0% found this document useful (0 votes)
17 views8 pages

Chapter 1: Digital Filters (4 Weeks) : 1. The Z-Transform

Chapter 1 covers the fundamentals of digital filters, focusing on the z-transform and its properties, including linearity, time shifting, and time reversal. It also discusses the design of digital filters, minimum-phase systems, and multirate filtering. The chapter provides examples and mathematical formulations to illustrate the concepts of z-transform and its applications in analyzing discrete-time signals and systems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
17 views8 pages

Chapter 1: Digital Filters (4 Weeks) : 1. The Z-Transform

Chapter 1 covers the fundamentals of digital filters, focusing on the z-transform and its properties, including linearity, time shifting, and time reversal. It also discusses the design of digital filters, minimum-phase systems, and multirate filtering. The chapter provides examples and mathematical formulations to illustrate the concepts of z-transform and its applications in analyzing discrete-time signals and systems.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

Chapter 1: Digital Filters

(4 weeks)

- The z-Transform
- Digital filters structures, Transfer function, stability and implementation
- Digital filter design
- Minimum-Phase systems
- Multirate filtering

1. The z-Transform

1.1. Definitions
Similar to the Laplace transform which deals with continuous Linear Time-Invariant Systems
(LTIS),

the z- transform provides a way to analyze discrete-time signals and systems in the frequency
domain. The z-transform of a discrete-time signal 𝑥(𝑘) is defined as:
𝑋(𝑧) = ∑∞
𝑘=−∞ 𝑥(𝑘)𝑧
−𝑘
(1.1)
where 𝑧 is a complex-valued variable from the z-plan. It is expressed as:
𝑧 = 𝑟𝑒 𝑗𝜔 (1.2)
The values of z for which the z-transform converges is called the region of convergence (ROC).
The z-transform defined in equation (1.1) is called bilateral (two-sided) z-transform in contrast
to the unilateral (one sided) z-transform given by:
𝑋(𝑧) = ∑∞
𝑘=0 𝑥(𝑘)𝑧
−𝑘
(1.3)
Examples
𝒙(𝒌) = 𝜹(𝒌)
0
𝑋(𝑧) = ∑ 1𝑧 −𝑘 = 1. 𝑧 0 = 1
𝑘=0

ROC=the entire z-plane

𝒙(𝒌) = {𝟏
⏟ , 𝟐, 𝟎, 𝟑}

1
3
𝑋(𝑧) = ∑ 𝑎𝑘 𝑧 −𝑘 = 1. 𝑧 0 + 2. 𝑧 −1 + 0. 𝑧 −2 + 3. 𝑧 −3
𝑘=0

𝑧 3 + 2𝑧 2 + 3
= 1 + 2𝑧 −1 + 3. 𝑧 −3 =
𝑧3
ROC=the entire z-plane except z=0
𝒙(𝒌) = 𝒂𝒌 𝒖(𝒌)
∞ ∞
𝑋(𝑧) = ∑ 𝑎𝑘 𝑧 −𝑘 = ∑ (𝑎𝑧 −1 )𝑘
𝑘=0 𝑘=0
1−𝑟 𝑁+1 𝑁→∞ 1
Rappelez : ∑𝑁 𝑘
𝑘=0 𝑟 = → = 1−𝑟 si |𝑟| < 1
1−𝑟

Donc :
1 𝑧
𝑋(𝑧) = 1−𝑎𝑧 −1 = 𝑧−𝑎 , |𝑎𝑧 −1 | < 1 → |𝑧| > |𝑎|

𝒙(𝒌) = −𝒂𝒌 𝒖(−𝒌 − 𝟏)


−1 ∞ ∞ ∞
𝑋(𝑧) = − ∑ 𝑎𝑘 𝑧 −𝑘 = − ∑ (𝑎𝑧 −1 )−𝑙 = − ∑ 𝑎−𝑙 𝑧 𝑙 = 1 − ∑ (𝑎−1 𝑧)𝑙
𝑘=−∞ 𝑙=1 𝑙=1 𝑙=0
1 𝑧
=1− −1
=
1−𝑎 𝑧 𝑧−𝑎
𝑦𝑖𝑒𝑙𝑑𝑠
and |𝑎−1 𝑧| < 1 → |𝑧| < |𝑎|

1.2. Z- transform properties


• Linearity
𝑍{𝑥1 (𝑘)} = 𝑋1 (𝑧), 𝑍{𝑥2 (𝑘)} = 𝑋2 (𝑧)
𝑍{𝑎𝑥1 (𝑘) + 𝑏𝑥2 (𝑘} = 𝑎𝑋1 (𝑧) + 𝑏𝑋2 (𝑧), 𝑅𝑂𝐶 = 𝑅𝑥1 ∩ 𝑅𝑥2 (1.4)

Example

𝒙(𝒌) = (𝟐)𝒌 𝒖(𝒌) + (−𝟑)𝒌 𝒖(𝒌)


𝑥1 (𝑘) = 2𝑘 𝑢(𝑘) , 𝑥2 (𝑘) = (−2)𝑘 𝑢(𝑘)

2
𝑧
𝑋1 (𝑧) = 𝑅𝑥1 = |𝑧| > 2
𝑧−2
𝑧
𝑋2 (𝑧) = , 𝑅 = |𝑧| > 3
𝑧 + 3 𝑥2
The intersection of 𝑅𝑥1 and 𝑅𝑥2 is |𝑧| > 3. Thus, the z-transform of the sequence 𝑥(𝑘) is:
𝑧 𝑧
𝑋(𝑧) = + , |𝑧| > 3
𝑧−2 𝑧+3
• Time shifting
𝑍{𝑥(𝑘 − 𝑛)} = 𝑧 −𝑛 𝑋(𝑧) (1.5)
The ROC of 𝑧 −𝑘0 𝑋(𝑧) is the same as that of 𝑋(𝑧) except 𝑧 = 0 for 𝑛 > 0 or 𝑧 = ∞ for
𝑛 < 0.
Proof :

𝑍{𝑥(𝑘 − 𝑛)} = ∑ 𝑥(𝑘 − 𝑛)𝑧 −𝑘
𝑘=−∞

Let 𝑚 = 𝑘 − 𝑛, then: 𝑍{𝑥(𝑚)} = ∑∞


𝑚=−∞ 𝑥(𝑚)𝑧
−𝑚−𝑛
= 𝑧 −𝑛 ∑∞
𝑚=−∞ 𝑥(𝑚)𝑧
−𝑚
= 𝑧 −𝑛 𝑋(𝑧)

Example
𝒙(𝒌) = 𝒖(𝒌) − 𝒖(𝒌 − 𝟓)

𝑧 𝑧 𝑧 − 𝑧 −4 𝑧5 − 1
𝑋(𝑧) = 𝑍𝑇{𝑢(𝑘)} − 𝑍𝑇{𝑢(𝑘 − 5)} = − 𝑧 −5 = = 5
𝑧−1 𝑧−1 𝑧−1 𝑧 − 𝑧4
ROC: |z| > 1

• Time reversal

Let 𝑍{𝑥(𝑘)} = 𝑋(𝑧) and its ROC: 𝑟1 < |𝑧| < 𝑟2

Then:
1 1
𝑍{𝑥(−𝑘)} = 𝑋(𝑧 −1 ) , ROC: < |𝑧| < 𝑟 (1.6)
𝑟2 1

Proof:

𝑍{𝑥(−𝑘)} = ∑ 𝑥(−𝑘)𝑧 −𝑘
𝑘=−∞

Let 𝑚 = −𝑘, then: 𝑍{𝑥(𝑚)} = ∑∞ 𝑚 −1 −𝑚
𝑚=−∞ 𝑥(𝑚)𝑧 = ∑𝑘=−∞ 𝑥(𝑚)(𝑧 ) = 𝑋(𝑧 −1 )
1 1
ROC: 𝑟1 < |𝑧 −1 | < 𝑟2 or equivalently: 𝑟 < |𝑧| < 𝑟
2 1

Example

3
𝒙(𝒌) = 𝒖(−𝒌)
1 1
𝑍{𝑢(𝑘)} = 1−𝑧 −1 ⇒ 𝑍{𝑢(−𝑘)} = 1−𝑧 ROC: |𝑧| < 1

• Differentiation in the z-transform


𝑑𝑋(𝑧)
𝑇𝑍{𝑘𝑥(𝑘)} = −𝑧 , 𝑅𝑂𝐶 = 𝑅𝑥 (1.7)
𝑑𝑧

Proof:
𝑑𝑋(𝑧)
𝑍{𝑥(𝑘)} = 𝑋(𝑧) = ∑∞
𝑘=−∞ 𝑥(𝑘)𝑧
−𝑘
→ = ∑∞
𝑘=−∞ −𝑘𝑥(𝑘)𝑧
−𝑘−1
=
𝑑𝑧

−𝑧 −1 ∑∞
𝑘=−∞ 𝑘𝑥(𝑘)𝑧
−𝑘
= − 𝑧 −1 𝑍{𝑘𝑥(𝑘)}
𝑑𝑋(𝑧)
Thus: 𝑇𝑍{𝑘𝑥(𝑘)} = −𝑧 𝑑𝑧

Example
𝒙(𝒌) = 𝒌𝒂𝒌 𝒖(𝒌)
𝑧
Let 𝑦(𝑘) = 𝑎𝑘 𝑢(𝑘), then 𝑌(𝑧) = 𝑧−𝑎 |𝑧| > 𝑎
𝑑𝑌(𝑧) 𝑧−𝑎−𝑧 𝑎𝑧
𝑇𝑍{𝑘𝑦(𝑘)} = −𝑧 = −𝑧 2
=
𝑑𝑧 (𝑧 − 𝑎) (𝑧 − 𝑎)2
• Multiplication by an Exponential Sequence
𝑧
𝑇𝑍{𝑎𝑘 𝑥(𝑘)} = 𝑋( ) , 𝑅𝑂𝐶 = |𝑎|𝑅𝑥
𝑎
• Initial Value theorem (for causal signals)
𝑥(0) = lim 𝑋(𝑧)
𝑧→∞

• Final value theorem


lim 𝑥(𝑘) = lim(𝑧 − 1)𝑋(𝑧)
𝑘→∞ 𝑧→1

• Convolution of two sequences


𝑍{𝑥1 (𝑘)} = 𝑋1 (𝑧), 𝑍{𝑥2 (𝑘)} = 𝑋2 (𝑧)
𝑍{𝑥1 (𝑘) ∗ 𝑥2 (𝑘} = 𝑋1 (𝑧)𝑋2(𝑧) (1.8)
The ROC is at least the intersection of 𝑅𝑥1 and 𝑅𝑥2
𝒙(𝒌) = (𝟐)𝒌 𝒖(𝒌) ∗ (−𝟑)𝒌 𝒖(𝒌)
𝑥1 (𝑘) = 2𝑘 𝑢(𝑘) , 𝑥2 (𝑘) = (−2)𝑘 𝑢(𝑘)
𝑧
𝑋1 (𝑧) = 𝑧−2 𝑅𝑥1 = |𝑧| > 2
𝑧
𝑋2 (𝑧) = , 𝑅 = |𝑧| > 3
𝑧 + 3 𝑥2
Thus:

4
𝑧 𝑧 𝑧2 2 𝑧 3 𝑧
𝑋(𝑧) = ∙ = = +
𝑧 − 1/2 𝑧 + 1/3 (𝑧 − 1/2)(𝑧 + 1/3) 15 𝑧 − 1/2 10 𝑧 + 1/3
6 1 𝑘 6 1 𝑘
⟹ 𝑥(𝑘) = ( ) 𝑢(𝑘) + (− ) 𝑢(𝑘)
10 2 15 3

Frome these properties we define some common Z transforms as presents the following
image:

1.3. The inverse of z-transform


1.3.1. Partial-fraction expansion
This approach is useful if 𝑋(𝑧) is rational function:
𝐵(𝑧) 𝑏0 + 𝑏1 𝑧 −1 … + 𝑏𝑚 𝑧 −𝑚
𝑋(𝑧) = =
𝐴(𝑧) 1 + 𝑎1 𝑧 −1 … + 𝑎𝑛 𝑧 −𝑛
Case 1: 𝑋(𝑧) is a proper rational function (𝑚 < 𝑛 and 𝑎𝑛 ≠ 0)

5
To simplify the decomposition, it is preferable to eliminate negative powers of 𝑧 by
multiplying the numerator and the denominator by 𝑧 𝑛 which leads to:
𝑏0 𝑧 𝑛 + 𝑏1 𝑧 𝑛−1 … + 𝑏𝑚 𝑧 𝑛−𝑚
𝑋(𝑧) =
𝑧 𝑛 + 𝑎1 𝑧 𝑛−1 … + 𝑎𝑛
By dividing 𝑋(𝑧) by z , we get a new function which is proper also. The partial-fraction
𝑋(𝑧)
expansion is equivalent to express the function as a sum of simple fractions.
𝑧
𝑋(𝑧)
According to the roots of the denominator of the function , two cases could be considered:
𝑧

- All roots are simple:


𝑋(𝑧) 𝐴1 𝐴2 𝐴𝑛
= + +⋯ (1.9)
𝑧 𝑧−𝑝1 𝑧−𝑝2 𝑧−𝑝𝑛

where 𝑝1 , 𝑝1 , ⋯ 𝑝𝑛 are 𝑛-simple poles of . The coefficients 𝐴1 , 𝐴1 , ⋯ 𝐴𝑛 could be evaluated as:


𝑋(𝑧)
𝐴𝑘 = (𝑧 − 𝑝𝑘 ) | 𝑘 = 1,2, ⋯ 𝑛 (1.10)
𝑧 𝑧=𝑝𝑘

Example
𝑧 1
|𝑧|
𝑋(𝑧) = <
2𝑧 2 − 3𝑧 + 1 2
𝑋(𝑧) 1 1 𝑎1 𝑎2
= 2 = = +
𝑧 2𝑧 − 3𝑧 + 1 2(𝑧 − 1) (𝑧 − 1) 𝑧 − 1 𝑧 − 1
2 2

1 1
𝑎1 = | = 1, 𝑎2 = | = −1
1 2(𝑧 − 1) 𝑧=1/2
2 (𝑧 − 2)
𝑧=1
𝑧 𝑧
𝑋(𝑧) = −
𝑧 − 1 𝑧 − 1/2
1 1 𝑘
Puisque |𝑧| < 2 donc |𝑧| < 1 ⟹ 𝑥(𝑘) = −𝑢(−𝑘 − 1) + (2) 𝑢(−𝑘 − 1)

- Multiple- order roots


𝑋(𝑧)
If has multiple-order root 𝑝𝑖 with multiplicity 𝑟, then:
𝑧
𝑋(𝑧) 1𝐴 𝐴 𝐴
= 𝑧−𝑝 + (𝑧−𝑝2 )2 + ⋯ (𝑧−𝑝𝑟 )𝑟 (1.11)
𝑧 𝑖 𝑖 𝑖

where:
1 𝑑𝑘 𝑋(𝑧)
𝐴𝑟−𝑘 = 𝑘! 𝑑𝑧 𝑘 [(𝑧 − 𝑝𝑖 )𝑟 ]| (1.12)
𝑧 𝑧=𝑝𝑖

Example
1 𝑧3
𝑋(𝑧) = = , |𝑧| > 1
(1 + 𝑧 −1 )(1 − 𝑧 −1 )2 (𝑧 + 1)(𝑧 − 1)2

6
First:
𝑋(𝑧) 𝑧2
==
𝑧 (𝑧 + 1)(𝑧 − 1)2
We have: 𝑝1 = −1 is a simple pole, 𝑝2 = 1 is a double pole. Then:
𝑋(𝑧) 𝐴1 𝐴2 𝐴3
= + +
𝑧 𝑧 + 1 𝑧 − 1 (𝑧 − 1)2

𝑋(𝑧) 1
𝐴1 = (𝑧 + 1) | =
𝑧 𝑧=−1 4
𝑋(𝑧) 1
𝐴3 = (𝑧 − 1)2 | =
𝑧 𝑧=1 2

1 𝑑 𝑋(𝑧) 3
𝐴2 = [(𝑧 − 𝑝𝑖 )2 ]| =
2! 𝑑𝑧 𝑧 𝑧=1 4
Thus:
1 3 1
𝑧 𝑧 𝑧
𝑋(𝑧) = 4 + 4 + 2 2
𝑧 + 1 𝑧 − 1 (𝑧 − 1)
1 3 1
Since |𝑧| > 1 then: 𝑥(𝑘) = 4 (−1)𝑘 𝑢(𝑘) + 4 𝑢(𝑘) + 2 𝑘𝑢(𝑘)

Case 2: 𝑋(𝑧) is an improper rational function (𝑚 ≥ 𝑛)


An improper function can always be expressed as the sum of a polynomial and a proper
function.
𝐵(𝑧) 𝐵1 (𝑧)
𝑋(𝑧) = 𝐴(𝑧) = 𝑐0 + 𝑐1 𝑧 −1 + ⋯ + 𝑐𝑚−𝑛 𝑧 𝑛−𝑚 (1.13)
𝐴(𝑧)

Example
11 1
1 + 3𝑧 −1 + 6 𝑧 −2 + 3 𝑧 −3
𝑋(𝑧) =
5 1
1 + 6 𝑧 −1 + 6 𝑧 −2
1 −1 1
𝑧
𝑋(𝑧) = 1 + 2𝑧 −1 + 6 = 1 + 2𝑧 −1 + 6𝑧
5 1 5 1
1 + 6 𝑧 −1 + 6 𝑧 −2 𝑧2 + 6 𝑧 + 6
1
𝑋(𝑧) = 1 + 2𝑧 −1 + 6𝑧 = 1 + 2𝑧 −1 +
𝑧
+
−𝑧
1 1 1 1
(𝑧 + 3) (𝑧 + 2) 𝑧+3 𝑧+2

1.3.2. Power series expansion

7
The z-transform defined by 𝑋(𝑧) = ∑∞
𝑘=−∞ 𝑥(𝑘)𝑧
−𝑘
is a power series where the sequence
values 𝑥(𝑘) are the coefficient of 𝑧 −𝑘 :
𝑋(𝑧) = ⋯ + 𝑥(−1)𝑧 + 𝑥(0) + 𝑥(1)𝑧 −1 + ⋯ (1.14)

Example
1 1
𝑋(𝑧) = =
1 − 1.5𝑧 −1 + 0.5𝑧 −2 1
(1 − 𝑧 −1 ) (1 − 𝑧 −1 )
2
• |𝑧| > 1 : the sequence 𝑥(𝑘) must be causal, then we perform a power series expansion in
negative power of 𝑧.
3 7 15 −3 3 7 15
𝑋(𝑧) = 1 + 2 𝑧 −1 + 4 𝑧 −2 + 𝑧 + ⋯ 𝑥(𝑘) = {1, 2 , 4 , , …}
8 8

• |𝑧| < 1/2 : the sequence 𝑥(𝑘) must be anticausal, and we perform a power series expansion
in positive power of 𝑧.
𝑋(𝑧) = 2𝑧 2 + 6𝑧 3 + 14𝑧 4 + ⋯ , 𝑥(𝑘) = {… , 14,6,2,0,0}

You might also like