Z Transforms Removed
Z Transforms Removed
                                        n =0
                             ∞
n =0
Definition 5
That unit step sequence u(n) has values
                   u(n) = 1 for n ≥ 0
                           0 for n < 0
Definition 6
If f(t) is a function defined for discrete values of t
where t = nT, n = 0, 1, 2, … T being the sampling
period, then Z-transform of f(t) is defined as
                            ∞                  ∞
               Z[f(t)] =   ∑ f(t)z
                           n =0
                                     −n
                                          =   ∑ f(nT)z
                                              n =0
                                                         −n
n =0
                           ∞                           ∞
                       = a ∑ f(nT)z        −n
                                                + b∑ g(nT)z −n
                          n =0                     n =0
= aZ[f(t)] + bZ[g(t)]
                       = aF(z) + bG(z)
                                   ∞
                                       ∞                     ∞
                                = a ∑ x(n)z       −n
                                                       + b∑ y(n)z−n
                                   n =0                     n =0
                                = aX(z) + bY(z)
                                = aZ{x(n)}+ bZ{y(n)}
Theorem 2 Frequency shifting
(i) Z[a f(t)] = F az 
          n
                      z
(ii)   Z[a n x(n)] = X 
                      a
Proof
                        ∞
                       n =0
                              n      −n
                         ∞            −n
                                z
                      = ∑ f(nT)  
                        n =0    a
                         z
                      = F 
                         a
                        ∞
(ii)   Z[a x(n)] = ∑ a n x(n)z −n
              n
                       n =0
                         ∞           −n
                               z
                      = ∑ x(n)  
                        n =0   a
                         z
                      = X 
                         a
Theorem 3
(i) Z[nf(t)] = −z   d
                    dz   Z[f(t)] = −z dzd F(z)
Proof
              ∞
                                         d             ∞
                                                              z −n
                                           F(z) = −∑ nf(nT)
                                        dz            n =0     z
                                                     ∞
                                         dF(z)
                                       z        = −∑ nf(nT)z −n
                                          dz        n =0
                                                = − Z[nf(t)]
                                                       d
                                     ∴ Z[nf(t)] = −z F(z)
                                                       dz
                  ∞
                                    ∞
                         d
                            X(z) = ∑ x(n)(− n) ⋅ z −n −1
                         dz        n =0
                                     1 ∞
                                  = − ∑ nx(n)z −n
                                     z n =0
                                     1
                                  = − Z{nx(n)
                                     z
                                        d
                      ∴ Z{nx(n)} = −z      X(z)
                                        dz
Theorem 4
(i) Z[f(t + T)] = z[F(z) − f(0)]
                                           f(1 ⋅ T) f(z ⋅ T) f[(k − 1)T] 
(ii)  Z[f(t + kT)] = z k F(z) − f(0 ⋅ T) −         −        −
                                              z       z 2
                                                                  z k −1 
                                      ∞
                                      ∞            
                                  = z ∑ f(mT)z −m 
                                       m=1         
                                      ∞                  
                                  = z  ∑ f(mT)z −m − f(0)
                                       m =0              
Extending this result, we get                            = z[F(z) − f(0)]
(ii)   Z[f(t + nT)] = Z{f[(n + k)T]}
                        ∞
                   = ∑ f[(n + k)T]z −n        (Putn + k = m)
                       n =0
                        ∞
                   =   ∑ f(mT)z
                       m=k
                                   −(m − k)
                              ∞
                  =z    k
                            ∑ f(mT)z
                            m =k
                                       −m
                        ∞                 k −1
                                                      
                   = z  ∑ f(mT)z − ∑ f(mT)z −m 
                        k            −m
                         m =0            m =0        
                                       f(T) f(2T)          f[(k − 1)T] 
                   = z k F(z) − f(0) −         − 2 − ... −
                                         z       z             z k −1 
Theorem 5
Shifting theorem
If Z[f(t)] = F(z) then      Z[e − aT f(t)] = F[ze aT ]
                                         ∞
Proof                Z[e   −aT
                                 f(t)] = ∑ e −anT f(nT)z n
                                        n =0
                                          ∞
                                      = ∑ f(nT)(zeaT ) −n
                                         n =0
= F[zeaT ]
                                      = [F(z)]z→zeaT
Theorem 6
Initial value theorem
If Z[f(t)] = F(z) then   f(0) = lim F(z)
                               z →∞
                                              f(1⋅ T) f(2 ⋅ T)
                                  = f(0 ⋅ T) +        +   2
                                                               + ...
                                                 z      z
                                           f(T) f(2T)
                                  = f(0) +       + 2 + ...
                                             z       z
Taking limit as z → ∞
                            lim F(z) = f(0)
                            z→∞
Theorem 7
Final value theorem
If Z[f(t)] = F(z) then lim f(t) = lim (z − 1)F(z)
                           t →∞        z →1
Proof                                              ∞
                         Z [ f (t + T ) − f (t )] = ∑[ f (nT + T ) − f (nT )]z −n
                                                  n =0
                                                  ∞
                     Z [ f (t + T )] − Z [ f (t )] = ∑[ f (nT + T ) − f (nT )]z −n
                                                 n =0
                                                  ∞
                      zF ( z ) − zf (0) − F ( z ) = ∑[ f (nT + T ) − f (nT )]z −n
                                                 n =0
Taking limit as z → 1
                                      ∞
     lim (z − 1)F(z) − f(0) = lim ∑ [f(nT + T) − f(nT)]z −n
     z→1                     z →1
                                    n =0
                              ∞
                           = ∑ [f(nT + T) − f(nT)]
                             n =0
                           = f(∞) − f(0)
     lim (z − 1)F(z) − f(0) = f(∞) − f(0)
     z→1
               n
         = ∑ x(k)y(n − k)                          (if the sequences are casual)
              k =0
                                 ∞
                                     n          
                              = ∑ ∑ x(k)y(n − k) z −n   (2)
                                n =0  k =0      
= Z[x(n)]⋅ Z[y(n)]
                              = Z −1[X(z)] ∗ Z −1[Y(z)]
(ii) If F(z) and G(z) are one sided Z-transform of f(t)
and g(t)
                          ∞        −m  
                                            ∞
                                                    
               F(z)G(z) =  ∑ f(mT)z  ∑ g(nT)z −n 
                           m =0         n =0     
                            ∞     ∞
                         = ∑∑[f(mT)g(nT)z −m z −n ]
                           n =0 m =0
                            ∞
                                n              
                         = ∑ ∑ f(kT)g{(n − k)T}z −n
                           n =0  k =0          
                            ∞
                         = ∑ [f(t) ∗ g(t)] z −n
                           n =0
                         = Z[f(t)∗ g(t)]
                            n
           Q f(t) ∗ g(t) = ∑ f(kT)g{(n − k)T}
                           k =0
Proof
               δ(n) = 1 for n = 0
                       0 for n ≠ 0
                            ∞
             ∴ Z{δ(n)} = ∑ δ(n)z −n
                           n =0
                         =1
Result 2
                                    Where u(n) is an unit step
                                    sequence
Z[1]
                               z
   Note : Z{k} = kZ{1} = k        if z > 1
                             z −1
Result 3
                                  z
           Z{a n } = Z{a n } =       if z > a
                                 z−a
Proof
                      ∞
           Z{a } = ∑ a n z −n
               n
                     n =0
                            ∞      n
                                a
                        = ∑ 
                           n =0  z 
                                 1           a
                        =               if     <1
                          1 − (a/z)          z
                              z
                        =          ,
                           z−a
                          z
           Z{(a ) n } =
                        z−a
Result 4
                                           z
            Z{a n } = Z{a n u(n)} =           if z > a
                                          z−a
Proof                       ∞
           Z{a u(n)} = ∑ a n z −n
               n
n =0
                            ∞         n
                              a
                       = ∑ 
                         n =0  z 
                               1                 a
                       =                    if     <1
                           1 − (a/z)             z
                             z
                       =        ,           1< z
                           z +1
                             z
            Z{(−1) n } =                     if z > 1
                           z +1
Result 5
                         z
             Z{n} =
                      (z − 1) 2
Proof
                                    d
                  Z{n} = z{n.1} = − z  z{1}
                                   dz
                                      d
           (by Theorem Z{nx(n)} = − z z{x(n)})
                                      dz
                                     d  z 
                               = −z            
                                     dz  z − 1 
                                         (z − 1)1 − z ⋅ 1
                                   = −z                  
                                         (z − 1)
                                                    2
                                                          
                                      z
                            Z{n} =
                                   (z − 1) 2
Result 6
                                                 az
                             Z{na n } =
                                              (z − a) 2
Proof                Z{na n } = −z
                                     d
                                        z{a n }
                                     dz
                                     d
        by Theorem Z{nx(n)} = −z        z{x(n)}
                                     dz
                                     d  z                              z
                             = −z                       ∴ Z{a n } =
                                     dz  z − a                        z−a
                                   (z − a)1 − z ⋅ 1
                             = −z                  
                                   (z − a)
                                              2
                                                    
                                     az
                     Z{na n } =
                                  (z − a) 2
Result 7
                                    z(z + 1)
                         Z{n2 } =
                                    (z − 1)3
Proof
                                                 d
                        Z{n 2 } = z{n.n} = − z      z{n}
                                                 dz
                                      d
           by Theorem Z{nx(n)} = −z      z{x(n)}
                                     dz
                                     d  z 
                                 = −z             
                                     dz  (z − 1)2 
                                       (z − 1) 21 − z ⋅ 2(Z - 1) 
                                 = −z                            
                                               (z − 1) 4
                                                                  
                                  Z(Z + 1)
                        Z{n 2 } =
                                  (z − 1)3
Result 8                              2z
           Z{n(n – 1)}       =
                                  ( z − 1) 3
                z 2 + z + 3z(z − 1) + 2z(z − 1) 2
              =
                            (z − 1) 3
                z 2 + z + 3z 2 − 3z + 2z 3 − 4z 2 + 2z
              =
                               (z − 1) 3
                  2z 3
              =
                (z − 1) 3
Z{g(n)} = Z{n(n – 1)}
        = Z{n2 – n}
        = Z{n2} – Z{n}
            z(z + 1)     z
        =            −
            (z − 1) 3 (z − 1) 2
          z 2 + z − z(z − 1)
        =
               (z − 1) 3
             2z
        =
          (z − 1) 3
Result 11: Find the Z – transform                             ( i ) { a n cos n θ } and ( ii ) {a n sin n θ }
         ( i ) We know that
Proof
                                        z
                    Z {a n } =
                                     z−a
                 put a = r e i θ , we get
                                                z                                       z
                      Z {( r e i θ ) n } =               ( byresult   3 :  z { a n
                                                                                   } =     )
                                            z − r eiθ                                  z−a
                                              z
                    Z {r n e i n θ } =           iθ
                                                     ( puta = re iθ )
                                          z −re
                                                                    z
             Z { r n (cos n θ + i sin n θ )} =
                                                       z − r (cos θ + i sin θ )
                                                                     z
           Z { r n cos n θ + i r n sin n θ } =
                                                      ( z − r cos θ ) − i r sin θ
                                                                        z [( z − r cos θ ) + i r sin θ ]
                                                    =
                                                        [( z − r cos θ ) − i r sin θ ][( z − r cos θ ) + i r sin θ ]
                                                        z ( z − r cos θ ) + i z r sin θ
                                                    =
                                                         ( z − r cos θ ) 2 + r 2 sin 2 θ
                                                        z ( z − r cos θ ) + i z r sin θ
                                                    =
                                                             z 2 − 2 zr cos θ + r 2
                   Equating R . P and I . P , we get
                                       z ( z − r cos θ )                                 z r sin θ
             Z {r n cos n θ } =                           and Z { r n
                                                                      sin n θ } =
                                   z 2 − 2 zr cos θ + r 2                         z 2 − 2 zr cos θ + r 2
Result 12
Find Z(1/n)
Proof           1  ∞ 1 −n
              Z  = ∑ z
                n  n =1 n
                   1  1   1
                  = + 2 + 3 +L                       x2 x3
                                  − log(1 − x) = x +   +   + ..........
                   z 2z  3z                          2   3
                         1
                  = −log1 − 
                         z
                         z −1
                  = −log     
                           z 
                        z 
                  = log      
                        z −1 
Result 13
Result 14
Result 15
Result 16
Result 17
          Inverse z-transforms
The inverse z-transform of X(z) defined as
                    Z-1[X(z)] = x(n)
When X(z) = Z[x(n)]. X(z) can be expanded in a
series of ascending powers of z-1, by binomial
exponential, logarithmic theorem, the coefficient
of z-n in the expansion gives Z-1[X(z)].
Z-1[X(z)] can be found out by any one of the
following methods.
Methods to find inverse Z-transform:
  Z-1[X(z)] can be found out by any
  one of the following methods.
                ( z − 1)( z − 2)               z − 1          z − 2
                                       = 1 ∗ 2 n −1
                                               2n 1 n
                                       =1 ∗        = (2 ∗ 1)
                                                2 2
                                         1 n r n−r
                                      = ∑ 2 .(1)
                                         2 r =0
                                         1
                                      = [1 + 2 + 2 2 + 2 3 + .......... + 2 n ]
                                         2
                                        1 2 n +1 − 1
                                      =
                                        2 2 −1
                                        2 n +1 − 1
                                      =
                                             2
2. Using convolution theorem, find the inverse
                          2
Z – transform of ( z +z a)    2
Solution:      z
             −1
                      2
                           z z 
                              −1
           Z          2
                          = Z            .
              ( z + a)          z + a z + a 
                                  z           −1     z 
                          = Z −1           ∗ Z
                                  z + a          z + a 
                              = (− a ) n ∗ (− a ) n
                                   n
                              = ∑ (− a ) r (− a ) n − r
                                  r =0
                                   n
                              = ∑ (−a) n
                                  r =0
                              = (n + 1)(−a) n
3. Using convolution theorem, find the inverse
                                       2
Z – transform of ( z + az)(z + b)
Solution: Z  z
          −1            2
                          =Z
                                  z
                                     .
                                       z        −1
                ( z + a )( z + b)                    z + a z + b 
                                  
                                               z           −1  z 
                                       = Z −1           ∗ Z
                                               z + a          z + b 
                                           = (−a) n ∗ (− b) n
                                             n
                                       = ∑ (−a) r (− b) n − r
                                            r =0
                                                           n
                                       = (− b)        n
                                                          ∑ (−a) (−b)
                                                          r =0
                                                                 r        −r
 −a  n r
                                       = (− b) ∑     n
                                                          
                                               r =0  − b 
                     r
            n
             a
= (− b) ∑  
        n
r =0  b 
            a   a 
                        2
                                     a 
                                          n
                                            
= (−b) 1 +   +   + ......... +   
      n
  b   b   b  
           a  n +1 
         1 −   
= (−b) n    
                b
               a 
           1 −   
               b 
          (b n +1 − a n +1 )/b n +1 
= (−1) b 
        n   n
                                     
                (b −  a)/b          
        b n +1 − a n +1 
= (−1) n
                         
             b − a      
4. Using convolution theorem, find the inverse
                               2
                      12 z
Z – transform of (3z − 1)(4 z + 1)
Solution:  12 z   12 z
          −1
                      2
                                   
                                   
                                     
                                      z−1
                                           
                                                              2
                                                                          −1
                                                                                          2
        Z                      =Z                        =Z                                     
           (3 z − 1)(4 z + 1)      3 z − 1 4 z + 1                      z − 1   z + 1  
                                            
                                             3 
                                                         
                                                       4                         
                                                                                      3
                                                                                                  
                                                                                                4  
                                       z             −1      z 
                               = Z −1             ∗ Z
                                       z − 1/3          z + 1/4 
                              = (1/3) n ∗ (−1/4) n
                               = (−1/4) n ∗ (1/3) n
                                    n
                              = ∑ (−1/4) r (1/3) n − r
                                   r =0
                                                    −1
                                             n n       r
                               1
                              = 
                                3
                                              ∑      (3)
                                              r =0  4 
                                                           r
                                                    −3
                                             n n           r
                               1
                              = 
                                3
                                              ∑
                                              r =0
                                                   
                                                    4
                                                       
                                                       
 1
        n
              − 3   − 3 2               −3 
                                                 n
=         1 +    +     + ......... +     
 3            4   4                  4  
         − 3  n +1 
     n 1 −      
 1   4  
= 
  3  1−  − 3 
                 
              4  
   1  4   − 3   − 3 
       n           n
=   1 −             
     
    3    7     4     4  
 1
        n
             4 3  − 3 n 
=          +         
  3        7 7  4   
5. Using convolution theorem, find the inverse
                                    2
                        z
Z – transform of ( z − 4)( z − 3)
Solution: Z  z  = Z  z . z 
          −1
                        2
                                             −1
                (z − 4)(z − 3)                   z − 4 z − 3
                                                z           −1  z 
                                        = Z −1           ∗ Z
                                                z − 4          z − 3 
                                        = (4) n ∗ (3) n
                                           n
                                        = ∑ (4) r (3) n − r
                                          r =0
                                                  n
                                        =3   n
                                                 ∑ (4) (3)
                                                 r =0
                                                        r       −r
                                                            r
                                                  4
                                                  n
                                        = 3n ∑  
                                             r =0  3 
      4   4 2               4 
                                      n
= 3 1 +   +   + ......... +   
    n
  3   3   3  
    (4/3)n +1 − 1
=3 n
                  
     (4/3 ) − 1  
    (4 n +1 − 3n +1 )/3n +1 
=3 n
                             
             1/3            
= 4 n +1 − 3n +1
6. Using convolution theorem, find the inverse
                            3
                   z 
Z – transform of  z − 4 
Solution:      z  
             −1
                        3
                              z    z 
                                     −1
                                                 2
                                                −1
           Z           = Z           ∗ Z           − − − − − (1)
              z − 4       z − 4         z − 4 
             z  2 
            −1               −1    z       −1    z 
          Z           = Z           ∗ Z          
             z − 4         z − 4         z − 4 
                            = 4n ∗ 4n
                                 n                      n
                            = ∑ (4) (4)   r   n −r
                                                     = ∑ (4) n
                                r =0                   r =0
                                                     = (n + 1)(4) n
Equation (1) becomes
               z 3 
              −1
                          = (n + 1) 4 ∗ 4
                                       n    n
            Z 
               z − 4  
                               n
                            = ∑ ( r + 1)(4) r ( 4) n − r
                              r =0
                               n
                            = ∑ (r + 1)(4) n
                              r =0
= 4 n [1 + 2 + 3 + ......... + (n + 1)]
                                     (n + 1)(n + 2)
                            = 4n
                                           2
6. Using convolution theorem, find the inverse
                                 3
Z – transform of ( z − 2)z ( z − 3)
                                2
Solution:
          
          −1      z3               −1     z2       z 
        Z                     = Z               .
                                        (z − 2) 2 z − 3 
           (z − 2) 2
                      (z − 3)                          
                                    z2   −1       −1  z 
                                =Z          2
                                                ∗ Z     z − 3 
                                    ( z − 2) 
                                = (n + 1)(2) n ∗ (3) n
                                      n
                               = ∑ (r + 1)(2) r (3) n − r
                                     r =0
                                                n
                               =3     n
                                            ∑ (r + 1)(2) (3)
                                            r =0
                                                        r       −r
                                                            r
                                             2
                                              n
                               = 3n ∑ (r + 1) 
                                    r =0     3
                                          2     2
                                                       2
                                                           2
                                                               3
                                                                                     2 
                                                                                          n
                                = 3 1 + 2   + 3   + 4   + ......... + (n + 1)   
                                       n
     1 −     (n + 1)    
= 3n      −          3   3 
           3    3
           1             1         
           9             3         
                                   
        
           2 
                 n
                    2  
                          
                               2 
                                     n
                                        2 
= 3 91 −     − 3(n + 1)   
   n
        3   3       3   3 
          2
               n
                          2 
                               n
= 3 9 − 6   − 2 (n + 1)  
   n
 3  3  
      2 n             
= 3 9 −   (6 + 2n + 2)
   n
      3              
      2 n         
= 3 9 −   (2n + 8)
   n
      3          
= 9.3n − 2 n (2n + 8)
7. Using convolution theorem, find the inverse
                                         2
Z – transform of ( z − 1)z ( z − 2)  2
Solution: Z  z
         −1           
                      
                       2
                        =  Z
                                 z
                                   .
                                      z 
                                        
                                                 −1
               (z − 1) (z − 2)                       (z − 1)           z − 2
                       2                                          2
                                            z             −1  z 
                                    = Z −1          2
                                                        ∗ Z     z − 2 
                                            ( z − 1) 
                                    = n (1) n ∗ (2) n = n ∗ 2 n
                                             n
                                    = ∑ r (2) n − r
                                         r =0
                                                      n
                                    =2       n
                                                  ∑
                                                  r =0
                                                          r (2) − r
                                                                      r
                                                1   n
                                    = 2 ∑ r 
                                             n
                                           r =0 2
                                                1   1 
                                                            2
                                                               1 
                                                                    3
                                                                                   1 
                                                                                        n
                                                                                          
                                    = 2 0 + 1  + 2   + 3   + ......... + n   
                                       n
                                         2     2 2                      2  
       1 n     1 
                       n
   n 1 −      n  
  2  2         2 
=              −
  2   1 2       −
                     1 
      1 −     1
                     2   
         2            
       1 n   1 
                   n
     1 −    n  
  2n   2 
              −   
                 2
=
  2  1          1 
      4         2   
                    
  2n      1  n    1  n 
=      41 −    − 2n   
  2       2     2  
  2n         1
                  n
                        1 
                             n
=      4 − 4   − 2 n   
  2         2        2  
= 2.2 n − 2 − n
Model II : Using Cauchy’s residue theorem
By using the theory of complex variables, it can be
shown that the inverse Z-transform is given by
                             1           n −1
                   x(n) =       ∫
                            2πi c
                                  X(z).z      dz
 z ( z − z + 2)
    2
                       
                        at its poles.
              n −1
                  . z
 ( z + 1 2
         )( z − 1)     
(i.e.) f(n) = sum of the residues of  z( z (+z1)(−zz−+1)2)  at its
                                                     n   2
poles.
         Poles of f(z).z n −1 are
(z + 1)(z − 1) 2 = 0
⇒ z = −1, 1
                      d  z n ( z 2 − z + 2) 
              = lim                         
                 z →1 d z
                               ( z + 1)     
                       ( z + 1){z n (2 z − 1) + ( z 2 − z + 2).n z n −1} − z n ( z 2 − z + 2)(1) 
              = lim                                                                              
                 z →1
                                                       ( z + 1) 2                                
                 (2){1 + (2).n} − (2)(1) 
              =                               
                             (2) 2            
             2 + 4n − 2
          =
                 4
          =n
  ∴ f (n) = Re s ( z = −1) + Re s ( z = 1)
            = (−1) n + n
                                                 z ( z + 1)
2. Find the inverse Z – transform of                     by
                                                 ( z − 1) 3
residue method.
Solution: Let Z { f ( z )} = f (n) = sum of the residues of
                          −1
  z ( z + 1)
           n −1   
             . z  at its poles.
  ( 3
     z − 1)       
(i.e.) f(n) = sum of the residues of  z( z(−z 1+)1)  at its
                                             n
                                                    3
                                                      
poles.
    Poles of f ( z ).z n −1 are
         ( z − 1) 3 = 0
         ⇒ z =1
            z = A( z − 2) + B( z − 1)
            Put z = 1, we get           1 = A(−1) + 0
                                        ⇒ A = −1
Put z = 2, we get              2 = 0 + B(1)
                               ⇒ B=2
                   z         −1     2
                           =     +
           ( z − 1)( z − 2) z − 1 z − 2
                z               −1  1             −1  1 
∴ Z −1                    = − Z     z − 1 + 2 Z     z − 2 
        ( z − 1)( z − 2) 
                             = −(1) n −1 + 2(2) n −1
                                      2n
                             = −1 + 2
                                      2
                              = −1 + 2 n
            
            −1        z3        
2. Find   Z                    using partial fraction method.
                                
             ( z − 1) ( z − 2) 
                      2
                                   z3
Solution:    Let f ( z ) =
                           ( z − 1) 2 ( z − 2)
                   f ( z)           z2            A       B        C
                          =                    =     +          +
                     z      ( z − 1) 2 ( z − 2) z − 1 ( z − 1) 2 z − 2
                      z 2 = A( z − 1)( z − 2) + B( z − 2) + C ( z − 1) 2
                  Put z = 1, we get              1 = 0 + B (−1) + 0
                                        ⇒ B = −1
                 Put z = 2, we get           4 = 0 + 0 + C (1)
                                        ⇒ C=4
                 Coeff . of z 2 ,       1= A+C
                                        1= A+ 4
                                    ⇒ A = −3
            −1     z2        
3. Find  Z                   
            ( z + 2)( z + 4) 
                        2         by the method of partial
fractions.
                                   z2
Solution:     Let f ( z ) =
                            ( z + 2)( z 2 + 4)
                   f ( z)           z            A    Bz +C
                          =                   =     +
                     z      ( z + 2)( z 2 + 4) z + 2 z 2 + 4
                       z = A( z 2 + 4) + ( B z + C )( z + 2)
                  Put z = −2, we get              − 2 = A(4 + 4) + 0
                                                  − 2 = 8A
                                                          1
                                                 ⇒ A=−
                                                          4
                  Coeff . of z 2 ,    0 = A+ B
                                            1
                                      0=− +B
                                            4
                                          1
                                     ⇒B =
                                          4
         Coeff . of z ,    1 = 2B + C
                               2
                            1= +C
                               4
                                  1 1
                          ⇒C =1− =
                                  2 2
          f ( z) − 1 / 4 1 / 4 z + 1 / 2
                =       +
            z     z+2        z2 + 4
                     1 z      1 z2     1 z
          f ( z) = −        +        +
                     4 z + 2 4 z2 + 4 2 z2 + 4
    −1            1 −1  z  1 −1  z 2  1 −1  2 z 
∴ Z { f ( z )} = − Z          + Z  2     + Z  2
                  4     z + 2 4    z + 4 4    z + 4 
                   1        1        nπ 1 n    nπ
                = − (−2) n + 2 n cos   + 2 sin
                   4        4         2 4       2
                                                                         z 3 + 3z
4. Find the inverse Z-transform of                                  ( z − 1) 2 ( z 2 + 1)
                               z 3 + 3z
Solution:   Let f ( z ) =
                          ( z − 1) 2 ( z 2 + 1)
                 f ( z)         z2 + 3            A       B        Cz+D
                        =                      =     +           +
                   z      ( z − 1) 2 ( z 2 + 1) z − 1 ( z − 1) 2    z 2 +1
                z 2 + 3 = A( z − 1)( z 2 + 1) + B( z 2 + 1) + (C z + D)( z − 1) 2
               Put z = 1, we get           4 = 0 + B(2) + 0
                                       ⇒ B=2
               Coeff . of z 3 ,       0 = A + C − − − − − (1)
               Coeff . of z 2 ,        1 = − A + B − 2C + D
                                       1 = − A + 2 − 2C + D
                          A + 2C − D = 1 − − − − − (2)
    (2) ⇒ A + 2C = 1 - - - - - (3)
(3)-(1) ⇒ C = 1
     (1) ⇒ A = -1
                   f ( z)    −1       2       z+0
                          =      +          +
                     z      z − 1 ( z − 1) 2 z 2 + 1
                             −z       2z        z2
                   f ( z) =      +          +
                            z − 1 ( z − 1) 2 z 2 + 1
                                z            −1      z           −1  z      
                                                                              2
              −1                −1
         ∴ Z { f ( z )} = − Z           + 2 Z     ( z − 1) 2  + Z     z 2 + 1
                                z − 1                                      
                                           nπ
                        = −1 + 2n + cos
                                            2
                          z n + 2 − 20 z n
Res(z = 4) = lim (z − 4)
             z→4         (z − 2) 3 (z − 4)
                   z n + 2 − 20 z n
            = lim
              z →4    ( z − 2) 3
              4 n + 2 − 20 4 n
            =
                     (2) 3
              4n
            =    (16 − 20)
              8
               4n
            =−
                2
  ∴ f (n) = Re s ( z = 2) + Re s ( z = 4)
              2n            4n
            =    (2n + 1) −
                    2
              2             2
  Applications of z-transform in Solving
       Finite Difference Equations
Z-transform can be applied in solving difference
equation.
Using the relations
(i) Z [ x(n − m)] = z − m X ( z )
(ii) Z [ y n+1 ] = z[Y ( z ) − y0 ]
                                       y 
(iii) Z [ y n+ 2 ] = z 2 Y ( z ) − y0 − 1 
                                        z
                                       y   y 
(iv) Z [ y n +3 ] = z 3 Y ( z ) − y 0 − 1 − 22 
                                        z z 
…………….
where Y(z) = Z[yn]
 Applications of z-transform in Solving
      Finite Difference Equations
1. Solve un+2 + 6un+1 + 9un = 2n with u0 = u1 = 0
using Z-transform.
Solution: Given un+2 + 6un+1 + 9un = 2n
Taking Z – transform on both sides, we get
                                   Z [u n + 2 ] + 6 Z [u n +1 ] + 9 Z [u n ] = Z (2 n )
                                                                                z
   {z 2u ( z ) − z 2u (0) − z u (1)} + 6 {z u ( z ) − z u (0)} + 9 u ( z ) =
                                                                               z−2
                                                                                z
                      {z 2u ( z ) − 0 − 0} + 6 {z u ( z ) − 0} + 9 u ( z ) =
                                                                               z−2
                                 z
     ( z 2 + 6 z + 9)u ( z ) =
                               z−2
                                z
          ( z + 3) 2 u ( z ) =
                               z−2
                                         z
                     u ( z) =
                                 ( z − 2)( z + 3) 2
                     u ( z)           1
                            =
                       z      ( z − 2)( z + 3) 2
                 1               A        B      C
                            =        +        +
         ( z − 2)( z + 3) 2 z − 2 z + 3 ( z + 3) 2
                         1 = A ( z + 3) 2 + B ( z − 2)( z + 3) + C ( z − 2)
Put z = 2, we get     1 = A(5) 2 + 0 + 0
                          1
                    ⇒ A=
                          25
Put z = −3, we get      1 = 0 + 0 + C (−5)
                              1
                      ⇒ C=−
                              5
Coeff . of z 2 ,        0 = A+ B
                            1
                        0=      +B
                            25
                               1
                   ⇒ B=−
                               25
                   u ( z ) 1 / 25 1 / 25    1/ 5
                          =       −      −
                      z      z − 2 z + 3 ( z + 3) 2
                            1 z        1 z      1    z
                   u ( z) =         −         −
                            25 z − 2 25 z + 3 5 ( z + 3) 2
                                             1 −1  z  1 −1  z  1 −1  − 3 z 
                   ∴ u n = Z −1{u ( z )} =      Z         − Z         + Z          2
                                             25    z − 2   25  z + 3  15   ( z + 3) 
                             1 n 1            1
              (i.e.) un =       .2 − (−3) n + .n (−3) n
                             25     25       15
2. Solve un+2 – 2un+1 + un = 2n with u0 = 2, u1 = 1
using Z - transform.
Solution: Given un+2 – 2un+1 + un = 2n
Taking Z – transform on both sides, we get
                                    Z [u n + 2 ] − 2 Z [u n +1 ] + Z [u n ] = Z (2 n )
                                                                             z
    {z 2u ( z ) − z 2u (0) − z u (1)} − 2 {z u ( z ) − z u (0)} + u ( z ) =
                                                                            z−2
                                                                             z
                  {z 2u ( z ) − 2 z 2 − z} − 2{z u ( z ) − 2 z} + u ( z ) =
                                                                            z−2
                                                                             z
                                                 ( z 2 − 2 z + 1)u ( z ) =      + 2 z 2 − 3z
                                                                            z−2
                                                                            z + z (2 z − 3)( z − 2)
                                                         ( z − 1) 2 u ( z ) =
                                                                                     z−2
                                                                            z [1 + 2 z 2 − 7 z + 6]
                                                                   u ( z) =
                                                                               ( z − 2)( z − 1) 2
                 u ( z) 2 z 2 − 7 z + 7
                       =
                   z     ( z − 2)( z − 1) 2
      2z 2 − 7z + 7         A        B       C
                       =        +          +
     ( z − 2)( z − 1) 2 z − 2 z − 1 ( z − 1) 2
        2 z 2 − 7 z + 7 = A ( z − 1) 2 + B ( z − 2)( z − 1) + C ( z − 2)
Put z = 2, we get       8 − 14 + 7 = A(1) 2 + 0 + 0
                             ⇒ A =1
Put z = 1, we get      2 − 7 + 7 = 0 + 0 + C (−1)
                          ⇒ C = −2
             2
Coeff . of z ,     2 = A+ B
                    2 =1+ B
                 ⇒ B =1
    u ( z)     1      1         2
           =      +       −
      z      z − 2 z − 1 ( z − 1) 2
                  z     z       2z
     u ( z) =        +     −
                z − 2 z − 1 ( z − 1) 2
                                   z           −1  z             −1      z 
     ∴ u n = Z −1{u ( z )} = Z −1           + Z               − 2 Z     ( z − 1) 2 
                                   z − 2          z − 1
                                                                                    
 (i.e.) un = 2 n + 1 − 2n
3. Solve yn+2 + 4yn+1 + 3yn = 3n with y0 = 0, y1 = 1
using Z - transform.
Solution: Given yn+2 + 4yn+1 + 3yn = 3n
Taking Z – transform on both sides, we get
                                    Z [ yn + 2 ] + 4 Z [ yn +1 ] + 3 Z [ yn ] = Z (3n )
                                                                                  z
   {z 2 y ( z ) − z 2 y (0) − z y (1)} + 4 {z y ( z ) − z y (0)} + 3 y ( z ) =
                                                                               z −3
                                                                                  z
                       {z 2 y ( z ) − 0 − z} + 4{z y ( z ) − 0} + 3 y ( z ) =
                                                                                z −3
                                                                                 z
                                                   ( z 2 + 4 z + 3) y ( z ) =        +z
                                                                               z −3
                                                                                z + z ( z − 3)
                                                    ( z + 1)( z + 3) y ( z ) =
                                                                                    z −3
                                                                                       z [1 + z − 3]
                                                                      y( z) =
                                                                                 ( z + 1)( z + 3)( z − 3)
                                       z 2 − 2z
                       y( z) =
                               ( z + 1)( z + 3)( z − 3)
           z 2 − 2z              A         B       C
                             =       +         +
   ( z + 1)( z + 3)( z − 3) z + 1 z + 3 z − 3
                   z 2 − 2 z = A ( z + 3)( z − 3) + B ( z + 1)( z − 3) + C ( z + 1)( z + 3)
Put z = 3, we get          9 − 6 = 0 + 0 + C (4)(6)
                                     3 1
                           ⇒ C=         =
                                    24 8
Put z = −1, we get         1 + 2 = A(2)(−4) + 0 + 0
                                      3
                           ⇒ A=−
                                      8
Coeff . of z 2 ,     1= A+ B +C
                          3       1
                     1= − + B +
                          8       8
                            3 1
                   ⇒ B =1+ −
                            8 8
                        8 + 3 − 1 10 5
                   ⇒ B=          =   =
                            8       8 4
             − 3 / 8 5 / 4 1/ 8
   y( z) =          +     +
              z +1 z + 3 z − 3
                           3      1  5 −1  1  1 −1  1 
  ∴ yn = Z −1{ y ( z )} = − Z −1        + Z        + Z 
                           8      z + 1 4    z + 3 8    z − 3 
           3           5           1
     yn = − (−1) n −1 + (−3) n −1 + (3) n −1
           8           4           8
            3 (−1) n 5 (−3) n 1 (3) n
     yn = −         +        +
            8 (−1) 4 (−3) 8 3
           3       5      3n
(i.e.) yn = (−1) − (−3) +
                n      n
           8      12      24
4. Using Z-transform solve y(n)+3y(n-1)–4y(n-2)=0
n ≥ 2 given that y(0) = 3, y(1) = -2.
Solution: Changing n into n+2 in the given
equation, it becomes
         y(n+2) + 3y(n+1) – 4y(n) = 0, n ≥ 0
Taking Z – transform on both sides, we get
                        Z [ y (n + 2)] + 3 Z [ y (n + 1)] − 4 Z [ y (n)] = Z (0)
                                                     ( z 2 + 3z − 4) y ( z ) = 3 z 2 + 7 z
                                                     ( z + 4)( z − 1) y ( z ) = z (3z + 7)
                y( z)        3z + 7
                      =
                  z     ( z − 1)( z + 4)
          3z + 7           A        B
                      =        +
     ( z − 1)( z + 4) z − 1 z + 4
              3 z + 7 = A( z + 4) + B( z − 1)
Put z = 1, we get             3 + 7 = A(5) + 0
                                       10
                             ⇒ A=         =2
                                        5
Put z = −4, we get − 12 + 7 = 0 + B(−5)
                                  − 5 = −5 B
                                 ⇒ B =1
                 y( z)     2    1
                       =     +
                  z      z −1 z + 4
                          2z    z
                 y( z) =     +
                         z −1 z + 4
                                z          −1     z 
∴ yn = Z −1{ y ( z )} = 2 Z −1          + Z
                                z − 1         z + 4 
            (i.e.) yn = 2 + (−4) n
5. Using Z-transform method solve yn+2 + yn = 2
given that y0 = y1 = 0.
Solution: Given yn+2 + yn = 2
Taking Z – transform on both sides, we get
                          Z [ y n + 2 ] + Z [ yn ] = Z (2)
                                                    2z
     {z 2 y ( z ) − z 2 y (0) − z y (1)} + y ( z ) =
                                                   z −1
                                                    2z
                 {z 2 y ( z ) − 0 − 0} + y ( z ) =
                                                   z −1
                                                         2z
                                 ( z 2 + 1) y ( z ) =
                                                        z −1
                                                           2z
                                            y( z) =
                                                    ( z − 1)( z 2 + 1)
                                            y( z)           2
                                                  =
                                             z      ( z − 1)( z 2 + 1)
          2            A    Bz + C
                    =     +
  ( z − 1)( z 2 + 1) z − 1 z 2 + 1
                2 = A( z 2 + 1) + ( Bz + C )( z − 1)
Put z = 1, we get         2 = A(2) + 0
                    ⇒ A =1
Coeff . of z 2 ,     0 = A+ B
                     0 =1+ B
                    B = −1
 Coeff . of z ,   0 = −B + C
                  0 =1+ C
                ⇒ C = −1
   y ( z)     1  − z −1
          =     + 2
     z      z −1 z +1
              z    z2       z
    y( z) =     − 2     − 2
            z −1 z +1 z +1
                            z          −1  z      
                                                  2
              −1             −1                            −1      z 
   ∴ yn = Z { y ( z )} = Z          − Z     z 2 + 1 − Z
                            z − 1                
                                                               z 2 + 1
                     nπ         nπ 
(i.e.) yn = 1 − cos      − sin     
                      2          2 
 6. Form the difference equation whose solution is
                   yn = (A + Bn)2n
Solution: Given
yn = (A + Bn)2n = A2n + Bn2n --------- (1)
yn+1 = [A + B(n+1)]2n+1 = 2[A + B(n+1)]2n
                    = 2A2n + 2B(n+1)2n --------(2)
yn+2 = [A + B(n+2)]2n+2 = 4[A + B(n+2)]2n
                  = 4A2n + 4B(n+2)2n -------(3)
Eliminating A and B from equations (1), (2) and (3),
we have
                                yn       1        n
                               y n+1     2    2(n + 1) = 0
                               yn+2      4 4( n + 2)
8 yn − 8 yn+1 + 2 yn+ 2 = 0
− 27 yn − 18 yn+1 − 3 yn+2 = 0