
dx 2
d2 y
Solved Example # 22 If x = 2 cos t cos 2t and y = 2 sin t sin 2t then find value of 2 at t = .
dx 2
dy dx
Solution. = 2 cos t 2 cos 2t = 2 sin 2t 2 sin t
dt dt
3t t
2 sin . sin
dy cos t cos 2t 2 2
= = .
dx sin 2t sin t 3t t
2 cos . sin
2 2
dy 3t d2 y d 3t d2 y d 3t dt
= tan 2 = dx
tan 2 = tan .
dx 2 dx 2 dx dt 2 dx

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
3 3t
. sec 2 d2 y
2 d2 y 2 3
= =
dx 2 2 (sin 2t sin t ) dx 2 t 2
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Solved Example # 23 Find second order derivative of2y= sin x with respect to z = e x.
dy dy / dx cos x
Solution. = =
dz dz / dx ex
d2 y d cos x d2 y d cos x dx
= x = .

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 9 OF 18
dz 2 dz e dx 2 dx e x dz
e x sin x cos xex 1
= . x
x 2
(e ) e
d2 y (sin x cos x )
=
dz 2
e2x
Solved Example # 24: y = f(x) and x =g(y) are inverse functions of each other than express g(y) and g(y) in terms of
derivative of f(x).
dy dx
Solution. = f(x) and = g(y)
dx dy
1
g(y) = ...........(i) again differentiating w.r.t. to y
f ( x )
d 1
g(y) =
dy f ( x )
d 1 dx
= .
dx f ( x ) dy
f ( x )
= . g(y)
f ( x )2
f ( x )
g(y) = .........(ii) which can also be remembered as
f ( x )3
d2 y
2
d x
dx 2
3 .
2 =
dy dy

dx
Solved Example # 25 y = sin (sinx) then prove that y + (tanx) y + y cos2x = 0
Solution. Such expression can be easily proved using implict differention.
y = cos (sin x) cos x sec x.y = cos (sin x)
again differentiating w.r.t x, we can get
secx y + y sec x tan x = sin (sin x) cos x
tanx y = y . cos2 x y +(tanx) y + y cos2x = 0
Self Practice Problems :
n x d2 y 2n x 3
1. If y = then find Ans.
x dx 2
x3
2. Prove that y = x + tan x satisfies the differentiation equation
d2 y
cos2 x 2y + 2x = 0.
dx 2
d2 y sec 3
3. If x = a (cos + sin ) and y = a(sin cos) then find . Ans.
dx 2 a
x sin x cos x
4. Find second derivative of nx with respect to sin x. Ans.
x 2 cos 3 x
5. if y = e x (A cos x + B sin x), prove that
d2 y dy
2 + 2 . dx + 2y = 0.
dx
d2 y dy
Solved Example # 26 If y = (tan1x)2 then prove that (1 + x 2)2 + 2x (1 + x 2) = 2.
dx 2 dx
Solution.
dy 2 tan 1 x
=
dx 1 x2
dy d2 y dy 2
(1 + x 2) = 2tan1 (x) (1 + x 2) + 2x =
dx dx 2 dx (1 x 2 )
d2 y dy
(1 + x 2) + 2x (1 + x 2) =2
dx 2 dx
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
f(x) g( x ) h( x )
l( x ) m( x ) n( x )
11. If F(x) = , where f, g, h, l, m, n, u, v, w are differentiable functions of x then F (x)
u( x ) v( x ) w( x )
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

f ' ( x ) g' ( x ) h' ( x ) f(x) g( x ) h( x ) f(x) g( x ) h( x)


l( x ) m( x ) n( x ) l' ( x ) m' ( x ) n' ( x ) l( x ) m( x) n( x)
= + +
u( x ) v( x ) w( x) u( x ) v( x ) w( x ) u' ( x ) v' ( x) w ' ( x )

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 10 OF 18
12. L Hospitals Rule:
If f(x) & g(x) are functions of x such that:

(i) Limit f(x) = 0 = Limit g(x) OR Limit f(x) = = Limit


x a x a x a x a g(x) &

(ii) Both f(x) & g(x) are continuous at x = a &


(iii) Both f(x) & g(x) are differentiable at x = a &
(iv) Both f (x) & g (x) are continuous at x = a, Then
f( x) f ' (x) f " (x)
Limit Limit Limit
x a g( x ) = x a g' ( x ) = x a g" ( x ) & so on till indeterminant form vanishes
________________________________________________________________________________________________

QUESTION BANK ON METHOD OF


DIFFERENTIATION
Select the correct alternative : (Only one is correct)
1
Q.1 If g is the inverse of f & f (x) = then g (x) =
1 x 5
1 1
(A) 1 + [g(x)]5 (B) 5
(C) (D) none
1 [g(x)] 1 [g(x)]5
n e2 d 2y
Q.2 If y = tan1 x
+ tan1 3 2 n x then =
nex 2 dx 2
1 6 n x
(A) 2 (B) 1 (C) 0 (D) 1
3x 4 dy
Q.3 If y = f & f (x) = tan x2 then =
5x 6 dx
2
3x 4 1 3 tan x 2 4
(A) tan x3 (B) 2 tan . (C) f tan x2 (D) none
5x 6 (5x 6)2 5 tan x 2 6
dy 1
Q.4 If y = sin1 x 1 x x 1 x 2 & = + p, then p =
dx 2 x (1 x)
(A) 0 (B) sin1 x (C) sin1 x (D) none of these
2x 1 dy
Q.5 If y = f 2 & f (x) = sin x then =
x 1 dx

(A)
1 x x2 2x 1
sin 2 (B)

2 1 x x2 sin 2x 1 (C) 1 x x 2
sin
2x 1
(D) none
2 2 2
1 x 2 x 1
1 x
2
2
x 1 1 x 2 x 2 1

x10
Q.6 Let g is the inverse function of f & f (x) = . If g(2) = a then g (2) is equal to
1 x 2

5 1 a2 a 10 1 a 10
(A) (B) (C) (D)
210 a 10 1 a2 a2
dy
Q.7 If sin (xy) + cos (xy) = 0 then =
dx
y y x x
(A) (B) (C) (D) y
x x y
2x dy
Q.8 If y = sin1 2 then dx is :
1x x 2
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
2 2 2
(A) (B) (C) (D) none
5 5 5
1
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

1
Q.9 The derivative of sec1 2
w.r.t. 1 x 2 at x = is :
2x 1 2
(A) 4 (B) 1/4 (C) 1 (D) none
d d 2y
If y2 = P(x), is a polynomial of degree 3, then 2 y 3 . 2 equals :

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 11 OF 18
Q.10
dx dx
(A) P (x) + P (x) (B) P (x) . P (x) (C) P (x) . P (x) (D) a constant
Q.11 Let f(x) be a quadratic expression which is positive for all real x . If g(x) = f(x) + f (x) + f (x), then for any real
x, which one is correct .
(A) g(x) < 0 (B) g(x) > 0 (C) g(x) = 0 (D) g(x) 0
dy
Q.12 If xp . yq = (x + y)p + q then is :
dx
(A) independent of p but dependent on q (B) dependent on p but independent of q
(C) dependent on both p & q (D) independent of p & q both .
g (x) . cos x1 if x 0
Q.13 Let f(x) = where g(x) is an even function differentiable at x = 0, passing through the
0 if x 0
origin . Then f (0) :(A) is equal to 1 (B) is equal to 0 (C) is equal to 2 (D) does not exist
1 1 1 dy np
Q.14 If y = nm p m + mn p n + mp n p then at e m is equal to:
1x x 1x x 1x x dx
(A) emnp (B) emn/p (C) enp/m (D) none
log sin 2 x cos x
Q.15 Lim
x0 x has the value equal to
log 2 x cos
sin
2
2
(A) 1 (B) 2 (C) 4 (D) none of these

Q.16 If f is differentiable in (0, 6) & f (4) = 5 then Limit


f (4) f x c h=
2

x2
2x
(A) 5 (B) 5/4 (C) 10 (D) 20
Q.17 Let l = xLim xm (ln x)n where m, n N then :
0
(A) l is independent of m and n (B) l is independent of m and depends on m
(C) l is independent of n and dependent on m (D) l is dependent on both m and n
cos x x 1
f (x)
Q.18 Let f(x) = 2 sin x x 2 2x . Then Limit
x0 =
x
tan x x 1
(A) 2 (B) 2 (C) 1 (D) 1
cos x sin x cos x

Q.19 Let f(x) = cos 2x sin 2x 2 cos 2x then f =
2
cos 3x sin 3x 3 cos 3x
(A) 0 (B) 12 (C) 4 (D) 12
Q.20 People living at Mars, instead of the usual definition of derivative D f(x), define a new kind of derivative, D*f(x) by
the formula
f 2 (x h) f 2 (x)
D*f(x) = Limit where f(x) means [f(x)]2. If f(x) = x lnx then
h 0 h
D * f ( x ) x e has the value
(A) e (B) 2e (C) 4e (D) none
f (x) g (x)
Q.21 If f(4) = g(4) = 2 ; f (4) = 9 ; g (4) = 6 then Limit
x4 is equal to :
x 2
3
(A) 3 2 (B) (C) 0 (D) none
2
f (x 3h) f (x 2h)
Q.22 If f(x) is a differentiable function of x then Limit
h0 =
h
(A) f (x) (B) 5f (x) (C) 0 (D) none

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
d 2x
Q.23 If y = x + ex then is :
dy 2
ex ex 1
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

(A) ex (B) 3 (C) 2 (D)


x 3
1 e x
1 e x
1 e
d 2y
Q.24 If x2y + y3 = 2 then the value of at the point (1, 1) is :
dx 2

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 12 OF 18
3 3 5
(A) (B) (C) (D) none
4 8 12
g (x) . f (a ) g (a ) . f (x)
Q.25 If f(a) = 2, f (a) = 1, g(a) = 1, g (a) = 2 then the value of Limit xa xa
is:
(A) 5 (B) 1/5 (C) 5 (D) none
Q.26 If f is twice differentiable such that f (x) f (x), f (x) g(x)
2 2
h (x) f (x) g(x) and
h (0) 2 , h (1) 4
then the equation y = h(x) represents :
(A) a curve of degree 2 (B) a curve passing through the origin
(C) a straight line with slope 2 (D) a straight line with y intercept equal to 2.
RS 1 UV 1 RS UV w.r.t.
Q.27 The derivative of the function, f(x)=cos-1
T 13 W
(2 cos x 3 sin x) +sin1
13 T(2 cos x 3 sin x)
W
3
1 x 2 at x = is :
4
3 5 10
(A) (B) (C) (D) 0
2 2 3
Q.28 Let x
f(x) be a polynomial in x . Then the second derivative of f(e ), is :
(A) f (ex) . ex + f (ex) (B) f (ex) . e2x + f (ex) . e2x
(C) x
f (e ) e 2x (D) f (ex) . e2x + f (ex) . ex
1
Q.29 The solution set of f (x) > g (x), where f(x) = (52x + 1) & g(x) = 5x + 4x (ln 5) is :
2
(A) x > 1 (B) 0 < x < 1 (C) x 0 (D) x > 0
x2 1 x2 1 dy
Q.30 If y = sin1 2 + sec1
2 , x > 1 then is equal to :
x 1 x 1 dx
x x2
(A) 4 (B) 4 (C) 0 (D) 1
x 1 x 1
x x x x x x dy
Q.31 If y = ...... then =
a b a b a b dx
a b a b
(A) (B) (C) (D)
ab 2 ay ab 2 by ab 2 by ab 2 ay
Q.32 Let f (x) be a polynomial function of second degree. If f (1) = f (1) and a, b, c are in A.P., then f '(a), f '(b) and
f '(c) are in
(A) G.P. (B) H.P. (C) A.G.P. (D) A.P.
y y1 y2
Q.33 If y = sin mx then the value of y 3 y4 y 5 (where subscripts of y shows the order of derivatiive) is:
y6 y7 y8
(A) independent of x but dependent on m (B) dependent of x but independent of m
(C) dependent on both m & x (D) independent of m & x .
y
Q.34 If x2 + y2 = R2 (R > 0) then k = where k in terms of R alone is equal to
2 3
1 y
1 1 2 2
(A) 2 (B) (C) (D) 2
R R R R
Q.35 If f & g are differentiable functions such that g (a) = 2 & g(a) = b and if fog is an identity function then f (b)
has the value equal to :
(A) 2/3 (B) 1 (C) 0 (D) 1/2
x3
Q.36 Given f(x) = + x2 sin 1.5 a x sin a . sin 2a 5 arc sin (a2 8a + 17) then :
3
(A) f(x) is not defined at x = sin 8 (B) f (sin 8) > 0
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
(C) f (x) is not defined at x = sin 8 (D) f (sin 8) < 0
Q.37 A function f, defined for all positive real numbers, satisfies the equation f(x2) = x3 for every x > 0 . Then the value
of f (4) =
(A) 12 (B) 3 (C) 3/2 (D) cannot be determined
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

Q.38 Given : f(x) = 4x3 6x2 cos 2a + 3x sin 2a . sin 6a + n 2 a a 2 then :


(A) f(x) is not defined at x = 1/2 (B) f (1/2) < 0
(C) f (x) is not defined at x = 1/2 (D) f (1/2) > 0

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 13 OF 18
d 2y dy
Q.39 If y = (A + Bx) + (m emx 1)2 ex then 2 2m + m2y is equal to :
dx dx
(A) e x (B) emx (C) emx (D) e(1 m) x
ax bx
Q.40 Suppose f (x) = e + e , where a b, and that f '' (x) 2 f ' (x) 15 f (x) = 0 for all x. Then the product ab is
equal to
(A) 25 (B) 9 (C) 15 (D) 9
Q.41 Let h (x) be differentiable for all x and let f (x) = (kx + ex) h(x) where k is some constant. If h (0) = 5, h ' (0) =
2 and f ' (0) = 18 then the value of k is equal to
(A) 5 (B) 4 (C) 3 (D) 2.2
Q.42 Let ef(x) = ln x . If g(x) is the inverse function of f(x) then g (x) equals to :
(A) ex (B) ex + x (C) e ( x ex ) (D) e(x + ln x)
dy
Q.43 The equation y2 e xy = 9e 3 x2 defines y as a differentiable function of x. The value of for
dx
x = 1 and y = 3 is
15 9
(A) (B) (C) 3 (D) 15
2 5
Q.44 Let f(x) = x x and g(x) = x then :
x xx

(A) f (1) = 1 and g (1) = 2 (B) f (1) = 2 and g (1) = 1
(C) f (1) = 1 and g (1) = 0 (D) f (1) = 1 and g (1) = 1
Q.45 The function f(x) = ex + x, being differentiable and one to one, has a differentiable inverse f1(x). The value of
d 1
(f ) at the point f(l n2) is
dx
1 1 1
(A) (B) (C) (D) none
n2 3 4
log sin|x| cos3 x
Q.46 If f (x) = for |x| < x0
3 x 3
log sin|3x| cos
2
=4 for x = 0

then, the number of points of discontinuity of f in , is
3 3
(A) 0 (B) 3 (C) 2 (D) 4
(a x) a x (b x) x b dy
Q.47 If y = then wherever it is defined is equal to :
a x xb dx
x (a b) 2 x (a b) (a b) 2 x (a b)
(A) (B) (C) (D)
(a x) (x b) 2 (a x) (x b) 2 (a x) (x b) 2 (a x) (x b)
2
d y dy
Q.48 If y is a function of x then 2 +y = 0 . If x is a function of y then the equation becomes :
dx dx
3 2 2
d2 x dx d2 x dx d2 x dx d2 x dx
(A) + x = 0 (B) +y =0 (C) y =0 (D) x =0
d y2 dy d y2 dy d y2 dy d y2 dy
Q.49 A function f (x) satisfies the condition, f (x) = f (x) + f (x) + f (x) + ...... where f (x) is a differentiable
function indefinitely and dash denotes the order of derivative . If f (0) = 1, then f (x) is :
(A) ex/2 (B) ex (C) e2x (D) e4x
cos 6x 6 cos 4 x 15 cos 2 x 10 dy
Q.50 If y = , then =
cos 5x 5 cos 3x 10 cos x dx
(A) 2 sinx + cosx (B) 2sinx (C) cos2x (D) sin2x
3
d 2 x dy d2y
Q.51 If + 2 = K then the value of K is equal to
dy 2 dx dx
(A) 1 (B) 1 (C) 2 (D) 0
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
1
1 1

Q.52 If f(x) = 2 sin 1 x sin 2 x (1 x) where x 0 , then f ' (x) has the value equal to
2
2 2
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

(A) x (1 x) (B) zero (C) x (1 x) (D)


1

x2 if x 0
e
Q.53 Let y = f(x) =

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 14 OF 18

0 if x 0
Then which of the following can best represent the graph of y = f(x) ?

(A) (B) (C) (D)

1 1 1
m n m n m n m n
Q.54 Diffrential coefficient of x
m n
. x n . x m w.r.t. x is


(A) 1 (B) 0 (C) 1 (D) xmn

Q.55 Let f (x) be diffrentiable at x = h then Lim


b g
x h f ( x) 2 h f ( h)
is equal to
x h xh
(A) f(h) + 2hf '(h) (B) 2 f(h) + hf '(h) (C) hf(h) + 2f '(h) (D) hf(h) 2f '(h)
d 3y
Q.56 If y = at2 + 2bt + c and t = ax2 + 2bx + c, then equals
dx 3
2
(A) 24 a (at + b) (B) 24 a (ax + b)2 (C) 24 a (at + b)2 (D) 24 a2 (ax + b)
1 x x
Q.57 Limit a arc tan b arc tan has the value equal to
x 0 x x a b
ab (a 2 b 2 ) a 2 b2
(A) (B) 0 (C) (D)
3 6a 2 b 2 3 a 2 b2
x
Q.58 Let f (x) be defined for all x > 0 & be continuous. Let f(x) satisfy f f ( x ) f ( y) for all x, y & f(e) = 1.
y
Then :
1
(A) f(x) is bounded (B) f 0 as x 0 (C) x.f(x)1 as x 0 (D) f(x) = ln x
x
Q.59 Suppose the function f (x) f (2x) has the derivative 5 at x = 1 and derivative 7 at x = 2. The derivative of the
function f (x) f (4x) at x = 1, has the value equal to
(A) 19 (B) 9 (C) 17 (D) 14
4 2
x x 1 dy
Q.60 If y = 2 and = ax + b then the value of a + b is equal to
x 3x 1 dx
5 5 5 5
(A) cot (B) cot (C) tan (D) tan
8 12 12 8
Q.61 Suppose that h (x) = f (x)g(x) and F(x) = f g ( x ) , where f (2) = 3 ; g(2) = 5 ; g'(2) = 4 ;
f '(2) = 2 and f '(5) = 11, then
(A) F'(2) = 11 h'(2) (B) F'(2) = 22h'(2) (C) F'(2) = 44 h'(2) (D) none
Q.62 Let f (x) = x3 + 8x + 3
which one of the properties of the derivative enables you to conclude that f (x) has an inverse?
(A) f ' (x) is a polynomial of even degree. (B) f ' (x) is self inverse.
(C) domain of f ' (x) is the range of f ' (x). (D) f ' (x) is always positive.
Q.63 Which one of the following statements is NOT CORRECT ?
(A) The derivative of a diffrentiable periodic function is a periodic function with the same period.
(B) If f (x) and g (x) both are defined on the entire number line and are aperiodic then the function F(x) = f (x) .
g (x) can not be periodic.
(C) Derivative of an even differentiable function is an odd function and derivative of an odd differentiable function
is an even function.
(D) Every function f (x) can be represented as the sum of an even and an odd function
Select the correct alternatives : (More than one are correct)
dy
Q.64 If y = tan x tan 2x tan 3x then has the value equal to :
dx
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution
2 of These Packages
2 & Learn by Video2 Tutorials on www.MathsBySuhag.com
(A) 3 sec 3x tan x tan 2x + sec x tan 2x tan 3x + 2 sec 2x tan 3x tan x
(B) 2y (cosec 2x + 2 cosec 4x + 3 cosec 6x)
(C) 3 sec2 3x 2 sec2 2x sec2 x (D) sec2 x + 2 sec2 2x + 3 sec2 3x
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

x x dy
Q.65 If y = e e then equals
dx
e x e x e x e x 1 1
(A) (B) (C) y2 4 (D) y2 4

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 15 OF 18
2 x 2x 2 x 2 x
2 dy 2 2 2 2
Q.66 If y = xx then = (A) 2 ln x . xx (B) (2 ln x + 1). xx (C) (2 ln x + 1). x x 1 (D) x x 1 . ln ex2
dx
dy
Q.67 Let y = x x x ...... then =
dx
1 x 1 y
(A) (B) (C) (D)
2y 1 x 2y 1 4x 2x y
dy
Q.68 If 2x + 2y = 2x + y then has the value equal to :
dx

(A) x
2y
(B)
1
(C) 1 2 y
2x 1 2y
(D) y x

2 1 2x 2 2 1
Q.69 The functions u = ex sin x ; v = ex cos x satisfy the equation :
du dv d2u d 2v
(A) v u = u2 + v2 (B) = 2v (C) = 2u (D) none of these
dx dx dx2 dx 2
x 2 x 1
Q.70 Let f (x) = . x then :
x 1 1
(A) f (10) = 1 (B) f (3/2) = 1 (C) domain of f (x) is x 1 (D) none
Q.71 Two functions f & g have first & second derivatives at x = 0 & satisfy the relations,
2
f(0) = , f (0) = 2 g (0) = 4g (0) , g (0) = 5 f (0) = 6 f(0) = 3 then :
g(0)
f (x) 15
(A) if h(x) = then h (0) = (B) if k(x) = f(x) . g(x) sin x then k (0) = 2
g(x) 4
g (x) 1
(C) Limit
x0 = (D) none
f (x) 2
n ( n x ) dy
Q.72 If y = x ( n x ) , then is equal to :
dx
y y
(A)
x

n x n x 1 2 n x n n x (B)
x
(ln x)ln (ln x) (2 ln (ln x) + 1)
y 2 y n y
(C) ((ln x) + 2 ln (ln x)) (D) (2 ln (ln x) + 1)
x n x x n x

ANSWER KEY
Q.1 A Q.2 C Q.3 B Q.4 D Q.5 B
Q.6 B Q.7 B Q.8 C Q.9 A Q.10 C
Q.11 B Q.12 D Q.13 B Q.14 D Q.15 C
Q.16 D Q.17 A Q.18 B Q.19 C Q.20 C
Q.21 A Q.22 B Q.23 B Q.24 B Q.25 C
Q.26 C Q.27 C Q.28 D Q.29 D Q.30 C
Q.31 D Q.32 D Q.33 D Q.34 B Q.35 D
Q.36 D Q.37 B Q.38 D Q.39 A Q.40 C
Q.41 C Q.42 C Q.43 D Q.44 D Q.45 B
Q.46 C Q.47 B Q.48 C Q.49 A Q.50 B
Q.51 D Q.52 B Q.53 C Q.54 B Q.55 A
Q.56 D Q.57 D Q.58 D Q.59 A Q.60 B
Q.61 B Q.62 D Q.63 B
Q.64 A,B,C Q.65 A,C Q.66 C,D Q.67 A,C,D
Q.68 A,B,C,D Q.69 A,B,C Q.70 A,B Q.71 A,B,C Q.72 B,D

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
EXERCISE -1
Part : (A) Only one correct option
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

2
dy
1. If f(x) = 2x 2 1 and y = f(x ) then dx at x = 1 is
(A) 2 (B) 1 (C) 2 (D) 1
x2 dy
2. If y = x then =

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 16 OF 18
dx
2 2 x2 1 x2 1
(A) 2 n x. xx (B) (2 n x + 1). xx (C) (2 n x + 1). x (D) x . n ex 2
x
tan 1 sin
2
3. If f(x) = e , then f(0).
1 1
(A) (B) (C) 1 (D) 1
2 2
x dy
4. If y = then =
x dx
a
x
b
a .......... .....
a b a b
(A) (B) (C) (D)
ab 2 ay ab 2 by ab 2 by ab 2 ay
2
d2 F
5. Let f(x) = sin x; g(x) = x & h(x) = loge x & F(x) = h[g(f(x))] then is equal to:
dx 2
(A) 2 cosec3 x (B) 2 cot (x 2) 4x 2 cosec2 (x 2) (C) 2x cot x 2 (D) 2 cosec2 x
dy
6. If y = (1 + x) (1 + x 2) (1 + x 4) .....(1 + x 2n ), then at x = 0 is
dx
(A) 1 (B) 1 (C) 0 (D) 2n
dy 1
7. If y = sin1 x 1 x x 1 x 2 and = + p, then p =
dx 2 x (1 x)
1 1
(A) 0 (B) (C) sin1 x (D)
1 x 1 x2

y dy
8. If x 2 y 2 = et where t = sin1 then :
x y 2
2 dx

xy xy 2x y xy
(A) (B) (C) (D) 2x y
xy xy xy
2 2
x 1 x 1 dy
9. If y = sin1 2 + sec1 2 , x > 1 then is equal to:
x 1 x 1 dx
x x2
(A) (B) (C) 0 (D) 1
4
x 1 x4 1
t 1
10. The differential coefficient of sin1 2
w.r.t. cos1 is:
1 t 1 t2
1
(A) 1 (B) t (C) (D) none
1 t2
tan 1 x
11. Differentiation of 1
1 w.r.t. tan x is:
1 tan x
1 1 1
(A) (B) 1 (C) (D)
(1 tan 1 x)2
12.
1
1 tan x 1 tan1 x
Let f(x) be a polynomial in x. Then the second derivative of f(ex), is:
2

(A) f (ex). ex + f (ex) (B) f (ex). e2x + f (ex). e2x (C) f (ex) e2x (D) f (ex). e2x + f (ex). ex
f g h
f g h
13. If f(x), g(x), h(x) are polynomials in x of degree 2 and F(x) = , then F(x) is equal to
f g h
(A) 1 (B) 0 (C) 1 (D) f(x) . g(x) . h(x)
y y1 y 2
14. If y = sin mx then the value of 3 y 4 y 5 (where settings of y shows the order of derivative) is:
y
Successful People Replace the y 6 words
y 7 like;
y 8 "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
(A) independent of x but dependent on m (B) dependent of x but independent of m
(C) dependent on both m & x (D) independent of m & x.
f (5 t ) f (5 t )
If f (5) = 7 then Limit
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

15. t 0 =
2t
(A) 0 (B) 3.5 (C) 7 (D) 14
16. Let ef(x) = ln x. If g(x) is the inverse function of f(x) then g (x) equals to:
x
(A) ex (B) ex + x (C) e x e (D) ex + ln x

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 17 OF 18
dn
17. If u = ax + b then [f(ax + b)] is equal to:
dx n
dn dn dn dn
(A) [f(u)] (B) a n [f(u)] (C) an [f(u)] (D) an [f(u)]
du n du du n dx n
2x 1 dy
18. If y = f 2
& f (x) = sin x then =
x 1 dx

(A)
1 x x2
sin
2x 1
(B)
sin 2x 1
2 1 x x2
2
1 x 2 x 2 1 1 x
2
2
x 12

1 x x2 2x 1
(C) 2 sin (D) none
1 x 2 x 2 1

d 3 d 2y
19. If y2 = P(x), is a polynomial of degree 3, then 2 y . 2 equals:
dx dx
(A) P (x) + P (x) (B) P (x). P (x) (C) P (x). P (x) (D) a constant
Part : (B) May have more than one options correct
20. Two functions f & g have first & second derivatives at x = 0 & satisfy the relations,
2
f(0) = , f (0) = 2 g (0) = 4g (0), g (0) = 5 f (0) = 6 f(0) = 3 then:
g(0)
f (x) 15
(A) if h(x) = then h (0) = (B) if k(x) = f(x). g(x) sin x then k (0) = 2
g(x) 4
g (x) 1
(C) Limit
x 0 = (D) none
f (x) 2
fn 1 ( x ) d
21. If f n (x) = e for all n N and f o (x) = x, then {f (x)} is equal to:
dx n
d
(A) f n (x). {f (x)} (B) f n (x). f n 1 (x)
dx n 1
(C) f n (x). f n 1 (x)........ f 2 (x). f 1 (x) (D) none of these
22. If f is twice differentiable such that f(x) = f(x) and f(x) = g(x). If h(x) is a twice differentiable function such that
h(x) = [f(x)] 2 + [g(x)] 2 . If h(0) = 2, h(1) = 4, then the equation y = h(x) represents:
(A) a curve of degree 2 (B) a curve passing through the origin
(C) a straight line with slope 2 (D) a straight line with y intercept equal to 2.
x3
23. Given f(x) = + x 2 sin 1.5 a x sin a. sin 2a 5 sin1 (a2 8a + 17) then:
3
(A) f(x) = x 2 + 2x sin6 sin4 sin8 (B) f (sin 8) > 0
(C) f (x) is not defined at x = sin 8 (D) f (sin 8) < 0
24. 3 2
If f(x) = x + x f(1) + xf(3) for all x R then
(A) f(0) + f(2) = f(1) (B) f(0) + f(3) = 0 (C) f(1) + f(3) = f(2) (D) none of these
25. If f(x) = (ax + b) sin x + (cx + d) cos x, then the values of a, b, c and d such that f(x) = x cos x for all x are
(A) a = d = 1 (B) b = 0 (C) c = 0 (D) b = c

EXERCISE -2
dy d2 y
1. + n2 y = 0, where n2 = p2 + k2.
If y = A e kt cos (p t + c) then prove that 2 +2k
dt dt
Evaluate the following limits using L hospitale rule as otherwise
2. Limit log tan2 x (tan2 2 x)
x 0

( xa)4 ( xa)3 1 ( xa)4 ( xa)2 1


4 3 4
( xb ) ( xb ) 1 ( xb ) ( xb )2 1
3. If f (x) = then f (x) = . . Find the value of .
( xc )4 ( xc )3 1 ( xc )4 ( xc )2 1
Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.
Get Solution of These Packages & Learn by Video Tutorials on www.MathsBySuhag.com
d3 y 8.b
4. If x = a t3 &y= b t 2, where t is a parameter, then prove that =
dx 3
27a 3 .t 7
FREE Download Study Package from website: www.TekoClasses.com & www.MathsBySuhag.com

dy sina
5. If sin y = x sin (a + y), show that = 2 .
dx 1 2xcosax
F" f " g" 2c F f g
6.
If F(x) = f(x). g(x) & f (x). g (x) = c, prove that & .
F f g fg F f g

Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. page 18 OF 18
7. If be a repeated root of a quadratic equation f(x) = 0 & A(x), B(x), C(x) be the polynomials of degree 3, 4 & 5
A( x ) B( x ) C( x )
A( ) B( ) C( )
respectively, then show that is divisible by f(x), where dash denotes the derivative.
A ' ( ) B' ( ) C' ( )
3/2
2
1 dy
dx 1 1
8. Show that R = 2 can be reduced to the form R2/3 = 2
2 .
d y 2 2
d y 3 d x 3
dx 2
dx 2

dy 2

Also show that, if x = a sin 2 (1 + cos 2) & y = a cos 2 (1 cos 2) then the value of R equals to
4 a cos 3.
9. Differentiate the following functions with respect to x.
sinx xcos x 1 cos x
(i) x 2. n x. ex (i) (iii) tan tan 1
x sinx cos x 1 cos x

Exercise # 1
1. A 2. C 3. A 4. D 5. D 6. B 7. D 8. B 9. C 10. A 11. C
12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. C 20. ABC
21. AC 22. CD 23. AD 24. ABC 25. ABC
Exercise # 2
2. 1 3. 3
x2 1 x
9. (i) ex x (2 n x + 1 + x n x) (ii) (iii) sec2
(x sinx cos x)2 2 2

For 39 Years Que. from IIT-JEE(Advanced) &


15 Years Que. from AIEEE (JEE Main)
we distributed a book in class room

Successful People Replace the words like; "wish", "try" & "should" with "I Will". Ineffective People don't.

You might also like