PRERANA WALDORF SCHOOL
MATHEMATICS WORKSHEET
CHAPTER 11- EXPONENTS AND POWERS
GRADE: VII DATE: /2/2024
I. STATE WHETHER THE FOLLOWING STATEMENT IS TRUE OR FALSE
1. If 'p' is a rational number, then pa x pb = paxb
2. If 'p' is a rational number, then (pa)b = paxb
3. If 'p' is a rational number then (p)0 = p.
4. 23x 33 = (2+3)3.
5. (52)3 = 55.
6. (30)3 = 1.
7. 50+ 80= 13
8. (p)0x (q)0 = (p)0 ÷ (q)0
9. 4⁄16 = 2-1.
10. p × p × q × q × q = p2 q 3
II. MULTIPLE CHOICE QUESTIONS
1. (2⁄3)-1 = _____.
a) 2⁄3 b) -3⁄2 c) 3⁄2 d) 1
2. (-2⁄3)3 = _____.
a) 4⁄9 b) -4⁄9 c) 27⁄8 d) -8⁄27
3. 22 + 22 + 22 + 22 = _____.
a) 21 b) 22 c) 23 d) 24
4. (-5)4 = _____.
a) 125 b) 625 c) −625 d) None of these
-3 2
5. ( ⁄4) = _____.
a) 9⁄16 b) 16⁄9 c) -4⁄9 d) -9⁄16
-3 0
6. ( ⁄4) = _____.
a) -3⁄4 b) 0 c) 3⁄4 d) 1
7. If a number 'p' is multiplied 9 times, then the resulting number is _____.
a) 9p b) 9+p c) p9 d) 9+9p
-5
8. (−2) = _____.
a) −32 b) -1⁄32 c) 32 d) 36
9. 3 × 3 − 3 × 388 = _____.
8 92 12
a) 1 b) −1 c) 0 d) -2
10. 9 × 9 × 9 × 5 × 5 × 5 × 5 = _____.
a) 9253 b) 9354 c) 9353 d) None of these
n
11. If (−2) = 256, then what is the value of 'n'?
a) 5 b) 6 c) 7 d) 8
12. If (−8)5 is the expression, then what is the base and exponent?
a) Base = 8 and Exponent = 5 b) Base = 5 and Exponent = 8 c) Base = −8 and Exponent = 5
d) None of these
13. (25)3 ÷ 210= _____.
a) 32 b) 8 c) 16 d) 4
14. (52)4 × (53)4 = _____.
a) 588 b) 512 c) 520 d)510
0 0 2
15. (5 + 5 ) x 10 = _____.
a) 100 b) 200 c) 300 d) 400
16. {(52)3 ÷ 52 }x 55 = _____.
a) 55 b) 54 c) 59 d) 52
17. {(35)2 x 53} ÷ (93 x 5) = _____.
a) 2052 b) 2025 c) 2252 d) None of these
18. (36 × 104× 52) ÷ (33× 24× 55) = _____.
a) 135 b) 153 c) 513 d) 351
19. By what number should we multiply 55 so that the product is 59.
a) 55 b) 53 c) 52 d) 54
20. By what number should we multiply (−5)-1 so that the product will be 10-2
a) 10 b) -1⁄20 c) 20 d) None of these
21. If the base is -3⁄5 and exponent is 3, then what is the exponential expression?
a) (3⁄5)3 b) (-3⁄5)3 c) (5⁄3)3 d)(-5/3)3
22. (p3q5) 2= _____.
a) p3q5 b) p5q7 c) p6q10 d) p2q10
23. (22 )3= _____.
a) 32 b) 46 c) 64 d) 128
III. SOLVE THE FOLLOWING
1. Using laws of exponents, simplify and write the answer in exponential form
(i) 23 × 24 × 25
(ii) 512 ÷ 53
(iii) (72)3
(iv) (32)5 ÷ 34
(v) 37× 27
(vi) (521 ÷ 513)
(vii) (25)3 ÷ 53
(viii) (81)5 ÷ (32)5
(ix)(36× 104× 52) ÷ (33× 24× 55)
(x)(105× 154) ÷ (22× 3 × 54× 63)
2. Find the values of n in each of the following:
(i) 52n × 53= 511
(ii) 9 x 3n= 37
(iii) 8 x 2n+2 = 32
(iv) 72n+1÷ 49 = 73
(v) (3/2)4 × (3/2)5= (3/2)2n+1
(vi) (2/3)10× {(3/2)2}5 = (2/3)2n-2
3.Express the following numbers in the standard form:
(i) 3908.78 (ii) 5,00,00,000 (iii) 3,18,65,00,000 (iv) 846 × 107 (v)723 × 109
(vi) 76,47,000 (vii) 8,19,00,000 (viii) 5,83,00,00,00,000
4. Simplify the following